
Penneys Math 8800 3-categories

7. 3-categories

7.1. k-tuply monoidal n-categories. Just as there is a notion of a monoidal structure
on a category, we can define a monoidal structure on an n-category. In fact, it is possible
to define multiple levels of monoidality on an n-category. For example, we will see that a
braided monoidal category is a 2-tuply monoidal 1-category, as the braiding should be viewed
as a higher monoidal structure on the category. Just as a monoidal category is exactly the
same data as a 2-category with one object, a braided monoidal category is exactly the same
data as a 3-category with one object. The Delooping Hypothesis [BS10, Hyp. 22] makes the
correspondence between k-tuply monoidal n-categories and (k − i)-fold degenerate (n + i)-
categories precise.

Hypothesis 7.1.1 (Delooping [BS10, Hyp. 22]). There is an adjoint pair Bi ⊣ Ωi between

{k-monoidal n-categories} {pointed (k − i)-monoidal (n+ i)-categories}
Bi

Ωi

Moreover, Bi,Ωi restrict to an equivalence when we restrict the right hand side to i-fold
degenerate pointed (k − i)-monoidal (n+ i)-categories.

Here, the term pointed means equipped with a distinguished i-functor from the terminal
i-category Bi∗; moreover, all higher morphisms between pointed (k − i)-monoidal (n + i)-
categories must preserve these pointings. The following hypothesis further refines the Deloop-
ing Hypothesis 7.1.1. Indeed, one can justify this hypothesis by assuming [BS10, Hyp. 17];
we will not comment further on this here.

Hypothesis 7.1.2 ([JPR20, Hyp. 1.2]). Let G be a n-category. The full (n+1)-subcategory of
the under-(n+1)-category nCatG/ on the k-surjective functors out of G is an (n−k)-category,
i.e., all hom (k + 1)-categories between parallel (n− k)-morphisms are contractible.

Here, we call an n-functor F : C → D of n-categories k-surjective1 if it is essentially
surjective on objects and parallel r-morphisms for r ≤ k. By convention, any functor is
(−1)-surjective. The under-(n+1)-category is the (n+1)-category of n-categories equipped
with n-functors out of G, and higher morphisms must be compatible with these n-functors
from G. For k = 1, . . . , n−1 morphisms, this compatibility is a structure on the k-morphism,
and at the top level, compatibility is a property.

In fact, the Delooping Hypothesis 7.1.1 is often used to define the notion of k-tuply
monoidal n-category. The following chart of Baez-Dolan-Shulman shows how multiple levels
of monoidality and higher categories interact, and in fact stabilize.

1This notion of k-surjectivity does not coincide with the one used in [BS10], where a functor is said to be
k-surjective if it is essentially surjective on k-morphisms.
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k-tuply monoidal n-categories [BD95, BS10]. For a k-tuply monoidal n-category,
being trivial at level k corresponds to extra structure on an n-category, except at level
n− 1, which is a property of an (n+ 2)-tuply monoidal n-category.

n = −2 n = −1 n = 0 n = 1 n = 2
k = 0 ∗ = T {T, F} set category 2-category
k = 1 ” [[?]] monoid monoidal monoidal
k = 2 ” ” commutative braided braided
k = 3 ” ” ” symmetric sylleptic
k = 4 ” ” ” ” symmetric
k = 5 ” ” ” ” ”

In the chart above, we included columns for n = −2,−1, 0, when strictly speaking, these
values of n donot give categories. It is helpful to think of these levels as ‘lower’ categories.
TODO: negative categorical thinking [BS10] using the homotopy hypothesis.

7.2. The 3-category of 2-categories. In this section, we sketch the definition of the 3-
category of 2-categories [Gur13, §5].

TODO: think about conventions below; do they match with those from fusion
categories and MTCs?

Definition 7.2.1. The 3-category 2Cat has:

• objects 2-categories,
• 1-morphisms F : C → D are 2-functors,
• 2-morphisms η : F ⇒ G are 2-transformations. That is, η assigns to each object
c ∈ C a 1-morphism ηc ∈ D(F (c) → G(c)) and to each 1-morphism X ∈ C(a → b),
an invertible 2-morphism

ηa F (X)

ηX

G(X) ηb

∈ C(ηa ⊗a F (X)⊗b → G(X)⊗ ηb).

The 2-transformation satisfies the following axioms:

– (naturality) for all f ∈ C(aXb → aYb),

ηa F (X)

f

ηY

G(Y ) ηb

F (Y ) =

ηbG(Y )

f

ηX

F (X)ηa

G(Y )
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– (unitality) For all c ∈ C,

ηc

F 1
c

η1c

G(1c) ηc

F (1c) =

ηc

G1
c

G(1c) ηc

– (monoidality) for all aXb, bYc ∈ C,

ηa F (X) G(X)

ηX

ηY

G2
X,Y

G(X⊗Y ) ηc

G(X) =

ηa F (X) F (Y )

F 2
X,Y

ηX⊗Y

G(X⊗Y ) ηc

F (X⊗Y ) .

• 3-morphisms m : η ⇛ ζ are 2-modifications. That is, m assigns to each object c ∈ C
a 2-morphism mc ∈ C(ηc ⇒ ζc) which satisfies the following axiom:

F (X)ηa

ζb

ηX

mb

G(X)

ηb =

F (X)ηa

ζb

ζX

ma

G(X)

ζa ∀ aXb ∈ C(a→ b).

In order to see how the above data compiles into a 3-category, we observe that by an
exercise from the 2-categories module, for all 2-categories, C,D Hom(C → D) itself forms a
2-category. The remaining data to define a 3-category is the 1-composition 2-functor

⊠ : Hom(D → E)⊠ Hom(C → D) −→ Hom(C → E)
together with higher coherences. For now, we refer the reader to [Gur13, §5].

7.3. Aside: monoidal categories are 2-categories with one object. In this section,
we prove the Delooping Hypothesis 7.1.1 for k = 1, n = 2, i = 1 to show that monoidal
categories are 2-categories with one object. This section is intended to be self-contained, and
the notation may clash with other sections.

We repeat the following exercise from the 2-categories module:

Exercise 7.3.1. Show that if a 1-morphism aXb is invertible in a 2-category C, then there
is an inverse bYa such that the isomorphisms 1a ∼= aX ⊗b Ya and 1b ∼= bY ⊗a Xb also satisfy
the zig-zag/snake relations. The 1-morphism aXb equipped with such an inverse is called an
adjoint equivalence between a, b ∈ C.

