
Chapter 5

Basic Quantum Information

One of the main applications of unitary quantum symmetry as discussed in this book is
quantum information theory, especially in the context of topologically ordered phases of
matter in theoretical condensed matter physics.

A primary goal of physics is to study the state of a physical system by measuring ob-
servable quantities. Depending on the physical context, the collection of states is called a
configuration space, phase space, or in quantum mechanics, the state space. From approx-
imately 1687 CE to 1900 CE, the primary framework by which to study physical systems
was Newtonian mechanics which has a continuum phase space. Classically, we approximate
our state by finitely many measurement outcomes, such as position and momentum, as a full
description of the state of the system is unverifiable and theoretically intractable. Follow-
ing Max Planck’s 1900 CE resolution of the black body radiation spectrum by introducing
discrete energies, it was realized that the continuum phase space of classical mechanics was
insu!cient to describe these radiative phenomena.

In quantum mechanics, not only is the state space di”erent than in classical mechanics,
but the space of measurements is dramatically reduced. Given a generic quantum mechani-
cal state, it is typically impossible to predict the outcome of an individual observation. The
measurable quantities which are uniquely determined by states are instead given by expec-
tation values of these observations. To further complicate matters, observations in quantum
mechanics change the state, so classically independent measurements are now dependent on
the order of observation.

In classical information theory, information is stored in two-state systems called bits.
These bits may be in the “o”/0” state or the “on/1” state. In quantum information theory,
information is usually stored in qubits whose state space a Hilbert space, and states are
typically viewed as superpositions in the computational basis consisting of the “o”” state
|0→ and the “on” state |1→. Although experimental implementations of quantum information
are beyond the scope of this book, to-date, there have been many exciting applications of
unitary quantum symmetries to physical qubit systems.
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5.1 Probability distributions and Shannon entropy

A probability distribution on a (finite) set of possible event outcomes # is a function P : # ↑
[0, 1]. such that

∑
x→! Px = 1. We say that outcome x ↓ # occurs with probability Px. A

random variable with values in V is a function X : # ↑ V , and we say that the probability
that X = v is given by

P(X = v) =
∑

{Px |X(x) = v} .

When our space of values V = R, the expected value and variance of X are respectively
given by

E[X] :=
∑

x→!

Px ·X(x). and $[X] := E[X2]↔ E[X]2.

The standard deviation is the square root of the variance: ω[X] :=
√

$[X].
Here are some classic problems about computing probability distributions and expected

values.

Exercise 5.1.1 (Monte Hall). Monte Hall hosts the game show Let’s Make a Deal. In a
specific game on this show, there are 3 doors, one of which hides a new car, and the other 2
hide goats. You select a door, after which Monte opens one of the other two doors, revealing
a goat. You are then given the chance to change your selection to the other closed door.
Should you?
Hint: What if there are 100 doors, one of which hides a car, and Monte opens up 98 of the
doors you didn’t pick revealing goats?

Exercise 5.1.2. A family has two children.

(1) If you know one child is a boy, what is the probability that both children are boys?

(2) If you know one child is a boy born in January, what is the probability that both
children are boys?

(3) If you know one child is a boy born on January 1, what is the probability that both
children are boys?

(4) If you know the older child is a boy, what is the probability that both children are
boys?

Exercise 5.1.3. Alice is a mathematics PhD student and Bob is a physics PhD student,
who are both taking Quantum Symmetries 101. They play the following game during the
semester. Each brings either a red or blue stick of Hagoromo1 chalk to class each day. If
both sticks are red, Alice pays Bob $1, and if both sticks are blue, Alice pays Bob $3. If the
sticks do not match, Bob pays Alice $2. Would you prefer to be Alice or Bob? Why? Would
your answer change if you only played this game only once?

1Yes, it is important that the brand of chalk is Hagoromo. No, we did not receive any money for this ad
placement.
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Definition 5.1.4 — Let P be a probability distribution on a finite set J . The Shannon
entropy of this distribution is defined as

S(P) := ↔
∑

j→J ;Pj ↑=0

Pj log(Pj).

The next exercise motivates the above definition.

Exercise 5.1.5. A Shannon information function I : (0, 1] ↑ [0,↗) is a function which
measures the information or surprise I(p) of observing an event with probability p ↓ (0, 1].
We assume the function I satisfies the following axioms:

p < q =↘ I(q) < I(p), I(1) = 0, and I(pq) = I(p) + I(q).

(1) Prove that if I is twice di”erentiable, then I(p) = ↔ log(p), up to a choice of base for
the logarithm.

(2) Deduce that the Shannon entropy of a distribution is the expected/average information
one receives when making a measurement where outcomes are determined by that
distribution.

(3) Why might one assume the above axioms for an information function?
Hint: For the third axiom, consider performing two independent measurements.

Example 5.1.6 — A Bernoulli trial is a random variable with two possible outcomes,
usually called success and failure, e.g., a coin flip where success is your chosen outcome.
Such probability distributions correspond to a single value p ↓ [0, 1] assigned to success.
The entropy of this probability distribution is

S(p) = ↔p log(p)↔ (1↔ p) log(1↔ p)

0 p 1

S(p)
1

One might interpret the graph of S(p) as indicating that the most randomness occurs
when p = 1/2, e.g., when flipping a fair coin. Indeed, when we have system with a
high degree of randomness, we get a large amount of information from each individual
measurement.

Warning 5.1.7 — In general, the variance of a random variable X is a measure of
uncertainty in the outcome of X, whereas entropy is a measure of uncertainty of a
probability distribution which is independent of any random variable. It may be the
case that one probability distribution P may have higher entropy than Q on the same
set of outcomes, but the variance of a random variableX might be higher for the opposite
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distribution.

Exercise 5.1.8. Find two probability distributions P,Q and a random variable X on a
three element set such that S(P) > S(Q), but $Q[X] > $P[X]. Can you find such an
example for a two element set?

Facts 5.1.9. Here are some facts about probability distributions and their Shannon en-
tropies.

(S1) If P and Q are two probability distributions on the set {1, . . . , n}, the convex combi-
nation tP+ (1↔ t)Q defined by tPi + (1↔ t)Qi is again a probability distribution.

(S2) The multivariable function S on the space of probability distributions P on {1, . . . , n}
is strictly concave, i.e,

tS(P) + (1↔ t)S(Q) ≃ S(tP+ (1↔ t)Q)

with equality if and only if P = Q.

Proof. On the interior of the space of probability distributions where Pi > 0, the
Hessian of S is negative definite, which is equivalent to strict concavity.

(S3) When |J | = N , the uniform distribution Pj = 1/N, ⇐j ↓ J is the unique distribution
with maximal entropy S(P) = log(N).

Proof. First, the uniform distribution Pj = 1/N for all j has entropy S(P) = log(N).

Second, we show that the uniform distribution is the unique distribution with each
Pj > 0 which has extremal entropy. In order to use the method of Lagrange multipliers,
we define

G(P,ε) := ↔
∑

j→J

Pj log(Pj) + ε

(
1↔

∑

j→J

Pj

)
. (5.1.10)

Setting ϑjG = 0, we see that critical points of G only occur when log(Pj) = ↔1 ↔ ε,
i.e., Pj is independent of j ↓ J , and thus p is the uniform distribution.

Finally, if P is a distribution with some Pj = 0, then the problem reduces to finding an
extremal entropy distribution on a proper subset with strictly positive probabilities.
Since log(N) > log(M) whenever M < N , we see that for any N , the extremal
distribution where Pj = 1/N is, in fact, maximal.
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5.2 State vectors and vector states: superposition and
entanglement

We now introduce the notion of quantum state; we do so using the antimetabole of state
vector versus vector state to highlight and clarify the di”erence between a vector in a Hilbert
space and the corresponding rank one projection.

Definition 5.2.1 — A state vector is a unit (length one) vector |ϖ→ ↓ H. Its cor-
responding vector state is the rank one projection |ϖ→⇒ϖ| ↓ B(H). By the correspon-
dence between projections and their images, a vector state also corresponds to the ray
C|ϱ→ ⇑ H.

Observe that ϖ, ϱ ↓ H, |ϖ→⇒ϖ| = |ϱ→⇒ϱ| if and only if ϱ = εϖ for some ε ↓ U(1) =
{z ↓ C | |z| = 1}.

Example 5.2.2 (Qubits and Bloch Sphere) — A qubit is a state in C
2. There are several

canonical state vectors that get special names in quantum information.

|0→ :=
(
1
0

)
, |1→ :=

(
0
1

)
, |±→ := 1⇓

2
(|0→± |1→) = 1⇓

2

(
1
±1

)
.

We call {|0→, |1→} the Z-computational basis and {|+→, |↔→} the X-computational basis.
Given |ϖ→ = ς|0→ + φ|1→ ↓ C

2, we may assume ς ⇔ 0 by multiplying by a phase in
U(1). We can therefore parametrize the space of vector states by

|ϖ→ = cos(↼/2)|0→+ eiω sin(↼/2)|1→ ↼ ↓ [0, ↽] and ⇀ ↓ [0, 2↽). (5.2.3)

Thus the space of vector states in M2(C) is a 2-sphere, whose parametrization as above
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is commonly referred to as the Bloch sphere.

z

y

x

|0↓

|1↓

|+i↓:= 1→
2
(|0↓+i|1↓)

|↔i↓:= 1→
2
(|0↓↔i|1↓)

|+↓

|↔↓

ε

ω

|ϑ↓

(5.2.4)

Warning 5.2.5 — In (5.2.4) above, we have used the labeling convention from quantum
information theory, where the quantum states are labeled by state vectors up to a phase,
rather than vector states. This may lead to the confusion that |0→ and |1→ appear to
be colinear in the Bloch sphere (5.2.4). However, the label |0→ really means the rank
one projection |0→⇒0|, and similarly |1→ really means |1→⇒1|. These vector states are
orthogonal in M2(C) under the GNS inner product from the trace, but the Bloch sphere
lies entirely in the positive cone of M2(C).

Exercise 5.2.6. How would you parametrize vector states on the Bloch sphere in terms of
the X-computational basis?

Remark 5.2.7. The identification of state vectors up to phase resulting in the Bloch sphere
is known in algebraic topology as the Hopf fibration.

U(1) = {z ↓ C | |z| = 1} S3 = {unit vectors in C
2}

S2 = Bloch sphere

Definition 5.2.8 (Superposition) — Suppose we have a state vector |ϖ→ ↓ H and a
chosen ONB |ei→ for H. We may then uniquely express

|ϖ→ =
∑

i

⇒ei|ϖ→ · |ei→
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as a linear combination of the |ei→. This expression is often referred to as writing |ϖ→ as
a superposition of the |ei→.

Example 5.2.9 — In Example 5.2.2, we discused the Z and X computational bases.
Observe that (5.2.4) writes our state vector as a superposition in the Z-computational
basis.

