
Chapter 4

The Temperley-Lieb-Jones algebras

The Temperley-Lieb-Jones (TLJ) algebras are fundamental examples diagrammatic quantum
algebras. These algebras first arose in the study of ‘ice-type’ lattice models [TL71], and they
were discovered independently in the context of subfactor theory in operator algebras [Jon83].
This operator algebra approach led to Jones’ discovery of his famous knot polynomial [Jon85]
(see §4.8 below). The graphical representation of the TLJ algebras is due to Kau!man
[Kau87], although hints certainly appeared in [TL71, p. 265].

4.1 The algebraic and diagrammatic TLJ algebras

The following abstract algebras were defined in [Jon83]. We denote the groups of units of
the fields R,C by R→,C→ respectively.

Definition 4.1.1 — For n → 0 and d ↑ C→, we define the algebraic Temperley-Lieb-
Jones algebra TLJn(d) as the unital algebra generated by 1, e1, . . . , en↑1 subject to the
following relations:

(J1) e2
i
= ei for all i = 1, . . . , n↓ 1

(J2) eiej = ejei for all |i↓ j| > 1, and

(J3) eiei±1ei = d↑2ei.

When d ↑ R→, we may endow TLJn(d) with a ↔-structure by imposing that each ei = e↓
i
.

Exercise 4.1.2. Use the relations (J1) – (J3) to prove that any word in e1, . . . , en is equal
to a word with at most one en.

Exercise 4.1.3. Prove that dim(TLJn(d)) ↗ 1
n+1

(
2n
n

)
, the n-th Catalan number.

Hint: Use Exercise 4.1.2.

In his skein-theoretic description of the Jones polynomial [Kau87], Kau!man provided a
diagrammatic description of the Temperley-Lieb-Jones algebras.
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Definition 4.1.4 — For n → 0 and d ↑ C→, we define the diagrammatic Temperley-Lieb-
Kaufmann algebra TLKn(d) to be the complex vector space whose standard basis is the
set of non-intersecting string diagrams (up to isotopy) on a rectangle with n boundary
points on the top and bottom. For example, the basis for TLK3(d) is given by

{
, , , ,

}
.

On TLKn(d), we define a multiplication by (the bilinear extension of) stacking boxes,
removing the middle line segment and removing any closed loops at a cost of multiplying
by a factor of d, e.g.

· = = d · . (4.1.5)

When d ↑ R→, we define an involution by (the anti-linear extension of) reflection about
a horizontal line, e.g.

↔
= . (4.1.6)

Exercise 4.1.7. Prove that dim(TLKn(d)) =
1

n+1

(
2n
n

)
, the n-th Catalan number.

Hint: Research how Catalan numbers are related to parenthesizations.

Exercise 4.1.8. Prove that for j = 1, . . . , n↓ 1, the elements

Ej := · · · · · ·

j

↑ TLKn(d)

satisfy the following relations:

(K1) E2
j
=

· · · · · ·

· · · · · ·
= d · · · · · · · = dEj,

(K2) EjEk =
· · · · · ·

· · · · · ·

· · ·

· · ·
=

· · · · · ·

· · · · · ·

· · ·

· · ·
= EkEj if |j ↓ k| > 1, and

(K3) EjEj±1Ej =

· · · · · ·

· · · · · ·

· · · · · ·

= · · · · · · = Ej.

Compare these relations with (J1) – (J3). Show that E↓
j
= Ej when d ↑ R→.

130



We now construct an algebra isomorphism TLJn(d) ↘= TLKn(d) for n → 0 and d ↑ C→,
which is a ↔-algebra isomorphism when d ↑ R→. By Exercise 4.1.8, the map ei ≃⇐ d↑1Ei

extends to a well-defined unital (↔-)algebra homomorphism ”n : TLJn(d) ⇐ TLKn(d), since
the relations (J1) – (J3) are satisfied by dEi for i = 1, . . . , n↓ 1.

Proposition 4.1.9 — For every n → 0 and d ↑ C→, the map

”n : TLJn(d) ⇐ TLKn(d)

ei ≃⇐ d↑1Ei

is a unital algebra isomorphism which is ↔-preserving whenever d ↑ R→.

Proof. By Exercises 4.1.3 and 4.1.7, we have dim(TLJn(d)) ↗ dim(TLKn(d)) = 1
n+1

(
2n
n

)
.

By the Rank-Nullity theorem, it su#ces to show that ”n is surjective. We proceed by strong
induction on n. The base case n = 0 is trivial. Suppose that ”k is surjective for all 0 ↗ k < n.
Let x ↑ TLKn(d) be a standard basis element.

Case 1: Suppose x has a through string, i.e., a string which connects the i-th lower bound-
ary point to the j-th upper boundary point. Notice that i ⇒ j( mod 2); without loss of
generality, we assume i < j. Performing isotopy on the diagram x, we divide it up as follows:

x = .. .

j

i

· · ·

· · ·x1

x2

Notice that the part in red, denoted x1, is a diagrammatic basis element in TLKj↑1(d), and
the part in blue, denoted x2, is a diagrammatic basis element in TLKn↑i(d). Since i, j → 1,
by the induction hypothesis, both x1 and x2 can be expressed as products of the Ek. Observe
that x2 shifted by i strings to the left is exactly the product of those Ek shifted by i, i.e.,
Ek+i. Since x is the product of x1 with n ↓ j + 1 strings added to the right together with
the shift of x2 by i strings to the left, and both of these latter diagrammatic basis elements
are products of the Ek, so is x. Thus x ↑ im(”n).

Case 2: Suppose x has no through strings. By applying isotopy, we pull all the outermost
cups and caps on the top and bottom toward the center of the diagram, and wiggle the
strings as in Case 1 to divide the diagram into the product of three diagrams x1, x2, and
x3, where x1 and x3 are each a horizontal concatenation of basis elements in TLKi(d) for i
strictly smaller than n, and x2 is visibly a product of the odd Ek. We provide an explicit
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example below:

!

x1

x2

x3

! .

Applying isotopy again to shift the smaller basis elements which are horizontally concate-
nated within x1 and x3 up and down as in the rightmost diagram above, we can express
each of x1 and x3 as products of the Ek, and thus x is a product of the Ek. We conclude
x ↑ im(”n), and we are finished.

Notation 4.1.10 — From this point forward, we simply write TLJn(d) to denote
TLJn(d) and TLKn(d), which we identify under the unital (↔-)algebra isomorphisms
”n.

4.2 Graphical calculus for the TLJ-algebras

As the TLJ algebras a!ord a diagrammatic description, we get a powerful planar calculus.
Linear maps are represented by various planar tangles, which are string diagrams with input
rectangles and an output rectangle. Typically, we omit the external boundary rectangle,
which is always assumed to be large.

Definition 4.2.1 (Linear operations) — The identity map idn : TLJn(d) ⇐ TLJn(d) is
given by the following diagram:

· · ·

· · ·

The right inclusion tangle is a unital, injective (↔-)algebra homomorphism

in :=

· · ·

· · ·

: TLJn(d) ⇐ TLJn+1(d).
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The conditional expectation/partial trace tangle is a surjective (↔-)map of C-vector spaces

En+1 :=

· · ·

· · ·

: TLJn+1(d) ⇐ TLJn(d).

The trace tangle is a linear (↔-)map of C-vector spaces

Trn := · · · : TLJn(d) ⇐ TLJ0(d). (4.2.2)

Note that TLJ0(d) ↘= C as a (↔-)algebra via the map which sends the empty diagram
to the complex number 1C. Using Trn, we can define a bilinear form on TLJn(d) by
(x, y)n := Trn(xy). When d ↑ R→, we define a sesquilinear form on TLJn(d) by

⇑x|y⇓n :=

{
Trn(x↓y) if d > 0

(↓1)n Trn(x↓y) if d < 0.
(4.2.3)

Definition 4.2.4 (Quadratic operations) — We already saw that multiplication was
given by vertically stacking diagrams. We can also draw a tangle for multiplication as
follows:

· · ·

· · ·

· · ·

: TLJn(d)⇔ TLJn(d) ⇐ TLJn(d).

The tensor product tangle takes elements which may live in distinct TL algebras and
horizontally concatenates them

· · ·

· · ·

· · ·

· · ·

: TLJm(d)⇔ TLJn(d) ⇐ TLJm+n(d).

Notation 4.2.5 — When we apply one of these operations to an x ↑ TLJn(d) (or
possibly two elements from two distinct TL algebras), we denote the output by labeling
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the tangle with the input(s). For example,

in(x) =

· · ·

· · ·

x xy =

· · ·

· · ·

· · ·

y

x

x↖ y =

· · ·

· · ·

· · ·

· · ·

x y

Exercise 4.2.6. Prove the following relations amongst the maps in, En+1, Trn, and idn by
drawing diagrams.

(1) En+1 ↙ in = d idn,

(2) Trn+1 = Trn ↙En+1,

(3) (in ↙ in↑1 ↙ En(x))En = Enin(x)En for all x ↑ TLJn(d),

(4) (Traciality) Trn(xy) = Trn(yx) for all x, y ↑ TLJn(d),

(5) (Markov property) Trn+1(in(x) · En) = Trn(x) for all x ↑ TLJn(d), and

(6) Trn(En+1(x) · y) = Trn+1(x · in(y)) for all x ↑ TLJn+1(d) and y ↑ TLJn(d).

4.3 Quantum integers and Jones-Wenzl idempotents

In this section, we study the structure of the TLJ algebras by analyzing the Jones-Wenzl
idempotents. To do so, we use quantum integers [n]q, which are functions of q ↑ C→. The
number q and the number d from the TLJ algebra TLJn(d) are related by d = q + q↑1, and
we show in Lemma 4.3.4 below that [n] only depends on d, not q.

Definition 4.3.1 (Quantum integers) — For q ↑ C→ and n → 2, we define quantum n
by

[n] = [n]q :=
qn ↓ q↑n

q ↓ q↑1
.

When q = ±1, we define
[n]±1 := lim

q↔±1
[n]q = (±1)nn.

We set [0] := 0 by convention.

Remark 4.3.2. In our definition of quantum integers [n]q, we have allowed q = ±i. In what
follows, we often explicitly exclude these cases from study as [2]±i = 0.

Exercise 4.3.3. Prove that the quantum integers satisfy the following relations:

(1) For all n ↑ N, [2][n] = [n+ 1] + [n↓ 1].
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(2) For all m,n, p ↑ N, [m+ p][n+ p] = [m][n] + [m+ n+ p][p].
Note: Setting p = n↓ 1 and m = 2 gives the above identity.

Lemma 4.3.4 — The quantum integer [n]q is always polynomial in d := [2] = q + q↑1,
and does not rely on the choice of q beyond d = q + q↑1.

Proof. Clearly [1] = 1 and [2] = d. The result now follows by the relation [2][n] = [n↓ 1] +
[n+ 1] from Exercise 4.3.3 and induction.

Exercise 4.3.5. Prove that the map q ≃⇐ [2] = q + q↑1 is a bijection

i

1↑1
· · · · · · ↓⇐ R.