Definition 7.3.2. Let ∗ := B{e} be the trivial 2-category. Consider the 3-category 2Cat∗:

• objects: pairs (C, πC) where C is a 2-category and πC : ∗ → C is a 2-functor which is
essentially surjective on objects. We write 1C := πC(id∗).
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• 1-morphisms: (A,α) : (C, πC) → (D, πD) consists of a 2-functor (A,A1, A2) : C → D
together with a natural isomorphism α : πD ⇒ A ◦ πC.
• 2-morphisms: (η,m) : (A,α) ⇒ (B, β) consists of a natural transformation η =
(η∗, ηa) : A⇒ B and an invertible modification

∗ C

D.

πC

πD B

β m

⇛

∗ C

D

πC

πD
A

α

B

η

• 3-morphisms: p : (η,m) ⇛ (ζ, n) consists of a modification p : η ⇛ ζ such that the
following diagram commutes, where we suppress whiskering from the notation:

πD A ◦ πC

B ◦ πC.

α

β
ζ◦πC

n

=

πD A ◦ πC

B ◦ πC

α

β
η◦πC

ζ◦πC

m

p◦πC
(7.3.3)

Theorem 7.3.4. The 3-category 2Cat∗ is equivalent to the full (at the 3-morphism level)
3-subcategory 2Catpt∗ with

• objects (C, πC) are those objects of 2Cat∗ for which C is a strict 2-category with exactly
one object and πC : ∗ → C is a strict 2-functor. For such an object, we define
1C := id∗C .
• 1-morphisms (A,α) : (C, πC) → (D, πD) satisfy A(∗C) = ∗D and α∗ = 1D and α1C =
A1

∗,
• 2-morphisms (η,m) : (A,α)⇒ (B, β) satisfy η∗ = 1D and m = id1D , and
• all 3-morphisms.

Proof.
Strictifying objects: First, observe that every object (C, π) of 2Cat∗ is equivalent to one of the
form (C ′, π′) where C ′ is a strict 2-category with exactly one object and π′ : ∗ → C ′ is a strict
2-functor which is surjective on objects. Indeed, let C ′ be the full 2-category of C whose only
object is π(∗). Set π′(∗) = π(∗) so that π′(e) = 1π(∗) and π′(ide) = id1π(∗) , and set all higher

coherence data to be identities. One then checks (C, π) ∼= (C, π′).
Strictifying 1-morphisms: Suppose now we have objects (C, πC), (D, πD) ∈ 2Catpt∗ and a 1-

morphism (A,α) : (C, πC)→ (D, πD) in 2Cat∗, so that A = (A,A1, A2) : C → D is a 2-functor
and α = (α∗, α1) : π

D ⇒ A ◦ πC is a 2-natural isomorphism. The 2-natural isomorphism α is
comprised of an invertible object α∗ which we depict by an red oriented strand:

α∗ =
α∗

,
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and an invertible 2-morphism α1 : α∗⊠1D = α∗ ⇒ A(1C)⊠α∗ which by the unitality axioms
of a natural isomorphism, is equal to

α∗

α1

A(1C) α∗

=

α∗

A1
∗

A(1C) α∗

where A1
∗ : 1D ⇒ A(1C) is the unitor of A. By Exercise 7.3.1, α∗ is part of an adjoint

equivalence, giving us the following relations:

= = α∗ = = α∗

= = = =

We claim there is an equivalent 1-morphism (B, β) ∈ 2Catpt∗ ((C, πC)→ (D, πD)). Indeed, we
define B(∗) = A(∗), B(c) = α−1

∗ ⊗ A(c) ⊗ α∗ for all c ∈ C, and for a 2-morphism x : c → d
in C, we define

B

 x

c

d
 :=

α∗α−1
∗

A(x)

A(c)

A(d) α∗α−1
∗

.

We define the unitor B1 and tensorator B2 by

B1
∗ :=

A1
∗

A(1C)α−1
∗ α∗

B2
c,d :=

α−1
∗ α∗

A(c) A(d)

A(c⊗d)

A2
c,d .

It is straightforward to check that (B,B1, B2) is a 2-functor, and β = (β∗ := 1D, β1 := B1
∗) :

πD ⇒ B ◦ πC is a 2-natural isomorphism. We now observe that (A,α) ∼= (B, β) in 2Cat∗ via
the 2-morphism (γ, id) : (B, id) ⇒ (A,α) where γ = (γ∗, γc) : B ⇒ A is given by γ∗ = α∗
and γc : γ∗ ⊗B(c)⇒ A(c)⊗ γ∗ is given by

γc :=
A(c)

.

Strictifying 2-morphisms: Suppose we have two 1-morphisms (A,α), (B, β) ∈ 2Catpt∗ ((C, πC)→
(D, πD)), which means that α∗ = 1D = β∗, α1 = A1

∗, β1 = B1
∗ . Suppose we have a 2-morphism

(η,m) ∈ 2Cat∗((A,α)⇒ (B, β). This means η = (η∗, ηc) : A⇒ B is a 2-natural transforma-
tion where η∗ is an invertible 1-morphism in D and ηc : η∗ ⊗ A(c) ⇒ B(c) ⊗ η∗ is depicted
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graphically by

η∗ A(c)

ηc

B(c) η∗

,

and the invertible modification m : β∗ ⇛ α∗ ⊗ η∗ gives an isomorphism 1D ∼= η∗, which we
denote graphically by

β∗

m

η∗ α∗

.

We claim there is an equivalent 2-morphism (ζ, id) : (A,α) ⇒ (B, β) such that ζ = (ζ∗, ζc)
satisfies ζ∗ = 1D. Indeed, we just set ζ∗ = 1D and for c ∈ C, we define

ζc :=

A(c)

ηc

m

m−1

B(c)

.

It is straightforward to verify that ζ : A⇒ B is a 2-natural transformation. Moreover, since
α∗ = 1D = β∗, we may view m as an invertible 2-cell m : 1D ⇒ η∗. Finally, it is easily
checked that m is exactly an invertible 3-morphism in 2Cat∗((ζ, id) ⇛ (η,m)). □

Remark 7.3.5. With a little more effort, we can arrange that 1-morphisms (A,α) ∈
2Catpt∗ (C → D) satisfy the additional strictness property that A(1C) = 1D and A1

∗ : 1D →
A(1C) is equal to id1D . Indeed, in the construction of B in the proof above, one makes the
following changes by hand: B(1C) := 1D and B1

1C
:= id1D , and β = id. In the equivalence

(η, id) : (B, id) ⇒ (A,α), one then defines η1C := α1. Making B strictly unital has the
advantage that πD = B ◦ πC on the nose, and we may choose β = id.

Corollary 7.3.6. The 3-category 2Catpt∗ is 1-contractible, i.e., there are only identity 3-
morphisms.