We will reprise the notion of superposition further in the next section on quantum ob-
servables in Example 5.3.4. For the time being, we will warn the reader that it does not
make sense to say a state vector is in a superposition without reference to a chosen ONB
(more precisely, a quantum observable; see Warning 5.3.6).

We learned the following example from a talk of Greg Moore in July 2025 at CMSA.

Example 5.2.10 — Let us compute what a superposition of two vector states looks
like as a rank one projector. If |ϖ1→ and |ϖ2→ are orthonormal, then for any state vector
|ϖ→ = ς|ϖ1→+ φ|ϖ2→, we have that the projector |ϖ→⇒ϖ| is of the form

|ϖ→⇒ϖ| = tp1 + wq + wq† + (1↔ t)p2

where pj = |ϖj→⇒ϖj| for j = 1, 2, and q = |ϖ1→⇒ϖ2|. Observe that q is completely
characterized up to phase by qq† = p1 and q†q = p2. For what follows, it will be easier
to use the following normalization:

p(z, r) :=
1

1 + r
(p1 + zq + zq† + rp2).

Modeling p1, p2, q by

p1 =

(
1 0
0 0

)
p2 =

(
0 0
0 1

)
q =

(
0 1
0 0

)
,

we can model

p(z, r) =
1

1 + r

(
1 z
z r

)

which is a projector exactly when r = |z|2. As a function of z ↓ C, the projectors which
are a superposition of |ϖ1→⇒ϖ1| and |ϖ2→⇒ϖ2| are then given by the Bott projector

p(z) =
1

1 + |z|2

(
1 z
z |z|2

)
.

The Bott projector plays an important role in complex K-theory.

Entanglement refers to shared quantum information between two parts of a quantum
system. When a quantum system is a composite of two distinct quantum systems A,B with
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Hilbert spaces HA, HB, respectively, the total Hilbert space is given by HA ↖ HB. We will
occasionally refer to this kind of composite system as a bipartite system.

Definition 5.2.11 — Suppose |ϖ→ ↓ HA↖HB. We say that |ϖ→ is separable or a product
state if |ϖ→ = |⇁→ ↖ |ϱ→ for |⇁→ ↓ HA and |ϱ→ ↓ HB. If |ϖ→ is not separable, then |ϖ→ is
called entangled.

Example 5.2.12 (Bell basis) — The following four states are called the Bell basis of
C

2 ↖ C
2. Each of the Bell basis states is entangled.

|%+→ := |φ00→ :=
1⇓
2
(|00→+ |11→)

|%↔→ := |φ01→ :=
1⇓
2
(|00→ ↔ |11→)

|&+→ := |φ10→ :=
1⇓
2
(|01→+ |10→)

|&↔→ := |φ11→ :=
1⇓
2
(|01→ ↔ |10→)

The state |&↔→ is also called the singlet state.

Proposition 5.2.13 — The singlet state |&↔→ ↓ C
2 ↖ C

2 is independent of the choice
of ONB for C2. That is, choosing another ONB |e1→, |e2→ for C2, |&↔→⇒&↔| = |ϖ→⇒ϖ| for

|ϖ→ := 1⇓
2

(
|e1e2→ ↔ |e2e1→

)
.

Proof. Write |e1→ = ς|0→ + φ|1→ as a superposition in the Z computational basis. Since we
only care about |ϖ→ up to phase, we may take |e2→ = ↔φ|0→+ ς|1→. We compute

|e1e2→ =
(
ς
φ

)
↖
(
↔φ
ς

)
=





↔ςφ
|ς|2
↔|φ|2
ςφ



 and |e2e1→ =





↔ςφ
↔|φ|2
|ς|2
ςφ



 .

We then calculate that

|ϖ→ = 1⇓
2

(
|e1e2→ ↔ |e2e1→

)
=

1⇓
2





↔ςφ
|ς|2
↔|φ|2
ςφ



↔ 1⇓
2





↔ςφ
↔|φ|2
|ς|2
ςφ



 =
1⇓
2





0
1
↔1
0



 = |&↔→.

Exercise 5.2.14. Show that the other Bell basis states in C
2 ↖ C

2 are not independent of
the choice of ONB.

186



Remark 5.2.15. The fact that the singlet state is independent of the choice of basis in
Proposition 5.2.13 above has an elegant explanation in terms of representation theory. In-
deed, C2 is the standard representation of

SU(2) =
{
x ↓ M2(C)

↗ ∣∣ x is unitary and det(x) = 1

,

and C
2 ↖ C

2 is the direct sum of two unitary representations: the trivial representation
and an irreducible 3-dimensional representation. This trivial representation is spanned by a
singlet state vector, and the other Bell basis states span this 3-dimensional representation.

Warning 5.2.16 — The Bell basis is defined for C2 ↖C
2, not C2 ↖C2. In applications

to quantum teleportation (see 5.9 below), people often identify C
2 ↙= C2 by the linear

map |j→ ∝↑ ⇒j| for j = 0, 1, but this depends on the choice of basis.

Remark 5.2.17. Since C2 ↙= C2 as SU(2) representations, there is still a unique 1-dimensional
sub-representation in C

2↖C2 ↙= M2(C) corresponding to the singlet state. Indeed, the action
of SU(2) is by conjugation on M2(C), and thus the invariant subspace is spanned by the
identity. Thus the singlet state is now described by

|&↔→ = 1⇓
2

(
|e1→ ↖ ⇒e1|+ |e2→ ↖ ⇒e2|

)
↓ C

2 ↖ C2.

5.3 Quantum observables and the Born rule

In quantum mechanics, an observable quantity (e.g., position, energy, frequency) corresponds
to a self-adjoint operator, as we observe real values in measurements/experiments. However,
the outcome of a measurement in a given state is probabilistic, and even worse (or better?),
no one knows why.

Definition 5.3.1 (Born Rule) — Suppose x ↓ B(H) is an observable/self-adjoint oper-
ator we wish to measure in the state |ϖ→ ↓ H. By the Spectral Theorem 1.7.9, we may
write

x =
∑

ϖ→spec(x)

εpϖ,

where pϖ ↓ B(H) is the orthogonal projection onto the eigenspace

Eϖ = {ϱ ↓ H | xϱ = εϱ} .

The probability of measuring the value ε for x in state |ϖ→ is given by

P|ϑ↓(x = ε) := ⇒ϖ|pϖ|ϖ→ = Tr(pϖ|ϖ→⇒ϖ|).

After a measurement of x = ε is observed (which requires P|ϑ↓(x = ε) ′= 0), the quantum
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state of the system is then given by the eigenstate of x closest to |ϖ→, namely

pϖ|ϖ→
∞pϖ|ϖ→∞

,

obtained by projecting |ϖ→ to Eϖ and then normalizing.

Exercise 5.3.2. Show that P|ϑ↓(x = ε) is a probability distribution on spec(x).

Exercise 5.3.3. Show that
pϖ|ϖ→
∞pϖ|ϖ→∞

is the unique unit vector in Eϖ closest to |ϖ→.

Example 5.3.4 (Superposition, reprise) — Suppose we have a state vector |ϖ→ ↓ H and
we wish to measure a quantum observable x. Using the spectral decomposition of x as
in the Born Rule 5.3.1, we can write |ϖ→ as a linear combination of eigenstates of x:

|ϖ→ = 1 · |ϖ→ =
∑

ϖ→spec(x)

pϖ|ϖ→ =
∑

ϖ→spec(x)

∞pϖ|ϖ→∞ ·
pϖ|ϖ→

∞pϖ|ϖ→∞
.

This linear combination of eigenstates is called a superposition.

Definition 5.3.5 (Measurement bases) — Given a quantum observable x ↓ B(H), a
measurement basis with respect to x is an ONB of H consisting of eigenvectors of x.
One can obtain a measurement basis by indepdently choosing an ONB for each of the
subspaces pϖH for ε ↓ spec(x). Given such a measurement basis {|ei→} for x, the
amplitude of |ei→ in |ϖ→ is the Fourier coe!cient ⇒ei|ϖ→ of |ϖ→ with respect to |ei→. The
probability of measuring x = ε is then given by

P|ϑ↓(x = ε) :=
∑

i:
x|ei↓=ϖ|ei↓

|⇒ei|ϖ→|2.

Warning 5.3.6 — It does not type check to talk about a quantum state vector being in
a superposition unless you have chosen a particular observable to measure. Our previous
Definition 5.2.8 of superposition was motivated by ONBs, not by measuring quantum
observables. While this is a mathematically convenient framework, it is not physically
motivated. In particular, choosing to express a state vector in a superposition with
respect to a chosen ONB corresponds to the superposition associated to any self-adjoint
observable which is diagonal with distinct real eigenvalues in that ONB.
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“Hot Take” 5.3.7 — The Born Rule is what we observe in measurements with quantum
states, but it may be misleading to draw conclusions about the underlying reality of the
universe. But just for fun, let us imagine an observer O meets a qubit |ϖ→ walking
down the street. The observer wants to measure |ϖ→ in the Z-computational basis and
asks, “Are you |0→ or |1→?” At this point |ϖ→ looks at its position on the Bloch sphere
(5.2.4). This position need not be measured as a linear combination of |0→ and |1→ as in
(5.2.3), but by asking the state whether it is |0→ or |1→, the observer forces the state into
a superposition of |0→ and |1→. If ↼ /↓ {0, ↽}, then |ϖ→ is neither |0→ nor |1→; such qubits
are inherently non-binary. So |ϖ→ makes as unbiased a choice as possible, and answers
|0→ or |1→ according to a probability density; |ϖ→ returns |0→ with probability cos2(↼/2)
and |1→ with probability sin2(↼/2). In answering this question, the qubit updates itself
to |0→ or |1→, as it must be consistent if it is asked if it is |0→ or |1→ again. However, if
it now measured in another basis, e.g., the X-computational basis {|+→, |↔→}, its reply
will again become random, this time with a 50-50 chance of being |+→ or |↔→.

The really mind-blowing part of the Born Rule is that we can actually harness this
randomness for applications in quantum information and computation.

The final statement in the above hot take is a playful explanation of what one observes
in repeated Stern-Gerlach experiments.

Example 5.3.8 (Stern-Gerlach) — The Stern-Gerlach experiment [GS22] was one of
the first experiments which established that electrons have a quality best described as
spin which is quantized. The experiment sent silver atoms, which have one unpaired
5s electron,a through an inhomogeneous magnetic field. Instead of a single Gaussian
distribution which one might expect from classical electrodynamics, the result showed
two distinct peaks, corresponding to the two values up and down for the spin of the
electron.

This experiment has also been carried out with polarized photons which also repre-
sent qubits |ϖ→ ↓ C

2, where Z-polarized light passes through an X-polarization filter.
Here, X,Z refer to Pauli operators

X =

(
0 1
1 0

)
Z =

(
1 0
0 ↔1

)

which we will discuss in more detail in §5.4 below.b For the time being, we will say being
polarized in the Z-direction corresponds to being a +1 eigenstate |0→ for Z, and the Z-
polarization filter is the quantum observable corresponding to the spectral projection

pZ=1 =

(
1 0
0 0

)
.

