
Chapter 3

Morita equivalence

In this chapter, we study a form of equivalence for algebras called Morita equivalence which
is weaker than the notion of isomorphism. We will see in [[Part II]] once we have introduced
the notion of a category that a Morita equivalence between algebras A,B is the same as an
equivalence between their associated categories of modules.

In order to discuss unitary Morita equivalence for unitary algebras, we should to know
what a module for a unitary algebra is. This essential question admits several completely
reasonable answers, each with their own features and drawbacks. One of the main themes of
this book is that depending on the answer you choose, you get slightly di!erent categories,
which have profound di!erences in their higher categorical analogs, as well as the notion of
a higher Hilbert space. (Recall Warning 0.0.1: choices have consequences!) In this chapter,
we will explore 3 di!erent notions.

• (§3.2) One can think of unitary algebras as finite dimensional C→-algebras, which nat-
urally act on Hilbert C→-modules [Rie74], which are vector spaces equipped with right
A-valued inner products.1 As intertwiners, we only take the adjointable operators.

• (§3.3) One can think of unitary algebras as finite dimensional von Neumann algebras,
also known as W→-algebras, which naturally act on Hilbert spaces.

• (§3.4) One can work with unitary algebras equipped with faithful tracial weights
(A,TrA), also known as H→-algebras [Amb45], which also naturally act on Hilbert
spaces. However, we also get a canonical commutant trace TrA→ on A↑ := End(HA).

Of course, since a unitary algebra A is a multimatrix algebra, by Corollary 2.2.6, every
algebraic module is a direct sum of simple modules, which correspond to columns of the
matrix summands of A. Thus each of these above three notions of unitary module forgets
to this same algebraic notion.

We will see later in [[Part III]] that each of these unitary options adds additional structure
to the collection of such algebras, their bimodules, and intertwiners. The first admits an

1For infinite dimensions, modules should be Banach spaces, where the Banach norm is compatible with
the A-valued inner product and the norm on A.
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adjoint for intertwiners, the second admits this adjoint along with a conjugate for bimodules,
and the third admits an entire homotopy O(2)-action.

3.1 Algebraic Morita equivalence

Before we investigate the various notions of module for unitary algebras, we begin with a
discussion of algebraic Morita equivalence to guide us later.

Definition 3.1.1 — Suppose A is an algebra, MA is a right A-module, and AN is a left
A-module. The relative tensor product M →A N is the quotient of the tensor product
M →N by the subspace generated by

{ma→ n↑m→ an |m ↓ M, a ↓ A, and n ↓ N} .

For m ↓ M and n ↓ N , we denote the image of m→ n in M →A N by m→A n.

Exercise 3.1.2. Show that M →A N satisfies the following universal property. For every
vector space P and every map f : M → N ↔ P which is A-balanced, i.e., f(ma → n) =
f(m→ an) for all m ↓ M , a ↓ A, and n ↓ N , there is a unique linear map f̃ : M →A N ↔ P
such that the following diagram commutes

M →N P

M →A N

q

f

f̃

(3.1.3)

where q : M →N ↔ M →A N is the canonical surjection.

Definition 3.1.4 — An A↑B bimodule AMB is a B-module MB equipped with a unital
algebra map A ↔ End(MB).

Exercise 3.1.5. Show that an A ↑ B bimodule AMB is the same data as a left A-module
structure AM and a right B-module structureMB onM such that the following compatibility
condition holds:

a(mb) = (am)b for all a ↓ A,m ↓ M, b ↓ B.

Exercise 3.1.6 (Folding trick). Show that an A↑B bimodule AMB is the same data as an
Aop → B-module MAop↓B.

Example 3.1.7 — Suppose AMB is an A↑ B bimodule. We define the dual bimodule
by

M↔ := Hom(MB ↔ BB).

92



Observe that M↔ carries the left B-action and a right End(MB)-action:

(bf)(m) := f(mb) and (fT )(m) := f(Tm) f ↓ M↔, b ↓ B, T ↓ End(MB), m ↓ M.

In particular, restricting the right End(MB)-action to A yields an organic B↑A bimodule
structure on M↔.

Exercise 3.1.8. Suppose MA is a right module and ANB is an A↑B bimodule. Show that
(m→ n)b := m→ nb descends to the relative tensor product M →A N , which is thus a right
B-module. Adapt this exercise to the case that MA carries a left action as well.

Exercise 3.1.9. Suppose A,B are finite dimensional semisimple algebras and AMB is a
finite dimensional bimodule. Prove that the map

AM →B M↔
A
↔ A End(MB)A given by m→ f ↗↔ [n ↗↔ mf(n)]

is an A ↑ A bimodular isomorphism. Here, the A ↑ A bimodule structure on End(MB) is
induced from the inclusion A ↘ End(MB).
Hint: use an algebraic projective basis for MB as in Corollary 2.2.22.

Exercise 3.1.10. Suppose MA is a right module, ANB is a bimodule, and BP is a left
module. Construct an isomorphism (M →A N) →B P ≃= M →A (N →B P ). Do this in two
ways: by hand and using Exercise 3.1.2.

Exercise 3.1.11. Prove that M →A AA
≃= MA. Do this in two ways: by hand and using

Exercise 3.1.2. Adapt this exercise for left A-modules.

Definition 3.1.12 — Given bimodule maps x : AKB ↔ AMB and y : BLC ↔ BNC , the
map

x→B y : K →B L ↔ M →B N

k →B ω ↗↔ xk →B yω

is a well-defined A↑ C bimodule map by the universal property (3.1.3).

Definition 3.1.13 — Suppose A,B are complex algebras. A Morita equivalence be-
tween A and B is a pair of bimodules APB and BQA and together with bimodule iso-
morphisms AP →B QA

≃= AAA and BQ→A PB
≃= BBB.

A BP↓BQ ↗=

P

Q

Q↓AP↗=
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We will see later in Part[[II]] §[[?]] that a Morita equivalence between A and B is the
same data as an equivalence of categories between their categories of right modules. Indeed,
give a right A-module MA, we get a right B-module by M →APB, and we can recover MA as

(M →A P )→B QA
≃=

(Exer. 3.1.10)
M →A (P →B Q)A ≃= M →A AA

≃=
(Exer. 3.1.11)

MA.

Exercise 3.1.14. Verify Morita equivalence is an equivalence relation on algebras. Then
show that if APB, BQA is a Morita equivalence, then BQA is determined by APB up to
canonical A↑B bimodule isomorphism. That is, if APB, BQ↑

A
is a Morita equivalence, there

is a canonical A↑B bimodule isomorphism BQA
≃= BQ↑

A
built from the Morita equivalence

isomorphisms.

Example 3.1.15 — Suppose A is semisimple and MA is a faithful right module. Then
End(MA) and A are Morita equivalent via End(MA)MA and AM↔

End(MA). Indeed, observe
that an m ↓ M can be identified with the map Lm : a ↗↔ ma in Hom(AA ↔ MA). One
checks that:

• the map given by m→Af ↗↔ Lmf ↓ End(MA) is an End(MA)-bilinear isomorphism
M →A M↔ ↔ End(MA).

• the map f→End(MA)m ↗↔ f(m) is an A-bilinear isomorphism M↔→End(MA)M ↔ A.

Exercise 3.1.16. Adapt the previous example to the setting where MA is not faithful.

Given the above example, the next proposition extends Corollary 2.2.23.

Proposition 3.1.17 — Suppose APB, BQA is a Morita equivalence. Then

A ≃= End(PB) B ≃= End(QA)

Bop ≃= End(AP ) Aop ≃= End(BQ)

Proof. We proveA = End(PB), and the other statements follow formally by swapping A ⇐ B
and P ⇐ Q or by taking opposites.

We claim that the left action algebra map ε : A ↔ End(PB) given by εa(m) := am is an
isomorphism. Since A acts faithfully on AA and AP →B QA

≃= AAA, clearly ε is injective.
Indeed, we have an explicit left inverse: for x ↓ End(PB), x →B idQ ↓ End(P →B QA) ≃=
End(PA) = A, so x ↗↔ x→B idQ gives an algebra map ϑ : End(PB) ↔ A such that ϑ⇒ε = idA.
Thus ϑ is surjective, and to show that ε is an isomorphism, it su”ces to prove that ϑ is
injective, i.e., ϑ is an isomorphism. If x ↓ End(PB) such that x →B idQ = 0, then observe
that x→B 1Q →A 1P = 0 in End(P →B N →A QB) ≃= End(PB). But under this isomorphism,
x→B 1Q →A 1P = x, so x = 0.

Exercise 3.1.18. Suppose A is semisimple. Let MA be a faithful right module, and identify
Aop with its image in End(M) under ϖ. Prove that Z(Aop) = Aop⇑End(MA) = Z(End(MA)).
Then prove that two finite dimensional semisimple algebras are Morita equivalent if and only
if their centers are isomorphic.
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3.2 Hilbert C
⇓-modules

In this section, we view unitary algebras as finite dimensional C→-algebras, and we explore
the notion of a (right) Hilbert C→-module. The benefits of working with Hilbert C→-modules
include the existence of canonical creation and annihilation operators (or bra-kets) and a
well-defined notion of projective basis. However, even though the dual space of a right Hilbert
C→-module is organically a left Hilbert C→-module, the notion of Hilbert C→-correspondence is
manifestly asymmetric, which leads to a problem defining a conjugate/dual correspondence.

Definition 3.2.1 — Suppose XA is an (algebraic) right A-module for a unitary algebra
A. An A-valued inner product is a map ⇔·|·↖A : X ↙X ↔ A satisfying:

• (A-linear in second variable) ⇔ϱ|ς1a+ ς2↖A = ⇔ϱ|ς1↖Aa+ ⇔ϱ|ς2↖A for all ϱ, ς1, ς2 ↓ X
and a ↓ A,

• (anti-symmetric) ⇔ϱ|ς↖→
A
= ⇔ς|ϱ↖A for all ϱ, ς ↓ X,

• (positive definite) ⇔ϱ|ϱ↖A ∝ 0 in A for all ϱ ↓ X with equality if and only if ϱ = 0.

Example 3.2.2 — When we consider C as a unitary algebra, a right C-valued inner
product is the same thing as an ordinary inner product.

Example 3.2.3 — Every unitary algebra A has the trivial A-valued inner product
⇔a|b↖A := a→b.

Exercise 3.2.4. Prove that the map from A↘
+ to A-valued inner products on A given by

⇔a|b↖x
A
:= a→xb for x ↓ A↘

+ is a bijective correspondence.

Example 3.2.5 — Given an orthogonal projection p ↓ Mn(A), the right A-module pAn

has A-valued inner product

⇔p(ai)|p(bi)↖A :=
∑

i,j

a→
i
pijbj.

We will see every Hilbert C→-module is of this form in Theorem 3.2.27 below.