Exercise 4.3.6. Show that the map q ≃⇐ ↓q fixes all odd quantum integers [2n + 1] and
negates all even quantum integers [2n].

Exercise 4.3.7. Show that:

(1) If q = eiω, then [2]q = 2 cos(ω).

(2) [n]q = 0 if and only if q is a (2n)-th root of unity.

The following lemma is essential for the Jones Modulus Rigidity Theorem 4.3.17.

Lemma 4.3.8 — Suppose q = eiω for some ω ↑ (0, ε2 ), where ω ∝= 2ε
2n i.e., q is not a

primitive (2n)-th root of unity. Choose k → 2 such that 2ε
2k > ω > 2ε

2(k+1) .

2ω
2k 2ω

2(k+1)

ω

Then [2], . . . , [k] > 0, but [k + 1] < 0.

Proof. Note that since q = eiω,

[j] =
eijω ↓ e↑ijω

eiω ↓ e↑iω
=

sin(jω)

sin(ω)
.

Since sin(ω) > 0, we only care about the sign of sin(jω). Since ε

k
> ω > ε

k+1 , we know that
each of sin(ω), sin(2ω), . . . , sin(kω) are strictly positive, but sin((k + 1)ω) < 0.

Exercise 4.3.9. Adapt Lemma 4.3.8 for q = eiϑ where ε ↑ (ε2 , ϑ) and ε ∝= 2(n↑1)ε
2n for some

n > 2. Find k minimal such that (↓1)n+1[n] > 0 for n = 1, . . . , k, but (↓1)k+2[k + 1] < 0.
Hint: Write ε = ϑ ↓ ω where ω and k are as in Lemma 4.3.8.
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The following idempotents were first defined in [Jon83]. The recurrence relation first
appeared in [Wen87]. Recall that by Lemma 4.3.4, [n] is always a polynomial in d.

Definition 4.3.10 (Jones-Wenzl Idempotents) — Let f (0) ↑ TLJ0(d) be the empty

diagram. Let f (1) ↑ TLJ1(d) be the strand, i.e., f (1) = . If [2], . . . , [n + 1] ∝= 0, we

inductively define the (n+ 1)-th Jones-Wenzl idempotent

· · ·

· · ·

f (n+1) = in(f
(n))↓ [n]

[n+ 1]
in(f

(n))Enin(f
(n)) =

· · ·

· · ·

f (n) ↓ [n]

[n+ 1]
·

· · ·

· · ·

· · ·

f (n)

f (n)

. (4.3.11)

Exercise 4.3.12. Compute the first three Jones-Wenzl idempotents, assuming [2], [3] are
non-zero. Namely, verify the following expressions for f (1), f (2), f (3).

f (1) =

f (2) = ↓ 1

[2]

f (3) = ↓ [2]

[3]
+

1

[3]
+

1

[3]
↓ [2]

[3]

If you are feeling brave, compute f (4) additionally assuming [4] ∝= 0.

Exercise 4.3.13. Suppose [2], . . . , [n + 1] ∝= 0 so that f (n) exists. Prove the following
statements by induction on n.

(1) The coe#cient of the identity diagram idn in f (n) is equal to 1.

(2) Using thicker strings with color and labels to denote multiple parallel strings, the
coe#cients of the diagrams

a

a

b

b

c

c

and

c

c

b

b

a

a

in f (n) are both equal to (↓1)b+1 [a+ 1][c+ 1]

[n]
.

136



Proposition 4.3.14 — Suppose n → 0 and [2], · · · , [n+1] ∝= 0 so that f (0), f (1), . . . , f (n+1)

are well-defined. Then f (n+1) satisfies the following properties:

(JW1) f (n+1) is an idempotent, i.e., (f (n+1))2 = f (n+1). When d ↑ R→, (f (n+1))↓ = f (n+1)

is an orthogonal projection.

(JW2) En+1(f
(n+1)) =

· · ·

· · ·

f (n+1) =
[n+ 2]

[n+ 1]
f (n).

(JW3) (in(f (n)))f (n+1) =

· · ·

· · ·

· · ·

f (n)

f (n+1)

= f (n+1)(in(f (n)) =

· · ·

· · ·

· · ·

f (n+1)

f (n)

= f (n+1).

Proof. We proceed by induction on n. The base case n = 0 is straightforward as f (1) is the
strand and f (0) is the empty diagram. Suppose the result holds for f (n).

(JW1): We calculate f (n+1) = (f (n+1))2 using (JW1), (JW2), and (JW3) for f (n), which hold
by the induction hypothesis. Indeed,

· · ·

· · ·

· · ·

f (n+1)

f (n+1)

=
(JW1)
(JW2) · · ·

· · ·

f (n) ↓ 2 · [n]

[n+ 1]
·

· · ·

· · ·

· · ·

f (n)

f (n)

+
[n]2

[n+ 1]2
[n+ 1]

[n]
·

· · ·

· · ·

· · ·

· · ·

f (n)

f (n)

f (n↑1) =
(JW3)

· · ·

· · ·

f (n+1) .

When d ↑ R→, one sees that (f (n+1))↓ = f (n+1) from the definition of f (n+1) along with the
fact that (f (n))↓ = f (n) by (JW1) for f (n), which holds by the induction hypothesis.

(JW2): By (JW1) for f (n), which holds by the induction hypothesis, we see that

En+1(f
(n+1)) =

· · ·

· · ·

f (n+1) =

(
[2]↓ [n]

[n+ 1]

)
f (n) =

[n+ 2]

[n+ 1]
f (n).

(JW3): By the definition of f (n+1), this property follows directly from (f (n))2 = f (n) by (JW1)

for f (n), which holds by the induction hypothesis.

Exercise 4.3.15. Deduce that when f (0), . . . , f (n) are well-defined, trn(f (n)) = [n+ 1].

Exercise 4.3.16. Suppose [2], . . . , [n] ∝= 0 so that f (1), . . . , f (n) are well-defined.
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(1) Prove that the diagrams in TLJn(d) with strictly fewer than n through strings span a
maximal 2-sided ideal M in TLJn(d).

(2) Prove that f (n) is orthogonal to M in the sense that f (n)m = mf (n) = 0 for all m ↑ M .
Deduce that f (n) is the unique idempotent in TLJn(d) which is orthogonal to M .
Hint: First use induction on n to prove that f (n)Ek = Ekf (n) = 0 for every k. Then
show that the Ek generate M .

(3) Deduce that C · f (n) is a minimal 2-sided ideal in TLJn(d) complementing M .

Theorem 4.3.17 (Jones’ modulus restriction) — Suppose d > 0, so we may assume

q ↑
{
eiω

∣∣∣ ω ↑ (0,
ϑ

2
)
}
′ [1,∞).

· · ·
1

If ⇑x|y⇓j = Trj(x↓y) is positive semidefinite for all j → 0, then either q → 1, or q =
exp(ϑi/n) for some n → 3. Hence

d = [2] = q + q↑1 ↑
{
2 cos

(ϑ
n

) ∣∣∣n → 3
}
′ [2,∞).

Proof. We now prove the contrapositive. If q ↑ Q is not of this form, then let k be as in
Lemma 4.3.8 so that [2], . . . , [k] > 0, but [k+1] < 0. Since [2], . . . , [k] ∝= 0, f (k) is well-defined.
However,

⇑f (k)|f (k)⇓k = Trk(f
(k)) =

(Exer. 4.3.15)
[k + 1] < 0.

Exercise 4.3.18. State and prove a Jones Modulus Restriction Theorem for d < 0.

4.4 Tree bases and semisimplicity

In this section, we prove that when [2], . . . , [n] ∝= 0, so that f (1), . . . , f (n) exist, the TLJ-
algebra TLJn(d) is semisimple. To do so, we construct an explicit tree basis our of distin-
guished trivalent vertices, which allows us to give matrix units for the simple summands.

Definition 4.4.1 — Even though they are not strictly elements in TLJ algebras, we can
write linear combinations of diagrams with di!erent numbers of strings on the top and
bottom. We may also ‘compose’ such diagrams by vertically stacking them, provided we
again swap closed loops for multiplicative factors of d. We will denote the linear span
of TLJ diagrams with m strings on the top and n strings on the bottom by TLJm

n
(d),

and obviously TLJn

n
(d) = TLJn(d). For example,

TLJ2
4 (d) = span

{
, , , ,

}
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Observe that TLJm

n
(d) is only non-zero if m ⇒ n mod 2.

When d ↑ R→, there is an anti-linear involution ↔ : TLJm

n
(d) ⇐ TLJn

m
(d) for which

x↓↓ = x and (xy)↓ = y↓x↓ for composable x, y. When d > 0, ↔ is again reflection about
a horizontal line, but when d < 0, you reflect and multiply by a factor of ↓1 for every
cup or cap in the diagram. For example,

↔
=

(d>0)
and

↔
=

(d<0)
↓1 · .

Exercise 4.4.2. Show by induction that for all k ↗ n, f (k) is rectangularly uncappable, that
is, capping any two strings on the top or bottom of f (k) gives zero. For example,

f (4) = f (4) = f (4) = 0 and f (4) = f (4) = f (4) = 0.

Hint: Use Exercise 4.3.16.

The above exercise gives the following immediate corollary.

Corollary 4.4.3 — Suppose [2], . . . , [n] are non-zero so that f (1), . . . , f (n) exist. If
j, k ↗ n are distinct, then f (k) · TLJk

j
(d) · f (j) = 0.

Exercise 4.4.4. Show that if f ↑ TLJk

j
(d) and g ↑ TLJ j

k
(d), then Trk(fg) = Trj(gf).

Definition 4.4.5 — For k < n, we pick distinguished trivalent vertices which are given
by the following diagrams:

ϖk+1
k,1 =

k

k+1 =
k+1

k

ϖ := f (k+1)

k+1

k 1

ϱk,1
k+1 =

k

k+1
=

k+1

k

ϱ := f (k+1)

k+1

k 1

.

Observe that ϖk+1
k,1 ϱk,1

k+1 = f (k+1) = ϱk,1
k+1ϖ

k+1
k,1 , and when d ↑ R, (ϱk,1

k+1)
↓ = ϖk+1

k,1 .
For k < n↓ 1, we pick distinguished trivalent vertices depending on whether d > 0,
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d < 0, or d ↑ C→ \ R→:

ϖk

k+1,1 = k+1

k =
k

k+1

ϖ :=






(
[k]

[k+1]

)1/2

f (k+1)

k+1

k

1

if d > 0

(
↓ [k]

[k+1]

)1/2

f (k+1)

k+1

k

1

if d < 0

f (k+1)

k+1

k

1
if d ↑ C→ \ R→

ϱk+1,1
k

=
k+1

k
=

k

k+1

ϱ :=






(
[k]

[k+1]

)1/2

f (k+1)

k+1

k

1 if d > 0

(
↓ [k]

[k+1]

)1/2

f (k+1)

k+1

k

1 if d < 0

[k]
[k+1] f (k+1)

k+1

k

1 if d ↑ C→ \ R→

(When d < 0, [k]/[k+1] < 0; since k < n↓1, we know [k+1] ∝= 0.) Again, observe that
ϖk

k+1,1ϱ
k+1,1
k

= f (k) by (JW2), and when d ↑ R→, (ϱk+1,1
k

)↓ = ϖk

k+1,1. (We avoid choosing
square roots of non-positive numbers whenever possible.)