Proof. Given two 2-morphisms (η, id), (ζ, id) ∈ 2Catpt∗ ((A, id)⇒ (B, β)) such that η∗ = 1D =
ζ∗, if there is a 3-morphism p : (η, id) ⇛ (ζ, id), then η = ζ and p = id. Indeed, (7.3.3) in
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string diagrams is the equation

β∗=1D

α∗=1Dζ∗=1D

m∗=id1D =

β∗=1D

α∗=1Dζ∗=1D

n∗=id1D

p

η∗=1D

which implies p = id1D . Finally, the relation

A(c)η

ζ

ηc

p

B(c)

=

A(c)η

ζ

ζc

p

B(c)

∀ c ∈ C

together with p = id1D implies that ηc = ζc for all c ∈ C. □

Corollary 7.3.7. The 3-category 2Catpt∗ is isomorphic to the 2-category 2Catst∗ with

• objects strict 2-categories with exactly one object,
• 1-morphisms are 2-functors A : C → D, and
• 2-morphisms are natural transformations η = (η∗, ηa) : A⇒ B such that η∗ = 1D.

This 2-category is manifestly isomorphic to the 2-category MonCatst of strict monoidal cat-
egories, strong monoidal functors, and monoidal natural transformations.

Remark 7.3.8. Since every monoidal category is equivalent to a strict monoidal category
[ML98], we have the following equivalences ∼ and isomorphisms ∼= of categories:

2Cat∗ 2Catpt∗ 2Catst∗ MonCatst MonCat∼ ∼= ∼= ∼

7.4. 3-categories. The notion of weak 3-category known as a tricategory is due to [GPS95],
which was later refined in [Gur06, Gur13] to the notion of algebraic tricategory. The main
difference here is that to work with a 3-category, it is helpful to augment every 2-isomorphism
with the structure of an adjoint equivalence (see Exercise 7.3.1), and every 1-isomorphism
with the structure of a biadjoint biequivalence [Gur12].
To define these notions, it helps to work with a graphical calculus for 3-categories. Just

as 2-categories admit a 2D graphical calculus, 3-categories admit a 3D graphical calculus.
To prove that the 2D graphical calculus was well-defined, we appeal to the fact that every
2-category is equivalent to a strict 2-category. But really the proof is a bit more complicated.

Given a 2-category C, we can replace it with the 2-category Ĉ with the same objects as
C, whose 1-morphisms are formal fully-parenthesized composites of 1-morphisms in C, and
whose 2-morphisms are generated by the 2-morphisms of C. Sometimes this Ĉ is called a
cofibrant replacement of C, as it is a cofibrant object in some model category structure on
a 1-category of 2-categories, but we will simply use the term cofibrant to mean there is

no accidental equality of 1-morphisms. The 2-category Ĉ comes with a strict evaluation
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2-equivalence ev : Ĉ → C, which evaluates every formal composite 1- and 2-morphism back

into C. Now there is a strict 2-category Cst and an equivalence Ĉ → Cst. However, as Ĉ is

cofibrant, this equivalence is itself isomorphic to a strict equivalence st : Ĉ → Cst. We thus
have the following zig-zag of strict equivalences:

C ev←− Ĉ st−→ Cst. (7.4.1)

Observe we also have a canonical inclusion C ↪→ Ĉ which splits ev by sending each object,
1-morphism, and 2-morphism of C to the same object, one word 1-morphism, and generating

2-morphism in Ĉ.
These equivalences have the property that for every two 1-morphisms aXb, aYb ∈ Ĉ(a→ b)

and every two 2-morphisms f, g ∈ Ĉ(aXb ⇒ aYb), we have ev(f) = ev(g) if and only if
st(f) = st(g). This property allows us to show the graphical calculus is well-defined for

C. The idea is that we have take two morphisms f, g in C, lift them to Ĉ, and compare
them back down in Cst, where graphical calculus, dual to pasting diagrams, can be shown
to be well-typed. Thus equalities of string diagrams labelled by objects, 1-morphisms, and

2-morphisms in C should be interpreted as an infinite family of equalities in Ĉ, one for every
way of fully parenthesizing the 1-morphisms corresponding to the source and target of f, g.

The same strategy works for 3-categories by work of [Gut19]. Every algebraic tricategory

C has a cofibrant replacement of formal composites Ĉ, which comes equipped with a strict

3-functor Ĉ → C and splitting C ↪→ Ĉ. By [Gur13], every 3-category is equivalent to a
Gray-category, which is the correct notion of a strict 3-category, but defined as an enriched

1-category in she sense of [Kel05]. We thus strictify Ĉ to get a Gray-category Cst, and since

Ĉ is cofibrant, we get a strict equivalence Ĉ → Cst, giving a zig-zag of strict equivalences as
in (7.4.1).

We will thus only define here the notion of a Gray-category and the graphical calculus for
Gray-categories [BMS12]. We assert that all graphical arguments that we apply here also
hold for algebraic tricategories by the work of [Gut19]. In fact, to make things even simpler,
we will actually only discuss Gray-monoids in detail, which are the strict versions of monoidal
2-categories, which are 3-categories with one object.

Definition 7.4.2. The symmetric monoidal category Gray is the 1-category of strict 2-
categories and strict 2-functors equipped with the Gray monoidal structure [Gur06, §5],
defined as follows. Given strict 2-categories C,D, we define C⊠D to be the strict 2-category
with:

• objects order pairs (c, d) where c ∈ C and d ∈ D,
• 1-morphisms generated by those of the form (X, 1d) for c1Xc2 ∈ C(c1 → c2) and
d ∈ D, and (1c, Y ) for c ∈ C and d1Yd2 ∈ D(d1 → d2), subject to the relations

(c1X
1
c2
, 1d)⊗(c2X2

c3
, 1d) = (c1X

1⊗c2X
2
c3
, 1d) (1c, d1Y

1
d2
)⊗(1c, d2Y 2

d3
) = (1c, d1Y

1⊗d2Y
2
d3
)

The identity 2-cell for (c, d) is (1c, 1d).
• 2-morphisms generated by those of the form (f, id) where f ∈ C(c1X1

c2
⇒ c1X

2
c2
) and

(id, g) where g ∈ D(d1Y 1
d2
⇒ d1Y

2
d2
) together with formal interchanger 2-isomorphisms

ϕX,Y : (c1Xc2 , 1d2) ◦ (1c1 ⊗ d1Yd2)⇒ (1c2 ⊗ d1Yd2) ◦ (c1Xc2 , 1d1).
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If either X or Y is a unit 1-morphism, then the corresponding interchanger is the
identity.

For the generation process, we first take formal 1-compositions with relations sim-
ilar to those above for 1-composition. We then allow for formal 2-composition of
these 1-composites, subject to a number of additional relations. We refer the reader
to [Gur13, §3.1] for the rest of the details.