Example 3.2.6 (Center valued trace) — Given a unitary algebra A =
⊕

k

i=1 Mni
(C),

consider the center valued trace given by

zTr(a) := (Trni
(ai))

k

i=1 ↓ Z(A) ≃= Ck where a = (a1, . . . , ak).
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Setting ⇔a|b↖Z(A) := zTr(a→b) is a Z(A)-valued inner product. The normalized center
valued trace is given by ztr(a) := (trni

(ai))ki=1, which satisfies ztr(1) = 1.

Example 3.2.7 — The standard right Mn(C) module Cn has Mn(C)-valued inner
product given by

⇔ϱ|ς↖Mn(C) := |ϱ↖⇔ς|.

Example 3.2.8 (Conjugate module) — If XA is a right Hilbert C→ module, then AX is
a left Hilbert C→ module with left A-valued inner product

A⇔ϱ, ς↖ := ⇔ς|ϱ↖A,

which is A-linear on the left.

Exercise 3.2.9. Suppose XA and YA are right Hilbert C→-modules. Show XA ′ YA is again
a right Hilbert C→-module with A-valued inner product

⇔(ϱ1, ς1)|(ϱ2, ς2)↖A := ⇔ϱ1|ϱ2↖A + ⇔ς1|ς2↖A.

Fact 3.2.10. Suppose XA is equipped with an A-valued inner product. Observe

I := im(⇔·|·↖A) ∞ A

is a 2-sided ideal. Since A is semisimple, I = Az for some central projection z ↓ Z(A) by
Exercise 2.2.3 If ς ↓ X(1↑ z), then ⇔ς|ς↖A = ⇔ς|ς(1↑ z)↖A = ⇔ς|ς↖A(1↑ z) ↓ I(1↑ z) = 0, so
ς = 0. We see that z acts as 1 on X and 1↑ z acts as zero. In particular, if XA is faithful,
then ⇔·|·↖A is surjective.

Exercise 3.2.11. State and prove the polarization identity (1.3.4) for an A-valued inner
product.

Exercise 3.2.12. Suppose XA is an A-module equipped with an A-valued inner product
⇔·|·↖A. Show that

⇔·|·↖X
ω
:= φ(⇔·|·↖A) : X ↙X ↔ C

is an inner product for any faithful weight φ : A ↔ C.

Definition 3.2.13 — Suppose XA, YA are A-modules equipped with right A-valued
inner products. A right A-linear map x : X ↔ Y is called adjointable if there is a right
A-linear map x† : Y ↔ X called an adjoint such that

⇔x†ϱ|ς↖Y
A
= ⇔ϱ|xς↖X

A
∈ ς ↓ X and ϱ ↓ Y.
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Example 3.2.14 — The left A-action on AA equipped with the A-valued inner product
⇔a|b↖x

A
= a→xb for x ↓ A↘

+ from Exercise 3.2.4 is a ⇓-action by adjointable operators if
and only if x ↓ Z(A) as

⇔1|a · 1↖x
A
= xa and ⇔a→ · 1|1↖x

A
= ax.

Example 3.2.15 — Suppose XA is an A-module equipped with a right A-valued inner
product. Endow AA with the A-valued inner product ⇔a|b↖A := a→b. For each ϱ ↓ X,
the map Lε : AA ↔ XA given by a ↗↔ ϱa is adjointable with adjoint L†

ε
(ς) := ⇔ϱ|ς↖A.

We may employ bra-ket notation for |ς↖A := Lϑ and A⇔ϱ| := L†
ε
, so that

⇔ϱ|ς↖A = A⇔ϱ| ⇒ |ς↖A ↓ End(AA) ≃= A.

The following trick lets us identify XA = Hom(AA ↔ XA) as Hilbert C→ modules.

Trick 3.2.16 (Realization) — The adjointable operators Hom(AA ↔ XA) form a right
Hilbert C→ module with right A-valued inner product

⇔f |g↖A := f † ⇒ g ↓ End(AA) = A.

The map XA ↔ Hom(AA ↔ XA) given by ς ↗↔ |ς↖A is a unitary isomorphism of Hilbert
C→ modules.

The following essential exercise for finite dimensional A-modules equipped with A-valued
inner products shows that they are not so di!erent from Hilbert space modules.

Exercise 3.2.17. Suppose XA, YA are two A-modules equipped with A-valued inner prod-
ucts. Show that every A-module map x : XA ↔ YA is adjointable, with adjoint given by
the Hilbert space adjoint when XA, YA are equipped with the inner products ⇔·|·↖X

ω
, ⇔·|·↖Y

ω

respectively where φ : A ↔ C is any faithful weight as in Exercise 3.2.12.

Warning 3.2.18 — For infinite dimensional C→-algebras, there are bounded maps be-
tween Hilbert C→ modules which are not adjointable. For example, the inclusion of a
closed right ideal IA ↼↔ AA which is not complemented does not admit an adjoint when
IA is endowed with the restricted A-valued inner product. For a concrete example, we
can consider A = C[0, 1] and I = {f ↓ C[0, 1] | f(0) = 0}.

Proposition 3.2.19 — Given a right A-module XA equipped with an A-valued inner
product, End(XA) is a unitary algebra. In particular, adjoints are unique.

Proof. By Exercise 3.2.17, End(XA) is isomorphic as a ⇓-algebra to B(X, ⇔·|·↖X
ω
). Uniqueness

of adjoints follows immediately.
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Exercise 3.2.20. Prove that x ↓ End(XA) is positive if and only if ⇔ς|xς↖A is positive in A
for all ς ↓ X.

We give two proofs of the following important corollary. The first proof is a ‘one-liner,’
and the second introduces Roberts’ 2↙ 2 trick [GLR85, Lem. 2.6].

Corollary 3.2.21 — Suppose XA, YA are two Hilbert C→-modules. For every x ↓
Hom(XA ↔ YA), x†x is positive in End(XA).

Proof 1. For every ς ↓ X, ⇔ς|x†xς↖X
A
= ⇔xς|xς↖Y

A
∝ 0. Now apply Exercise 3.2.20.

Proof 2: Roberts’ 2↙ 2 trick. Using Exercise 3.2.9, we may view

x, x†, x†x ↓ End(XA ′ YA) =

(
Hom(XA ↔ XA) Hom(YA ↔ XA)
Hom(XA ↔ YA) Hom(YA ↔ YA)

)
,

which is a unitary algebra. We thus have that x†x is a positive operator, so it has a unique
positive square root, which clearly lies in End(XA).

Exercise 3.2.22. For ϱ1, . . . , ϱn ↓ XA, show that the n↙ n matrix (⇔ϱi|ϱj↖A) is positive in
Mn(A).

Theorem 3.2.23 (Riesz Representation) — The adjointable operators Hom(XA ↔ AA)
is a left Hilbert C→ module with left A-valued inner product

A⇔f, g↖ := f ⇒ g† ↓ End(AA) = A,

which is linear on the left. The map AX ↔ Hom(XA ↔ AA) given by ϱ ↗↔ A⇔ϱ| is a
unitary isomorphism of left Hilbert C→-modules.

Proof. The first claim is left to the reader. The map XA ↔ Hom(AA ↔ XA) given by
ϱ ↗↔ |ϱ↖A is a unitary isomorphism by Trick 3.2.16, and the map † : Hom(AA ↔ XA) ↔
Hom(XA ↔ AA) is an anti-linear unitary by Exercise 3.2.8. The result follows.

Next we extend Corollary 2.2.22, the existence of projective bases, to the unitary setting.
We begin with Connes’ trick.

Trick 3.2.24 (Connes [Con80, Proof of Prop. 3(b)]) — Suppose XA is an A-module
equipped with an A-valued inner product and x ∝ 0 in End(XA). We claim there is a
finite subset {ςi} ∞ X such that x =

∑
|ςi↖A⇔ςi|.

By Corollary 2.2.22, we can write x =
∑

i
|ϱi↖Afi for some ϱ1, . . . , ϱn ↓ X and some

right A-linear maps f1, . . . , fn : XA ↔ AA. By the A-valued Riesz Representation
Theorem 3.2.23, each fi = ⇔↽i| for some ϱi, so x =

∑
|ϱi↖A⇔↽i|. Since x is self-adjoint,

x =
1

2

(∑
|ϱi↖A⇔↽i|+

∑
|↽i↖A⇔ϱi|

)
.
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In particular, we see that

x ∋ y :=
∑

|ϱi + ↽i↖A⇔ϱi + ↽i|.

Assume for the time being that x is invertible. Then y is as well, as

0 = ⇔ς|yς↖X
ω
∝ ⇔ς|xς↖X

ω
= ⇔x1/2ς|x1/2ς↖X

ω
∝ 0 =△ x1/2ς = 0 =△ ς = 0.

We may thus conjugate y by x1/2y≃1/2 to get x:

x = x1/2y≃1/2yy≃1/2x1/2

= x1/2y≃1/2
(∑

|ςi + ϱi↖A⇔ςi + ϱi|
)
y≃1/2x1/2

=
∑

|x1/2y≃1/2(ςi + ϱi)↖A⇔x1/2y≃1/2(ςi + ϱi)|.

When x is not invertible, we may first conjugate by supp(x) and restrict our attention
to supp(x)XA to reduce to the case that x is invertible.

Exercise 3.2.25. Suppose A is a unitary algebra and 0 ∋ x ∋ y in A. Use the reasoning in
Connes’ Trick 3.2.24 to find a z ↓ A such that x = z→yz.

Corollary 3.2.26 — Suppose XA is an A-module equipped with a right A-valued inner
product. There is a finite subset {⇀i} ∞ X called an XA-basis (or sometimes called a
projective basis) such that ς =

∑
i
⇀i⇔⇀i|ς↖A for all ς ↓ X, i.e.,

∑
|⇀i↖A⇔⇀i| = 1X . In

particular,

End(XA) = span {|ϱ↖A⇔ς| | ϱ, ς ↓ X}
End(XA)+ = spanR+

{|ϱ↖A⇔ϱ| | ϱ ↓ X} .

Proof. The final claim about End(XA)+ is immediate from Connes’ Trick 3.2.24. Since
1X ↓ End(XA)+, XA bases exist. Finally, since span {|ϱ↖A⇔ς| | ϱ, ς ↓ X} is a 2-sided ideal of
End(XA) containing 1X , End(XA) is spanned by the A-rank one operators.

Using Corollary 3.2.26, we get a complete classification of Hilbert C→ A-modules similar
to (SS6).

Theorem 3.2.27 (Classification of Hilbert C→ modules) — For a Hilbert C→-module XA,
there is a projection p ↓ Mn(A) such that XA

≃= pAn

A
as right A-modules, where pAn

A
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has the A-valued inner product

⇔p(ai)|p(bi)↖A =
∑

i,j

a→
i
pijbj.