Now rotating the filter by an angle ↼ ↓ (0, 2↽) corresponds to conjugating our observable
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by the rotation unitary

Rε :=

(
cos(↼) ↔ sin(↼)
sin(↼) cos(↼)

)
.

Thus 1↔ p corresponds to rotation by ↽/2, and rotation by ↽/4 corresponds to the +1
spectral projection of the Pauli X operator:

Rε · pZ=1 ·R†
ε
=

1⇓
2

(
1 ↔1
1 1

)
·
(
1 0
0 0

)
· 1⇓

2

(
1 1
↔1 1

)
=

1

2

(
1 1
1 1

)
= pX=1.

One can now apply repeated Stern-Gerlach experiments with subsequent filters ro-
tated by some angle. We can calculate the intensity (photon throughput) of Z-polarized
light after passing through an X-polarization filter as

⇒0|pX=1|0→ =

1 0


· 1
2

(
1 1
1 1

)
·
(
1
0

)
=

1

2
.

That is, our intensity drops by half, as a Z-polarized has probability 1/2 of passing
through an X-polarization filter.

aThe magnetic dipole moment from the nucleus is negligible compared to that of the unpaired
electron.

bWe warn the reader that Z and X do not correspond to the orientations of these filters in R
3.

Exercise 5.3.9. Find 2 light polarization filters and see what happens when you o”set them
by ↽/2. What do you think would happen if you insert a third polarization filter at angle ↽/4
to both of these? Surely adding more filters will block more light, right? Confirm or disprove
your suspision by computing the intensity of Z-polarized light after passing through:

• a ↔Z-polarization filter, or

• an X-polarization filter and then a ↔Z-polarization filter.

Definition 5.3.10 — For x ↓ B(H) (not just self-adjoint observables!), we define the
expectation value of x in state |ϖ→ by the vector state

E|ϑ↓(x) := ⇒ϖ|x|ϖ→.

Facts 5.3.11.

(E1) The expectation value of a self-adjoint operator in the state vector |ϖ→ is equal to the
weighted arithmetic mean of measurement outcomes:

E|ϑ↓(x) = ⇒ϖ|x|ϖ→ =

ϖ

∣∣∣∣∣∣

∑

ϖ→spec(x)

εpϖ

∣∣∣∣∣∣
ϖ


=

∑

ϖ→spec(x)

ε⇒ϖ|pϖ|ϖ→ =
∑

ϖ→spec(x)

εP|ϑ↓(x = ε).
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(E2) As E|ϑ↓ : B(H) ↑ C is a state, it is completely positive.

(E3) E|ϑ↓(x) = Tr(x · |ϖ→⇒ϖ|) for all state vectors |ϖ→ ↓ H and x ↓ B(H).

(E4) If E|ϑ↓ = E|ϱ↓ for state vectors |ϖ→, |ϱ→ ↓ H, then |ϖ→⇒ϖ| = |ϱ→⇒ϱ|. Physically, this
means that vector states are uniquely defined by their expectation values.

(E5) For x, y ↓ B(H), [x, y] = 0 if and only if E|ϑ↓(xy) = E|ϑ↓(yx) for all state vectors
|ϖ→ ↓ H. Although this statement is trivial mathematically, it has an important
physical implication: if two observables do not commute, then there is some state
vector such that the order in which the two observables are measured changes the
measurement outcome.

Exercise 5.3.12. Let us revisit Alice and Bob in Quantum Symmetries 101 from Exercise
5.1.3. Suppose Alice and Bob can now each bring a superposition of their red and blue sticks
of Hagoromo chalk to class, represented as |ϖA→ and |ϖB→ in C|R→ ∈ C|B→. Each day, they
measure the observable 



1
↔2

↔2
3





which is diagonal in the ONB {|RR→, |RB→, |BR→, |BB→}, in their product state |ϖA→↖ |ϖB→.
Alice pays Bob the outcome in $ of the measurement, where a negative outcome means Bob
pays Alice. Show that has Alice has a winning strategy. Then reconsider your answers to
Exercise 5.1.3 in the context of this winning strategy.

Exercise 5.3.13. Bob lost a lot over the course of the semester, so let us help Bob out a
little. We now allow Bob to choose any unitary operator u to apply to the product state
|ϖA→↖ |ϖB→ before measuring, although Bob still does not know |ϖA→. How does this change
the analysis in the previous exercise?

Remark 5.3.14. Historically, only self-adjoint operators x = x† ↓ B(H) were considered
observables, as they have real measurement outcomes. However, many authors use the term
observable for any operator. Although not every operator has a measurement basis or a set
of measurement outcomes, we are still able to define the expectation value of any operator
as a generalization of the weighted arithmetic mean. This is partially due to the fact that
every operator is a complex linear combination of self-adjoint operators.

Exercise 5.3.15. Let x, y ↓ M2(C) be self-adjoint, [x, y] ′= 0, and x2 = y2 = 1. Show that
there are exactly two vector states |ϖ→ up to phase such that E|ϑ↓(x) = E|ϑ↓(y) = 0.
Hint: Without loss of generality, x = Z and y = u↘Zu for some unitary u. Set |ϖ→ =
|0→+ ς|1→ for a phase ς ↓ U(1) and directly compute ⇒ϖ|y|ϖ→.
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Definition 5.3.16 — The variance of a self-adjoint observable x ↓ B(H) in a state |ϖ→
is

$x := E|ϑ↓(x
2)↔ E|ϑ↓(x)

2.

The standard deviation of x is ωx : =
⇓
$x. (It is common practice to omit the state

dependence on the notation for the variance and the standard devation.)

Exercise 5.3.17. Prove that $x ⇔ 0 for a self-adjoint x ↓ B(H) by proving $x = ⇒ϖx|ϖx→
for |ϖx→ := (x↔ E|ϑ↓(x))|ϖ→.

In quantum physics, an ordered pair of (unbounded) self-adjoint operators (x, p) is called
a canonically conjugate pair if [x, p] = i1. The traditional statement of the Heisenberg
Uncertainty Principle (when ⊋ is set to 1) is that if x, p are canonically conjugate, then

ωxωp ⇔
1

2
.

In quantum information, where our state space is finite dimensional, we lack canonically
conjugate pairs, which leads to a generalized version of the Heisenberg Uncertainty Principle
beyond canonically conjugate pairs of operators.

Exercise 5.3.18. Prove that there are no canonically conjugate pairs of operators in Mn(C).
Hint: What does Mn(C) have that B(,2) does not?

Theorem 5.3.19 (Heisenberg Uncertainty Principle) — Let x, y ↓ B(H) be self-adjoint
operators. In any vector state,

$x ·$y ⇔ 1

4
|E([x, y])|2.

Proof. Let |ϖ→ ↓ H be a state vector, and let |ϖx→, |ϖy→ be as in Exercise 5.3.17. Observe
that

⇒ϖx|ϖy→ = ⇒ϖ|(x↔ E|ϑ↓(x))(y ↔ E|ϑ↓(y))|ϖ→ = ⇒ϖ|xy|ϖ→ ↔ E|ϑ↓(x)E|ϑ↓(y),

which implies that

Im(⇒ϖx|ϖy→) =
1

2i
(⇒ϖx|ϖy→ ↔ ⇒ϖy|ϖx→) =

1

2i
⇒ϖ|xy ↔ yx|ϖ→ = 1

2i
E([x, y]).

For all z ↓ C, | Im(z)| ≃ |z|, so setting z = ⇒ϖx|ϖy→, we have

1

4
|E([x, y])|2 = | Im(⇒ϖx|ϖy→)|2 ≃ |⇒ϖx|ϖy→|2 ≃

(C-S)
⇒ϖx|ϖx→⇒ϖy|ϖy→ =

(Exer. 5.3.17)
$x ·$y.

Remark 5.3.20. In physical applications and experiments, measurable quantities have
units, but operators in B(H) are unitless. Quantum observables in experiments are ele-
ments of B(H) multiplied by the appropriate units. As we focus on applications in quantum
information, we drop all units, as our outcomes tend to be binary values. A physics oriented
reader may wish to assume that we are using natural units, especially in the context of spin
systems.
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5.4 Mixed states and von Neumann entropy

In the last section, we saw probability distributions arise when measuring a quantum (self-
adjoint) observable in a state vector. However, in order to execute such a measurement,
we must have complete knowledge of our quantum state. In practice, we only have partial
information of the quantum state, introducing another layer of classical probability on top
of the inherent quantum probability of measurement. Before giving a formal definition of a
mixed state, which should be viewed as a classical ensemble of vector states rather than a
single completely known vector state, we discuss the following ‘paradox.’

Example 5.4.1 (Spooky action at a distance, [EPR35]) — Suppose Alice and Bob each
control one qubit of the Bell state |%+→ = 1≃

2
(|00→+|11→), and the two qubits are spatially

separated. (How this state was prepared is not important.) The instant that Alice
measures her qubit in the Z-computational basis, Bob’s state is completely determined;
it appears that information has traveled faster than the speed of light. However, Bob
has no knowledge of Alice’s observation, and thus his best guess as to his qubit’s value
is probabilistic: a 50% chance of |0→ and a 50% chance of |1→. Note, however, that his
qubit is either |0→ or |1→, and not a superposition. So no information has traveled faster
than the speed of light, as Alice would need to relay the outcome for Bob to know his
qubit’s value.

The above example illustrates that probablities arise in two distinct ways in quantum
information: (1) as measurement outcomes of a quantum state, and (2) the classical mixture
of pure states which best describes our partial knowledge of the actual quantum state. The
first is a truly quantum phenomenon, whereas the second uses classical probability theory
to describe unknown, predetermined quantities.

The above example is part of the EPR paradox.

Example 5.4.2 (EPR paradox, [EPR35]) — Suppose Alice and Bob each control one
qubit of an entangled singlet state |&↔→, and the two qubits are spatially separated.
(How this state was prepared is not important.) Incorporating that the singlet state
is independent of the choice of basis (see Proposition 5.2.13), Alice’s measurement in
any computational basis immediately determines the state of Bob’s qubit in that basis.
EPR produced a scheme which they thought would violate the uncertainty principle:
Alice measures in the X-computational basis, which would determined Bob’s qubit in
the X-computational basis, but before any information traveled from Alice to Bob, he
measures in the Z-computational basis, which would allow him to know both the X and
Z values of his qubit simultaneously, a contradiction to the Uncertainty Principle 5.3.19
as they do not commute.

As we have just explained why spooky action at a distance does not mean information
has traveled faster than the speed of light, from a modern perspective, this phenomenon
does not seem all that surprising. The point, however, is that the above scheme violates
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local realism, the tenet that an isolated quantum system is completely described by a
definite state vector in its Hilbert space. When the two qubits are separated, EPR
viewed the two qubits as isolated quantum systems, but isolated systems need not be
independent. This failure of local realism has been observed and even quantified since,
especially in violations of Bell’s inequalities (see §5.7 below).