Exercise 4.4.6. When [2], . . . , [n] ∝= 0, use Wenzl’s Recurrence Relation (4.3.11) to prove
that

· · ·

· · ·

f (n) = ϱk,1
k+1ϖ

k+1
k,1 + ϱk,1

k↑1ϖ
k↑1
k,1 . (4.4.7)

Construction 4.4.8 — Consider a loop of length 2n↓ 2

ς := (ς1 = 1, ς2, . . . , ςn, . . . , ς2n↑2, ς2n↑1 ⇒ ς1 = 1)

starting at the vertex φ = 1 on the so-called Coxeter-Dynkin diagram

An+1 :=
0 1

φ
n↑ 1 n· · · (4.4.9)
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so that ςj = ςj↑1 ± 1 for all j. We define the tree basis diagram Tϖ ↑ TLJn(d) as

Tϖ :=

ϖ1=1

ϖn

ϖ2n→1↗ϖ1=1

ϖ2

ϖ3 ··
·

ϖ2n→2
ϖ2n→3

···

↑ TLJn(d)

where each trivalent vertex on the top half is ϱ
ϖj+1
ϖj ,1

or ϱ
ϖj

ϖj+1,1, and each trivalent vertex

on the bottom half is ϖ
ϖj+1
ϖj ,1

or ϖ
ϖj

ϖj+1,1, depending on ςj and ςj+1. The edges on the left
hand side, commonly called the spine of the diagram, are labeled by the loop ς.

The tree basis for TLJk(d) consists of all tree basis diagrams.

Example 4.4.10 — For ς = (1, 2, 1, 0, 1),

Tϖ =

0

2

ϖ

ϖ

ϱ

ϱ

∈ f (2) = ↓ 1

[2]
.

Exercise 4.4.11. Draw all tree basis diagrams (ignoring scalars if you like) for n = 2, 3, 4.

Exercise 4.4.12. There is only one loop of length 2n ↓ 2 on An+1 based at φ = 1 which
passes through n, namely

ς = (1, 2, . . . , n↓ 1, n, n↓ 1, . . . , 2, 1).

Show that Tϖ = f (n) for this loop. Deduce that f (n) does not appear in any other tree basis
diagram for TLJn(d).

Exercise 4.4.13.

(1) Prove that the number of loops of length 2n on the Coxeter-Dynkin diagram An+1

starting at the vertex 0 is the n-th Catalan number Cn.
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(2) Consider the map from loops ς of length 2n on the Coxeter-Dynkin diagram An+1

starting at the vertex 0 to loops of length 2n↓ 2 on the Coxeter-Dynkin diagram An+1

starting at the vertex 1 given by deleting the based vertex ς2n↑1 ⇒ ς1 = 0. Prove this
map is bijective.

Facts 4.4.14. We have the following facts about tree basis diagrams in TLJn(d) when
[2], . . . , [n] are non-zero. For a loop of length 2n↓ 2 on An+1 based at φ = 1

ς = (1 = ς1, ς2, . . . , ςn, . . . , ς2n↑2, ς2n↑1 = 1),

we denote the loop in the reverse order by

ς↓ := (1 = ς2n↑1, ς2n↑2, . . . , ςn, . . . , ς2, ς1 = 1).

(TB1) Consider a second loop

ς↘ := (1 = ς↘1, ς
↘
2, . . . , ς

↘
n
, . . . , ς↘2n↑2, ς

↘
2n↑1 = 1).

Then
Tϖ↑Tϖ = ↼ϖ↑2=ϖ2n→2 ↼ϖ↑3=ϖ2n→3 · · · ↼ϖ↑n=ϖn

· Tϖ↑↑

for the loop
ς↘↘ = (1 = ς1, ς2, . . . , ςn = ς↘

n
, . . . , ς↘2n↑2, ς

↘
2n↑1 = 1).

If d ↑ R→, then T ↓
ϖ
= Tϖ↓ .

Proof. Stacking Tϖ↑ on top of Tϖ, we get zero unless ς↘2 = ς2n↑2, ς↘3 = ς2n↑3, . . . , and
ς↘
n
= ςn by Corollary 4.4.3. If we have ς↘2 = ς2n↑2, ς↘3 = ς2n↑3, . . . , and ς↘

n
= ςn,

then since ϖk+1
k,1 ϱk,1

k+1 = f (k+1) when k < n and ϖk

k+1,1ϱ
k+1,1
k

= f (k) when k < n ↓ 1,
these Jones-Wenzl idempotents that are left behind are absorbed into the next trivalent
vertex, yielding Tϖ↑↑ as claimed.

The last claim is immediate.

(TB2) If ς = ς↓, then Tϖ is an idempotent with trace [ςn + 1]. In particular, Tϖ is non-zero. If
d ↑ R→, then Tϖ is an orthogonal projection.

Proof. That T 2
ϖ
= Tϖ when ς = ς↓ is immediate from (TB1). The fact that Trn(Tϖ) =

Trn(f (ϖn)) = [ςn + 1] follows from Exercise 4.4.4 and then Exercise 4.3.15 by stacking
the bottom half of Tϖ on the top half and then taking the trace.

We immediately see Tϖ ∝= 0 unless ςn = n and [n + 1] = 0. In this case, Tϖ = f (n) by
Exercise 4.4.12, as ς is the unique loop of length 2n with midpoint n. However, we
know the coe#cient of idn in f (n) is 1 by Exercise 4.3.13, so f (n) ∝= 0.

The last claim is immediate.
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(TB3) Every tree basis diagram Tϖ is non-zero.

Proof. For an arbitrary loop ς of length 2n ↓ 2, observe that Tϖ↓Tϖ is necessarily an
idempotent by (TB1). Thus Tϖ↓Tϖ ∝= 0 by (TB2), so Tϖ ∝= 0.

(TB4) The set of tree basis diagrams Tϖ which the same midpoint ςn are a system of matrix
units for a full matrix algebra indexed by paths of length n↓ 1 on An+1 starting at φ
and ending at ςn. When d ↑ R→, ↔ on TLJn(d) restricted to this matrix algebra is the
usual adjoint.

Proof. Immediate from (TB1) and (TB3). But in more detail, a loop of length 2n↓ 2
starting at φ and midpoint ςn can be viewed as a pair of paths p, q of length n↓1 from
φ to ςn. The loop ς is then pq↓. We can thus think of Tϖ = Tp,q↓ , and the multiplication
and adjoint rules from (TB1) and (TB3) are those of a system of matrix units.

(TB5) Tree basis elements with distinct midpoints ςn are orthogonal (multiply to zero). In
particular, the tree basis is linearly independent.

Proof. Immediate from Corollary 4.4.3 and (TB4).

(TB6) The tree basis spans TLJn(d) and is thus a basis. In particular, TLJn(d) is semisimple.
If d ↑ R→, TLJn(d) is a unitary algebra. If d > 0, Trn is positive, and if d < 0, (↓1)n Trn
is positive.

Proof. By Exercise 4.4.13, there are Cn loops of length 2n↓ 2 based at φ = 1, so there
are Cn distinct tree basis elements. Since dim(TLJn(d)) = Cn by Exercise 4.1.7, the
tree basis is indeed a basis by (TB6). When d ↑ R→, unitarity and positivity of Trn or
(↓1)n Trn follow by (TB1) and (TB2).

(TB7) If [n + 1] ∝= 0, then Trn is non-degenerate on TLJn(d). If [n + 1] = 0, then Trn is
degenerate with negligible ideal Nn = N(Trn) = C · f (n) as in Definition 2.2.28.

Proof. By (TB6), the trace on TLJn(d) is a linear combination of the traces on the
matrix blocks corresponding to the midpoints ςn, in which the trace of a minimal
idempotent Tϖ for ς = ς↓ is [ςn +1]. We know [2], . . . , [n] ∝= 0, so the only summand on
which Trn can vanish is C · f (n). This happens if and only if [n + 1] = 0 by Exercise
4.3.15, in which case C · f (n) is the negligible ideal.
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Remark 4.4.15. One can use a graphical trick in terms of paths on An+1 to visualize the
matrix algebra summands of TLJk for k ↗ n when [2], . . . , [n] ∝= 0 (so that f (1), . . . , f (n)

exist). We give an informal discussion here which will be formalized in §4.6 below.
We relabel the nodes 0, . . . , n on An+1 as f (0), . . . , f (n).

f
(0)

φ
f
(1)

f
(n→1)

f
(n)

· · ·

Instead of loops of length 2n↓ 2 based at 1, we work with the corresponding loop of length
2n on An+1 based at φ = 0 (recall Exercise 4.4.13). There is one loop of length 0 starting at
φ = 0 and one loop of length 2 starting at φ = 0. These correspond to the unique non-zero
projections f (0) ↑ TLJ0 and f (1) ↑ TLJ1.

We visualize these algebras by drawing nodes corresponding to the vertices f (k) at di!er-
ent heights corresponding to the k. Below, we describe a reflection procedure which allows
us to visualize loops of length 2n starting at φ on An+1 as loops which start at φ, ascend
upward to height n to its midpoint, and then descend back to φ.

f
(0)

f
(1)

ϱ

↭

f
(0)

f
(1)

f
(2)

ϱ

↭

f
(0)

f
(1)

f
(2)

f
(3)

ϱ

↭

f
(0)

f
(1)

f
(2)

f
(3)

f
(4)

ϱ

(1) All the data for f (0) and f (1) can be seen from looking at the initial A2 chain, corre-
sponding to the first picture above.

(2) In the second picture above, we draw the A3 graph with nodes f (0), f (1), f (2) at di!erent
heights. As a visual aide, we draw a second node corresponding to f (0) at height 2
above the node for f (0) at height 0. We add an extra edge which is the reflection of
the edge from f (0) to f (1) about the horizontal dotted line. Loops of length 4 on A3

starting at φ now can be viewed as loops of length 4 starting at φ which first travel
upward to height 2 and then descend back to φ. There are two distinct loops of length
4; the one which passes through the copy of f (0) at height 2 is e1 = d↑1 · , and the

one which passes through the vertex corresponding to f (2) on A3 is f (2). Observe that
12 + 12 = 2 = C2.

(3) In the third picture above, we draw the A4 graph with nodes f (0), f (1), f (2), f (3) at
di!erent heights. We draw a second vertex corresponding to f (1) at height 3 above
the f (1) node at height 1. The extra edges drawn are reflected from the edges between
heights 1 and 2 about the dotted line. Loops of length 6 based at φ ascend to height 3
and descend back to φ. There are 4 loops passing through the vertex corresponding to
f (1), which are a system of matrix units for a copy of M2(C). Tree basis diagrams in
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this copy of M2(C) have waist f (1). The unique loop of length 6 passing through f (3)

is f (3) itself. Observe that 22 + 12 = 5 = C3.