Under conjugation by this unitary isomorphism, End(XA) ≃= pMn(A)p.

Proof. Let {⇀i} be anXA-basis. The 1↙nmatrix of A-linear maps v := (|⇀i↖A)ni=1 : A
n

A
↔ XA

given by (ai) ↗↔
∑

⇀iai is clearly right A-linear and surjective. Its adjoint v† : XA ↔ An

A
is

given by the n↙ 1 matrix (A⇔⇀i|)ni=1, which is injective. Observe that v is a coisometry, as

vv† = (|⇀i↖A)ni=1(A⇔⇀i|)ni=1 =
∑

i

|⇀i↖A⇔⇀i| = 1X .

We conclude that p := v†v ↓ End(An

A
) ≃= Mn(A) is an orthogonal projection and that

v|pAn : pAn

A
↔ XA is a unitary A-module isomorphism. The final claim is immediate.

Definition 3.2.28 — Suppose A,B are unitary algebras. An A↑B correspondence is
an A↑B bimodule AXB equipped with a right B-valued inner product ⇔·|·↖B such that
the map A ↔ End(XB) is a unital ⇓-algebra map, so that

⇔a→ϱ|ς↖B = ⇔ϱ|aς↖B ∈ a ↓ A, ϱ, ς ↓ X.

An isomorphism of A↑B correspondences is an isomorphism of A↑B bimodules which
preserves the right B-valued inner products.

Example 3.2.29 — An A↑C correspondence AHC is exactly a Hilbert spaceH together
with a unital ⇓-algebra map A ↔ B(H).

Definition 3.2.30 (Relative tensor product) — Suppose A,B,C are unitary algebras
and AXB and BYC are correspondences. The relative tensor product AX ↭B YC is the
quotient space X → Y/N where

N = span {ϱb→ ς ↑ ϱ → bς | ϱ ↓ X, ς ↓ Y, and b ↓ B.}

We denote the image of ϱ → ς in AX ↭B YC by ϱ ↭ ς. We equip this space with the
C-valued inner product given by

⇔ϱ1 ↭ ς1|ϱ2 ↭ ς2↖C := ⇔⇔ϱ2|ϱ1↖Bς1|ς2↖C = ⇔ς1|⇔ϱ1|ϱ2↖Bς2↖C , (3.2.31)

which is well-defined by Lemma 3.2.32 below. Observe that X ↭B Y carries a left A-
action and a right C-action and is thus an A↑ C correspondence.
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As we are working in finite dimensions, the Connes fusion relative tensor product
satisfies the same universal property (3.1.3) as in the algebraic setting. Thus given
bimodule maps x : AXB ↔ AMB and y : BYC ↔ BNC , the map

x↭B y : X ↭B Y ↔ M ↭B N

ϱ ↭ ς ↗↔ xϱ ↭ yς

is a well-defined A↑ C bimodule map by the universal property (3.1.3).

Lemma 3.2.32 — The formula (3.2.31) indeed defines a C-valued inner product.

Proof. The only interesting part is proving definiteness. Suppose that

↽ =
∑

ϱi ↭ ςi and ⇔↽|↽↖C =
∑

i,j

⇔ϱi ↭ ςi|ϱj ↭ ςj↖C =
∑

i,j

⇔⇔ϱj|ϱi↖Bςi|ςj↖C = 0.

Let {⇀k}nk=1 be an XB-basis as in Corollary 3.2.26 so that
∑

n

k=1 |⇀k↖B⇔⇀k| = 1X . Observe
that

⇔ϱj|ϱi↖B =
∑

k

⇔⇀k⇔⇀k|ϱj↖B|ϱi↖B =
∑

k

⇔ϱj|⇀k↖B⇔⇀k|ϱi↖B,

so we see that

0 = ⇔↽|↽↖C =
∑

i,j

⇔⇔ϱj|ϱi↖Bςi|ςj↖C =
∑

i,j,k

⇔⇔ϱj|⇀k↖B⇔⇀k|ϱi↖Bςi|ςj↖C =
∑

i,j,k

⇔⇔⇀k|ϱi↖Bςi|⇔⇀k|ϱj↖Bςj↖C .

By looking at the C-module Y n

C
with C-valued inner product ⇔(⇁k)|(τϖ)↖Y

n

C
:=

∑
⇔⇁k|τk↖C

and canonical left Mn(B)-action (bki)(τi) =
∑

k
(bkiτi), observe

0 =
∑

i,j,k

⇔⇔⇀k|ϱi↖Bςi|⇔⇀k|ϱj↖Bςj↖C = ⇔(⇔⇀k|ϱi↖B)(ςi)|(⇔⇀k|ϱi↖B)(ςi)↖Y
n

C
,

which implies (⇔⇀k|ϱi↖B)(ςi) = 0 in Y n

C
by definiteness. Now the map (⇁k) ↗↔

∑
⇀k ↭ ⇁k is a

well-defined C-linear map Y n

C
↔ X ↭B YC . Applying this map to (⇔⇀k|ϱi↖B)(ςi) = 0 yields

0 =
∑

k,i

⇀k ↭ ⇔⇀k|ϱi↖Bςi =
∑

k,i

⇀k⇔⇀k|ϱi↖B ↭ ςi =
∑

i

ϱi ↭ ςi = ↽

as desired.

Exercise 3.2.33. Directly verify using (3.2.31) that (x ↭ y)† = x† ↭ y† for bimodule maps
x : AXB ↔ AMB and y : BYC ↔ BNC .

Exercise 3.2.34. Show that the canonical isomorphisms

(X ↭A Y )↭B L ≃= X ↭A (Y ↭B L), X ↭A A ≃= X, and A↭A Y ≃= Y

from Exercises 3.1.10 and 3.1.11 for the relative tensor product are unitary isomorphisms for
the relative tensor product.
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Exercise 3.2.35. Suppose φ : A ↔ C is a faithful weight and XA is a right Hilbert C→-
module. Prove that the map X ↔ X ↭A L2(A,φ) given by ϱ ↗↔ ϱ ↭ #ω is a unitary
isomorphism of Hilbert spaces when the former is equipped with the inner product ⇔·|·↖X

ω
.

Prove this unitary intertwines the left End(XA)-actions. When does it intertwine the right
A-actions? (See Warning 3.4.7 below.)

Definition 3.2.36 — A C→ Morita equivalence (a.k.a. a Rie!el-Morita equivalence
[Rie74]) between two unitary algebras A,B consists of A↑B correspondences AXB and

BYA and correspondence unitary isomorphisms AX↭BYA
≃= AAA and BY ↭AXB

≃= BBB.

A BX↭BY ↗=

X

Y

Y ↭AX↗=

Remark 3.2.37. Since A,B were assumed to be finite dimensional, a C→ Morita equivalence
is an example of an ordinary Morita equivalence in the sense of Definition 3.1.13. Hence by
Proposition 3.1.17,

A ≃= End(XB) B ≃= End(YA)

Bop ≃= End(AX) Aop ≃= End(BY ).

Example 3.2.38 — Suppose XA is a faithful right A-module with an A-valued inner
product. We may promote XA to an End(XA)↑A correspondence End(XA)XA. We define
a left End(XA)-valued inner product (which is linear on the left) by

End(XA)⇔ς, ϱ↖ := |ς↖A⇔ϱ|.

Observe that for all ϱ, ς, ↽ ↓ X, we have

ϱ⇔ς|↽↖A = |ϱ↖A⇔ς|↽ = End(XA)⇔ϱ, ς↖↽.

This is the notion of an imprimitivity bimodule, which is the same as being part of a C→

Morita equivalence by the next result.

Theorem 3.2.39 — For an A↑B correspondence AXB which is faithful as both a left
A and right B-module, the following are equivalent.

(1) AXB can be equipped with a left A-valued inner product (which is linear on the
left), under which AXB it is an imprimitivity bimodule, i.e.,

A⇔ϱ, ς↖↽ = ϱ⇔ς|↽↖B ∈ ϱ, ς, ↽ ↓ X.
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(2) AXB can be extended to a C→ Morita equivalence, i.e., there is a B ↑ A cor-
respondence BYA and unitary bimodule isomorphisms AX ↭B YA

≃= AAA and

BY ↭A XB
≃= BBB.

Proof.

(1)△(2): The other half of the unitary Morita equivalence is given by BXA with actions given

by bϱa := a→ϱb→. The algebra-valued inner products on X are given by B⇔ϱ, ς↖ := ⇔ς|ϱ↖B and
⇔ϱ|ς↖A := A⇔ς, ϱ↖. Using faithfulness of both actions, one now verifies that the maps

X ↭A X ↑↔ B given by ϱ ↭ ς ↗↑↔ ⇔ϱ|ς↖B
X ↭B X ↑↔ A given by ϱ ↭ ϱ ↗↑↔ A⇔ϱ, ς↖

are well-defined bilinear unitaries. Their adjoints/inverses are given by

B ↑↔ X ↭A X given by 1B ↗↑↔
∑

⇀i ↭ ⇀i

A ↑↔ X ↭B X given by 1A ↗↑↔
∑

γj ↭ γj

where {⇀i} is an XB-basis and {γj} is an XA-basis as in Corollary 3.2.26.

(2)△(1): The ⇓-algebra map ϑ : A ↔ End(XB) is an isomorphism by Proposition 3.1.17, so
the result follows by Example 3.2.38.

Exercise 3.2.40. Verify the claim that the maps in (1) △ (2) in the above proof are unitary
as claimed.

Exercise 3.2.41. Directly verify that for an XB-basis {⇀i},
∑

⇀i ↭ ⇀i ↓ X ↭A X is a B-
central vector.
Hint: First show that this element is independent of the choice of {⇀i}. Then show that∑

⇀i ↭ ⇀iu =
∑

u⇀i ↭ ⇀i for every unitary u ↓ B.

Now that we have a working notion of C→ Morita equivalence between unitary algebras,
we can ask how one might extend the conjugate operation to all A↑B correspondences AXB,
and not just imprimitivity bimodules. Unfortunately, there is no way to canonically endow
X with a right A-valued inner product, and we must again make a choice. This brings us to
our next attempt using Hilbert space bimodules.

3.3 Hilbert space modules for von Neumann algebras

As unitary algebras are also finite dimensional von Neumann algebras, they naturally act on
Hilbert spaces. Thus one might reasonably say that a unitary right A-module should be a
Hilbert space H with a right A-action, i.e., a unital ⇓-homomorphism Aop ↔ B(H), where
Aop is the opposite algebra of A as in Examplre 2.1.5. It follows immediately that the right
A-module maps are closed under taking adjoints.
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Lemma 3.3.1 — Suppose HA and KA are two Hilbert space right A-modules where A
is a unitary algebra. If x : H ↔ K is a right A-linear map, i.e.,

x(ϱ ! a) = (xϱ)! a ∈ϱ ↓ H, a ↓ A,

then x† is also right A-linear.