We now introduce mixed states as a bookkeeping technique for when we only have partial
information about our quantum state.

Definition 5.4.3 — A state ϕ : B(H) ↑ C is called pure if it is a vector state, i.e., its
density d = dς

dTr is a rank one projection. If a state is not pure, it is called a mixed state.

We often identify a state with its density matrix. In this sense, we can call a density
matrix pure or mixed.

Example 5.4.4 — In the Spooky Action at a Distance Example 5.4.1, the mixed state
which represents Bob’s state after Alice’s measurement is

d :=
1

2
|0→⇒0|+ 1

2
|1→⇒1| = 1

2
I.

Interestingly, this is also the mixed state which represents Bob’s state in the EPR para-
dox Example 5.4.2, independent of the measurement Alice performs on the singlet state.

Exercise 5.4.5. Prove that the following are equivalent for a state ϕ : B(H) ↑ C.

(1) ϕ is pure.

(2) The density d of ϕ is extremal, i.e., whenever we can write

d = td1 + (1↔ t)d0 for some t ↓ (0, 1)

for densities d0, d1 ↓ B(H), then d0 = d1 = d.

(3) The GNS representation L2(B(H),ϕ) is irreducible, i.e., B(H)⇐ = C.

Notation 5.4.6 — The Pauli operators/matrices in M2(C) are

X :=

(
0 1
1 0

)
Y :=

(
0 ↔i
i 0

)
Z :=

(
1 0
0 ↔1

)
.

Authors also use other notations, such as

ωx = ω1 := X ωy = ω2 := Y ωz = ω3 := Z.

It is also common to define ω0 := 1 as the zeroth Pauli matrix. These four Pauli matrices
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serve as as an ONB for M2(C) with the trace inner product. They also serve as an ONB
for the real Hilbert space of Hermitian matrices in M2(C).

Exercise 5.4.7. Prove that the commutation relations between the Pauli operators are given
by

[ωi, ωj] =
3∑

k=1

2
⇓
↔1 · ▷ijkωk

where ▷ijk the Levi-Cevita symbol, i.e., the anti-symmetric tensor determined by the rules

▷123 = 1 and ▷ijk = ↔▷jik = ↔▷ikj ⇐ i, j, k.

(Here we use
⇓
↔1 instead of i as i is the preferred index notation for the Levi-Cevita symbol.)

Remark 5.4.8. The unit sphere S3 of state vectors in C
2 is a torsor for the unit quaternions

Hu :=
{
w1 + xi+ yj+ zk

∣∣w, x, y, z ↓ R and w2 + x2 + y2 + z2 = 1


where i, j,k multiply according to the Levi-Cevita symbol. One can represent the unit
quaternions in M2(C) by

w1 + xi+ yj+ zk ∝↔↑
(
w ↔ iz ↔y ↔ ix
y ↔ ix w + iz

)
.

Thus the map 1 ∝↑ 1, i ∝↑ ↔iX, j ∝↑ ↔iY , k ∝↑ ↔iZ determines a continuous (Lie) group
isomorphism from the unit quaternions to SU(2) which intertwines their actions on S3.

We saw in Example 5.2.2 that the Bloch sphere represents the pure states in C
2. In fact,

the interior of the sphere corresponds to the mixed states in C
2.

Example 5.4.9 (Bloch vectors for mixed states in C
2) — Given ◁n = (x, y, z) ↓ R

3, we
define

◁n · ◁ω := n1ω
1 + n2ω

2 + n3ω
3 = xX + yY + zZ.

We can parametrize the density matrices in M2(C) as

dφn :=
1

2
(I + ◁n · ◁ω) where ∞◁n∞ ≃ 1.

Interpreting 1
2◁n as a vector emanating from 1

2I viewed as the center of the Bloch sphere,
we see that dφn is pure exactly when ∞◁n∞ = 1 and mixed otherwise. (In this normalization,
the Bloch sphere has radius 1/2.)

Exercise 5.4.10. Let r ↓ M2(C) such that r2 = 1, r† = r, and r ′= ±1. Show there exists
a unique unit vector ◁n ↓ R

3 such that r = ◁n · ◁ω.
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Exercise 5.4.11. Given ◁n ↓ R
3 with ∞◁n∞ = 1 and ↼ ↓ R, find ς, φ ↓ C such that

eiεφn·φ↼ = ς1 + φ◁n · ◁ω.

Show that this operator is in SU(2).

Exercise 5.4.12. Let ◁n, ◁m ↓ R
3. Prove that

[◁n · ◁ω, ◁m · ◁ω] = 2i(◁n∋ ◁m) · ◁ω

where ◁n∋ ◁m is the usual cross product. Prove that if ◁n, ◁m are orthogonal, then

{◁n · ◁ω, ◁m · ◁ω} = 0

where {A,B} := AB +BA.

Exercise 5.4.13. Let ◁n, ◁m ↓ R
3 with ∞◁n∞ = 1 and let ↼ ↓ R. Prove that

e↔iεφn·φ↼ 1

2
(I + ◁m · ◁ω)eiεφn·φ↼ =

1

2
(I + (R2ε ◁m) · ◁ω)

where R2ε ↓ M3(R) is the rotation matrix by an angle 2↼ about ◁n.
Note: This exercise gives a double cover

SU(2) ↔↑ SO(3) :=
{
w ↓ M3(R)

∣∣wT = w↔1 and det(w) = 1

.

The notion of von Neumann entropy quantifies when a state is pure or mixed.

Definition 5.4.14 (von Neumann entropy) — Let d ↓ B(H) be a density matrix. Its
von Neumann entropy is

S(d) := ↔Tr(d · log(d)),

where log(d) is defined using the functional calculus, with the convention that 0·log(0) =
0. Using the Spectral Theorem 1.7.9, S(d) equals the Shannon entropy of the probability
distribution associated to the spectral decomposition of d

S(d) = ↔
∑

ϖ→spec(d)

ε log(ε)

where the sum is taken with multiplicity.

Remark 5.4.15. The von Neumann entropy of a mixed state is the quantum mechanical
analog of the classical Shannon entropy. Just as with Shannon entropy, von Neumann entropy
is always non-negative.

Exercise 5.4.16. Prove that a density matrix d ↓ B(H) is a rank one projection if and
only if S(d) = 0.
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Exercise 5.4.17. Let d ↓ M2(C) be density matrix. Compute S(d) as a function of the
distance between d and 1

2I. (Recall that the radius of the Bloch sphere is 1/2.) Deduce that
if d0, d1 are two density matrices in M2(C), then

tS(d1) + (1↔ t)S(d0) ≃ S(dt) ⇐ t ↓ [0, 1].

Definition 5.4.18 (Mixed state Born rule) — Let d ↓ B(H) be a density matrix, and
let ϕd( · ) := Tr(d · ) be the corresponding state. Given an observable x ↓ B(H) with
spectral decomposition x =

∑
ϖ→spec(x) εpϖ, the probability of measuring x = ε is given

by
Pd(x = ε) := Tr(dpϖ) = ϕd(pϖ).

After measuring x = ε, the density matrix of the system is then given by

1

Tr(dpϖ)
pϖdpϖ.

Exercise 5.4.19. Show that Pd(x = ε) is a probability distribution on spec(x).

Exercise 5.4.20. Show that
1

Tr(dpϖ)
pϖdpϖ

is the unique density matrix d⇐ with d⇐ ≃ pϖ closest to d in the GNS norm with respect to
Tr.

Remark 5.4.21. We may interpret the mixed state Born rule in terms of Bayesian proba-
bility, where Pd(x = ε) is a weighted average over the spectrum of d. Indeed, consider the
spectral decomposition d =

∑
r→spec(d) rqr. Then

Pd(x = ε) =
∑

r→spec(d)

Pd(x = ε|d = r)  
Tr(pω qr

Tr(qr))

Pd(d = r)  
rTr(qr)

=
∑

r→spec(d)

rTr(pϖqr) = Tr(dpϖ).

Definition 5.4.22 — The expectation value of the observable x is the mixed state d is
given by ∑

ϖ→spec(x)

ε ·Pd(x = ε) =
∑

ϖ→spec(x)

εTr(dpϖ) = Tr(dx) = ϕd(x).

Observe that this final quantity makes sense for any operator, not just self-adjoints.

Facts 5.4.23. We have the following facts about mixed states/density matrices and the
expectation values they give for operators.

(ME1) Every density matrix is a convex combination of pure states. Writing such a d in this
way is called a pure state decomposition of d.
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(ME2) The space of density matrices in B(H) is a convex set.

(ME3) For any pure state decomposition d =
∑

i
ri|ei→⇒ei| and any observable x ↓ B(H),

Pd(x = ε) =
∑

i

riP|ei↓(x = ε) and Ed(x) =
∑

ϖ→spec(x)

∑

i

εri⇒ei|pϖ|ei→.

Hence Ed(pϖ) = Pd(x = ε).

(ME4) Define f(t) := ↔t log(t) on [0, 1]. For a density matrix d ↓ B(H)+ and a state vector
|ϖ→ ↓ H,

E|ϑ↓(f(d)) ≃ f(E|ϑ↓(d))

with equality if and only if |ϖ→ is an eigenstate for d.

Proof. Write |ϖ→ =
∑

ϖ→spec(d) ςϖ|eϖ→ as a superposition of eigenstates for d. Then

E|ϑ↓(f(d)) = ⇒ϖ|f(d)|ϖ→ =
∑

|ςϖ|2f(ε) ≃ f
∑

|ςϖ|2ε

= f(⇒ϖ|d|ϖ→) = f(E|ϑ↓(d))

by concavity of f (see Remark 5.4.24 below). In fact, f is strictly concave on (0, 1),
and thus equality holds if and only if only one ςϖ ′= 0.

(ME5) For a density d ↓ B(H)+ and an ONB {|ei→} of H,

S(d) = Tr(f(d)) =
∑

i

⇒ei|f(d)|ei→ =
∑

i

E|ei↓(f(d)) ≃
(ME4)

∑

i

f(E|ei↓(d))

with equality if and only if each |ei→ is an eigenstate of d.

Proof. The only way the right hand side can sum to S(d) is if we have equality of each
of the terms E|ei↓(f(d)) = f(E|ei↓(d)). Now apply (ME4).

Remark 5.4.24. Recall that a function f : [0, r] ↑ R is called concave if

tf(ς) + (1↔ t)f(φ) ≃ f(tς + (1↔ t)φ) ⇐ς, φ ↓ [0, r] and 0 ≃ t ≃ 1,

and f is called strictly concave if equality holds above if and only if ς = φ or t ↓ {0, 1}.
Fact (ME4) above can easily be modified to apply to a positive x ↓ B(H+) and a (strictly)
concave function on [0, r] for r = ∞x∞.

Proposition 5.4.25 — Von Neumann entropy is strictly concave on the convex space
of density matrices. That is, suppose d0, d1 ↓ B(H) are density matrices. Then the
density matrix dt := td1 + (1↔ t)d0 for t ↓ [0, 1] satisfies

tS(d1) + (1↔ t)S(d0) ≃ S(dt).
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Moreover, S is constant along the line segment t ∝↑ dt if and only if d0 = d1.