(4) Finally, in the fourth picture, we again add nodes at height 4 and edges by reflecting
the nodes at height 2 and edges between heights 2 and 3 about the dotted line. The
4 loops of length 8 passing through the vertex corresponding to f (0) are the tree basis
diagrams with waist f (0) which span a copy of M2(C); the 9 loops which pass through
the vertex corresponding to f (2) are the tree basis diagrams with waist f (2) which
span a copy of M3(C). The final loop passing through f (4) is f (4) itself. Observe that
22 + 32 + 12 = 14 = C4. Below is a cartoon to visualize the matrix units of TLJ3

f (4)

The above graphs are called Bratteli diagrams, which we make rigorous in §4.6 below.
This visualization makes sense given Wenzl’s recurrence relation (4.3.11) for the Jones-Wenzl
idempotents. Adding a strand to the right is the algebra inclusion TLJk ↽⇐ TLJk+1. Wenzl’s
relation says that the way you obtain f (k+1) is by including f (k) into TLJk+1 and observing
it decomposes as the sum of two idempotents: f (k+1) itself and an idempotent with waist
f (k↑1).

· · ·

· · ·

f (k) =
· · ·

· · ·

f (k+1) +
[k]

[k + 1]
·

· · ·

· · ·

· · ·

· · ·

f (k)

f (k)

f (k↑1)

Visually, we see that the node in An labelled k includes into level k + 1 along two edges,
one going to the right corresponding to f (k+1) and one going to the left, which is above the
vertex corresponding to f (k↑1).
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4.5 The semisimple quotient at a root of unity

We now study further when [2], . . . , [n] ∝= 0, but [n+1] = 0. By (TB6), TLJk(d) is semisimple
and Trk is nondegenerate for all 1 ↗ k ↗ n, but f (n) ↑ TLJn(d) is negligible for Trn by (TB7).
The basic idea is that we want to ‘quotient out’ TLJk(d) for k → n by the negligible ideal,
which should generated by f (n). To do so, we should view the relation

f (n) = 0

as a local skein relation. That is, for k → n, we define Ik ∋ TLJk(d) as the 2-sided ideal of
linear combinations of diagrams which include a f (n) as a sub-diagram. More precisely, we
have the following generating set for Ik:

Ik =



f (n)

n

n

k↑n , f (n)

n

n

k↑n↑1 , f (n)

n

n

k↑n↑22 , . . . , f (n)

n

n

k↑n


.

By convention, for k < n, we set Ik = 0.

Definition 4.5.1 — We define T LJk(d) := TLJk(d)/Ik, the quotient of TLJ by the
negligible ideal. To simplify notation in the results below, we will overload notation and
draw string diagrams for their images in T LJk(d).

Observe that the maps ik, Ek,Trk along with horizontal and vertical concatenation pre-
serve diagrams in the ideals Ik and thus descend to the quotients T LJk(d). We again
overload notation and denote the maps descended by the quotients by the same names.

The following is the essential trick about working in the quotient T LJk(d).

Trick 4.5.2 — As f (n) = 0 in T LJn(d) and the coe#cient of idn in f (n) is 1, any
n parallel through strings may be replaced by a linear combination with fewer than n
through strings. For example, if n = 4, then

0 = f (4) = ↓


terms with fewer through strings.

By iteratively applying Trick 4.5.2, we have the following result.

Proposition 4.5.3 — Every string diagram in T LJk(d) is a linear combination of
diagrams with at most n↓ 1 through strings.

Exercise 4.5.4. Show that the number of string diagrams in TLJk(d) with at most n ↓ 1
through strings is equal to the number of loops of length 2k ↓ 2 on the Coxeter-Dynkin
diagram An (not An+1!) based at φ = 1.

0 1

φ
n↑ 2 n↑ 1· · ·
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Facts (TB1)–(TB7) have straightforward adaptations to T LJk(d) for k → n using loops
of length 2k on An based at φ = 1; we leave the proofs of the following facts to the reader.

Facts 4.5.5. We have the following facts about tree basis diagrams in T LJk(d) for k → n
when [2], . . . , [n] ∝= 0, but [n + 1] = 0. For a loop of length 2k ↓ 2 on An based at φ = 1,
we denote the corresponding tree basis element by Tϖ ↑ T LJk(d), and as before, ς↓ is the
reversed loop.

(T B1) For a second loop ς↘ of length 2k↓ 2 based at φ = 1 on An, we have the multiplication
formula

Tϖ↑Tϖ = ↼ϖ↑2=ϖ2k→2
↼ϖ↑3=ϖ2k→3

· · · ↼ϖ↑
k
=ϖk

· Tϖ↑↑

for the loop
ς↘↘ = (1 = ς1, ς2, . . . , ςk = ς↘

k
, . . . , ς↘2k↑2, ς

↘
2k↑1 = 1).

If d ↑ R→, then T ↓
ϖ
= Tϖ↓ .

(T B2) If ς = ς↓, then Tϖ is an idempotent with trace [ςk + 1] ∝= 0, so Tϖ ∝= 0. If d ↑ R→, Tϖ is
an orthogonal projection.

(T B3) Every tree basis diagram Tϖ is non-zero.

(T B4) The set of tree basis diagrams Tϖ with the same midpoint ςk are a system of matrix
units for a full matrix algebra whose dimension is a function of k, ςk. When d ↑ R→, ↔
on T LJk(d) restricted to this matrix algebra is the usual adjoint.

(T B5) Tree basis diagrams with distinct midpoints ςk are orthogonal. In particular, the tree
basis is linearly independent.

(T B6) The tree basis diagrams spans T LJ k(d) and is thus a basis. In particular, T LKk(d)
is semisimple, and Trk is non-degenerate. If d ↑ R→, T LJk(d) is a unitary algebra. If
d > 0, Trk is positive, and if d < 0, (↓1)k Trk is positive.

4.6 Bratteli diagrams

We now formalize Bratteli diagrams, which are a combinatorial tool to calculate the size
of the full matrix summands of T LJk(d). We gave an informal discussion for the TLJ
algebras in Remark 4.4.15 above. The main idea is that one can completely characterize an
inclusion of multimatrix algebras A ∋ B up to conjugacy in B by a bipartite graph. This is
a straightforward exercise if A,B are full matrix algebras.

Example 4.6.1 — Suppose we have a non-zero unital algebra homomorphism ⇀ :
Mk(C) ↽⇐ Mn(C), which is automatically injective by Proposition 2.1.17. Consider
the right action of Mk(C) on Cn given by pre-composing with ⇀. By Example 2.1.23,
Cn ↘= V ↖ Ck as Mk(C)-modules, where V is a multiplicity space. Thus k | n with
n = dim(V ) · k. Choosing a basis for Cn coming from bases of V and Ck, we may
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identify ⇀(x) = idV ↖x. Identifying idV ↖x with its Kronecker product, ⇀ is the map

Mk(C) △ x ≃⇐




x

. . .
x



 ↑ Mn(C).

When ⇀ is a ↔-homomorphism, choosing ONBs above identifies ⇀ with the above map as
↔-homomorphisms. We conclude that any two maps Mk(C) ⇐ Mn(C) are conjugate by
an invertible elements, and any two ↔-maps are conjugate by a unitary.

When A,B are multimatrix, we will work a bit harder.

Notation 4.6.2 — We write

A =
k

i=1

Mmi
(C) and B =

ϖ

j=1

Mnj
(C)

We call mA = (m1, . . . ,mk) and nB = (n1, . . . , nϖ) the dimension row vectors for A,B
respectively. For 1 ↗ i ↗ k, we write pi ↑ A for the minimal central idempotent onto
the summand Mmi

(C) ∋ A, and for 1 ↗ j ↗ ς, we write qj ↑ B for the minimal central
idempotent onto the summand Mnj

(C) ∋ B.

Definition 4.6.3 — An oriented graph $ is a finite set of vertices V together with an
assignment of a finite set of edges Eu↔v to each ordered pair of vertices (u, v) ↑ V 2.
The source of an edge ⇁ ↑ Eu↔v is u, denoted s(⇁) = u, and the target is v, denoted
t(⇁) = v. A path on $ is a finite sequence of edges (⇁1, . . . , ⇁n) such that s(⇁i+1) = t(⇁i)
for all i = 1, . . . , n↓ 1. An oriented graph is called:

• connected if one can pass between any two vertices by traversing edges forwards
or backwards, and

• strongly connected if there is always a path between any two vertices.

The adjacency matrix of $ is the matrix A with rows and columns indexed by V with
Auv = |Eu↔v|.

connected, but not strongly connected





0 1
0 1

0 1
0





strongly connected





0 1
1 0 1

1 0 1
1 0
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An unoriented graph is defined similarly, but we have a set of edges Euv assigned to
each unordered pair of vertices {u, v}. For the purposes of this book, the data of an
unoriented graph is the same as the data of a graph with an involution on edges swapping
source and target.

A bipartite graph is a graph together with a partition of the vertex set V = V0▽V1 into
disjoint subsets of even and odd vertices such that Eu↔v is empty whenever the parities
of u, v agree. We have the same notions of connected, strongly connected, oriented,
and unoriented as before. The bipartite adjacency matrix of a bipartite graph $ is the
matrix % with rows indexed by V0 and columns indexed by V1 with %uv = |Eu↔v. The
adjacency matrix is related to the bipartite adjacency matrix by

A =

(
0 %
%T 0

)
.

Construction 4.6.4 — For multimatrix algebras A ∋ B, consider piBqj as an A ↓ B
bimodule, which by the folding trick (Exercise 3.1.6) can also be viewed as a right Aop↖B
module. Observe that the action factors through the full matrix algebra piAop↖ qjB, so
this module is isomorphic to the standard representation tensored with some multiplicity
space by Example 2.1.23. Let %ij denote the dimension of this multiplicity space.

The inclusion matrix of A ∋ B is given by %B

A
:= (%ij) ↑ Mk→ϖ(C). The Bratteli

diagram of A ∋ B is the unoriented bipartite graph $B

A
with:

• k even vertices labeled by the integers m1, . . . ,mk,

• ς odd vertices labeled by the integers n1, . . . , nϖ, and

• %ij edges from the i-th even vertex to the j-th odd vertex.

That is, $B

A
is the bipartite graph with bipartite adjacency matrix %B

A
whose even and odd

vertices are labeled by the entries of the dimension row vectors of A and B respectively.

Exercise 4.6.5. Consider the inclusion map A ↽⇐ B restricted to the simple summand
Mmi

(C) of A. Cutting down afterward by qj on B, we get an algebra mapMmi
(C) ⇐ Mnj

(C).
(1) Show that the map Mmi

(C) ⇐ Mnj
(C) is either injective or zero. Show this map is

zero exactly when piqj = 0.