A Gray-category is simply a Gray-enriched category in the sense of [Kel05]. A Gray-monoid
is an algebra object in Gray. Given a Gray-monoid C, its delooping BC is the Gray-category
with one object and endomorphisms C.

Remark 7.4.3. Just as every 3-category (algebraic tricategory) is equivalent to a Gray-
category, every monoidal 2-category (algebraic tricategory with one object) is equivalent to
a Gray-monoid [Gur13, Cor. 9.16].

We now unpack the notion of Gray-monoid. Our exposition is taken directly from [JPR20,
§2], which was itself adapted from [DR18].

Remark 7.4.4. Unpacking Definition 7.4.2, a Gray-monoid consists of the following data:

(D1) a strict 2-category C, where composition of 1-morphisms is denoted by ⊗ and com-
position of 2-morphisms is denoted by ◦;

(D2) an identity 0-cell 1 ∈ C;
(D3) strict left and right tensor product 2-functors La = a ⊠ − and Ra = − ⊠ a for each

object a ∈ C:
La = a⊠− : C → C
Ra = −⊠ a : C → C,

(D4) an interchanger 2-isomorphism ϕx,y for each pair of 1-cells x : a→ b and g : c→ d:

ϕx,y : (x⊠ 1d)⊗ (1a ⊠ y) ⇛ (1b ⊠ y)⊗ (x⊠ 1c)

subject to the following conditions:

(C1) left and right tensor product agree: for all objects a, b ∈ C, Lab = Rba = a⊠ b;
(C2) tensor product is strictly unital and associative:

L1 = idC = R1

LaLb = La⊠b

RbRa = Ra⊠b

LaRb = RbLa;

(C3) the interchanger ϕ respects identities, i.e., for a 0-cell A ∈ C and a 1-cell f : C → D,

ϕf,1A = idf⊠A

ϕ1A,f = idA⊠f

(C4) the interchanger ϕ respects composition, i.e., for x : a → a′, x′ : a′ → a′′, y : b → b′

and y′ : b′ → b′′,

ϕx′⊗x,y = (ϕx′,y ⊗ (x⊠ 1b)) ◦ ((x′ ⊠ 1b′)⊗ ϕx,y)

ϕx,y′⊗y = ((1a′ ⊠ y′)⊗ ϕx,y) ◦ (ϕx,y′ ⊗ (1a ⊠ y))
9



(C5) the interchanger ϕ is natural, i.e., for 1-cells x, x′ : a → a′, y, y′ : b → b′ and 2-cells
α : x ⇛ x′, β : y ⇛ y′,

ϕx′,y ◦ ((α⊠ 1b′)⊗ (1a ⊠ y)) = ((1a′ ⊠ y)⊗ (α⊠ 1b)) ◦ ϕx,y

ϕx,y′ ◦ ((x⊠ 1b′)⊗ (1a ⊠ β)) = ((1a′ ⊠ β)⊗ (x⊠ 1b)) ◦ ϕx,y

(C6) the interchanger ϕ respects tensor product, i.e., for x : a → a′, y : b → b′ and
z : c→ c′,

ϕ1a⊠y,z = 1a ⊠ ϕy,z

ϕx⊠1b,z = ϕx,1b⊠z

ϕx,y⊠1c = ϕx,y ⊠ 1c

A Gray-monoid is called linear if the underlying 2-category is linear and for all objects a the
functors a⊠− and −⊠ a are linear.

Exercise 7.4.5. Unpack the definition of a Gray-category.
Hint: Look at the graphical calculus below and ‘add shadings.’

Warning 7.4.6 (Horizontal composition of 1-morphisms). We warn the reader that the
tensor product in a Gray-monoid does not provide a unique definition of the tensor product
of two 1-cells. Given x : a→ b and y : c→ d, we define

x⊠ y := (x⊠ 1d)⊗ (1a ⊠ y) ; (7.4.7)

this convention is known as nudging [GPS95, §4.5]. We use a similar nudging convention for
the tensor product of 2-cells. With this convention, the data of a Gray-monoid C as described
in Remark 7.4.4 gives rise to an (opcubical cf. [Gur13, §8]) algebraic tricategory BC [Gur13,
Thm. 8.12].

Gray-categories admit a graphical calculus of surfaces, lines, and vertices in three-dimensional
space. We refer the reader to [BMS12, §2.6] for a rigorous discussion. Here, we will only
ever work in a two-dimensional projection of this graphical calculus for Gray-monoids. Our
exposition below follows [Bar14].

The 0-cells of our strict 2-category C (D1) are denoted by strands in the plane

a

and the identity 0-cell 1C (D2) is denoted by the empty strand. The 1-cells are denoted by
coupons between labelled strands

x : a→ b

a

b

x

The composition of 1-cells is denoted by vertical stacking of such diagrams.
The strict tensor product ⊠ is denoted by horizontal juxtaposition. For example, the

tensor product functors La and Ra (D3) are denoted by placing a strand labelled by a to the
left or right respectively.

La(x : b→ c) := ida ⊠x =

b

c

a x Ra(x : b→ c) := x⊠ ida =

b

c

ax
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Given x : a→ b and y : c→ d, we define their tensor product using the nudging convention
from Warning 7.4.6.

x⊠ y := (x⊠ 1d)⊗ (1a ⊠ y) =

a

b

x

c

d

y

Observe that no two coupons ever share the same vertical height.
The 2-cells are inherently 3-dimensional, and can be thought of as ‘movies’ between our

2-dimensional string diagrams. Rather than drawing 2-cells, we denote them by arrows
⇒ between diagrams corresponding to their source and target 1-cells. For example, the
interchanger ϕx,y from (D4) is simply denoted by

a

b

x

c

d

y

ϕx,y
=⇒

a

b

x

c

d

y

.

Notation 7.4.8. When working with Gray-monoids, one often needs to whisker 2-cells be-
tween 1-cells, and the notation can quickly become cumbersome. Instead, we use the con-
vention of a dashed box when we apply a 2-cell locally to a 1-cell, and we simply label the
whiskered 2-cell by the name of the locally applied 2-cell. Later on, we will draw commu-
tative diagrams whose vertices are 1-cells. When we want to apply two 2-cells locally in
different places to the same 1-cell, we will use two dashed boxes with different colors, usually
red and blue. When one of these two 2-cells is applied to the entire diagram, we do not use
a dashed box, and we only use one dashed box of another color, usually red. As an explicit
example, the second equation in (C4) in string diagrams is given by:

a

b

x

c

d

y

z

a

b

x

c

d

y

z

a

b

x

c

d

y

z

ϕx,y

ϕx,y⊗z

ϕx,z

11



Example 7.4.9. The monoidal 2-category 2Vec is the strict 2-category of finitely semisimple
linear categories, linear functors, and natural transformations. The tensor product is given
by the Deligne product C⊠D of linear categories, which we define as the Cauchy completion
of the category whose objects are formal tensor products c⊠d of c ∈ C and d ∈ D, and whose
morphism spaces are tensor products: (C⊠D)(c1⊠d1 → c2⊠d2) := C(c1 → c2)⊗D(d1 → d2).
While this model of 2Vec is not a Gray-category as the Deligne product is not strictly

associative, we will apply graphical calculus to this monoidal 2-category as discussed in the
beginning of this section.