Proof. For all ϱ ↓ H, ς ↓ K, and a ↓ A,

⇔x†(ςa)|ϱ↖H = ⇔ςa|xϱ↖K = ⇔ς|(xϱ)a†↖K = ⇔ς|x(ϱa†)↖K = ⇔x†ς|ϱa†↖H = ⇔(x†ς)a|ϱ↖H .

As the space of standard forms for a unitary algebra A is contractible, we simply denote
the standard form by L2A. When we worked with Hilbert C→-modules XA, we started with
A-valued inner products, from which we defined the notion of an adjointable A-linear map.
(It turns out that all A-linear maps are adjointable in finite dimensions, but this is beside
the point.) Now when working with Hilbert space modules HA, this process is inverted. The
standard form L2A allows us to work with all linear maps f : L2AA ↔ HA and their Hilbert
space adjoints. We then observe that Hom(L2AA ↔ HA) is canonically a Hilbert C→-module
with A-valued inner product

⇔f |g↖A := f †g ↓ End(L2AA) = A. (3.3.2)

Observe that for all A-linear x : HA ↔ KA, the Hilbert space adjoint x† agrees with the
A-valued adjoint of the corresponding operator

x ⇒ ↑ : Hom(LA

A
↔ HA) ↔ Hom(L2A ↔ KA)

as for all f : L2AA ↔ HA and g : L2AA ↔ KA, we have

⇔xf |g↖A = f †x†g = ⇔f †|x†g↖.

Thus there is no ambiguity regarding adjoints.

Warning 3.3.3 — There is no canonical isomorphism between the Hilbert space HA

and the Hilbert C→-module Hom(L2AA ↔ HA). In particular, the Hilbert space HA

does not have a canonical A-valued inner product (unless A = C). In particular, even
though L2A and A are isomorphic as vector spaces, AA has a canonical A-valued inner
product ⇔a|b↖A = a→b, but L2AA does not. This is another manifestation of the fact that
we cannot identify L2A with A as discussed in Warning 2.5.22.

The following theorem quantifies the above warning.

Theorem 3.3.4 — For a unitary algebra A, the following are all torsors for A↘
+:

(1) right A-module isomorphisms AA
≃= L2AA sending 1A into the positive cone L2A+,

(2) faithful weights on A, and
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(3) A-valued inner products on L2A.

The following structures are all torsors for Z(A)↘+:

(Z1) A ↑ A bimodule isomorphisms AAA
≃= AL2AA sending 1A into the positive cone

L2A+,

(Z2) faithful traces on A, and

(Z3) A-valued inner products on L2A such that the left A-action is a ⇓-algebra map
into the adjointable operators.

Proof.

(1) Choosing a faithful trace Tr on A to model L2A = L2(A,Tr), such a map AA ↔ L2(A,Tr)A
is uniquely determined by where 1A goes, which must be of the form x#Tr for some x ↓ A↘

+

by Exercise 2.5.3.

(2) Immediate by Proposition 2.3.16.

(3) This is Exercise 3.2.4.

(Z1) A maps from (1) which is also left A-linear requires x ↓ Z(A)↘+.

(Z2) This is Exercise 2.3.8.

(Z3) This is Example 3.2.14.

The following trick gets around the above ambiguity and allows us to bootstrap the
classification of Hilbert C→-modules to a classification of Hilbert space modules. It also
a!ords an elegant definition of fusion following [Was98].

Trick 3.3.5 — We may identify the underlying vectors space of a Hilbert space module
HA as Hom(L2AA ↔ HA), which has a canonical A-valued inner product (3.3.2). We can
recover the Hilbert space H under the relative tensor product of this Hilbert C→-module
with AL2AC via the unitary isomorphism

ϖH : Hom(L2AA ↔ HA)↭A L2AC ↑↔ H f → ς ↗↑↔ f(ς).

However, L2A also has a right A-action, and the map ϖH is clearly right A-linear, which
promotes ϖH to a right A-linear unitary of Hilbert space A-modules.

Observe that ϖL2A is the canonical left A-action a ↭ ς ↗↔ aς. Moreover, for every
A-module map T : HA ↔ KA, the following diagram commutes.

Hom(L2AA ↔ HA)↭A L2AA HA

Hom(L2AA ↔ KA)↭A L2AA HA

ϱH

(T⇐≃)↭A id
L2A T

ϱK
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This has two immediate consequences.

• Setting H = L2A, ϖK is uniquely determined by ϖL2A. (To see this, model L2A =
L2(A,Tr) for a faithful tracial weight and consider T = |ϱ↖Tr : a#Tr ↗↔ ϱa.)

• By settingK = H, we see that ϖH commutes with the left action of A↑ = End(HA).

We have a similar trick for left Hilbert space A-modules AK.

Theorem 3.3.6 (Classification of Hilbert space modules) — SupposeHA is a Hilbert space
module. There is a projection p ↓ Mn(A) and an A-linear unitary isomorphism HA

≃=
pL2A⇒n for some n ↓ N. Conjugating by this unitary gives a ⇓-algebra isomorphism
End(HA) ≃= pMn(A)p.

Proof. By the Classification Theorem for Hilbert C→ modules 3.2.27, there is a unitary Hilbert
C→ module isomorphism v : pAn

A
↔ Hom(L2AA ↔ HA) for some projection p ↓ Mn(A). We

then get a unitary isomorphism

pL2A⇒n

A
≃= pAn

A
↭A L2A ≃=

v↭id
Hom(L2AA ↔ HA)↭A L2AC ≃=

ϱH

H

of Hilbert spaces which intertwines the right A-action. The result follows.

Definition 3.3.7 (Connes fusion) — Given a right B-module HB and a left B-module

BK the Connes fusion relative tensor product Hilbert space H ↭B K can be defined in
three equivalent ways using the relative tensor product for C→-Hilbert modules.

• Hom(L2BB ↔ HB) ↭B K with C-valued inner product ⇔f1 ↭ ς1|f2 ↭ ς2↖ :=
⇔⇔f2|f1↖Bς1|ς2↖K where as in (3.3.2),

⇔f2|f1↖B = f †
2f1 ↓ End(L2BB) = B,

• H ↭B Hom(BL2B ↔ BK) with C-valued inner product ⇔ϱ1 ↭ g1|ϱ2 ↭ g2↖ :=
⇔ϱ1|ϱ2B⇔g1, g2↖↖H where

B⇔g1, g2↖ = Jg†1g2J ↓ J End(BL
2B)J = JB↑J = B,

where J : L2B ↔ L2B is the canonical standard form conjugate-linear unitary
from §2.5, or

• Hom(L2BB ↔ HB)↭B L2B ↭B Hom(BL2B ↔ BK) with C-valued inner product

⇔f1 ↭ ↽1 ↭ g1|f2 ↭ ↽2 ↭ g2↖ := ⇔⇔f2|f1↖B↽1|↽2B⇔g1, g2↖↖L2B.
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Given x : HB ↔ MB and y : BK ↔ BN , we get an operator x ↭B y : H ↭B K ↔
M ↭B N by f ↭ ς ↗↔ xf ↭ yς, where f ↓ Hom(L2BB ↔ HB) and ς ↓ K. There are
analogous definitions for the other equivalent definitions of H ↭B K.

We postpone the discussion of universal property of Connes fusion and the associator
and unitor unitary isomorphisms to the next section after we introduce the notion of an
H→-algebra (a unitary algebra equipped with a faithful tracial weight).

Exercise 3.3.8. In this exercise, we derive the unintended consequences for the most naive
definition of the relative tensor product for Hilbert space modules that we can think of.

First, define H ?
B
K2 to be L⇑ ∞ H →K where

L := span {ϱb→ ς ↑ ϱ → bς | ϱ ↓ H, ς ↓ K, and b ↓ B} .

Denote the image of ϱ → ς in L⇑ under pL↑ : H →K = L′ L⇑ ↔ L⇑ by ϱ ? ς, for which

ϱb ? ς = ϱ ? bς ∈b ↓ B.

(1) When H is equipped with a commuting left A-action and K is equipped with a com-
muting right C-action, show these actions preserve L⇑ and thus descend to H ?

B
K.

(2) Show that when B = Mn(C), HB = Cn, and BK = Cn, the subspace L⇑ ↘ H →K is
one dimensional and spanned by the vector

∑
⇔ei|→ |ei↖.

(3) We would like L2B to behave as an ‘identity bimodule’ for the naive ? fusion operation.
Prove that if φ is a faithful weight on B = Mn(C) so that the map Cn ?

B
L2(B,φ) ↔

Cn given by ς ? b#ω ↗↔ ςb is unitary, then φ = n · Tr.

(4) Extend the above result to the case B is an arbitrary unitary algebra and HB is an
arbitrary faithful B-module to show that the H ?

B
L2(B,φ) ↔ H map given by

ϱ ? b#ω ↗↔ ϱb is unitary for exactly one tracial weight on B.

We are now in the position to define the Hilbert space/von Neumann version of Morita
equivalence.

Definition 3.3.9 — A W→/von Neumann Morita equivalence between unitary algebras
A,B consists of Hilbert space bimodules AHB and BKA together with bimodule unitary
isomorphisms AH ↭B KA

≃= AL2AA and BK ↭A HB
≃= BL2BB.

As in Remark 3.2.37 above, AHB, BKA being a W→ Morita equivalence means that

A ≃= End(HB) B ≃= End(KA)

Bop ≃= End(AH) Aop ≃= End(BK).

One advantage of viewing unitary algebras as von Neumann/W→-algebras and working
with Hilbert space modules is that we may always define a conjugate bimodule, not just for
imprimativity bimodules.

2Here, we have chosen the deliberately terrible notation of a question mark box so that no one is tempted
to propagate this notion as correct.
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Definition 3.3.10 — The conjugate Hilbert space bimodule AHB = BHA of AHB is
the conjugate Hilbert space H with left and right actions given by

b" ϱ ! a := a→ϱb→.

We now show that in a W→ Morita equivalence, we may take BKA = BHA as the other
half of the equivalence.

Theorem 3.3.11 (Sauvageot splitting [Sau83, Prop. 3.1]) — Suppose HB is a faithful
Hilbert space B-module. The space H ↭B H with

• the anti-linear unitary J given by ϱ ↭ ς ↗↔ ς ↭ ϱ, and

• the positive cone P := span
{
ς ↭ ς

∣∣ ς ↓ H
}

is a standard form for B↑ = End(HB).

We defer the proof of Sauvageot Splitting Theorem 3.3.11 to the next section after we
introduce the canonical commutant trace Tr↑ for an H→-algebra (B,Tr). Indeed, the con-
struction of the unitary isomorphism of standard forms H ↭B H ≃= L2(B↑,Tr↑) will be short
once we model L2B = L2(B,Tr).