(2) Now consider the map from the simple algebra Mai
(C) to the simple algebra piqjBpiqj

By Example 4.6.1, up to conjugacy, this map includes some integer number of copies
of x ↑ Mai

(C) along the diagonal. Show that this integer is %ij.

Example 4.6.6 — We give an adjacency matrix %B

A
and the corresponding Bratteli

diagram $B

A
for an inclusion M3(C)̸M2(C)̸M2(C)̸C ∋ M7(C)̸M5(C)̸M3(C).

Instead of labeling the vertices by integers m1, . . . ,m4 and n1, . . . , n3, for the sake of
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pedagogy, we draw grids representing the sizes of the full matrix summands.

%B

A
=





1 0 0
2 1 0
0 1 1
0 1 1



 ↭ $B

A
=

̸ ̸

̸ ̸ ̸

Exercise 4.6.7. Suppose $ is a graph with adjacency matrix A. Prove that (Ak)uv is the
number of paths from u to v of length k. Deduce that $ is strongly connected if and only if
for all u, v ↑ V , there is a k ↑ N (depending on u, v) such that (Ak)uv > 0.

Exercise 4.6.8. Suppose A ∋ B is a unital inclusion of multimatrix algebras.

(1) Prove that mA%B

A
= nB.

(2) Index the Z(A)→+ torsor of faithful tracial states on A =


k

i=1 Mmi
(C) from Exercise

2.3.8 by column vectors ϖ ↑ (0, 1)k such that mA · ϖ = 1. Under this normalization,
what does the entry ϖi signify?

(3) Suppose ϖA and ϖB are trace column vectors for A and B respectively with strictly
positive entries satisfying mAϖA = 1 = nBϖB. Prove that trB |A = trA if and only if
%B

A
ϖB = ϖA.

Exercise 4.6.9. Show that if A ⊆ B ⊆ C are all unital inclusions of multimatrix algebras,
then %C

A
= %B

A
%C

B
. Describe $C

A
in terms of $B

A
and $C

B
.

Exercise 4.6.10. Let B be a multimatrix algebra. Prove that up to (unitary) conjugation
in B, any unital (↔-)subalgebra A ∋ B is completely determined by its Bratteli diagram.

We now show how one can view any semisimple algebra as having a system of matrix
units corresponding to loops on a graph as in (TB1) for the TLJ algebras.

Trick 4.6.11 — Expanding on the identification A ↘= Hom(C ⇐ A) as vector spaces, we
can model a multimatrix algebra A as loops on the Bratteli diagram $A

C of the inclusion
C ∋ A. We label the vertex corresponding to C by φ. Loops of length 2 on $A

C based at
φ with the multiplication rule

[⇁1⇁2] · [⇁3⇁4] := ↼ς2=ς3 [⇁1⇁4]

give a concrete realization of A as an algebra of loops on $A

C . When A =


k

i=1 Mmi
(C),

loops of length 2 on $A

C based at φ passing through the mi vertex for A gives a system
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of matrix units for the Mmi
(C) summand of A. In the unitary setting, the adjoint

[⇁1⇁2]
↓ := [⇁2⇁1]

makes this a realization as a ↔-algebra.
Now append the Bratteli diagram $B

A
for the inclusion A ∋ B =


ϖ

j=1 Mnj
(C) on

top of $A

C , and recall that %B

C = %A

C%
B

A
. Observe that loops based at φ passing through

the nj vertex for B give a system of matrix units for the Mnj
(C) summand of B.

For the Bratteli diagram $B

A
in Example 4.6.6 above, appending it on top of $A

C yields
the following loop model for the inclusion A ∋ B.

φ

3 2 2 1

3 2 2 1

7 5 3

↭ 3 2 2 1

7 5 3

φ

We now reprise Remark 4.4.15 to compute the Bratteli diagrams for the towers of TLJ
algebras.

Example 4.6.12 (Generic d) — Suppose d is generic, i.e., not a root of unity, so that
[n] ∝= 0 for all n ↑ N. The Bratteli diagram for the tower of algebras

TLJ•(d) =

(
TLJ0(d) ∋ TLJ1(d) ∋ TLJ2(d) ∋ · · ·

)

is obtained by taking the A≃ Coxeter-Dynkin diagram A≃ and performing the ‘reflec-
tion’ operation from Remark 4.4.15.

f
(0)

f
(1)

f
(2)

f
(3)

f
(4)

ϱ

· ·· ·· · · ·· ·· · · ·· ·· ·

The Bratteli diagram for the inclusion TLJn(d) ∋ TLJn+1(d) is obtained from the Brat-
teli diagram for TLJn↑1(d) ∋ TLJn(d) by reflecting vertically about the vertices corre-
sponding to the simple summands of TLJn(d) and adding a new vertex corresponding

151



to f (n+1) connected to the old vertex corresponding to f (n). We see that this is correct
by the following observation.

Suppose we have a tree basis diagram with waist Tϖ ↑ TLJn(d) corresponding to a
loop of length 2n↓ 2 based at φ = 1 on A≃ with midpoint ςn. Adding a strand to the
right and applying the tree basis diagram version (4.4.7) of Wenzl’s Recurrence Relation
(4.3.11) produces two tree basis diagrams, one with waist f (k↑1) and one with waist
f (k+1) (where f (↑1) = 0 by convention).

in(Tϖ) =

1

ϖn

1

ϖ2

ϖ3 ··
·

ϖ2n→2
ϖ2n→3

···

=
(4.4.7)

1

ϖn↑1

1

ϖ2

ϖn

··
·

ϖ2n→2

ϖn

···

+

1

ϖn+1

1

ϖ2

ϖn

··
·

ϖ2n→2

ϖn

···

(4.6.13)

Observe that the two tree basis diagrams on the right hand side correspond to loops of
length 2n on A≃ based at φ = 1 with midpoints ςn ↓ 1 and ςn + 1.

Example 4.6.14 (Quotients at roots of unity) — We now suppose [2], . . . , [n] ∝= 0, but
[n + 1] = 0 so that q is a (2n + 2)-th root of unity (but not a 2k-th root of unity
for k ↗ n. The Bratteli diagram for the tower of semisimple algebras T LJ•(d) is
analogous to Example 4.6.12, except we have quotiented out by the relation f (n) = 0.
This has the e!ect of truncating the A≃ Coxeter-Dynkin diagram to the An Coxeter-
Dynkin diagram with vertices 0, . . . , n ↓ 1 corresponding to the non-zero Jones-Wenzl
idempotents f (0), . . . , f (n↑1). Again, the Bratteli diagram is formed by reflecting the
previous stage and adding a new vertex corresponding to f (k) if k ↗ n↓ 1, and we only
get the reflection and no new vertex for the higher Jones-Wenzls. For example, when
we set f (4) = 0,

f
(0)

f
(1)

f
(2)

f
(3)

ϱ

·· ··· ··· ·
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Again, this can be seen by setting tree basis diagrams which contain a f (n) equal to zero
in (4.6.13).

4.7 The Frobenius-Perron theorem

We now recall the famous Frobenius-Perron Theorem.1

Theorem 4.7.1 (Frobenius-Perron, part 1) — Suppose a ↑ Mn(R⇐0) such that for each
1 ↗ i, j ↗ n, there is a k ↑ N such that (ak)ij > 0.

(FP1) There is a unique eigenvector ξ ↑ Rn

>0 for a with strictly positive entries up to a
multiplicative factor in R>0. The associated eigenvalue da is called the Frobenius-
Perron eigenvalue of a.

(FP2) The Frobenius-Perron eigenspace Eda
= ker(a↓ da) is one dimensional.

(FP3) The Frobenius-Perron eigenvalue da satisfies da → |ϖ| for all other ϖ ↑ spec(a).
Hence da = ρ(a).

(FP4) If there is a k ↑ N such that (ak)ij > 0 for all i, j, then da > |ϖ| for all other
ϖ ↑ spec(a).

Proof. We adapt the proof in [EGNO15, Thm. 3.2.1]. We prove (FP1) in three steps.

(FP1a) There is an eigenvector ξ ↑ Rn

⇐0 for a with non-negative entries.

Proof. Consider the standard (n↓ 1)-simplex

& :=
{
ξ ↑ Rn

⇐0

∣∣∣


ξi = 1
}
.

Observe that aξ ∝= 0 for all ξ ↑ &. Indeed, if ξ ↑ &, some ξj > 0, and choosing k ↑ N
so that (ak)ij > 0 implies (akξ)i → (ak)ijξj > 0. The map & ⇐ & given by

ξ ≃↓⇐ aξ

∀aξ∀1

is a continuous, and thus has a fixed point. (One can prove this in many ways; some
use the Brouwer Fixed Point Theorem. We provide a proof in Theorem 4.A.17 using
triangulations and Sperner’s Lemma in §4.A below.) This fixed point ξ is an eigenvector
for a with eigenvalue da := ∀aξ∀ > 0 as aξ = ∀aξ∀ξ.

(FP1b) Any eigenvector for a with non-negative entries has strictly positive entries.

1This theorem is more commonly called the ‘Perron-Frobenius Theorem’ in other branches of mathematics,
but in the fusion category literature, ‘Frobenius-Perron’ is the preferred nomenclature.
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Proof. Suppose ▷ ↑ Rn

>0 is an eigenvector for a with non-negative entries with corre-
sponding eigenvalue ϖ → 0. As some ▷j > 0 and for every 1 ↗ i ↗ n there is a k ↑ N
with (ak)ij > 0, a▷ ∝= 0, and thus ϖ > 0. We now compute

ϖk▷i = (ak▷)i =


ϖ

(ak)iϖ▷ϖ → (ak)ij▷j > 0.

As ϖk > 0, we conclude each ▷i > 0.

(FP1c) There is a unique ξ ↑ Eda
∃ Rn

>0 up to scaling by R>0.

Proof. Suppose ▷ ↑ Eda
∃ Rn

>0. Set ◁ := min ▷i/ξi, and observe ▷ ↓ ◁ξ ↑ Eda
has

non-negative entries, but at least one entry is equal to zero. By (FP1b), ▷ = ◁ξ.

Now suppose we have another eigenvector ▷ for a with strictly positive entries. Then
its eigenvalue ϖ is strictly positive. If ϖ ↗ da, then set ◁ = min ▷i/(2ξi), and observe
▷ ↓ ◁ξ ↑ Rn

>0. Note that a preserves the cone Rn

>0, so ak(▷ ↓ ◁ξ) = ϖk▷ ↓ ◁dk
a
ξ ↑ Rn

>0

for all k. This is only possible if ϖ = da. The case da ↗ ϖ is similar and left to the
reader.

(FP2) First, if ▷ ↑ Eda
∃ Rn, then for a su#ciently large r > 0, rξ + ▷ ↑ Eda

∃ Rn

>0. By
(FP1c), rξ + ▷ = sξ for some s > 0, and thus ▷ = (s↓ r)ξ ↑ R · ξ.
Next, if ▷ ↑ Eda

, since a has real entries and da ↑ R, both Re(▷), Im(▷) ↑ Rn lie in Eda
,

and thus Re(▷) = rξ and Im(▷) = sξ for some r, s ↑ R by the preceding paragraph.
Hence ▷ = (r + is)ξ ↑ C · ξ.