Exercise 7.4.10. Suppose C is a Gray-monoid with one object. Show that Ω∗C is a strict
braided monoidal category. Conversely, show that given a strict braided monoidal category
B, BB is a Gray-monoid with one object.

Remark 7.4.11. Recall that braided monoidal categories form a (strict) 2-category, but
3-categories with one object and one 1-morphism form a 4-category. Similar to §7.3, the
4-category of 3-categories with one object and one 1-morphism equipped with a pointing
from ∗ = B{e} is 2-truncated, and thus equivalent to a 2-category [JPR20]. That is, the
Delooping Hypothesis 7.1.1 holds for k = n = 1 and i = 2. Earlier work [CG11] used so
called ‘iconic natural transformations’ rather than pointings to prove a similar result.

7.5. Rigid 2-algebras in 2Vec. This section is taken from work in progress with Corey
Jones and David Reutter.

Definition 7.5.1. A monoidal category object or 2-algebra (A, µ, α) in a Gray-monoid C2
consists of:

• An object A ∈ C,
• A monoidal product 1-morphism µ : A ⊠ A → A denoted graphically by a trivalent
vertex

µ =

• An associator 2-isomorphism α : µ⊗(µ⊠idM)⇒ µ⊗(idM ⊠µ) such that the following
diagram commutes:

α

α

α

α

ϕ−1
α

(7.5.2)

We call a 2-algebra unital if if there exist

• A unit 1-morphism ι : 1C → A denoted graphically by a univalent vertex

ι =

2One can use the results of [Gut19] to apply graphical calculus to any weak monoidal 2-category.
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• and unitor 2-morphisms λ : µ⊗ (ι⊠ idA)⇒ idA and ρ : µ⊗ (idA⊠ι)⇒ idA such that
the following diagram commutes:

α

ρ λ

(7.5.3)

Observe that unitality of a 2-algebra A is a property and not additional structure; the space
of choices of units and unitors is either empty or contractible.

We call a 2-algebra rigid if it is unital and µ admits a right adjoint µR : A→ A⊠A as an
A− A bimodule map. We call the counit of this adjuntion ε : µ⊗ µR ⇒ idA. Observe that
rigidity of a 2-algebra is also a property and not additional structure; the space of choices of
µR is contractible.
A rigid 2-algebra is called separable if for any choice of the 2-unit µR, the counit ε admits

a splitting as an A−A bimodule natural transformation, i.e., there exists δ : idA ⇒ µ⊗ µR

such that ε ◦ δ = ididA . Observe that separability is independent of the choice of µR.
A multifusion 2-algebra is a separable 2-algebra (A, µ, α) whose underlying object A is

2-dualizable. Observe that all separable 2-algebras in fusion 2-categories are multifusion.

Remark 7.5.4. The reader should notice that unitality, rigidity, separability, and multifu-
sion for a 2-algebra are all properties, and not additional structure. If we pick such structure,
we can define canonical separators, which will endow our 2-algebra with the structure of a
condensation 2-algebra [GJF19]. We will discuss this further in §7.6 below.

Exercise 7.5.5. Prove that a unital 2-algebra (A, µ, α, 1A, λ, ρ) ∈ 2Vec is exactly a finitely
semisimple linear monoidal category.

The main result of this section is the classification of rigid 2-algebras in 2Vec, the monoidal
2-category of finitely semisimple categories, linear functors, and natural transformations. In
the graphical calculus, this means that strings are labelled by finitely semisimple categories,
coupons are labelled by linear functors, and 2-morphisms between 2D string diagrams are
labelled by natural transformations. We proceed in slightly more generality at this point,
with some ideas adapted from [BDSPV15, §4].
Assumption 7.5.6. For the rest of this section, we assume C is a Gray-monoid in which
all hom categories are finitely semisimple linear categories, and all 1-morphisms admit right
adjoints.

Example 7.5.7. The fusion 2-categories of [DR18] satisfy Assumption 7.5.6; indeed, these
are the main examples of interest. In particular, 2Vec satisfies Assumption 7.5.6.

First, given a rigid 2-algebra (A, µ, α) in C, we claim the Frobeniusator natural isomor-
phisms

θ
=⇒ and

κ
=⇒ ,

which endow µR with the structure of an A− A bimodule functor such that η, ε witness an
adjunction of A− A bimodule functors, are over-determined.

13



Lemma 7.5.8. The Frobeniusator κ is given by the following composite:

η
=⇒ α

=⇒ ε
=⇒ . (7.5.9)

A similar statement holds for θ.

Proof. Indeed, κ and (7.5.9) both fit in the following pasting diagram:

κ

η

η

ε

κ an A−A bimod nat iso

zig-zag

κ

α

ε

That the lower right triangle commutes is best seen by inverting the bottom associator
arrow. □

We now specialize to the case C is a Gray-monoid in which all hom categories are finitely
semisimple linear categories, and all 1-morphisms admit right adjoints. Clearly 2Vec satisfies
this condition, as do the fusion 2-categories of [DR18].

Many diagrams in the following construction come from [JPR20].

Construction 7.5.10. Suppose A ∈ C is a unital 2-algebra, and define T := HomC(1F →
A). In the graphical calculus, we represent A by a black strand, and we represent objects
s, t, r ∈ T by shaded disks with an A-strand emanating from the top:

:= s := t := r := sR, := tR, := rR

We represent adjoints by disks with A-strands emanating from the bottom.
We endow T with a monoidal product by

× 7−→ ,

and we define an associator by

α
=⇒ ϕ−1

=⇒ . (7.5.11)
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Observe that (7.5.2) implies that the associators (7.5.11) satisfy the pentagon axiom.
We define the unit object 1T := ι ∈ C(1→ A). The unitors are given by

λ
=⇒ and

ϕ
=⇒ ρ

=⇒ .

Observe that (7.5.3) implies that the unitors satisfy the triangle axiom. Hence T is a
semisimple monoidal category.

Now suppose that A ∈ C is a rigid 2-algebra. Since every t ∈ T = C(1 → A) has a right
adjoint tR ∈ C(A → 1), using the graphical calculus for Gray-monoids, we define left and
right duals t∨ and ∨t of t in T by

t∨ := and ∨t := .