Proof. Consider the concave function f(t) := ↔t log(t) on [0, 1]. Fix r ↓ (0, 1), and let |ei→
be an ONB of eigenvectors of dr. By concavity of f ,

rS(d1) + (1↔ r)S(d0) ≃
∑

i

rf(E|ei↓(d1)) + (1↔ r)f(E|ei↓(d0)) (ME5)

≃
∑

i

f(rE|ei↓(d1) + (1↔ r)E|ei↓(d0)) (Concavity)

=
∑

i

f(E|ei↓(rd1 + (1↔ r)d0  
dr

)) (Linearity)

=
∑

i

E|ei↓(f(dr)) (ONB of eigenstates)

= S(dr).

If moreover t ∝↑ S(dt) is constant along the line segment [0, 1], then we must have S(dj) =∑
i
f(E|ei↓(dj)) for j = 0, 1. Hence each |ei→ is an eigenvector for dj for j = 0, 1 by (ME5).

By (S2), we know that each dt gives rise to the same probability distribution, i.e., spec(dt)
is constant (with multiplicity) on [0, 1]. We conclude that t ∝↑ dt is constant.

We record the following corollary for future use.

Corollary 5.4.26 — The entropy S is maximized at a unique point on every closed
convex subset of density matrices. Moreover the minimum of S occurs at an extreme
point in the sense of Exercise 5.4.5.

Proof. That the minimum occurs at an extreme point is immediate from Proposition 5.4.25.
We focus on the unique maximum.

Existence: Observe that a closed convex set is compact and S(d) = ↔Tr(d log(d)) is contin-
uous by Proposition 1.7.15, so S attains its maximum by the Extreme Value Theorem.

Uniqueness: If d0, d1 both attain the maximum, then since S(dt) ⇔ tS(d1) + (1 ↔ t)S(d0), S
is constant along the line segment t ∝↑ dt = td1 + (1 ↔ t)d0. We conclude that d0 = d1 by
Proposition 5.4.25.

5.5 Separability and partial traces

Recall that a state vector |ϖ→ in a bipartite system HA ↖HB is separable if |ϖ→ = |⇁→ ↖ |ϱ→
for some |⇁→ ↓ HA and |ϱ→ ↓ HB and entanlged otherwise. We now generalize these notions
to mixed states.
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Definition 5.5.1 (Separability for mixed states) — Consider a density matrix d for a
bipartite system HA↖HB and its corresponding state ϕd. We call d simply separable or
a product state if d = dA ↖ dB for some density matrices dA ↓ B(HA) and dB ↓ B(HB),
and we call d separable if it is a convex combination of product states. If d is not
separable, it is called entangled.

Proposition 5.5.2 — A pure state density matrix d ↓ B(HA ↖HB) is separable if and
only if it is a product state.

Proof. It su!ces to prove that if d is pure and separable, then d is simply separable. Since d
is separable there are |⇁i→ ↓ HA and |ϱi→ ↓ HB for i = 1, . . . , n and a probability distribution
{εi} such that

d =
∑

εi|⇁i→⇒⇁i|↖ |ϱi→⇒ϱi|.

Since d is pure, S(d) = ↔
∑

εi log(εi) = 0, which implies there is a unique i such that εi = 1
and all other εj are zero. We conclude d is a product state.

Example 5.5.3 — The mixed state
1

2
(|00→⇒00|+ |11→⇒11|) is separable, but not simply

separable.

Definition 5.5.4 (Partial trace and reduced density) — Consider a bipartite system with
Hilbert space H ↖ K. Recall from Construction 3.7.10 that there is a unique trace-
preserving conditional expectation EB(H) : B(H ↖K) ↑ B(H) satisfying

TrB(H)(E(x)y) = TrB(H⇒K)(xy) ⇐ x ↓ B(H ↖K), y ↓ B(H).

In quantum information theory, this conditional expectation is also called the partial
trace and is often denoted (confusingly) by TrH . In this book, we will always use a bold
font TrH for the partial trace to help alleviate any confusion. Given a density matrix
d ↓ B(H ↖K), observe that the reduced density matrix dH := TrH(d) ↓ B(H) is again
positive with trace 1, and is thus again a density. One may similarly define the partial
trace TrK and reduced density dK .

When we use HA ↖ HB, we often write TrA,TrB for TrHA
,TrHB

and dA, dB for
dHA

, dHB
respectively.
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Exercise 5.5.5. Show that in the graphical calculus, TrH is given by

TrH(x) =
H

H

Kx =
∑

i

H

H

K

K

x

|ϱi→

⇒ϱi|

⇐ ONB {|ϱi→} of K.

Remark 5.5.6. A quantum system HS often interacts with its environment, usually repre-
sented by a large Hilbert space HE. If this combined bipartite system is well-isolated, we
describe the state of the entire system by some |ϖ→ ↓ HS ↖ HE. Given that the environ-
ment usually has substantially many more degrees of freedom than our system of interest,
and we have no way of observing all these degrees of freedom, it is generally not feasible to
understand the dynamics of the total state |ϖ→. Thus the reduced density dS = TrE(|ϖ→⇒ϖ|)
becomes the primary description of our quantum state rather than |ϖ→.

Definition 5.5.7 — Let d ↓ B(H) be a density matrix. A purification of d is a pure
density matrix (rank one projection) p ↓ B(H↖L) where L is an ancillary Hilbert space
such that d = TrL(p).

Construction 5.5.8 (Quantum state purification) — Every density matrix has a pu-
rification. Indeed, let d ↓ B(H) be a density matrix and let {|ei→} be an ONB of H
consisting of eigenvectors for d with corresponding eigenvalues εi. Observe that the pure
state

|ϖ→ :=
∑√

εi|ei→ ↖ |ei→ ↓ H ↖H

purifies d as

TrH1(|ϖ→⇒ϖ|) = TrH1

∑
εi|ei→⇒ei|↖ |ei→⇒ei|


=

∑
εiTrH1 (|ei→⇒ei|↖ |ei→⇒ei|)

=
∑

εi|ei→⇒ei| = d.

The next two constructions follow directly from the Spectral Theorem 1.7.9 and the
polar decomposition; we have delayed them until now as this is the section in which these
constructions will be used.

Construction 5.5.9 (Singular Value Decomposition) — Let x ↓ Mm↗n(C). Setting
k = min{m,n}, There are unique ε1 ⇔ ε2 ⇔ · · · ⇔ εk called the singular values of x and
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orthonormal sets {|ei→}ki=1 ⇑ C
n and {|fi→}ki=1 ⇑ C

m (which are not unique) such that

x =
k∑

i=1

εi|fi→⇒ei|.

This expression is called a singular value decomposition (SVD) of x. First, observe that
the εi are necessarily the elements of spec(|x|) counted with multiplicity, as

x†x =
k∑

i=1

ε2
i
|ei→⇒ei|.

This tells us how to reverse-engineer the SVD. Let x = u|x| be the polar decomposition
of x, and let ε1 ⇔ ε2 ⇔ · · · ⇔ εk be a monotone ordering, with multiplicity, of spec(|x|).
Choose an ONB {|ei→} for C

n diagonalizing |x| so that |x| · |ei→ = εi|ei→ and setting
|fi→ := u|ei→ yields the result. Indeed, one observes that

rank(|x|) = rank(x†x) ≃ k = min{m,n},

so that εi = 0 whenever i > k.

The following closely related construction is used frequently in quantum information.

Construction 5.5.10 (Schmidt Decomposition) — For any state vector |ϖ→ ↓ C
m ↖C

n,
setting k := min{m,n}, there are non-negative numbers ε1 ⇔ ε2 ⇔ · · · ⇔ εk and
orthonormal sets {|⇁i→}k=1 ⇑ C

n and {|ϱj→}k=1 ⇑ C
m such that

|ϖ→ =
k∑

i=1

εi|⇁i→ ↖ |ϱi→

Indeed, choose an arbitrary unitary w : Cn ↑ Cn, which gives an isomorphism

W : Cm ↖ C
n 1⇒w↔↔↑ C

m ↖ Cn ↙= Mm↗n(C).

Equipping Mm↗n(C) with the inner product ⇒x|y→ := Trn(x†y) promotes W to a unitary.
Use Construction 5.5.9 to find a SVD

W |ϖ→ =
k∑

i=1

εi|fi→⇒ei|, =↘ |ϖ→ =
k∑

i=1

εiW
†|fi→⇒ei|.

By construction,W †|fi→⇒ei| = |fi→↖|ϱi→ for the orthonormal set {|ϱi→}ki=1 := {w†⇒ei|}ki=1 ⇑
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C
n, so

|ϖ→ =
k∑

i=1

εi|fi→ ↖ |ϱi→

as desired.

We close this section with the following useful application.

Definition 5.5.11 — Suppose d ↓ B(HA ↖ HB) is a density matrix. The bipartite
entanglement entropy of d with respect to A is SA(d) := S(dA). Similarly, we define
SB(d) := S(dB). The mutual quantum information is

IA:B(d) := SA(d) + SB(d)↔ S(d).

Exercise 5.5.12. Prove that the space of density matrices in B(HA↖HB) with fixed reduced
densities dA ↓ B(HA) and dB ↓ B(HB) is a closed convex set. Use Corollary 5.4.26 to deduce
that S attains its maximum at a unique point in this closed convex set.

Exercise 5.5.13. Prove that for d = dA ↖ dB, S(d) = SA(d) + SB(d).

Remark 5.5.14. It can be shown that for a density d ↓ B(HA)↖B(HB),

|SA(d)↔ SB(d)| ≃ S(d) ≃ SA(d) + SB(d).

The second inequality is equivalent to the statement that IA:B(d) ⇔ 0. Moreover, IA:B(d) = 0
exactly when d = dA ↖ dB.

Proposition 5.5.15 — Given a density matrix d ↓ B(HA ↖ HB), if d is pure, then
SA(d) = SB(d). In this case, d is (simply) separable if and only if SA(d) = SB(d) = 0.

Proof. Since d is pure, we may write d = |ϖ→⇒ϖ|. We claim that |ϖ→ is common a purification
of both dA and dB. Indeed, we may use the Schmidt Decomposition 5.5.10 to write

|ϖ→ =
k∑

i=1

εi|ei→ ↖ |fi→.

Observe that

dA =
k∑

i=1

εi|ei→⇒ei| and dB =
k∑

i=1

εi|fi→⇒fi|,

so the spectral decompositions of dA and dB yield identical probability distributions. It
immediately follows that S(dA) = S(dB). As S(dA) = S(dB) is solely a function of the εi,
the final statement is immediate.

The final statement in the above proposition holds more generally.
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Proposition 5.5.16 — Suppose d ↓ B(HA ↖HB) is a density such that dB = TrA(d)
is pure. Then d = dA ↖ dB is simply separable.