(FP3) Consider the norm on Cn given by

∀⇑▷| ∀φ :=


|▷i|ξi.

For all ⇑▷| ↑ Cn

,

∀⇑▷|a∀φ =

∣∣∣∣∣


i,j

▷iaij

∣∣∣∣∣ ξj ↗


i,j

|▷i|aijξj = da


i,j

|▷i|ξj = da · ∀⇑▷| ∀φ. (4.7.2)

If ⇑▷| is a left eigenvector of a associated to left eigenvalue ϖ, then

|ϖ| · ∀⇑▷| ∀φ = ∀⇑▷|a∀φ ↗ da · ∀⇑▷| ∀φ,

and thus |ϖ| ↗ da. Since a and aT = a↓ have the same eigenvalues (exercise!), which is
equivalent to the statement that a has the same left and right eigenvalues, we see that
da → |ϖ| for all ϖ ↑ spec(a).
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(FP4) Now suppose for k ↑ N su#ciently large, (ak)ij > 0 for all i, j. If we have such a
ϖ ↑ spec(a) with |ϖ| = da, then (4.7.2) above is an equality. Moreover, it remains an
equality if we replace a with ak. This is only possible if for each j,

∣∣∣∣∣


i,j

▷i(a
k)ij

∣∣∣∣∣ =


i,j

|▷i|(ak)ij,

which implies that ▷i = ◁|▷i| for a single phase ◁ ↑ U(1) independent of i. Rotating
by ◁, we may thus assume that ▷i → 0 for all i, so that ϖ > 0 and thus ϖ = da.

Corollary 4.7.3 (Frobenius-Perron, part 2) — Suppose a ↑ Mn(R⇐0). There is an
eigenvector ξ ↑ Rn

⇐0 for a with eigenvalue ρ(a), the spectral radius. Moreover, if there
is an eigenvector ξ ↑ R>0 for a, then its eigenvalue is ρ(a).

Proof. We again adapt the proof in [EGNO15, Thm. 3.2.1].
Consider aς := a + ⇁1, where 1 is the matrix consisting of all ones. By the Frobenius-

Perron Theorem 4.7.1, ρ(aς) is an eigenvalue of aς, for which there is a ∀ ·∀1-unit eigenvector
ξς with strictly positive entries. Since the spectral radius function ρ : Mn(C) ⇐ [0,∞) is
continuous, one can produce an eigenvector ξ ↑ Rn

⇐0 for a with eigenvalue ρ(a) by taking
limits as ⇁ ¬ 0. This can be proved in many ways; one basic approach is via a sequential
compactness argument applied to the compact set f↑1(0) for the continuous function

f : [0, 1]⇔& ↓⇐ R⇐0 given by (⇁, ▷) ≃⇐ ∀(aς ↓ ρ(aς))▷∀1.

With more work, one can arrange that ξς ⇐ ξ as ⇁ ¬ 0.
For the final statement, we apply the first part to aT to obtain a left eigenvector ⇑▷| ↑ Rn

⇐0

for a with eigenvalue ρ(aT ) = ρ(a). If ξ ↑ Rn

>0 so that aξ = ϖξ, then ⇑▷|ξ⇓ > 0 and

ϖ⇑▷|ξ⇓ = ⇑▷|aξ⇓ = ρ(a)⇑▷|ξ⇓ =∅ ϖ = ρ(a).

Example 4.7.4 — Expanding on Exercise 4.6.7, for the adjacency matrix A of a finite
connected graph $, (Ak)uv equals the number of paths of length k on $ from u to v.
The condition that for all u, v, there is a k such that (Ak)uv > 0 is exactly the condition
that $ is strongly connected.

Definition 4.7.5 — Suppose $ is a finite strongly connected graph with a distinguished
vertex φ ↑ $, and denote its adjacency matrix by A. For v ↑ $, the Frobenius-Perron
dimension dv is the entry of the Frobenius-Perron eigenvector for A normalized so that
dϱ = 1. We define the norm ∀$∀ of $ to be the norm if its adjacency matrix A!,
which by Theorem 4.7.1 is the Frobenius-Perron eigenvalue of A!. Writing v ↘ w to
denote that vertices v, w in $ are neighbors (share at least one edge), we may write the
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Frobenius-Perron eigenvector criterion as

∀$∀ · dv =


w⇒v

Avwdw (4.7.6)

where the above sum is taken with multiplicity, i.e., we count w once for each edge
connecting it to v.

Trick 4.7.7 — While one can calculate the Frobenius-Perron dimensions of a finite
connected graph using linear algebra, here are some ways to make the calculation easier
in practice for small graphs. Note that we may pick any basepoint φ and set the value
of the Frobenius-Perron eigenvector to be dϱ := 1. Thus a wise choice of φ can make the
rest of the calculation trivial. In particular, we have the following two helpful tricks.

(1) We may choose φ to exploit symmetries of $: by uniqueness of d•, the vector d•
must be invariant under any graph symmetry.

(2) If we may choose φ to be univalent, then labeling its unique neighbor by v, the
Frobenius-Perron criterion (4.7.6) applied to φ immediately yields

∀$∀ = ∀$∀ · dϱ = dv.

As a concrete example, consider the n-star which has n univalent vertices and one n-
valent vertex.

1
ϱ v

2

3

n

...

Choosing any univalent vertex to be φ, we see that all univalent vertices must have
Frobenius-Perron dimension equal to 1 by symmetry. Labeling the n-valent vertex by
v, (4.7.6) at φ implies ∀$∀ = dv. Finally, (4.7.6) at v implies

n =


w⇒v

dw =
(4.7.6)

∀$∀ · dv = d2
v

so that ∀$∀ = dv =
ℜ
n.

Exercise 4.7.8. Suppose $ is a connected bipartite graph with bipartite adjacency matrix
%.

(1) Observe that %T% satisfies the hypotheses of the Frobenius-Perron Theorem 4.7.1, so
there is a vector ξ with strictly positive entries such that %T%ξ = ∀%∀2ξ.

(2) Setting ▷ := %ξ, deduce that %T ξ = d2
A
▷ and

(
0 %
%T 0

)(
ξ

∀%∀▷

)
= ∀%∀

(
ξ

∀%∀▷

)
.
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Example 4.7.9 — Quantum integers at q = exp(ϑi/n) ↑ Q give Frobenius-Perron
dimensions for the An↑1 Coxeter-Dynkin diagram.

[1]
φ

[2] [n↑2] [n↑1]
· · ·

Indeed, we calculate that for each k = 1, . . . , n,

[k] =
qk ↓ q↑k

q ↓ q↑1
=

ekεi/n ↓ e↑kεi/n

eεi/n ↓ e↑εi/n
=

sin(kϑ/n)

sin(ϑ/n)
→ 0.

(Compare with Lemma 4.3.8.) Furthermore, [n↓k] = [k] so that [n↓2] = [2], [n↓1] = 1,
and [n] = 0. One now verifies the Frobenius-Perron condition by observing that at the
k-th vertex, the sum of the quantum dimensions of the neighboring vertices k↓ 1, k+1
equals the product of the quantum dimension at the k-th vertex by [2]:

[k ↓ 1] + [k + 1] = [2][k].

Thus dk := [k] is a Frobenius-Perron eigenvector and ∀An↑1∀ = [2] = 2 cos(ϑ/n). We
also see this formula by taking the trace of the Wenzl Recurrence Relation (4.3.11):

[k + 1] = Tr




· · ·

· · ·

f (k)



 = Tr




· · ·

· · ·

f (k↑1)





  
[2]·Tr(f (k→1))

↓ [k ↓ 1]

[k]
· Tr




· · ·

· · ·

· · ·

f (k↑1)

f (k↑1)





= [2][k]↓ [k ↓ 1].

Proposition 4.7.10 — If % is a proper strongly connected subgraph of the finite strongly
connected graph $, then ∀%∀ < ∀$∀.

Proof. Given any unit vector ξ ↑ Cn and a self-adjoint a ↑ Mn(C), we always have

↓∀a∀ ↗ ⇑ξ|aξ⇓ ↗ ∀a∀.

Thus the result will follow if we can exhibit a unit vector ξ such that

∀%∀ < ⇑ξ|A!ξ⇓.

Indeed, let ϖ be the Frobenius-Perron unit eigenvector for %, and let ξ be the vector obtained
from ϖ by adding zeroes in the new entries corresponding to vertices in $\%. By construction,
ξ is a unit vector. Since % ∋ $ is a proper subgraph and $ is strongly connected, (A”)uv ↗
(A!)uv for all u, v ↑ %, and at least one of the following two situations must occur:

(1) there are vertices u, v ↑ % with (A”)uv < (A!)uv, or
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(2) there are vertices u ↑ % and v ↑ $ \ % such that (A!)uv > 0.

We thus conclude that

∀%∀ = ∀∀%∀⇑ϖ|ϖ⇓ = ⇑ϖ|A”ϖ⇓ =


u,v⇑”

ϖu(A”)uvϖv <


v,w⇑!

ξu(A!)uvξv = ⇑ξ|A!ξ⇓.

Corollary 4.7.11 ([GdlHJ89, Thm. 1.4.3]) — The connected finite biparite graphs with
Frobenius-Perron eigenvalue strictly less than 2 are:

• The type An Coxeter-Dynkin diagrams 1 2 n↑ 1 n· · ·

• The type Dn+2 Coxeter-Dynkin diagrams
1 2 n↑ 1 n· · ·

• E6 =

• E7 =

• E8 =

Proof. The Frobenius-Perron eigenvalues of the following graphs known as extended/a”ne
Coxeter-Dynkin diagrams are equal to 2, where we have labeled the nodes below by entries of
a Frobenius-Perron eigenvector (as opposed to just counting the vertices as in the statement
of the corollary).

1 1
1

1

1

any cycle

1 2 1

1

1

1 2 3

2

2

1

1

1 2 3

2

4 3 2 1 1 2 3 4

3

5 6 4 2

By Proposition 4.7.10, any bipartite graph with Frobenius-Perron eigenvalue less than 2
cannot contain any of these graphs as subgraphs. We leave the rest of the details to the
reader.

Exercise 4.7.12. Adapt the proof of Corollary 4.7.11 to find all finite connected bipartite
graphs with Frobenius-Perron eigenvalue equal to 2. Can you find all the infinite ones as
well?
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4.8 Braid groups, the Jones polynomial, and the Kau!-
man bracket

In this section, we show how the TLJ algebras give a polynomial invariant of knots and links.
A knot, which is an embedding S1 ↽⇐ R3, is inherently a 3-dimensional object. A link is an
embedding


n

i=1 S
1 ↽⇐ R3 where n ↑ N, i.e., a disjoint union of knots, which can be knotted

amogst themselves.