The adjunction t ⊣ tR allows the following evaluation and coevaluation morphisms to exhibit
t∨ and ∨t as left and right duals of t respectively:

evLt : t∨ ⊗ t =
ϕ

=⇒ ε
=⇒ ε

=⇒ = 1T

coevLt : 1T =
η

=⇒ η
=⇒ (!)

=⇒ = t⊗ t∨

Here, the exclamation point (!) in coevLt denotes the composite of coheretors

ϕ
=⇒ λ

=⇒ ρ−1

=⇒ κ−1

=⇒ ϕ
=⇒ (!)

Similarly, we can define evaluation and coevaluation for the right dual ∨t, where a similar
composite of coheretors is needed for coevRt :

evRt : t⊗ ∨t =
ε

=⇒ ε
=⇒ = 1T

coevRt : 1T =
η

=⇒ η
=⇒ (!!)

=⇒ = ∨t⊗ t

for another similarly defined composite of coheretors (!!). In Theorem 7.5.12 below, we prove
that the zig-zag axiom is satisfied. Thus T is a rigid finitely semisimple monoidal category,
i.e., a multifusion category.

Theorem 7.5.12. Suppose A is a rigid 2-algebra in a Gray-monoid C in which all hom cat-
egories are finitely semisimple linear categories, and all 1-morphisms admit right adjoints.
The semisimple tensor category T = C(1 → A) from Construction 7.5.10 above is a multi-
fusion category. When A is connected (the unit ι ∈ C(1→ A) is simple), T is fusion.
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Proof. All that remains is to verify the zig-zag axioms. We explicitly prove the relation
(idt⊗ evLt )◦ (coevLt ⊗ idt) = idt; the other 3 relations are left to the reader. First, we observe
that ε = εµ ◦ εt is left A-modular, i.e., the following diagram commutes: TODO: explain
top right square using Lemma 7.5.8

εt

α−1

εµ

α−1

κ

εµ

εt

ϕ

εt

κ

εt

(7.5.13)

The zig-zag relation follows from commutativity of the diagram below; the composite map
along the outside of the diagram is the zig-zag formula, and each 2-cell commutes, meaning
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we obtain the identity.

(7.5.13)

λ−1

ϕ

ηµ◦ηt

ϕ

(!)

ηµ◦ηt
εµ◦εt

ρ−1

λ

εµ◦εt

ϕ

εµ◦εt

(!) ϕ

ϕ

α

εµ◦εt

κ−1

Definition of (!)

ϕ

ϕ

α

ϕ

α

ϕ

εµ◦εt
ϕ

ϕ

ϕ

ρ

ϕ εµ◦εt

ϕ

ϕ

This concludes the proof. □

To connect Construction 7.5.10 with the classification of rigid 2-algebras in 2Vec, we have
the following exercise.

17



Exercise 7.5.14. Show that for any V ∈ 2Vec, V ∼= Hom2Vec(1 → V), where 1 = Vec.
Moreover, this equivalence is a monoidal equivalence between the monoidal structure µ and
the monoidal structure from Construction 7.5.10.

Corollary 7.5.15. Rigid 2-algebras (A, µ, α, 1A, λ, ρ) ∈ 2Vec are exactly multifusion cate-
gories.

Proof. Every multifusion category gives a rigid 2-algebra in 2Vec as TODO: justify why
the 2-category of A − A bimodules, bimodule functors, and bimodule natural
transformations admits adjoints

The converse direction is exactly Construction 7.5.10 above. □

7.6. Karoubi completion of B2Vec. As discussed in the 2-categories module, there is
a notion of a condensation 2-algebra in a 3-category C, which can be described as a 3-
functor from a certain 3-category ♣3 ⊂ ♠3 into C following [GJF19]. Moreover, we can ask
when a condensation 2-algebra is unital, and forgetting the separator structures for a unital
condensation 2-algebra, we get the notion of a separable 2-algebra.

There is an organic notion of a condensation bimodule between (condensation) 2-algebras,
where one of the A strings is replaced by another 1-morphism M in our 3-category C. There
are many relations one can prove amongst the defining axioms; in particular, unital bimodules
between separable 2-algebras admit a canonical separating structure.

The 3-category Kar(C) has objects condensation 2-algebras, 1-morphisms condensation bi-
modules, 2-morphisms condensation intertwiners, and 3-morphisms bimodule modifications.
There is an obvious 3-subcategory of unital condensation 2-algebras Karu(C), and forgetting
the separator structures, we get the 3-category 2Algu of separable 2-algebras, separable bi-
modules, separable intertwiners, and bimodule modifications. Similar to our discussion for
2-categories, by [GJF19, Prop. 3.3], we have a zig-zag of equivalences:

Kar(C) ∼←−↩ Karu(C)
∼−→ 2Algu. (7.6.1)

Theorem 7.6.2. Kar(2Vec) ∼= MultFusCat.

Proof. We know that Kar(2Vec) ∼= 2Algu(2Vec) by (7.6.1), and we saw that separable 2-
algebras in 2Vec are (separable) multifusion categories in Corollary 7.5.15. It is straightfor-
ward to prove that a separable bimodule between separable 2-algebras in 2Vec is a (sepa-
rable) finitely semisimple bimodule category, separable intertwiners are bimodule functors,
and modifications are bimodule natural transformations. Finally, to see the 3-category struc-
tures match up, we appeal to [Hau17],[JFS17, Ex. 8.10], and [DSPS20, DSPS19], where the
3-category structure on MultFusCat arises as a sub 3-category of algebra objects in the 2-
category of small finitely-cocomplete linear categories, finitely cocontinuous linear functors,
and natural transformations. □

7.7. Separable lax 2-functors. For the definition of a monoidal structure on a 2-functor
F : C → D between Gray-monoids, we refer the reader to [JPR20, App. A]. Below, we edit
this notion to give the definition of a lax 2-functor between Gray-monoids. We then define
the notion of separability.

Definition 7.7.1. Suppose C,D are Gray-monoids and A = (F, F 1, F 2) : C → D is a strict
2-functor. A lax monoidal structure on F consists of: TODO: check this definition is
correct for lax
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(Lax1) A 2-transformation µF : ⊠D ◦ (F × F ) ⇒ F ◦ ⊠C in the 2-category of 2-functors
C × C → D. Explicitly, this is given by, for each pair of 0-cells (a, b) ∈ C × C, a 1-cell
µF
a,b : F (a) ⊠ F (b) → F (a ⊠ b) and for each pair of 1-cells (x, y) : (a, b) → (c, d), an

invertible 2-cell

F (a) F (b)

F (c⊠d)

F (x)

F (y)

µF
c,d

F (c) F (d) µF
x,y⇒

F (a) F (b)

F (c⊠d)

µF
a,b

F (x⊠y)

F (a⊠b) .