Proof. Since dB is pure, it is an orthogonal projection of rank 1. Writing p = 1 ↔ dB, we
have

TrA((1↖ p)d(1↖ p)) = pTrA(d)p = pdBp = 0.

Since TrA is faithful, d(1 ↖ p) = 0 and (1 ↖ p)d = 0. Hence d(1 ↖ dB) = d = (1 ↖ dB)d.
Expanding d as a sum of simple tensors in B(HA↖HB), we see that d is of the form dA↖dB
as claimed.

5.6 Pure state error correction and stabilizer codes

The quantum information contained in a quantum state is subject to noise from the envi-
ronment. We will explore this in terms of a bipartite system where one Hilbert space is our
quantum system and one Hilbert space is the environment in §5.8 below. However, we begin
this section with a more basic example.

Example 5.6.1 (Bit-flip) — Suppose we have a single noisy qubit state |ϖ→ ↓ C
2.

We choose to measure in the Z computational basis, so we view |ϖ→ = ς|0→ + φ|1→
with |ς|2 + |φ|2 = 1. Our noise takes the form of a random bit-flip, where |0→ and |1→
are flipped with probability p ↓ (0, 1); observe this is achieved by applying the error
operator X to |ϖ→. After this random error occurs, our qubit |ϖ⇐→ is only equal to |ϖ→
with probability 1↔ p. Even worse, there is no measurement or process we can perform
to tell if an error occurred or to correct an error without destroying all the quantum
information.

Now suppose we encode our one qubit in a 3-qubit system C
2 ↖ C

2 ↖ C
2 where we

encode |0→ as |000→ and |1→ as |111→. We assume we are using the same hardware, so
that each of these 3 qubits is still noisy with a probability p of a bit flip. Now we
can correct for the optimistic scenario that at most one bit flip occurs. We make two
quantum measurements, namely Z1Z2 = Z ↖ Z ↖ 1 and Z2Z3 = 1↖ Z ↖ Z in our state
|ϖ⇐→, which is manifestly an eigenvector for these operators assuming only bit-flip errors.
Hence measuring Z1Z2 and Z2Z3 does not a”ect |ϖ⇐→. We claim that if at most one qubit
has been flipped, we may recover our initial state |ϖ→ from these measurements.

Z1Z2 Z2Z3 Qubit flipped? State |ϖ⇐→ Recovery operator
1 1 None ς|000→+ φ|111→ 1
1 ↔1 3rd qubit ς|001→+ φ|110→ X3

↔1 1 1st qubit ς|100→+ φ|011→ X1

↔1 ↔1 2nd qubit ς|010→+ φ|101→ X2

We may recover |ϖ→ from |ϖ⇐→ by applying the recovery operator indicated above.
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The idea of a quantum error correction code is to use a large number of n qubits to
encode our k qubits so that they are robust to errors. We write Hn :=


n

k=1C
2 for the

n-qubit Hilbert space.

Definition 5.6.2 — A quantum error correction code (QECC) for a k-qubit system
is an isometry Hk ↑ Hn where typically n △ k. More generally, a code subspace is a
subspace C ⇑ H of the Hilbert space H representing our quantum system.

A particularly well-behaved example of QECCs is the family of stabilizer codes, which
includes the bit-flip Example 5.6.1. We write

ωi

k
:= 1↖ · · ·↖ 1  

k↔1

↖ωi ↖ 1↖ · · ·↖ 1  
n↔k

for the i-th Pauli operator for i = 1, 2, 3 acting on site k; we may similarly write Xk, Yk, Zk

for these operators.

Definition 5.6.3 — The Pauli group PN is the subgroup of the unitary group U(N)
generated by the operators Xk, Yk, Zk for k = 1, . . . , N . A stabilizer group is an abelian
subgroup S ⇑ PN such that the code subspace

CS := {|ϖ→ ↓ HN | s|ϖ→ = |ϖ→ for all s ↓ S}

is non-zero. That is, there is some state |ϖ→ such that S stabilizes |ϖ→.

Warning 5.6.4 — Observe that ↔1,±i /↓ S for any stabilizer code.

Exercise 5.6.5. Compute how many elements PN contains. Then show that all stabilizer
groups are elementary 2-groups, i.e., s2 = 1 for all s ↓ S. Deduce that S ↙= (Z/2)n for some
n ↓ N.

Exercise 5.6.6. Prove that the 3-qubit GHSZ state

|GHSZ→ := 1⇓
2
(|000→+ |111→)

spans the code subspace of the stabilizer group S := ⇒Z1Z2, X1X2X3, Z2Z3→ ⇑ P3.

Proposition 5.6.7 — Suppose T ⇑ PN is an abelian subgroup. Then there is a stabilizer
group S ⇑ PN such that C[S] = C[T ].

Proof. Since C[T ] ⇑ B(HN) is a commutative unitary algebra, C[T ] ↙= C
k for some k. There

is an ONB of HN in which all operators in C[T ] are diagonal; indeed, we can find a single
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x ↓ C[T ] ↙= C
k which generates it as a unitary algebra and apply the Spectral Theorem

1.7.9. Pick |ϖ→ in this ONB, and consider

S := {s ↓ T | s|ϖ→ = |ϖ→} .

Then clearly S ⇑ PN is a stabilizer group as |ϖ→ ↓ CS ′= 0. Moreover, C[S] = C[T ] as each
t ↓ T lies in S up to a scalar.

Remark 5.6.8. The physical content of Proposition 5.6.7 is that all information that can be
obtained from measuring observables from T is already contained in measuring observables
from S.

Stabilizer codes can easily correct for Pauli error operators, i.e., simple tensors of Pauli
operators. Of course, they can correct for even more types of errors, but we focus on the
Pauli error operators for simplicity.

Exercise 5.6.9. Prove that simple tensors of Pauli operators either commute or anticom-
mute.

Definition 5.6.10 — Let E ⇑ B(HN) be a subset of Pauli error operators containing
1. For a stabilizer group S ⇑ PN , since Pauli operators either commute or anticommute,
for each s ↓ S and e ↓ E, there is a sign ω(s, e) ↓ {±1} such that

es = ω(s, e)se.

The function ω : S ∋ E ↑ {±1} is called the syndrome of (S,E). We call e ↓ E
detectable if ω(s, e) = ↔1 for some s ↓ S. We call two errors e, f ↓ E:

• distinguishable if there is an s ↓ S such that ω(s, e) ′= ω(s, f), and

• equivalent if every |ϖ→ ↓ CS is an eigenvector for e†f .

A stabilizer group is called an E-stabilizer code if all indistinguishable errors e, f ↓ E
are equivalent.

Exercise 5.6.11. Show that for Example 5.6.1 of the bit-flip, the stabilizer group S =
⇒Z1Z2, Z2Z3→ is an E-stabilizer code for E = {1, X1, X2, X3}.

Exercise 5.6.12. Prove that the following are equivalent for Pauli error operators e, f ↓ E
with respect to a stabilizer group S.

(1) e, f ↓ E are indistinguishable, and

(2) e†f commutes with every s ↓ S.

Deduce that if e, f are indistinguishable, then
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• e†f commutes with pCS
, and

• e, f are equivalent if and only if pCS
e†fpCS

↓ CpCS
.

Exercise 5.6.13. Let E ⇑ B(HN) be a subset of Pauli error operators containing 1. Show
that every e ↓ E which is not multiplication by a constant phase on CS is detectable.

We now give an error correction protocol for E-stabilizer codes.

Construction 5.6.14 (Error correction protocol for stabilizer codes) — Given a set E of
Pauli operators containing 1 and an E-stabilizer code S, we can construct an explicit
recovery operator based on the syndrome function ω : S ∋ E ↑ {±1} determined by

es = ω(s, e)se.

The above formula implies that for all |ϖ→ ↓ CS and e ↓ E, e|ϖ→ is again an eigenvector
for each s, and so we may measure s without altering e|ϖ→, which will always return the
syndrome ω(s, e) as the outcome. Thus even though we do not know which error e ↓ E
has been applied, we do know the function ω(↔, e) : S ↑ {±1}. Since our function
ω : S ∋ E ↑ {±1} is completely known, we can now choose an arbitrary f ↓ E such
that ω(↔, e) = ω(↔, f). Then e, f are indistinguishable, so e, f are equivalent, and thus
|ϖ→ is an eigenvector for f †e, so

f †e|ϖ→⇒ϖ|e†f = |ϖ→⇒ϖ|.

Exercise 5.6.15 (Phase-flip). Find an E-stabilizer code for E = {Z1, Z2, Z3} on a 3-qubit
quantum system.
Note: The name ‘phase-flip’ comes from the fact that Z|j→ = (↔1)j|j→ in the Z-computational
basis.

Example 5.6.16 (Shor’s code) — Suppose we have a noisy qubit which is now subject
to bit-flips, phase-flips, and possibly both. Thus, our possible errors are 1, X, Z,XZ,
which generate M2(C) as a vector space. (Note that ZX = ↔XZ, so ZX and XZ are
clearly equivalent errors.) We now encode our logical qubit as a subspace in a 9-qubit
system, and we assume we will have at most one noisy qubit in this system.

↭
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We encode C
2 ↑ ((C2)⇒3)⇒3 by

|0→ ∝↑ 1

2
⇓
2
(|000→+ |111→)↖ (|000→+ |111→)↖ (|000→+ |111→)

|1→ ∝↑ 1

2
⇓
2
(|000→ ↔ |111→)↖ (|000→ ↔ |111→)↖ (|000→ ↔ |111→).

One checks that these two states span the codes subspace CS for the stabilizer group
generated by

X1X2X3X4X5X6, X1X2X3X7X8X9, X4X5X6X7X8X9,

Z1Z2, Z2Z3, Z1Z3, Z4Z5, Z5Z6, Z4Z6, Z7Z8, Z8Z9, Z7Z9

Notice this generating set can be reduced by omitting X4X5X6X7X8X9, Z1Z3, Z5Z6,
and Z8Z9.

In order to correct for one noisy quibt out of these 9, we do (at most) 4 separate sets
of measurements. First, we measure the X-stabilizers.

X1X2X3X4X5X6 X1X2X3X7X8X9 Recovery Operator
1 1 1
1 ↔1 Z7

↔1 1 Z4

↔1 ↔1 Z1

We then measure some of the Z-stabilizers

Z1Z2 Z2Z3 Recovery Operator
1 1 1
1 ↔1 X3

↔1 1 X1

↔1 ↔1 X2

and similarly for the subsets Z4Z5, Z5Z6 and Z7Z8, Z8Z9. Since we assumed only qubit
was noisy, we should have only observed a ↔1 in two of these sets of stabilizer measure-
ments. We leave the rest of the details to the reader.

The following theorem gives equivalent conditions for a code subspace C to correct an
error set E. We defer a discussion of an error correction protocol for such (C,E) to Con-
struction 5.6.22 below.