The following corollary is the Hilbert space bimodule/W→ Morita equivalence version of
Theorem 3.2.39.

Corollary 3.3.12 — A faithful Hilbert space B-moduleHB can be canonically promoted
to a W→ Morita equivalence with B↑ = End(HB).

3.4 H
⇓-modules for H

⇓-algebras

Working with Hilbert modules HA for unitary algebras allowed us to define a canonical
conjugate module AH, but we had no way of constructing a C→ projective basis, as the dual
module AH↔ = (HA)↔ = Hom(HA ↔ AA) is not canonically a Hilbert space. We avoided
this complication in the last section by use of Trick 3.3.5 which identifies

Hom(L2AA ↔ HA)↭A L2A ≃= HA.

Another way to avoid this complication and avoid making arbitrary choices is to change
our objects of study to H→-algebras, which are unitary algebras equipped with a fixed choice
of faithful tracial weight. By considering the collection of H→-algebras, we can now ‘follow
our noses’ to define fusion and conjugates for bimodules, and we obtain a canonical unitary
isomorphism (HA)↔ ≃= HA = AH. Thus our objects of study are not just unitary algebras,
but also Hilbert spaces under the GNS construction L2(A,Tr).
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Definition 3.4.1 ([Amb45]) — An H→-algebra is a unitary algebra A equipped with a
faithful tracial weight Tr : A ↔ C.

Remark 3.4.2. An infinite dimensional analog of an H→-algebra is a tracial von Neumann
algebra, i.e., a von Neumann algebra equipped with a faithful tracial state.

Exercise 3.4.3. A (finite dimensional) Hilbert algebra is a Hilbert space H equipped with
a multiplication and an involution ⇓ such that

⇔ab|c↖ = ⇔b|a→c↖ = ⇔a|cb→↖ ∈ a, b, c ↓ H.

Show that there is a bijective correspondence between Hilbert algebras and H→-algebras.
Hint: Given an H→-algebra (A,Tr), consider the Hilbert algebra H = L2(A,Tr). For the
converse, recover an H→-algebra by TrH(a) := ⇔1|a↖.

We saw in Theorem 3.3.4 that faithful tracial weights on A are in bijection with A-
valued inner products on L2A, as both are torsors for Z(A)↘+. In fact, the following explicit
construction uses our trace Tr to endow every Hilbert space module HA with a canonical
A-valued inner product.

Construction 3.4.4 — Let Tr be a faithful tracial weight on A so that we may model
L2A = L2(A,Tr). Every map in Hom(L2AA ↔ HA) is of the form |ϱ↖A : a#Tr ↗↔ ϱa for
some ϱ ↓ H. Writing A⇔ϱ| = |ϱ↖†

A
, observe that

⇔ϱ|ς↖A := A⇔ϱ| ⇒ |ς↖A (3.4.5)

is an A-valued product on HA which is completely determined by the formula

Tr(⇔ϱ|ς↖A) = ⇔ϱ|ς↖H ∈ ϱ, ς ↓ H. (3.4.6)

Warning 3.4.7 — For non-tracial faithful weights φ on A, the situation is far more
subtle, as a#ω ↗↔ ϱa for ϱ ↓ H is no longer right A-linear.

Exercise 3.4.8. Show that if (A,Tr) is an H→-algebra and AH is a left module, every map
in Hom(AL2A ↔ AH) is of the form Rε : a#Tr ↗↔ aϱ for some ϱ ↓ H. Then prove that
R†

ε
Rϑ ↓ End(AL2A) = A↑ = JAJ , and

A⇔ϱ, ς↖ := JR†
ε
RϑJ ↓ JA↑J = A (3.4.9)

is a well-defined A-valued inner product on H, which is linear on the left.

Just as von Neumann algebras come in pairs A,A↑ when acting on Hilbert spaces, so do
H→-algebras.
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Definition 3.4.10 — An H→-module for an H→-algebra (A,TrA) is a right Hilbert space
moduleHA, whose space of endomorphisms A↑ = End(HA) is equipped with its canonical
commutant trace. In more detail, since

A↑ = End(HA) = span {|ς↖A⇔ϱ| | ϱ, ς ↓ H}

by Corollary 3.2.26, the formula

Tr↑(|ς↖A⇔ϱ|) = Tr(⇔ϱ|ς↖A) =
(3.4.6)

⇔ϱ|ς↖H (3.4.11)

uniquely determines a faithful tracial weight Tr↑ : A↑ ↔ C.

Exercise 3.4.12. Verify the commutant trace is indeed a trace on End(HA). Then prove
that

|ϱ↖A⇔ς|↽ = ϱ⇔ς|↽↖A ∈ ϱ, ς, ↽ ↓ H,

and that distinct traces on A yield distinct A-valued inner products ⇔ϱ|ς↖A and distinct rank
one operators |ς↖A⇔ϱ| ↓ End(HA).

Exercise 3.4.13. Show that the commutant trace Tr↑ on A↑ = End(HA) is given by the
formula

Tr↑(x) =
∑

⇔⇀i|x⇀i↖

where {⇀i} is any HA-basis as in Corollary 3.2.26.

Exercise 3.4.14. Consider A = Mn(C) and HA = Ck→Cn. Show that Tr↑
n
for the standard

trace Trn on Mn(C) is the standard trace Trk on Mk(C). What happens for tr on Mn(C)?
Exercise 3.4.15. Suppose Trk for k = 1, 2 are two faithful tracial weights on A. Let z =
dTr2
dTr1

↓ Z(A)↘+ be the density of Tr2 with respect to Tr1, so that Tr2(a) = Tr1(za) for all a ↓ A.
Suppose HA is a Hilbert space module, and denote the A-valued inner product on H induced
by Trk by ⇔ · | · ↖k

A
. Show that ⇔ϱ|ς↖2

A
= z≃1⇔ϱ|ς↖1

A
for all ϱ, ς ↓ H. Using Z(A↑) = Z(A),

deduce that |ς↖2
A
⇔ϱ| = z≃1|ς↖1

A
⇔ϱ| and Tr↑2(x) = Tr↑1(zx) for all x ↓ A↑ = End(HA).

Example 3.4.16 (Classification of H→-modules) — Suppose HA is an H→-module HA

for an H→-algebra (A,TrA). Since H is just a Hilbert space module for the underlying
unitary algebra A, the Classification of Hilbert Space Modules 3.3.6 applies. Thus there
is a unitary isomorphism HA

≃= pL2A⇒n

A
for some projection p ↓ Mn(A), and under

this isomorphism, End(HA) ≃= pMn(A)p. It remains to identify the commutant trace
Tr↑

A
on A↑ = End(HA). For the remainder of this proof, we identify HA = pL2A⇒n

A
and

A↑ = End(HA) = pMn(A)p.
Write A =

⊕
k

i=1 Mni
(C) and denote the minimal central projections by p1, . . . , pn ↓

Z(A). Set di := n≃1
i

TrA(pi) so that d =
∑

dipi ↓ Z(A) is the density of TrA with respect
to Tr, the direct sum of the canonical unnormalized traces on A, i.e., TrA(x) = Tr(dx)
for all x ↓ A.
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We now observe that the corresponding minimal central projections of Z(A↑) are
given by qi := ppi. (Note that some of the qi may be zero.) For each i, there is an
mi ∝ 0 such that qiL2A⇒npi ≃= Crank(qi) → Cni as an qiA↑ ↑ piA bimodule; this mi is the
integer such that qiA↑ ≃= Mmi

(C). (Exercise: Prove that mi = rank(qi) where we view
qi ↓ Mn(A) acting on Cn → C

∑
ni .) By Exercise 3.4.14, Tr↑ is the direct sum of the

canonical commutant traces on pL2A⇒n

A
, i.e.,

Tr↑(x) =
n∑

i=1

Trmi
(x) ∈ x ↓ Mmi

(C) = qiA
↑.

Applying Exercise 3.4.15, we see that Tr↑
A
(x) = Tr↑(d↑x) where d↑ =

∑
diqi ↓ Z(A↑).

Explicitly, di equals both TrA of a minimal projection in piA and Tr↑
A

of a minimal
projection in qiA↑.

Remark 3.4.17. When (B,TrB) is an H→-algebra, any Hilbert space A ↑ B bimodule can
be canonically promoted to an A↑B correspondence using the B-valued inner product from
(3.4.5).

Definition 3.4.18 — A bimodule AHB for H→-algebras (A,TrA) and (B,TrB) is a
Hilbert space module for (B,TrB) equipped with a left action

A ↔ End(HB).

Note that we do not require this map to be isometric/trace preserving.

Warning 3.4.19 — Given a bimodule AHB for H→-algebras (A,TrA) and (B,TrB), TrA
induces the commutant trace Tr

AH on End(AH) and TrB induces the commutant trace
TrHB

on End(HB). In general, these traces do not agree on End(AHB) = End(AH) ⇑
End(HB). Thus one should only view End(HB) and End(AH) as equipped with traces,
and not End(AHB). This makes more sense from a categorical perspective, which we
will study in Part[[III]] §[[]].

Fusion of bimodules is the same as in the last section, viewing our H→-algebras as W→/von
Neumann algebras by forgetting their traces. However, H→-algebras o!er two main advan-
tages. First, we can simplify the construction considerably using our distinguished traces;
see Exercise 3.4.20 below. Second, the algebra valued inner products induced by our traces
allow us to define projective bases, yielding canonical evaluation and coevaluation maps. We
will describe this in detail in §3.6 below, once we have introduced the graphical calculus for
bimodules and their intertwiners.

Exercise 3.4.20. Suppose (B,TrB) is an H→-algebra. Show that for a right module HB and
a left module BK, the Connes fusion Hilbert space H ↭B K is canonically isomorphic to the
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relative tensor product vector space H →B K endowed with the inner product

⇔ϱ1 ↭ ς1|ϱ2 ↭ ς2↖ := TrB(⇔ϱ2|ϱ1↖B · B⇔ς1, ς2↖)

where we have used the B-valued inner products (3.4.5) on HB and (3.4.9) on BK.

Exercise 3.4.21. Use Exercise 3.4.20 to prove that H↭BK satisfies the a modified universal
property (3.1.3) with respect to maps into a Hilbert space L.3 Use this universal property to
construct associators and unitors for ↭ as in 3.1.10 and 3.1.11 for the relative tensor product
for the Connes fusion.

Equipped with this easier definition of Connes fusion, we now return to the proof of
the Sauvageot Splitting Theorem 3.3.11. To recall the setup, HB is a faithful Hilbert space
B-module.