That µF is a 2-transformation means we have the following cohrences.
(Lax1).i For all x, x′ : a → c and y, y′ : b → d and all f : x ⇒ x′ and g : y ⇒ y, the

following square commutes:

F (a) F (b)

F (c⊠d)

F (x)

F (y)

µF
c,d

F (c) F (d)

F (a) F (b)

F (c⊠d)

µF
a,b

F (x⊠y)

F (a⊠b)

F (a) F (b)

F (c⊠d)

F (x′)

F (y′)

µF
c,d

F (c) F (d)

F (a) F (b)

F (c⊠d)

µF
a,b

F (x′⊠y′)

F (a⊠b)

µF
x,y

F (f)⊠F (g) F (f⊠g)

µF
x′,y′
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(Lax1).ii For all 1-cells x1 ∈ C(a1 → a2), x2 ∈ C(a2 → a3), y1 ∈ C(b1 → b2), and
y2 ∈ C(b2 → b3),

F (a1) F (b1)

F (a3⊠b3)

F (x2)

F (y2)

F (x1)

F (y1)

F (a2)

F (b2)

µF
a3,b3

F (a3) F (b3)

F (a1) F (b1)

F (a3⊠b3)

F (x1)

F (y1)

F (x2⊠y2)

µF
a2,b2

F (a2) F (b2)

F (a1) F (b1)

F (a3⊠b3)

µF
a1,b1

F (x1⊠y1)

F (x2⊠y2)

F (a1⊠b1)

F (a2⊠b2)

F (a1) F (b1)

F (a3⊠b3)

µF
a1,b1

F ((x2⊠y2)⊗(x1⊠y1))

F (a1⊠b1)

F (a1) F (b1)

F (a3⊠b3)

F (x2)

F (y2)

F (x1)

F (y1)

µF
a3,b3

F (a3) F (b3)

F (a1) F (b1)

F (a3⊠b3)

F (x2⊗x1)

F (y2⊗y1)

µF
a3,b3

F (a3) F (b3)

F (a1) F (b1)

F (a3⊠b3)

µF
a1,b1

F ((x2⊗x1)⊠(y2⊗y1))

F (a1⊠b1)

µF
x2,y2

ϕ−1

µF
x1,y1

F 2
x2⊠y2,x1⊠y2

F 2
x2,x1

⊠F 2
y2,y1

µF
x2⊗x1,y2⊗y1

F (ϕ)

(Lax1).iii For all 0-cells a, b ∈ C, the following diagram commutes:

F (a) F (b)

F (a⊠b)

µF
a,b

F (a) F (b)

F (a⊠b)

µF
a,b

F (ida⊠b)

F (a⊠b)

F (a) F (b)

F (a⊠b)

F (ida)

F (idb)

µF
a,b

F (a) F (b)

F 1
a⊠F 1

b

F 1
a⊠b

µF
ida,idb

(Lax2) A 2-transformation ιF : ID ⇒ F ◦IC (in the 2-category of 2-functors ∗ → D) where IC :
∗ → C is the inclusion of the trivial 2-category into C which picks out 1C, id1C , idid1C

,

and similarly for D. Explicitly, this is given by a 1-cell ιF∗ : 1D → F (1C) and an
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invertible 2-cell
F (1C)

ιF∗

ιF1⇒

F (1C)

ιF∗

F (id1C )

F (1C)

 =


F (1C)

ιF∗

F 1
1C⇒

F (1C)

ιF∗

F (id1C )

F (1C)

 .

That ιF is a 2-transformation implies that ιF1 equals the map on the right hand side
above, which is a whiskering with F 1

e . This means ιF1 is automatically natural and
compatible with F 2.

(Lax3) An invertible associator 2-modification ωF . Explicitly, this is given by, for each
a, b, c ∈ C, an invertible 2-cell

F (a) F (b) F (c)

F (a⊠b⊠c)

µF
a,b

µF
a⊠b,c

F (a⊠b)
ωF
a,b,c⇒

F (a) F (b) F (c)

F (a⊠b⊠c)

µF
b,c

µF
a,b⊠c

F (b⊠c)

and the fact that ω is a 2-modification means that for all x ∈ C(a1 → a2), y ∈ C(b1 →
b2), and z ∈ C(c1 → c2),

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x)

F (y)

F (z)

µF
a2,b2

µF
a2⊠b2,c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x⊠y)

F (z)

µF
a1,b1

µF
a2⊠b2,c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x⊠y)

F (z)

µF
a1,b1

µF
a2⊠b2,c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

µF
a1,b1

µF
a1⊠b1,c1

F (x⊠y⊠z)

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x)

F (y)

F (z)

µF
b2,c2

µF
a2,b2⊠c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x)

F (y)

F (z)

µF
b2,c2

µF
a2,b2⊠c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

F (x)

F (y⊠z)

µF
b1,c1

µF
a2,b2⊠c2

F (a1) F (b1) F (c1)

F (a2⊠b2⊠c2)

µF
b1,c1

µF
a1,b1⊠c1

F (x⊠y⊠z)

µF
x,y

ωF
a2,b2,c2

ϕ µF
x⊠y,z

ωF
a1,b1,c1

ϕ µF
y,z

µF
x,y⊠z
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(Lax4) invertible unitor 2-modifications ℓF and rF , i.e., for each c ∈ C, invertible 2-cells

F (c)

F (c)

ιF∗

µF
1C ,c

F (1C)
ℓFc⇒

F (c)

F (c)

rFc⇐

F (c)

F (c)

ιF∗

µF
1C ,c

F (1C)

The fact that ℓ and r are 2-modifications means that for all x ∈ C(a → b), the
following diagram commutes:

F (a)

F (b)

ιF∗

F (x)

µF
1C ,b

F (a)

F (b)

F (x)

F (a)

F (b)

ιF∗

F (id1C )

F (x)

µF
1C ,b

F (a)

F (b)

ιF∗

F (id1C )

F (x)

µF
1C ,b

F (a)

F (b)

F (x)

ιF∗

µF
1C ,a

ℓb

ιF1

ϕ
µF
id1C ,x

ℓa

and a similar condition for r.