Theorem 5.6.17 (Knill-Laflamme [KL97]) — Suppose E ⇑ B(H) is a subset of error
operators. The following are equivalent for a code subspace C ⇑ H.
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(KL1) For any state vectors |ϖ→, |⇀→ ↓ C,

⇒ϖ|e†f |⇀→ = εe,f · ⇒ϖ|⇀→

where εe,f ↓ C is a constant independent of |ϖ→, |⇀→.

(KL2) For all e, f ↓ E, pCe†fpC ↓ CpC .

(KL3) For all e ↓ span(E) and state vectors |ϖ→, |⇀→ ↓ C,

⇒ϖ|e†e|ϖ→ = ⇒⇀|e†e|⇀→.

Proof.

(KL1)↘(KL2): For an ONB {ϱi} of C and e, f ↓ E, we see that

pe†fp =
∑

i,j

|ϱi→⇒ϱi|e†f |ϱj→⇒ϱj| = εe,f

∑

i,j

|ϱi→⇒ϱi|ϱj→⇒ϱj| = εe,f

∑

i

|ϱi→⇒ϱi| = εe,fp.

(KL2)↘(KL3): For e, f ↓ E, define εe,f ↓ C by pe†fp = εe,fp. Then observe that

⇒ϖ|e†f |ϖ→ = ⇒ϖ|pe†fp|ϖ→ = εe,f · ⇒ϖ|ϖ→ = εe,f · ⇒⇀|⇀→ = ⇒⇀|pe†fp|⇀→ = ⇒⇀|e†f |⇀→.

(KL3)↘(KL1): By polarization for operators in Exercise 1.4.7, we see that for all state vectors

|ϖ→, |⇀→, ⇒ϖ|e†f |ϖ→ = ⇒⇀|e†f |⇀→ for all e, f ↓ E; call this number εe,f . Then for all |⇁→ ↓ C,

⇒⇁|e†f |⇁→ = ∞⇁∞2 ·


⇁

∞⇁∞

∣∣∣∣ e
†f

∣∣∣∣
⇁

∞⇁∞


= εe,f · ∞⇁∞2 ·


⇁

∞⇁∞

∣∣∣∣
⇁

∞⇁∞


= εe,f · ⇒⇁|⇁→.

The result now follows by polarization for the sesquilinear form (⇁, ϱ) := ⇒⇁|e†f |ϱ→.

Exercise 5.6.18. Show that (KL3) implies that an error operator e ↓ E is either zero or
injective on C.

Remark 5.6.19. One strong type of error correcting code can correct for an error set E
which is itself a unitary algebra. Having 1 ↓ E allows for the possibility that no error oc-
curred at all, making the error correcting code more robust. Allowing for multiplication of
operators in E allows for the simultaneous correction of several errors happening in succes-
sion. While there is perhaps not a physical reason to have E closed under adjoints, this is a
common situation in practice, and it allows us to correct errors by using operators contained
in E itself. We will construct such examples in Part[[II]] §[[??]] which are called locally
topologically ordered spin systems.

Proposition 5.6.20 — Given a set E of Pauli error operators containing 1, a stabilizer
code S is an E-stabilizer code if and only if the Knill-Laflamme conditions (KL1)-(KL3)
hold for (E,CS).

209



Proof. Suppose S is an E-stabilizer code with syndrome ω, and consider e, f ↓ E. If e, f are
distinguishable, pick s ↓ S such that ω(s, e) ′= ω(s, f), so ω(s, e)ω(s, f) = ↔1. Then

pCS
e†fpCS

= pCS
e†fspCS

= ω(s, f) · pCS
e†sfpCS

= ω(s, e)ω(s, f) · pCS
se†epCS

= ↔pCS
e†fpCS

,

so pCS
e†fpCS

= 0. If e, f are indistinguishable, then by assumption e, f are equivalent, so
pCS

e†fpCS
↓ CpCS

. We conclude that (KL2) holds.
Conversely, if (E,CS) satisfies (KL2), then pCS

e†fpCS
↓ CpCS

for all e, f ↓ E, in partic-
ular for indistinguishable e, f . The result now follows by Exercise 5.6.12.

In fact, we can widen our idea of error correction to processes which encode quantum
information from system H to another system K.

Exercise 5.6.21. Show that the conditions in Theorem 5.6.17 are equivalent for a set of
error operators E ⇑ B(H,K) where K is another Hilbert space.

We now give an error correction protocol which corrects for error sets E ⇑ B(H,K)
satisfying the Knill-Laflamme conditions (KL1)-(KL3) for a code subspace C.

Construction 5.6.22 — Suppose (E,C) satisfies the Knill-Laflamme conditions (KL1)-
(KL3). Starting in state |ϖ→ ↓ C, suppose an error from E occurs; we do not know which
one. We do, however, assume the error e ↓ E acts injectively on C, and not as zero (see
Exercise 5.6.18). We may also assume that E is a linear space, as the Knill-Laflamme
conditions still hold replacing E with span(E).

Consider the action map a : E↖C ↑ K given by e↖ |ϖ→ ∝↑ e|ϖ→. The image of this
map is the subspace

im(a) = span {e|ϖ→ | |ϖ→ ↓ C and e ↓ E} ⇑ K,

which is generated by the possible outcomes e|ϖ→ of an error operator e ↓ E applied to
a state |ϖ→ ↓ C. The formula

⇒e|f→ := εe,f

where εe,f is as in (KL1) defines a sesquilinear form on E; indeed, this is the map given
by

E ∋ E ∝↑ E|ϖ→ ∋ E|ϖ→ ⇑·|·↓∝↔↑ C

for any state |ϖ→ ↓ C. This sesquilinear form is not necessarily definite, but we can
quotient out by the length zero vectors N to get a Hilbert space E := E/N with inner
product ⇒e| f→ := εe,f . This space can be thought of as any of the subspaces E|ϖ→ ⇑ K
for any state |ϖ→ ↓ C by (KL1).

Now observe that the map a : E↖C ↑ K descends to a well-defined surjective linear
map

a : E ↖ C ↔↑ im(a) given by e↖ |ϖ→ ∝↔↑ e|ϖ→.
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Moreover, since

∑

i,j

⇒ei ↖ ϖi|ej ↖ ϖj→Ê⇒C
:=

∑

i,j

εei,ej
⇒ϖi|ϖj→H =

(KL1)

∑

i,j

⇒ϖi|e†iej|ϖj→K ,

this map is also isometric and thus unitary. Its adjoint is then given by e|ϖ→ ∝↑ e↖ |ϖ→,
which is automatically well-defined. We can thus recover |ϖ→⇒ϖ| up to the positive scalar
E|ϑ↓(e†e) = ⇒ϖ|e†e|ϖ→K = ⇒e|e→

Ê
from

x = |e→⇒e|↖ |ϖ→⇒ϖ|

by taking partial trace:

Tr
Ê
(|e→⇒e|↖ |ϖ→⇒ϖ|) = ⇒e|e→

Ê
· |ϖ→⇒ϖ| = E|ϑ↓(e

†e) · |ϖ→⇒ϖ|.

The Knill-Laflamme conditions exactly capture when an error correction code C can
correct an error set E via an isometric recovery operator.

Definition 5.6.23 — Let C ⇑ H be a subspace and E ⇑ B(H,K) a subspace of error
operators. Consider the action map a : E↖C ↑ K given by e↖ |ϖ→ ∝↑ e|ϖ→. A recovery
operator is an isometry v : K ↑ L↖H for some ancillary Hilbert space L such that

TrA(ve|ϖ→⇒ϖ|e†v†) = E|ϑ↓(e
†e) · |ϖ→⇒ϖ| ⇐ |ϖ→ ↓ C. (5.6.24)

Remark 5.6.25. Observe that

d :=
1

E|ϑ↓(e†e)
ve|ϖ→⇒ϖ|e†v†

is a pure density matrix whose reduced density dC is again pure, i.e., SC(d) = 0. By
Propositions 5.5.2 and 5.5.15, it is necessarily the case that d is simply separable, i.e., there
is a pure ancillary state |⇀→ ↓ L such that

d = |⇀→⇒⇀|↖ |ϖ→⇒ϖ|.

This happens if and only if

ve|ϖ→ =

0


E|ϑ↓(e†e) · |⇀→

↖ |ϖ→

where 0 ↓ U(1).

Lemma 5.6.26 — Suppose x : C ↑ L↖C is injective and x|ϖ→ is of the form |⇀ϑ→↖ |ϖ→
for all |ϖ→ ↓ C. Then x = |⇀→ ↖ ↔ for a universal |⇀→ ↓ L independent of |ϖ→.
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Proof. If dim(C) = 1, the statement is obvious. Otherwise, choose two orthogonal states
|ϖ1→, |ϖ2→ ↓ C and write x|ϖi→ = |⇀i→ ↖ |ϖi→ for i = 1, 2. For |ϖ→ := |ϖ1→ + |ϖ2→, there is a
|⇀→ ↓ LA such that

|⇀→ ↖ |ϖ1→+ |⇀→ ↖ |ϖ2→ = |⇀→ ↖ |ϖ→ = x|ϖ→ = x(ς|ϖ1→+ φ|ϖ2→) = |⇀1→ ↖ |ϖ1→+ |⇀2→ ↖ |ϖ2→.
Applying the operators 1↖ ⇒ϖi| for i = 1, 2, we obtain |⇀1→ = |⇀→ = |⇀2→.

Theorem 5.6.27 — There is a recovery operator v for (E,C) if and only if (E,C)
satisfies the Knill-Laflamme conditions (KL1)-(KL3).

Proof. By Exercise 5.6.18 and Remark 5.6.25, whenever e is non-zero on C, the injective
operator

x := ve : C ↔↑ L↖ C

satisfies the hypotheses of Lemma 5.6.26 and is therefore of the form |⇀→ ↖↔ for some fixed
|⇀→ ↓ L. Thus for all states |ϖ1→, |ϖ2→ ↓ C, we have

⇒ϖ1|e†e|ϖ1→ = ⇒ϖ1|e†v†ve|ϖ1→ = ⇒⇀|⇀→ = ⇒ϖ2|e†v†ve|ϖ2→ = ⇒ϖ2|e†e|ϖ2→,
so (KL3) holds.

The other direction follows by Construction 5.6.22. Indeed, that construction gives a
unitary

K ▽ im(a)
â
†

↔↑ E ↖ C ⇑ L↖H.

We may augment E to an ancillary Hilbert space A and extend a† to an isometry v : K ↑
L ↖ H by arbitrarily defining v on im(a)⇓ ⇑ K isometrically into E⇓ ↖ H. Then since
ve|ϖ→ ↓ E ↖ C ⇑ L↖H, we still have

TrL(ve|ϖ→⇒ϖ|e†v†) = E|ϑ↓(e
†e) · |ϖ→⇒ϖ|

as desired.