Proof of Sauvageot Splitting Theorem 3.3.11. By Example 2.5.3 and Theorem 2.5.19, we
may uniquely identify L2B = L2(B,Tr) for a faithful tracial weight. The map u : H↭BH ↔
L2(B↑,Tr↑) given by ϱ ↭ ς ↗↔ |ϱ↖B⇔ς|#Tr→ is a B↑-linear unitary; it is surjective by Corollary
3.2.26 and injective as it is isometric:

∥∥∥∥∥
∑

i

ϱi ↭ ς
i

∥∥∥∥∥

2

=
∑

i,j

⇔⇔ϱj|ϱi↖Bςi|ςj↖H =
∑

i,j

⇔ςj|ςi⇔ϱi|ϱj↖B↖H

=
(3.4.6)

∑

i,j

TrB(⇔ςj|ςi↖B⇔ϱi|ϱj↖B) =
(3.4.11)

∑

i,j

Tr↑
B
(|ςi↖B⇔ϱi|ϱj↖B⇔ςj|)

=

∥∥∥∥∥
∑

i

|ϱi↖B⇔ςi|#Tr→

∥∥∥∥∥

2

.

One directly verifies that uJ = JTr→u, and uP = PTr→ by Connes’ Trick 3.2.24. The result
now follows by Theorem 2.5.19.

Remark 3.4.22. There is a stronger version of H→/isometric Morita equivalence for H→-
algebras beyond W→ Morita equivalence, where our canonical unitary isomorphisms H ↭A

H ↔ L2B and L2A ↔ H↭BH are given by the canonical evaluation and coevaluation maps
coming from the B-valued inner product induced by TrB. We see this implicitly in our proof
of the Sauvageot Splitting Theorem 3.3.11 above, where we chose a faithful tracial weight
Tr on B and equipped B↑ with the canonical commutant trace Tr↑. We postpone further
discussion until Example 3.6.8 in §3.6 below, once we have introduced the graphical calculus
for bimodules and their intertwiners.

3This universal property for Connes fusion relies on the finite dimensionality of H,K and B.
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3.5 Separable algebras and Frobenius algebras

In this section, we introduce the notion of separability for algebras and the definition of a
Frobenius algebra. We then discuss the unitary versions of these notions, connecting them
to unitary algebras and H→-algebras.

Definition 3.5.1 — A complex algebra is called separable if the multiplication m :
A → A ↔ A admits a section s : A ↔ A → A which an A ↑ A bimodule map, i.e.,
ms = idA and s satisfies

(idA →m)(s→ idA) = sm = (m→ idA)(idA →s).

Remark 3.5.2. In the same fashion as Remark 2.1.2, we represent a choice of section
s : A ↔ A→ A as in Definition 3.5.1 by a trivalent vertex going in the opposite direction.

s =

A A

A

Finally, we describe s being an A↑ A bimodule section to m diagrammatically.

A

A

=

A

A

A

A

A

A

=

A A

A A

=

A

AA

A

.

Exercise 3.5.3. Prove that a section s is automatically coassociative, i.e.,

(s→ idA)s = (idA →s)s.

Draw the corresponding diagrams for this coassociativity property.

Definition 3.5.4 — A Frobenius algebra is a complex algebra equipped with a section
for the multiplication, i.e., an A↑ A bimodule map $ : A ↔ A→ A satisfying

(idA →m)($→ idA) = $m = (m→ idA)(idA →$)
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and a counit ▷ : A ↔ C satisfying

(▷→ idA)$ = idA = (idA →▷)$.

Remark 3.5.5. We represent the counit ▷ : A ↔ C diagrammatically by

▷ =
A

,

which we require to satisfy
A

A

=

A

A

=

A

A

.

Example 3.5.6 — Let V be a finite dimensional vector space, and consider the algebra
V → V ↔ ≃= End(V ) ≃= Mdim(V )(C) with multiplication and section given by

m :=

V

V

V
↓

V
↓

V
↓ V

s :=
1

dim(V )

V

V

V
↓

V
↓

V
↓
V

Setting $ := dim(V )s and ▷ := (v → f ↗↔ f(v)) endows V → V ↔ with the structure of a
Frobenius algebra.

Remark 3.5.7. A separable algebra can be augmented to a Frobenius algebra with $ = s
if and only if s admits a counit.

Exercise 3.5.8. A partition of n points drawn on the unit circle S1 is called non-crossing if
any time x1, x2 and y1, y2 are each chosen from the same subset of the partition, the chords
from x1 to x2 and from y1 to y2 do not cross. For example, the non-crossing partitions of 4
points on S1 may be graphically represented by

, , , , , , ,

, , , , , ,

where boundary points are in the same subset if and only if they are connected in the above
diagram.

Show that the number of non-crossing partitions of n points on a circle is the n-th Catalan
number Cn = 1

n+1

(
2n
n

)
.
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Exercise 3.5.9. Suppose A is a Frobenius algebra. Find a bijective correspondence between
morphisms in Hom(A↓m ↔ A↓n) generated by m, i,$, ▷ and non-crossing partitions of m+n
points drawn on a rectangle with m lower boundary points and n upper boundary points.
For example, when m = 3 and n = 1, the following diagrams are in bijective correspondence
with the non-crossing partitions.

, , , , , , ,

, , , , , ,

Deduce that all connected trivalent graphs drawn as a morphisms A↓m ↔ A↓n define the
same morphism. (Also deduce that this last result also holds for separable, possibly non-
unital algebras.)

Theorem 3.5.10 — The following are equivalent for a finite dimensional C-algebra A.

(1) A is semisimple.

(2) A admits the structure of a Frobenius algebra.

(3) A is separable.

Proof.

(1)△(2): Immediate from Example 3.5.6 asA is a multimatrix algebra by the Artin-Wedderburn
Theorem 2.2.5.

(2)△(3): Trivial.

(3)△(1): By (SS7), it su”ces to prove every A-module MA is a summand of a finitely gener-

ated free module. Consider the free module M → A ≃= A⇒ dim(M). Observe that the map

sM :=

M

M A

is an A-module map (exercise!) which splits the A-module map action map rM : M→A ↔ M .
(One can choose the map A ↔ A→A above to be either s or $ depending on whether A is
separable or Frobenius.) Thus sM ⇒ rM : M →A ↔ M →A is an idempotent whose image is
isomorphic to MA as an A-module.
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Proposition 3.5.11 — Suppose A,B are two Frobenius algebras. Every map f : A ↔ B
which is compatible with the (co)multiplications and (co)units is invertible.

Proof. We claim that the inverse of f is given by

f↔ :=

B

A

f .

Observe

f↔ ⇒ f =

A

A

ff =

A

A

f

=

A

A

=

A

A

=

A

A

= idA,

and a similar computation reveals f ⇒ f↔ = idB.

Now in order to define a unitary version of a separable algebra or a Frobenius algebra, we
must have adjoints of linear maps. We must then endow our unitary algebra with a faithful
weight φ in order to view it as a Hilbert space. When φ is a faithful trace, we are then in
the setting of an H→-algebra as in Definition 3.4.1 above.

Definition 3.5.12 — Suppose (A,φ) is a unitary algebra equipped with a faithful
weight, and identify A = L2(A,φ). We call A:

• a unitary Frobenius algebra if m† is an A↑ A bimodule map.

• unitarily separable if the adjoint m† : A ↔ A → A of the multiplication map
m : A→ A ↔ A splits m as an A↑ A bimodule map.

Remark 3.5.13. Observe that a unitarily separable algebra is always counital with counit
i†. Thus every unitarily separable algebra is always a unitary Frobenius algebra.

Example 3.5.14 — Let φ be a faithful weight on Mn(C), and let Hω := L2(Mn(C),φ).
We compute the adjoint of the multiplication map m : Hω →Hω ↔ Hω given by a#ω →
b#ω ↗↔ ab#ω. By Proposition 2.3.16, φ = Tr(d · ) for an invertible, positive density
matrix d. We work in an ONB of Cn under which d is diagonal. Let (eij) denote
a system of matrix units for Mn(C) (see Example 1.4.15) with respect to this ONB.
Observe that {eij#ω} is an orthogonal basis for Hω with

▽eij#ω▽2 = ⇔eij#ω|eij#ω↖ = φ(ejieij) = φ(ejj) = Tr(dejj) = djj.
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Thus {d≃1/2
jj

eij#ω} is an ONB for Hω. We now compute m†(d≃1/2
jj

eij#ω).

⇔m†(d≃1/2
jj

eij#ω)|d≃1/2
ϖϖ

ekϖ#ω → d≃1/2
ss

ers#ω↖Hω
=

1√
djjdϖϖdss

⇔eij#ω|m(ekϖ#ω → ers#ω)↖Hω

=
◁ϖ=r√
djjdϖϖdss

⇔eij#ω|eks#ω↖Hω

=
◁ϖ=r√
djjdϖϖdss

φ(ejieks)

=
◁ϖ=r◁i=k√
djjdϖϖdss

Tr(dejs)

=
◁ϖ=r◁i=k◁j=s√

djjdϖϖdss
djj

=
◁ϖ=r◁i=k◁j=s̸

dϖϖ
.

We thus have the following formula for m†:

m†(d≃1/2
jj

eij#ω) =
∑

ϖ

1̸
dϖϖ

· d≃1/2
ϖϖ

eiϖ#ω → d≃1/2
jj

eϖj#ω.

One verifies by direct computation that m† is a bimodule map, so Hω is always a unitary
Frobenius algebra. We now calculate

mm†(d≃1/2
jj

eij#ω) = m


∑

ϖ

1̸
dϖϖ

· d≃1/2
ϖϖ

eiϖ#ω → d≃1/2
jj

eϖj#ω


=


∑

ϖ

1

dϖϖ


· d≃1/2

jj
eij#ω.

So Hω is unitarily separable (mm† = idHω
) if and only if

∑
ϖ
d≃1
ϖϖ

= 1. Thus for every
faithful weight φ on Mn(C), there is a unique scaling of φ under which L2(Mn(C),φ) is
unitarily separable.

Theorem 3.5.15 — For a unitary algebra A, there is a unique faithful trace TrA such
that the H→-algebra (A,TrA) is unitarily separable.

Proof. As A is multimatrix by the Artin-Wedderburn Theorem 2.2.5, and as the multipli-
cation on A is a direct sum of the multiplications on each simple summand, it su”ces to
consider the case A = Mn(C). If (A,TrA) is unitarily separable, then by Example 3.5.14, we
must have

1 =
n∑

i=1

1

TrA(eii)
⇐△ TrA(eii) = n ∈ i.
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3.6 Diagrammatic calculus for algebras and bimodules

Just as we had a powerful graphical calculus for Hilbert spaces and their morphisms in §1.6,
there is also a graphical calculus for algebras, their bimodules, and intertwiners.

Notation 3.6.1 — Algebras are denoted by shaded regions, e.g.,

= A = B = C,

and bimodules are denoted by labeled strands whose shading on either side denotes
which algebras act where, e.g.,

M

M

= AMB

N

N

= BNC

The relative tensor product of bimodules is denoted by horizontal juxtaposition, e.g.,

M

M

N

N

= AM →B NC .