This data is subject to the additional two coherence conditions c.f. [Gur13, Def. 4.10]:
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(F-1) For all a, b, c, d ∈ C, the following diagram commutes:

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
a,b

µF
a⊠b,c

µF
a⊠b⊠c,d

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
b,c

µF
a,b⊠c

µF
a⊠b⊠c,d

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
b,c

µF
b⊠c,d

µF
a,b⊠c⊠d

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
a,b

µF
c,d

µF
a⊠b,c⊠d

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
a,b

µF
c,d

µF
a⊠b,c⊠d

F (a) F (b) F (c) F (d)

F (a⊠b⊠c⊠d)

µF
c,d

µF
b,c⊠d

µF
a,b⊠c⊠d

ωF
a,b,c

ωF
a⊠b,c,d

ωF
a,b⊠c,d

ωF
b,c,d

ϕ−1 ωF
a,b,c⊠d

(F-2) For all a, b, c ∈ C, the following diagram commutes:

F (a) F (b)

F (a⊠b)

ιF∗

µF
a,1C

µF
a,b

F (a) F (b)

F (a⊠b)

µF
1C ,b

ιF∗

µF
a,b

F (a) F (b)

F (a⊠b)

µF
a,b

ωF
a,1C ,b

ra

ℓb

Definition 7.7.2. A lax 2-functor (F, µF , ιF , ωF , ℓF , rF ) : C → D between Gray-monoids is
called separable if µF and ιF admit right adjoints as 2-transformations in their respective
2-categories of 2-functors. Moreover, we require the right adjoint of µF to be a bimodular
right adjoint. Observe that this is a property and not extra structure.

Exercise 7.7.3. Show that if F is separable, then any choice of right adjoints µR and ιR

satisfy various coherence axioms with ωF , ℓF , rF .

The point of introducing separable lax monoidal 2-functors is the following exercise.

Exercise 7.7.4. (Separable) lax monoidal 2-functors preserve (separable) 2-algebras.
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7.8. Separable 2-algebras in Mod(C). Suppose C is a braided fusion category. The 2-
category Mod(C) of (finitely semisimple) left C-module categories can be endowed with a
tensor product structure as follows.

Exercise 7.8.1. Show that the braiding β on C gives a canonical monoidal equivalence
C ∼= Cmp, where the latter is the monoidal opposite with tensor product a⊗mp b := b⊗ a.

Given a left C-module category (M, λM), we get an organic C − C bimodule structure by
defining a left C⊠ Cmp ∼= C⊠ C-action onM by (a⊠ b)�m := (a⊠ b)�m. Observe that we
have a canonical isomorphism (a⊠ 1C)�m ∼= (1C ⊠ a)�m, so the right action is canonically
isomorphic to the left action. (One can also define the right action to be equal to the left
action.)

Exercise 7.8.2 ([DN13]). A one-sided C−C bimodule is a C−C bimodule category equipped
with a natural isomorphism θc,m : c�m→ m� c for all c ∈ C and m ∈M satisfying certain
coherences.

(1) Work out what the coherences should be.
(2) Show that one-sided C − C bimodules form a 2-category.
(3) Prove that this 2-category is equivalent to Mod(C).

Now given two left C-modules (M, λM), (N , λN ) in Mod(C), we equip them both with
their canonical C − C bimodule structures, and we form the relative Deligne product defined
as any finitely semisimple categoryM⊠C N together with a C-middle linear functor

⊠C :M×N →M⊠C N
such that for any other finitely semsimple [[need abelian?]] category L equipped with a
C-middle linear functor G : M× N → L, there exists a unique (in a contractible sense)
linear functor G′ :M⊠C N → L such that the following diagram commutes:

M×N

M⊠C N L.

⊠C
G

∃!G′

Exercise 7.8.3. Prove thatM⊠CN can be realized as any of the following finitely semisim-
ple categories. In particular, the relative Deligne product exists.

(1) Fun(Mop → N )
(2) ZC(M⊠N ) := HomC−C(C →M⊠N )
(3) the ladder category LadC(M,N ) [BBJ19, Def. 7], whose objects are pairs of simples

(m ∈M, n ∈ N ) and whose morphisms (m1, n1)→ (m2, n2) are linear combinations
of pairs (f ∈ M(m1 � c→ m2), g ∈ N (c� n1 → n2)), which we view graphically as
basic ladder string diagrams :

m1

m2

n1

n2

c

f

g
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Composition is given by stacking ladders:

m1

m2

m3

n1

n2

n3

a

b

f2

g2

f1

g1
:=

∑
c∈Irr(C)

√
dc
dadb

m1

m2

m3

n1

n2

n3

b
a

a
b

c

f2

g2

f1

g1

One should be careful to interpret this diagram as a pair of morphisms, one in M
and one in N .
Note: The scalars above are really only for the unitary setting, where we have chosen
an orthogonal basis Bc

ba with a particular normalization with respect to the isometry
inner product. Summing over any basis and dual basis with respect to a particular
pairing works just the same.

Exercise 7.8.4. EndowM⊠C N with the structure of a left C-module.

Remark 7.8.5. The 2-category Mod(C) becomes a monoidal 2-category under the monoidal
operation of relative Deligne product ⊠. Observe that we have only defined this monoidal
product on objects by universal property. For a complete discussion of the monoidal 2-
category structure on Mod(C), we refer the reader to [Gre10].

Using a separable lax monoidal 2-functor Mod(C) → 2Vec, we can classify separable 2-
algebras in Mod(C).

Exercise 7.8.6. Prove that Hom(C → −) : Mod(C) → 2Vec can be organically equipped
with the structure of a separable lax monoidal 2-functor.

Theorem 7.8.7. Separable 2-algebras in Mod(C) are equivalent to pairs (A, FZ) where A is
a multifusion category and FZ : C → Z(A) is a braided tensor functor.

Proof. LetM be a separable 2-algebra in Mod(C). Define A := HomMod(C)(C →M), which
is a semisimple category. The objects and homs are denoted

A

x

A

x

f⇒
A

y

Since HomMod(C)(C → −) : Mod(C)→ 2Vec is separable lax monoidal by Exercise 7.8.6, A is
a separable 2-algebra in 2Vec and thus multifusion.
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There is a canonical braided monoidal functor FZ : C → Z(A) given by c 7→ (F (c), eF (c))
where

F ( c ) :=
c

u eF (c),x :=

x⊗ F (c) =
ϕ⇒ ρ⇒ =

ϕ−1

⇒ λ−1

⇒
x

= F (c)⊗ x


It is straightforward to check the coherences.

Conversely, given a multifusion A and a braided tensor functor FZ : C → Z(A), we
can equip the underlying semisimple category of A with the structure of a one-sided C − C
bimodule category via b � a := F (b) ⊗ a. Since C maps into Z(A), we see that the tensor
product in A is C-middle linear:

(a1 � c)⊗ a2 ∼= F (c)⊗ a1 ⊗ a2 ∼= a1 ⊗ F (c)⊗ a2 ∼= a1 ⊗ (c� a2).

Thus ⊗ : A⊠A → A descends to map A⊠CA → A. Again, as C includes into the center, we
see that the image of the associator for A gives an associator in Mod(C). Hence A considered
as an object of Mod(C) has the structure of a 2-algebra. One then checks separability.

Finally, one checks these two constructions are mutually inverse. □
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