Figure 4.1: Diagram of a knot (trefoil) and of a link (borromean rings) respectively

When we work with knots on paper, a chalkboard, or a screen, we typically represent
a knot via a knot/link projection, its image in R2 under a generic regular projection, which
avoids various bad behaviors, like triple intersections and kinks. The following classical
theorem of Reidemeister, whose proof we omit, characterizes when two knot projections give
the same knot.

Theorem 4.8.1 ([Rei27]) — Two knot/link projections represent isotopic (equivalent)
knots in R3 if and only if they are related by a finite number of the Reidemeister moves :

(R1) ℑ⇐

(R2) ℑ⇐

(R3) ℑ⇐

(There are several (R1), (R2), and (R3) relations; we only list one for each type above
to simplify the exposition.)

Knots and links are closely related to braids in R3.

Definition 4.8.2 — The diagrammatic braid group DBn is the group whose elements
consist of string diagrams with n boundary points on the lower and upper sides of a
rectangle, and the lower points are paired to the upper points by smooth strings which
only intersect at a finite number of points, where we indicate which string passes over
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the other as in a knot/link projection. Moreover, the strings are not allowed to have any
critical points. All such diagrams are considered up to isotopy and Reidemeister moves
(R2) and (R3) (but not (R1)!). For example, the following elements of DB3 are equal:

=

We multiply in DBn by stacking boxes and smoothing out strings, similar to multipli-
cation in TLJn, which is manifestly associative.

Exercise 4.8.3. Prove that DBn is a group under the above multiplication. That is, find
the identity element, and show every element has an inverse.

Just as the TLJ algebras a!ord both an algebraic and diagrammatic description, so do
the braid groups.

Definition 4.8.4 — The algebraic braid groupABn is the group generated by 01, . . . , 0n↑1

subject to the relations

(B1) 0i0j = 0j0i for |i↓ j| > 1 and

(B2) 0i0i±10i = 0i±10i0i±1.

Exercise 4.8.5. Show that AB2 is isomorphic to Z, but that AB3 contains a subgroup
isomorphic to the free group F2.

Exercise 4.8.6. Consider the distinguished elements of DBn given by

bi := · · · · · ·

i

.

Prove that the elements b1, . . . , bn↑1 ↑ DBn satisfy Relations (B1) and (B2). Deduce there
is a well-defined group homomorphism ”n : ABn ⇐ DBn.

Exercise 4.8.7. Show that every element of DBn can be written as a product of b1, . . . , bn↑1

from Exercise 4.8.6. Deduce that ”n from Exercise 4.8.6 is surjective.

We will not prove the following theorem as it would take us too far afield.

Theorem 4.8.8 ([Art25]) — The group homomorphism ”n : ABn ⇐ DBn from Exercise
4.8.6 is an isomorphism.

Notation 4.8.9 — From this point forward, we simply write Bn to denote either ABn

or DBn, which we identify under the group isomorphisms ”n.

160



From a braid b ↑ Bn, we obtain a link by taking its closure/trace Trn(b), similar to the
diagrammatic trace on TLJn(d).

Tr







 = = .

Markov’s Theorem (whose proof is omitted) characterizes when two braids give the same
link under taking the trace.

Theorem 4.8.10 (Braid closure, [Mar35]) — Every link is the closure of a braid. More-
over, two braids give the same link under closure if and only if they are related by a
finite number of the following two moves:

(M1) If b ↑ Bn, we can swap b ℑ⇐ aba↑1 for some braid a ↑ Bn.

(M2) If b ↑ Bn, we can swap b ℑ⇐ in(b)0±1
n

, the n-th generator of Bn+1, where we
include in : Bn ↽⇐ Bn+1 by adding a strand to the right.

Exercise 4.8.11. Prove that we get the same link under taking the closure of a braid under
either (M1) or (M2).

Now looking at the striking resemblance between the braid relations (B1),(B2) and two
of the TLJ relations (J2),(J3) respectively, it is natural to wonder if we can find a family of
maps Bn ⇐ TLJn(d) which is compatible with the inclusions Bn ↽⇐ Bn+1 and TLJn(d) ↽⇐
TLJn+1(d) by adding a string to the right or left. Any such family of maps would be
completely determined by

≃↓⇐ 0 := A +B (4.8.12)

for some A,B ↑ C. Observe that (B1) is always satisfied. One must check that 0 is invertible
together with (B2). To check the first, we can use the following trick to guess and check the
answer.

Trick 4.8.13 — While we cannot bend strings in Bn, we can bend strings in TLJn(d).
Rotating 0 by one strand should give us the inverse of 0 if it exists:

=
(!)

= A +B = B + A .
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Using this guess for 0↑1, we multiply it by 0 to get

00↑1 = AB + (A2 +B2 + dAB) = 0↑10 .

To set this equal to id2, we require B = A↑1 and d = ↓A2 ↓ A↑2 so that

= 0 = A + A↑1 = 0↑1 = A↑1 + A . (4.8.14)

Exercise 4.8.15. Defining 0, 0↑1 as in (4.8.14), prove that relation (B2) is satisfied, i.e.,

0

0

0 =

0

0

0

Warning 4.8.16 — Recall from Lemma 4.3.4 that [n] for TLJn(d) only depended on
d and not q. However, when d = ↓A2 ↓ A↑2, defining 0, 0↑1 as in (4.8.14) not only
depends on q, but also a choice of square root of q! We deduce there are exactly 4
choices for 0 for a fixed d: first choose q, for which there are 2 choices, and then choose
a square root of q, for which there are 2 choices, so that

A = ±iq1/2 or A = ±iq↑1/2.

However, when d = ±1 (so d = d↑1), these four choices in the above warning are
actually only two choices! Observe that the two diagrams on the right hand side of
(4.8.12) are proportional in the semisimple quotient T LJ2

↘= C. In this case,

= d and 0 = ϖ id2

for some ϖ ↑ C. The rotation argument above implies that

ϖ↑1 id2 = 0↑1 = = ϖ = ϖ = dϖ id2 .

We conclude that ϖ2 = d, so there are exactly 2 choices: 0 = ± id2 if d = 1 and
0 = ±i id2 if d = ↓1.
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Proposition 4.8.17 — When TLJn(d) is a unitary algebra (see (TB6) and (T B6)), 0
is unitary if and only if q is a root of unity.

Proof. By Jones’ Modulus Restriction Theorem 4.3.17 and Exercise 4.3.18, it su#ces to prove
q is unimodular. By (4.8.14), 0 is unitary if and only if A = A↑1, whence the result.

The above discussion proves the following theorem.

Theorem 4.8.18 — The map ’n : Bn ⇐ TLJn(d) given by

0i ≃⇐ A idn +A↑1Ei 0↑1
i

≃⇐ A↑1 idn +AEi

where d = ↓A2 ↓ A↑2 preserves (B1) and (B2) and thus gives a well-defined group
homomorphism. Moreover, the family of maps {’n} is compatible with the inclusions
Bn ↽⇐ Bn+1 and TLJn(d) ↽⇐ TLJn+1(d) under adding strands to the right and left.

We now go through Jones’ original construction of his famous polynomial invariant of
knots and links using Markov traces on TLJ algebras [Jon85].2 We then connect it to the
more common skein theoretic definition via the Kau!man bracket [Kau87].

Definition 4.8.19 — Let 1ς be an oriented link. For each crossing in a projection of 1ς,
we define the sign of the crossing as follows:

sign

( )
:= +1 sign

( )
:= ↓1

We define the writhe factor wr(1ς) to be the number of crossings, counted with their
signs.

Exercise 4.8.20. For a braid b ↑ Bn, define the exponent sum exp(b) as the sum of the
exponents in any expression of b as a word in 01, . . . , 0n↑1.

(1) Show that (B1) and (B2) preserve the exponent sum. Deduce exp(b) is well-defined.

(2) Prove that exp(b) is exactly the writhe factor of Tr(1b), where 1b is the oriented braid
obtained from b by orienting all strands from bottom to top.

Definition 4.8.21 — Suppose 1ς is an oriented link. Write 1ς = Tr(1b) for some braid
b ↑ Bn. The Jones polynomial is

V↼ϖ
(A) := d↑1(↓A3)↑ exp(b) · TrTLJn(d)(’(b)) (4.8.22)

2The name ‘Markov’ appears twice in the development of the Jones polynomial. Markov traces are named
after Markov processes, due to A.A. Markov (1856-1922). Markov’s Braid Closure Theorem 4.8.10 is due to
A.A. Markov (1903-1979). They are father and son.
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where d = ↓A2↓A↑2, exp(b) is the exponent sum, and ’n : Bn ⇐ TLJn(d) is the group
homomorphism from Theorem 4.8.18.

Remark 4.8.23. The formula for V↼ϖ
may appear cryptic to the reader at this point. e

normalize V↼ϖ
(A) by d↑1 so that V↼ϖ

(unknot) = 1. The factor (↓A3)↑ exp(b) is included to
remedy the fact that d↑1 · TrTLJn(d) is not invariant under (R1) as

d↑1 · Tr
(
’

( ))
= Ad↑1 · Tr

( )
+ A↑1d↑1 · Tr

( )

= A(↓A2 ↓ A↑2) + A↑1 = ↓A3.

Theorem 4.8.24 — The formula (4.8.22) for V↼ϖ
is well-defined, i.e., it does not depend

on the choice of b.

Proof. By Theorem 4.8.10, it su#ces to show that (4.8.22) is invariant under the Markov
moves (M1) and (M2).

(M1): This is immediate from exp(a↑1) = ↓ exp(a) for all a ↑ Bn, together with the facts
that ’ is a homomorphism and Tr is a trace:

Tr(’(aba↑1)) = Tr(’(a)’(b)’(a)↑1) = Tr(’(a)↑1’(a)’(b)) = Tr(’(b)).

(M2): We prove that Bn △ b ⊤ b0n ↑ Bn+1 does not change (4.8.22), and the proof for
b ⊤ b0↑1

n
is similar. Note that exp(b0n) = 1 + exp(b). Expanding ’(0n) = A idn +A↑1En,

we have

(↓A3)↑ exp(b↽n) · Trn+1(’(b0n)) = (↓A3)↑1↑exp(b) · (ATrn+1(’(b)) + A↑1 Trn(’(b)En))

= (↓A3)↑1↑exp(b) · (Ad+ A↑1) · Trn(’(b))

= (↓A3)↑1↑exp(b) · (↓A3) · Trn(’(b))

= (↓A3)↑ exp(b) · Trn(’(b)).

This completes the proof.

Kau!man gave another construction of an invariant which is essentially the Jones polyno-
mial (minus the write factor) using skein theory, similar to how we analyzed the semisimple
quotients of the TLJ algebras at roots of unity. The basic idea is that we replace crossings in
a link locally using (4.8.14), leaving a disjoint union of closed loops, which is a multiplicative
factor of a power of d.