We denote intertwiners between bimodules by coupons on strings, e.g., f : AM→BNC ↔
APC could be denoted

M N

P

f .

The identity map is just the string for the bimodule itself. Relative tensor product
of intertwiners is horizontal juxtaposition, and composition of intertwiners is vertical
stacking. For example, if g : AQB ↔ AMB, then

M

Q N

P

f

g
= f ⇒ (g →B idP ) : AQ→B NC ↔ APC .

Remark 3.6.2. We sometimes denote bimodules with colored strands so we can visibly
tell the di!erence between two di!erent bimodules. For example, AMB and BNC could be
denoted

= AMB = BNC .
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As before, we have the interchange law

M1

N1

f

M2

N2

g
= (f → idN2) ⇒ (idM1 →g) = (idN1 →g) ⇒ (f → idM2) =

M1

N1

f M2

N2

g
.

which implies that the following diagram is not ambiguous:

M1

N1

f1

P1

g1

M2

N2

f2

P2

g2
.

Again, we will rely on Exercise 3.1.10 to completely ignore the di!erence between AM→B

(N →C P )D and A(M →B N) →C PD and Exercise 3.1.11 to complete ignore the identity
bimodules AAA and simply represent them by empty space, or sometimes by a dotted line
for pedagogical reasons. We will discuss why this is OK later in Part[[II]] §[[]].

Ethos 3.6.3 — Although the shaded graphical calculus works for bimodules over alge-
bras which are not separable, we may expand Ethos 1.6.6 by interpreting the shading
for a separable algebra in terms of condensing a string net from the vacuum.

Indeed, given a separable algebra A, one can now proliferate A-strands in a 2-
dimensional bulk region in the graphical calculus for vector spaces and linear maps.
As long as the network is connected, separability ensures that the resulting morphism
is an idempotent whose range is isomorphic to AAA. Again taking a limit, we can think
of the shading for A as an arbitrarily fine connected mesh made from A-strands. One
can perform this procedure for an A↑ B bimodule M on either side.

M
≃= ≃= ≃= ≃= ≃= =: M

One resolves the 4-valent vertices using associativity and Exercise 3.5.9. We will explore
this notion in detail in Part[[III]] §[[]].

Example 3.6.4 — Suppose A,B are semisimple and AMB is a bimodule. Recall that
the dual M↔ = Hom(MB ↔ BB) is a B ↑ A bimodule. We have a canonical evaluation
map

evM =
M

↓ M

=
M

↓ M

B

: BM
↔ →A MB ↔ BBB given by f →m ↗↔ f(m).
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Similarly, there is a coevaluation map

coevM =
M

↓M

=
M

↓M

A

: AAA ↔ AM→BM
↔
A

given by 1A ↗↔
∑

mi→fi

where (mi, fi) is an algebraic projective basis forMB as in Corollary 2.2.22. Observe that
coevM is independent of the choice of algebraic projective basis, as

∑
mi→fi corresponds

to idM under the canonical isomorphism M →B M↔ ≃= End(MB) from Exercise 3.1.9.

Exercise 3.6.5. Prove that evM , coevM satisfy the zig-zag/snake equations

M

M
↓

M

= M = idM and
M

↓

M

M
↓

= M
↓ = idM↓ .

Warning: these diagrams suppress the unitor isomorphisms.

Remark 3.6.6. When A,B are unitary algebras and AXB is a Hilbert C→ bimodule, we
have similar evaluation and coevaluation maps

evX : BX
↔ ↭A XB ↔ BBB coevX : AAA ↔ AX ↭B X↔

A
.

B⇔ϱ|↭ |ς↖B ↗↔ ⇔ϱ|ς↖B 1A ↗↔
∑

|⇀i↖B ↭ B⇔⇀i|

where {⇀i} is an XB-basis as in Corollary 3.2.26. There is no canonical choice for a Hilbert
space bimodule, as the dual module BH↔

A
= Hom(HB ↔ BB) is not a Hilbert space. When

A,B are equipped with faithful tracial weights TrA,TrB and are thus H→-algebras and AHB

is a Hilbert space bimodule, we again get a B-valued inner product by (3.4.5), which yields
a canonical evaluation and coevaluation. In this case, we can canonically (unitarily) identify
H↔ ≃= H as B ↑ A bimodules, and we have canonical choices for evH , coevH as

evH : BH ↭A HB ↔ BL
2(B,TrB)B coevH : AL

2(A,TrA)A ↔ AH ↭B HA

ϱ ↭ ς ↗↔ ⇔ϱ|ς↖B#TrB #TrA ↗↔
∑

⇀i ↭ ⇀i

where {⇀i} is an HB-basis.

Warning 3.6.7 — The formula for evH only depends on TrB, whereas the formula for
coevH depends on both TrA and TrB. One might think this is a mistake, as changing
the trace on A can change the norm of #TrA . However, for any choice of TrA, the unitor
unitary isomorphism L2(A,TrA)↭A H ↔ H is given by #TrA ↭ ϱ ↗↔ ϱ as

▽#TrA ↭ ϱ▽2
L2(A,TrA)↭AH

= ⇔#TrA ,#TrAA⇔ϱ, ϱ↖↖L2(A,TrA) = TrA(A⇔ϱ, ϱ↖) = ⇔ϱ|ϱ↖H = ▽ϱ▽2
H
.

Thus our formula for coevH is correct, as the zig-zag/snake equations hold. A di!erent
trace on A yields both a di!erent formula for coevH and a di!erent formula for the
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unitor, which cancel.

Example 3.6.8 (H→ Morita equivalence) — Let (B,TrB) be an H→-algebra, and suppose
HB is a Hilbert space B-module. Equip B↑ := End(HB) with the commutant trace
Tr↑

B
. Let {⇀i} be an HB-basis, and observe that under the canonical Sauvageot splitting

unitary isomorphism u : H ↭B H ↔ L2(B↑,Tr↑
B
) from Theorem 3.3.11,

u
∑

⇀i↭⇀i =
∑

|⇀i↖B⇔⇀i|#Tr→
B
= #Tr→

B
⇐△ u† = coevH =

HH

.

When HB is faithful, we call B→HB an H→ Morita equivalence, where our bimodular
unitary isomorphisms H ↭B→ H ↔ L2B and L2B↑ ↔ H ↭B H are given by the canonical
evaluation and coevaluation maps coming from the B-valued inner product induced by
TrB.

Construction 3.6.9 (Conditional expectation) — Suppose A ∞ B is a unital inclusion of
unitary algebras, and let TrA,TrB be faithful tracial weights on A,B respectively. For
each b ↓ B, we consider the right A-linear map |b#TrB↖A : L2(A,TrA) ↔ L2(B,TrB),
which yields an A-valued inner product on L2(B,TrB) by

⇔b1#TrB |b2#TrB↖A := A⇔b1#TrB | ⇒ |b2#TrB↖A ↓ End(L2AA) = A.

The canonical trace preserving conditional expectation E : (B,TrB) ↔ (A,TrA) is given
by E(b) := ⇔#TrB |b#TrB↖A and satisfies

TrA(E(b)) = TrA(⇔#TrB |b#TrB↖A) =
(3.4.6)

⇔#TrB |b#TrB↖L2(B,TrB) = TrB(b).

Observe that E is clearly A↑A bimodular. Moreover, it is manifestly completely positive
as it is conjugation by the operator |#TrB↖A : L2(A,TrA) ↔ L2(B,TrB).

Exercise 3.6.10. Prove that E : B ↔ A is unital and thus E|A = idA exactly when
TrB |A = TrA.

Proposition 3.6.11 — Suppose (A,TrA), (B,TrB) are H→-algebras, AHB is a Hilbert
space bimodule, and let Tr↑

B
be the canonical commutant trace on B↑ = End(HB). The

following diagram commutes

H ↭B H L2(B↑,Tr↑
B
)

L2(A,TrA)

u

coev†
H

L
2
E
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where u : H ↭B H ↔ L2(B↑,Tr↑
B
) is the canonical Sauvageot Splitting isomorphism

ϱ ↭ ς ↗↔ |ϱ↖B⇔ς| and L2E : L2(B↑,Tr↑
B
) ↔ L2(A,TrA) is the map x#Tr→

B
↗↔ E(x)#TrA .

Proof. The formula for E : B↑ ↔ A is determined by

TrA(a
→ · E(|ϱ↖B⇔ς|)) = Tr↑

B
(a→|ϱ↖B⇔ς|) =

(3.4.11)
TrB(⇔ς|a→ϱ↖B) =

(3.4.6)
⇔ς|a→ϱ↖H ∈ a ↓ A.

We compute that

⇔a#TrA | coev
†
H
(ϱ ↭ ς)↖L2(A,TrA) = ⇔coevH a#TrA |ϱ ↭ ς↖ =

∑
⇔a⇀i ↭ ⇀i|ϱ ↭ ς↖

=
∑

⇔⇔ϱ|a⇀i↖B⇀i|ς↖H =
∑

⇔ς|⇀i⇔⇀i|a→ϱ↖B↖H = ⇔ς|a→ϱ↖H .

The result follows.

Corollary 3.6.12 — Suppose (A,TrA), (B,TrB) are H→-algebras, and let Tr↑
B

be the

canonical commutant trace on B↑ = End(HB). Identifying AHB = AHB, coev
†
H
= evH :

H ↭A H ↔ L2(B,TrB).

Proof. By swapping AHB with BHA in the proof of the previous proposition at the equality
marked (!) below, we see that for all b ↓ B,

⇔b#TrB | evH(ϱ ↭ ς)↖L2(B,TrB) = ⇔b#TrB |⇔ϱ|ς↖B#TrB↖L2(B,TrB) = TrB(b
→⇔ϱ|ς↖B#TrB)

= ⇔ϱb|ς↖H = ⇔ς|b→ϱ↖
H
=
(!)

⇔b#TrB | coev
†
H
(ϱ ↭ ς)↖L2(B,TrB).

Notation 3.6.13 — The shadings for the regions represented by H→-algebras allow us
to unambiguously represent evH , coevH , ev

†
H
, coev†

H
by

H H

= evH
H H

= coevH
H H

= ev†
H

H H

= coev†
H
.

When working with A↑A bimodules in the unitary setting for an H→-algebra, we again
use framings as in Notation 1.6.13, as we will sometimes be in the position whereH ≃= H,
but we cannot directly identify the two without inducing subtle errors. For more details,
see Part[[II]] §[[FS indicators]].

Using evaluations and coevaluations, we can define the transpose of an A↑B bimodule
map AHB ↔ AKB.

Proposition 3.6.14 — Suppose (A,TrA), (B,TrB) are H→-algebras. For x : AHB ↔
AKB,

K

K
↓

H

H
↓

x =
H

H
↓

K

K
↓

x
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This common morphism is called the transpose and denoted by x↔ : BK↔
A
↔ BH↔

A
.