Definition 4.8.25 — Given a link ς, we define an element ⇑ς⇓K ↑ C(A) (Laurent
polynomials in A,A↑1) called the Kau!man bracket of ς by replacing the crossings by
0±1 as in (4.8.14).a By (4.8.14) and Exercise 4.8.15, we see that ⇑ς⇓K is invariant under
applying (R2) and (R3) to ς anywhere locally. Thus the Kau!man bracket is almost an
invariant of knots and links, modulo (R1).

aThis di!ers from Kau!man’s original definition of the bracket polynomial by a normalization.
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Kau!man normalized so that the uknot has bracket equal to 1, whereas we normalize so that the
unknot has bracket equal to d.

Example 4.8.26 — We calculate the Kau!man bracket of a trefoil knot as follows:

 

K

= A3 + 3A + 3A↑1 + A↑3 = ↓A↑9 + A↑1 + A3 + A7.

This proves a trefoil is not isotopic to its mirror image (0 ⊤ 0↑1, A ⊤ A↑1).

Exercise 4.8.27. Show that 0±1 = ↓A±3 . Deduce ⇑ς⇓K is not invariant under (R1).

Exercise 4.8.28. Let 1ς be an oriented link and let ς be the link obtained from forgetting
the orientation. Show that

V↼ϖ
(A) := d↑1(↓A)↑3wr( ↼ϖ ) · ⇑ς⇓K (4.8.29)

is invariant under (R1), (R2), and (R3). Then verify (4.8.29) agrees with (4.8.22).

Remark 4.8.30. The discovery of the Jones polynomial led to the profusion of quantum
invariants of knots, links, and 3-manifolds from quantum groups and braided tensor cate-
gories. We will study the latter in Part[[II]] §[[?]]. Its discovery via operator algebras earned
Vaughan Jones the Fields Medal in 1990. He gave a plenary lecture at the 1990 International
Congress of Mathematicians in a New Zealand All Blacks rugby jersey.

4.A Convexity, simplices, and a fixed point theorem

In this section, V is a vector space over R or C.

Definition 4.A.1 — A subset K ∋ V is called convex if for any ▷, ξ ↑ K, t▷+(1↓t)ξ ↑
K for all t ↑ [0, 1].

⇀

φ

convex

{t▷ + (1↓ t)ξ | t ↑ [0, 1]}
⇀

φ

not convex
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An extreme point of a convex set K is a point ξ ↑ K such that

ξ = t▷ + (1↓ t)2 for some t ↑ [0, 1] ⊥∅ ξ = ▷ = 2.

We denote the set of extreme points of K by ext(K). Given a subset S ∋ V , the convex
hull of S is

conv(S) :=

{
n

i=1

tisi

∣∣∣∣∣n ↑ N, each ti ↑ [0, 1] with


ti = 1, and each si ↑ S


.

V

S
conv(S)

V

S

conv(S)

Exercise 4.A.2. Prove that conv(S) is convex.

Exercise 4.A.3. Find a compact convex subset K ∋ R3 such that ext(K) is not closed.

Exercise 4.A.4. Prove that if V,W are vector spaces, T : V ⇐ W is linear, and K ∋ V is
convex, then TK ∋ W is convex. Deduce that if T is injective, then T maps extreme points
to extreme points.

Example 4.A.5 — The standard n-simplex is

&n :=

{
ξ = (ξ0, . . . , ξn) ↑ Rn+1

∣∣∣∣∣

n

i=0

ξi = 1 and ξi → 0 for all i


.

For 0 ↗ i ↗ n, the i-th face of &n is 3i&n := {ξ = (ξ0, . . . , ξn) ↑ &n | ξi = 0} .

&2 :
R3

e2

⇁0

e1

⇁2

e0
⇁1

Exercise 4.A.6. Consider the map di : &n↑1 ↽⇐ &n which inserts 0 as the i-th coordinate,
which is an isometry onto 3i&n. Prove that djdi = didj↑1 : &n↑1 ↽⇐ &n+1 for all 0 ↗ i <
j ↗ n+ 1.

There are several reasonable notions of an n-simplex in a space, depending on the struc-
ture of the space.
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Definition 4.A.7 — An n-simplex in a topological space X is the image of &n under a
topological embedding &n ↽⇐ X, i.e. im(&n) ↘= &n are homeomorphic as spaces.

An n-simplex in a vector space V over R or C is an image of &n under an injective
linear map Rn ↽⇐ V .

Remark 4.A.8. Since linear maps from Rn+1 are continuous with respect to any norm on
V , n-simplices in V are also n-simplices with respect to any norm topology on V . However,
since the map is linear, an n-simplex in V is automatically convex by Exercise 4.A.4.

Definition 4.A.9 — A triangulation T of a topological space X is a finite collection Tn

of n-simplices contained in X for every n → 0 such that:

• (cover) Every x ↑ X is in an n-simplex S ↑ Tn for some n → 0.

• (closed) If S ↑ Tn is an n-simplex, then its faces 3iS are distinct simplices in Tn↑1.

• (disjoint) For distinct S1, S2 ↑ Tn, their interiors are disjoint, and their intersection
is a lower dimensional face of both S1 and S2. In particular, S1 ∃S2 ↑ Tk for some
k < n.

Exercise 4.A.10. Show that finiteness of T0 implies that Tn = ℵ for n su#ciently large.

Exercise 4.A.11. Suppose X has a triangulation T . Prove that for each x ↑ X, either
x ↑ T0 or there exists a unique n-simplex S ↑ Tn whose interior contains x.

Exercise 4.A.12. In this exercise, we show that a topological space X with a triangulation
T is the topological realization of a simplicial complex. We write

Tn := {ext(S) |S ↑ Tn} and T =


n

Tn,

and note that T0 := {{x} | x ↑ T0}.
(1) Prove that S ≃⇐ ext(S) is a bijection Tn ⇐ Tn.

(2) Prove that for all S1, S2 ↑ T , ext(S1)∃ ext(S2) = ext(S1 ∃ S2) and S1 ⊆ S2 if and only
if ext(S1) ∋ ext(S2).

(3) Show that X is the union of the convex hulls of the elements of T . We may thus
reconstruct X by inductively gluing copies of &n for each ext(S) ↑ Tn along the
(n↓ 1)-dimensional boundary of S.

Example 4.A.13 — A triangulation T of [0, 1] consists of:

(0) a finite collection of points

T0 = {0 = t0 < t1 < t2 < · · · < tk↑1 < tk = 1},
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(1) the 1-simplices are uniquely determined by T0 and must be

T1 = {[ti, ti+1]}ki=0;

(n) there are no higher n-simplices i.e. Tn = ℵ for n → 2.

Observe that we may identify [0, 1] with the standard 1-simplex &1 under the bijective
linear map

[0, 1] △ t ≃↓⇐ (t, (1↓ t)) ↑ &1.

Exercise 4.A.14. Show that if T is a triangulation of &n, then Tk = ℵ for all k > n.

Definition 4.A.15 — Let T be a triangulation of the standard 1-simplex &1. A Sperner
coloring of&1 is an assignment of the colors 0, 1 to the vertices of T such that the extreme
points of &1 are assigned distinct colors.

Now consider a triangulation T of the standard n-simplex &n. We define a Sperner
coloring of (&n, T ) is an assignment of the colors 0, . . . , n to the vertices of T satisfying
the following co-inductive requirement:

• the extreme points of &n are assigned distinct colors,

• The coloring restricted to the triangulation of every face 3i&n of &n is a Sperner
coloring of that face, omitting the color assigned to the extreme point ei ↑ &n.

R3

&21

1

2

0

0

0

Lemma 4.A.16 (Sperner) — Suppose T is a triangulation of &n equipped with a
Sperner coloring. There is an odd number of n-simplices in T whose extreme points
have distinct colors.

Proof. We proceed by induction on n. If n = 1, since the color changes from 0 to 1, there
are an odd number of subintervals with distinctly colored vertices.

Suppose that the result holds for any triangulation of &n↑1. Form a graph whose vertices
are the n-simplices in T together with one vertex corresponding to the exterior of &n such
that vertices u, v are connected by an edge if and only if the edge passes through a single
(n ↓ 1)-simplex in T whose coloring contains 1, . . . , n, but not 0. We have the following
immediate observations.

• The vertices internal to &n have valence at most 2 in $.
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• The vertices internal to &n with valence 1 have distinctly colored extreme points.

• Any connected component of $ whose vertices are all internal to&n has an even number
of valence 1 vertices.

• The exterior vertex only connects to vertices inside &n through (n↓ 1)-simplices con-
tained in the face 30&n. By the inductive hypothesis, there are an odd number of
(n ↓ 1)-simplices in 30&n whose coloring contains 1, . . . , n, but not 0, so the exterior
vertex has odd valence.

• Since connected graphs always have an even number of vertices with odd valence, the
connected component of $ containing the external vertex contains an odd number of
internal vertices with odd valence.

We conclude that there are an odd number of n-simplices in T whose extreme points have
distinct colors.

Theorem 4.A.17 — Any continuous map f : &n ⇐ &n has a fixed point.

Proof. For every ξ ↑ &n, since


f(ξ)i = 1 =


ξi, (4.A.18)

there is a minimal index 0 ↗ j ↗ n such that f(ξ)j ↗ ξj ∝= 0; call this index j(ξ).

Claim 1: For any triangulation T of &n, the map ξ ≃⇐ j(ξ) is a Sperner coloring of (&n, T ).

Proof. The extreme points {ei}ni=0 of &
n have exactly one non-zero entry, so j(ei) = i, which

are all distinct. If ξ ↑ 3i&n, then since ξi = 0, we have j(ξ) ∝= i, so j|⇁i#n is a Sperner
coloring by a coinductive argument.

Claim 2: For any ⇁ > 0, there is a ξ ↑ &n such that f(ξi) ↗ ξi + ⇁ for all i = 0, . . . , n.

Proof. Let ⇁ > 0. Since &n is compact, f is uniformly continuous with respect to ∀ · ∀1
on &n. Thus, there is a 0 < ↼ < ⇁/2 such that if we choose Tδ such that every n-simplex
S ↑ T has diameter less than ↼, then the diameter of f(S) is less than ⇁/2. By Claim 1 and
Sperner’s Lemma 4.A.16, there is a simplex S in Tδ with distinctly colored vertices ▷0, . . . , ▷n

where ▷i has color i. For any ξ ↑ S, since ∀ξ↓ ▷i∀1 < ↼ < ⇁/2 and ∀f(ξ)↓ f(▷i)∀1 < ⇁/2 for
all i = 0, . . . , n,

f(ξ)i ↗ f(▷i)i +
⇁

2
↗ (▷i)i +

⇁

2
↗ ξi + ⇁ A i = 0, . . . , n.

Now setting ⇁ = 1/k, for each k ↑ N, there is a ξk ↑ &n such that

f(ξk)i ↗ (ξk)i +
1

k
A i = 0, . . . , n.

Since&n is compact, there is a convergent subsequence (ξkj) which converges to some ξ ↑ &n.
Since ξkj ⇐ ξ coordinatewise, we conclude that f(ξi) ↗ ξi for all i = 0, . . . , n. By (4.A.18),
we must have f(ξ)i = ξi for all i.
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