Similar to the compatibility of the three involutions (·)†, (·), (·)↔ on operators from Ex-
ercise 1.4.2, we have a similar compatibility for bimodular operators.

Exercise 3.6.15. Suppose A,B are H→-algebras and x : AHB ↔ AKB. Identifying BH↔ =

BHA, BK↔ = BKA, as well as AHB = AHB, AKB = AKB, show that the operations
(·)†, (·), (·)↔ each have period 2. Then show that the composite of any two of these op-
erations equals the third.

3.7 CP maps

Warning 3.7.1 — This highly technical section may be skipped on a first read.

In the Choi-Stinespring Theorem 2.6.10, we saw that one could characterize a completely
positive map Mn(C) ↔ Mm(C) in terms of a map of Hilbert spaces Cn → Cn ↔ Cm → Cm

after the identification L2(Mk(C),Trk) ≃= Ck→Ck by Corollary 1.6.18 and Exercise 1.6.19. In
this section, we define the notion of a cp map between bimodules of the form AH↭BHA and

AK↭C KA. To draw the parallel with the Choi-Stinespring Theorem 2.6.10, one can use the
Sauvageot Splitting Theorem 3.3.11, which allows us to canonically write H ↭B H = L2B↑

for B↑ = End(HB).

Exercise 3.7.2. Suppose AHB is a Hilbert space bimodule over unitary algebras A,B. Use
the Sauvageot Splitting Theorem 3.3.11 to write H ↭B H = L2B↑ for B↑ = End(HB). Show
that

Cn →H ↭B H → Cn ≃= H⇒n ↭B H
⇒n

(3.7.3)

is a standard form for Mn(B↑) ≃= End(H⇒n

B
) via operators of the form x ↭ 1 with positive

cone
PH,n := spanR↔0

{
f ↭ ς ↭ f → ∣∣ ς ↓ L2B+ and f ↓ Hom(L2BB ↔ H⇒n

B
)
}

where f → := f ⇒ JB : BL2B ↔ BH and JH,n(f ↭ ϱ ↭ g→) := g ↭ JBϱ ↭ f → for ϱ ↓ L2B and
f, g ↓ Hom(L2BB ↔ H⇒n

B
).

Exercise 3.7.4. Picking a faithful tracial weight TrB on B to use the H→-algebra model for
Connes fusion from Exercise 3.4.20, show that

PH,n := spanR↔0


(ϱi)↭ (ϱi)

∣∣∣ (ϱi) ↓ H⇒n

B



and JH,n((ϱi)↭ (ςi) := (ςi)↭ (ϱi) gives a standard form for Mn(B↑) acting on H⇒n ↭B H⇒n.
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Definition 3.7.5 ([HP23, Defn. 5.5]) — Suppose A,B,C are unitary algebras and AHB

and AKC are Hilbert space bimodules. An A ↑ A bimodule map x : AH ↭B HA ↔
AK ↭C KA is called cp if

(idCn →x→ idCn)PH,n ↘ PK,n ∈n ↓ N,

where PH,n, PK,n are the amplified positive cones from Exercise 3.7.2. The set of cp
maps AH ↭B HA ↔ AK ↭C KA is denoted by PH,K .

Example 3.7.6 — Suppose AHB, AKB are Hilbert space bimodules. For any map
y : AHB ↔ AKB, the map

y ↭B y : AH ↭B HA ↔ AK ↭B KA

is cp. Indeed, under the isomorphism (3.7.3), for all f ↓ Hom(L2BB ↔ H⇒n

B
) and

ς ↓ L2B+,
(idCn →y ↭B y → idCn)(f ↭ ς ↭ f →) = g → ς → g→ ↓ PK,n

where g := (idCn →y) ⇒ f : L2BB ↔ K⇒n

B
.

Example 3.7.7 — Whenever x : AH↭BHA ↔ AK↭CKA is cp and DLA is an arbitrary
Hilbert space bimodule,

idL ↭x↭ id
L
: DL↭A H ↭B H ↭A LD ↔ DL↭A K ↭C K ↭A LD

is again cp. Indeed, this is trivial when L = L2A⇒n for any n ↓ N as then L↭AH ≃= H⇒n.
Now an arbitrary L is of the form pL2A⇒n for some projection p ↓ End(L2A⇒n

A
) by the

Classification of Hilbert Space Modules 3.3.6. Hence

idL ↭x↭ id
L
= (p↭ idK)↭C (idK ↭p)  

cp by Ex. 3.7.6

⇒(idL2A↗n ↭x↭ idL2A↗n)

is manifsetly cp as a composite of cp maps

Example 3.7.8 — If x : AH ↭B HA ↔ AK ↭C KA is cp, then so is x†. Indeed, for all
ϱ ↓ PH,n and ς ↓ PK,n,

⇔x†ς|ϱ↖
H↗n↭BH

↗n = ⇔ς|xϱ↖
K↗n↭BK

↗n ∝ 0 =△ x†ς ↓ PH,n

by self-duality of the positive cone PH,n.
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Lemma 3.7.9 — All cp maps are self-conjugate, i.e., if x : AH ↭B HA ↔ AK ↭C KA

is cp, then the following diagram commutes.

AH ↭B HA AK ↭C KA

AH ↭B HA AK ↭C KA

x

J J

x

Proof. Recall that JH,1PH,1 = PH,1 and JK,1PK,1 = PK,1. Since xPH,1 ↘ PK,1, for all ς ↓ PH,1,
we have that

xς = xJH,1ς = JK,1xς = xς.

Since an operator acting on a standard form is completely determined by its action on the
positive cone by Exercise 2.5.13, we conclude x = x.

Lemma 3.7.10 — Suppose B,C are unitary algebras equipped with unital ⇓-algebra
homomorphisms from A, which equips them with the structure of A↑A bimodules. For
an A↑ A bimodular map % : B ↔ C, the following are equivalent.

(1) % is completely positive.

(2) For any choices of faithful tracial weights TrB,TrC on B,C respectively, the map

AL
2B ↭B L2BA

≃= AL
2(B,TrB)A ↔ AL

2(C,TrC)A ≃= AL
2C ↭C L2CA

given by x#TrB ↗↔ %(x)#TrC (which depends on the traces!) is cp.

Proof. The commutant trace Tr↑
B

on Mn(C) → B ≃= Mn(B) = End(L2B⇒n

B
) is given by

Trn →TrB, and similarly for C. Recall from Example 2.5.3 that

PTrn ↓TrB = {x→x#Trn ↓TrA | x ↓ Mn(B)} ,

and similarly for C. Thus for all N ↓ N and x ↓ Mn(B),

(idCn →L2%→ idCn)(x→x#Trn ↓TrB) = (idMn(C) →%)(x→x)#Trn ↓TrB ↓ PTrn ↓TrC

if and only if (idMn(C) →%)(x→x) ∝ 0. The result follows.

Exercise 3.7.11. Suppose φB,φC are two faithful weights on the unitary algebras B,C
respectively. If % : B ↔ C is completely positive, when is the map x#ωB

↗↔ %(x)#ωC
cp?

Example 3.7.12 — Suppose (A,TrA), (B,TrB) are H→-algebras and AHB is a Hilbert
space A↑B bimodule. By Proposition 3.6.11 coev†

H
: AH ↭B HA ↔ L2(A,TrA) is equal

to L2E, where E : B↑ ↔ A is the canonical trace preserving conditional expectation,
which is completely positive. By Lemma 3.7.10, L2E = coev†

H
is cp, so coevH is cp by
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Example 3.7.8. By Corollary 3.6.12, evH = coev†
H
: BH ↭A HB ↔ L2(B,TrB) is also cp.

The following theorem is the unitary algebra bimodule analog of the Choi-Stinespring
Theorem 2.6.10.

Theorem 3.7.13 (Bimodule Choi-Stinespring) — Suppose A,B,C are unitary algebras
and AHB, AKC are Hilbert space bimodules. The following are equivalent for a map
x : AH ↭B HA ↔ AK ↭C KA.

(1) x is cp.

(2) For any choice of faithful tracial weights TrB,TrC on B,C, the one click rota-
tion/Choi matrix of x is a positive operator in End(BH ↭A KC).

K

KH

H

x ∝ 0 = A = B = C

(3) For any choice of faithful tracial weights TrB,TrC on B,C, we can write x in a
Stinespring representation as

x =

K K

H H

L L

yy : H ↭B H
idH ↭B coevL ↭B id

H↑↑↑↑↑↑↑↑↑↑↑↑↔ H ↭B L↭C L↭B H
y↭Cy↑↑↑↔ K ↭C K

for some y ↓ Hom(AH ↭B LC ↔ AKC) and some Hilbert space bimodule BLC .

Proof.

(1)△(2): For simplicity, we also pick a faithful tracial weight TrA for A to use the easy version

of Connes fusion from Exercise 3.4.20. Suppose
∑

n

i=1 ϱi ↭ ςi ↓ H ↭A K. By expanding the
definition of the one-click rotation of x in terms of projective bases, one calculates that


n∑

i=1

ϱi ↭ ςi

∣∣∣∣

K

KH

H

x
n∑

j=1

ϱj ↭ ςj


=

n∑

i,j=1

⇔ςi ↭ ςj|x(ϱi ↭ ϱj)↖K↭CK
.

Considering (ϱϖ) ↓ H⇒n and (ςk) ↓ K⇒n, we see that the above sum is equal to

(ςk)↭ (ςk)|(idCn →x→ idCn)((ϱϖ)↭ (ϱϖ))



K↗n↭CK
↗n

∝ 0
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as x is cp, (ϱϖ)↭ (ϱϖ) ↓ PH,n, and (ςk)↭ (ςk) ↓ PK,n.

(2)△(3): The proof is identical to that of (3)△(4) in the Choi-Stinespring Theorem 2.6.10
after adding shadings. In more detail,

K

KH

H

x =

KH

KH

L

z†

z
⇐△

H

K

H

K

x =

K

H

K

H

L

z†

z

y

=

K K

H H

L L

yy .

Setting y : AH ↭B LC ↔ AKC equal to z† with one strand turned down and noting that
y = y†↔, we visibly obtain a Stinespring representation for x.

(3)△(1): By Example 3.7.12, coevL is cp, and by Example 3.7.6, so is y↭Cy. Since composites
of cp maps are manifestly cp, the result follows.

Corollary 3.7.14 — The collection of cp maps between Hilbert/H→-algebras is the
smallest collection of maps containing coevaluations which is closed under composites,
adjoints, and conjugations.

Proof. We already know the cp maps contain the coevaluations by Example 3.7.12, and that
cp maps are closed under composites, adjoints by Example 3.7.8, and conjugates by Examples
3.7.6 and 3.7.7. It remains to prove that any cp map is generated by the coevaluations under
these operations. This follows directly from Theorem 3.7.13.
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