5.7 Bell’s inequalities and the GHSZ paradox

We now pause for an interlude to explore how quantum information both predicts and con-
firms the failure of local realism. The notion of locality means that an observable can only
be a”ected by things nearby in spacetime. The notion of realism means that the universe
consists of real objects which exist whether or not we observe them. The notion of local real-
ism means that realism holds even at the local scale. Assuming local realism, we will derive
the CHSH inequality [CHSH69], which is a Bell inequality [Bel64]. Quantum information
theory predicts violations of the CHSH inequality, which have been experimentally observed
many times [FC72]. We then discuss the GHSZ paradox, which again precludes a hidden
variable theory, but this time without any inequalities [GHSZ90]. These results led to the
Nobel Prize in 2022 of Aspect, Clauser,2 and Zeilinger,3 showing local realism is simply false.

2the ‘C’ in ‘CHSH’
3the ‘Z’ in ‘GHSZ’
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Example 5.7.1 (CHSH inequality) — Alice and Bob repeat the following experiment.
They each control one half of a singlet state

|&↔→ = 1⇓
2
(|01→ ↔ |10→).

Alice measure her qubit in one of two bases, corresponding to observables A1, A2. Bob
measures his qubit in one of two bases, corresponding to observables B1, B2. The values
of A1, A2 and B1, B2 will always be ±1.

We now impose local realism, which in this situation is the belief that each indi-
vidual qubit has a real hidden value for either observable, a1, a2 and b1, b2 respectively,
independent of which observables are measured. We consider the random variable

r := (a1 + a2)b1 + (a2 ↔ a1)b2,

which always takes the value ±2, as only one of a1 + a2 and a1 ↔ a2 is non-zero.
A single outcome in this experiment is not important, but rather the expected value

over many repetitions. Since r ↓ {±2}, we must have E[r] ↓ [↔2, 2]. As a1, a2 and b1, b2
are outcomes of observables A1, A2 and B1, B2 respectively, we should have the CHSH
inequality :

↔2 ≃ E[A1B1] + E[A2B1] + E[A2B2]↔ E[A1B2] ≃ 2. (5.7.2)

However, setting A1 = X, A2 = Z, B1 = H :=
1⇓
2

(
1 1
1 ↔1

)
, and B2 = ZHZ violates

this inequality. Since

⇒&↔|A1 ↖B1|&↔→ = ↔ 1⇓
2

⇒&↔|A2 ↖B1|&↔→ = ↔ 1⇓
2

⇒&↔|A1 ↖B2|&↔→ = 1⇓
2

⇒&↔|A2 ↖B2|&↔→ = ↔ 1⇓
2
,

setting R = (A1 + A2)B1 + (A2 ↔ A1)B2, we have

E|”↑↓[R] = 4 · ↔1⇓
2
= ↔2

⇓
2 < ↔2,

contradicting (5.7.2).

The CHSH inequality above exploits mutually unbiased bases, which are pairs of ONBs
{|ei→} and {|fj→} of Cn satisfying

|⇒ei|fj→|2 =
1

n
⇐ i, j = 1, . . . , n.

Similarly, we say k ONBs of Cn are mutually unbiased if they are pairwise mutually unbiased.
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Exercise 5.7.3. How many mutually unbiased ONBs can you find in C
2?4

The GHSZ paradox provides, perhaps, an even more unsettling failure of local realism.
While the CHSH inequality shows the quantum world is quantitatively di”erent than the
classical world, the GHSZ inequality shows the quantum world is moreover qualitatively
di”erent.

Example 5.7.4 (GHSZ paradox [GHSZ90]) — Recall from Exercise 5.6.6 that the 3-qubit
GHSZ state

|GHSZ→ := 1⇓
2
(|000→+ |111→)

spans the code subspace of the stabilizer code

S = ⇒Z1Z2, X1X2X3, Z2Z3→.

One way to see this is to first observe that

{
Xa

1Y
b

2 Z
c

3|GHSZ→
∣∣ a, b, c ↓ {0, 1}



is an ONB which simultaneously diagonalizes Z1Z2, X1X2X3, and Z2Z3, and |GHSZ→
is the common +1 eigenspace for these three operators.

We now suppose that there are local hidden variables for Xi, Yj, Zk in {±1}, which
we label by xi, yj, zk respectively for i, j, k ↓ {1, 2, 3}. Then when measuring a Pauli
operator W in a state |ϖ→, the expectation ⇒ϖ|W |ϖ→ should equal the product of the
hidden variables. In particular, in any state |ϖ→, we should have

⇒ϖ|X1X2X3|ϖ→ = x1x2x3 ⇒ϖ|Y1Y2X3|ϖ→ = y1y2x3

⇒ϖ|Y1X2Y3|ϖ→ = y1x2y3 ⇒ϖ|X1Y2Y3|ϖ→ = x1y2y3

One now calculates the expectations of these operators in the GHSZ state:

⇒GHSZ|X1X2X3|GHSZ→ = 1 ⇒GHSZ|Y1Y2X3|GHSZ→ = ↔1

⇒GHSZ|Y1X2Y3|GHSZ→ = ↔1 ⇒GHSZ|X1Y2Y3|GHSZ→ = ↔1.

However, one quickly sees that the equations

x1x2x3 = 1 y1y2x3 = ↔1 y1x2y3 = ↔1 x1y2y3 = ↔1

4This is a famous open problem for C6!
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are inconsistent via a parity argument. Indeed, each of the variables x1, x2, x3, y1, y2, y3
appears twice on the left hand sides, so

↔1 = 1 ·↔1 ·↔1 ·↔1 = (x1x2x3)(y1y2x3)(y1x2y3)(x1y2y3) = x2
1x

2
2x

2
3y

2
1y

2
2y

2
3 = 1,

a contradiction.

Remark 5.7.5. The GHSZ state is more commonly called the GHZ state after the 4-qubit
example from [GHZ89], but the above 3-qubit example has the additional author Shimony5

who should not be omitted.

5.8 Mixed state error correction and Kraus operators

In §5.6, we saw exactly when we can perform error correction for a pure state in our quantum
system, and in doing so, we use an ancillary Hilbert space which is outside of the system. In
general, our quantum system will be subject to errors from the environment, and so processes
will appear to be noisy. Before we get further into it, we provide the following discussion.

“Hot Take” 5.8.1 — If we know all information about our quantum system, then our
state is always pure and not mixed. Moreover, time evolution is always unitary. Thus if
we consider the entire universe as a single quantum system, then we are in a single pure
state, and we are ‘along for the ride,’ evolving unitarily in time. You were always going
to read this paragraph; welcome to this moment.

So if time evolution is unitary why does the result of a quantum measurement appear
to be probabilistic? We only ever have partial information of our quantum system, so we
cannot possibly ‘know’ the entire pure state of the universe. Our best guess is the reduced
density obtained by tracing out the environment which we cannot observe.

As an explicit example, suppose |ϖ→ = |ϖ0→ is the state of the universe at time t = now,
HA is the Hilbert space of the quantum information we have access to, and HB is the rest
of the Hilbert space we do not have access to, so that the Hilbert space of the universe is
HA ↖HB. As we evolve unitarily in time via a 1-parameter family of unitaries ut, the state
at time now + t is given by

|ϖt→ = ut|ϖ0→.
We can then trace out HB by choosing an arbitrary ONB {|ei→} for HB, giving

dA(t) = TrA(|ϖt→⇒ϖt|) =
∑

i

(1A ↖ ⇒ei|)ut  
=:Ei(t)

|ϖ0→⇒ϖ0|ut(1A ↖ |ei→) =
∑

i

Ei(t)|ϖ0→⇒ϖ0|Ei(t)
†

We also observe that
∑

Ei(t)
†Ei(t) =

∑

i

u†
t(1A ↖ |ei→⇒ei|)ut = u†

t(1A ↖ 1B)ut = u†
tut = 1.

5the ‘S’ in both ‘CHSH’ and ‘GHSZ’

215



If we make the further (unreasonable) assumption that |ϖ0→ = |ϖA

0 → ↖ |ϖB

0 → is a product
state, then we may set Fi(t) := Ei(t)(1A ↖ |ϖB

0 →) to see that

dA(t) =
∑

i

Fi(t)|ϖA

0 →⇒ϖA

0 |Fi(t)
†

is a function of |ϖA

0 → alone. Again, we calculate
∑

i

Fi(t)
†Fi(t) = (1A ↖ ⇒ϖB

0 |)Ei(t)
†Ei(t)(1A ↖ |ϖB

0 →) = 1A ↖ ⇒ϖB

0 |ϖB

0 → = 1A.

The above discussion motivates the definition of a quantum channel as a ‘noisy’ quantum
operation. This ‘noise’ is emergent as our partial knowledge of our quantum system.

Definition 5.8.2 — A quantum channel is a completely positive trace-preserving
(CPTP) map % : B(H) ↑ B(K).

Physical processes in finite quantum mechanical systems are described by quantum chan-
nels. In the context of quantum information, quantum channels usually represent intentional
manipulations of quantum information as well as unintentional errors.

Example 5.8.3 (Kraus representation) — Suppose {E1, . . . , En} ⇑ B(H,K) such that∑
E†

i
Ei = 1H . Then the formula

%(x) =
∑

EjxE
†
j

defines a quantum channel. It is clearly completely positive as the sum of completely
positive maps by Example 2.6.4, and we calculate

Tr(%(x)) =
∑

TrK(EjxE
†
j
) =

∑
TrH(E

†
j
Ejx) = TrH(x).

The set of {Ei} is called a set of Kraus operators for %.

By the next result, all quantum channels admit Kraus representations. Such a represen-
tation is not unique, but we can interpolate isometrically between any two Kraus represen-
tations.

Lemma 5.8.4 — Every quantum channel % : B(H) ↑ B(K) admits a Kraus represen-
tation. Given any two sets of Kraus operators {E1, . . . , Em}, {F1, . . . , Fn} ⇑ B(H,K)
for %, there is a partial isometry V ↓ Mm↗n(B(K)) such that Ei =

∑
j
VijFj for all i

and Fj =
∑

i
V †
ij
Ei for all j.

Proof. Recall that % admits a Stinespring representation %(x) = v†↽(x)v where ↽ : B(H) ↑
B(H↖C

k) is the amplification ↽(x) = x↖1 and v : K ↑ H↖C
k. Since % is trace-preserving,

for all x ↓ B(H),

TrB(H)(x) = TrB(K)(%(x)) = TrB(K)(v
†↽(x)v) = TrB(H⇒Ck)(vv

†↽(x)) = TrB(H)(TrCk(vv†)x),
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which is the defining condition for the partial trace TrCk(vv†) = 1.
Now consider the standard ONB {|ei→} of Ck, and write 1Ck =

∑
|ei→⇒ei|. Graphically,

we can then write % as in Example 2.6.7 by

HH

KK

% =

K K

H H

C
k

C
k

v†v† =
∑

K K

H H

C
k

C
k

i i

v†v†Ei =:
∑

i

Ei ↖ Ei

where i represents |ei→ : C ↑ C
k and i represents ⇒ei| : C ↑ C

k

. One now verifies as in
Example 2.6.7 that %(x) =

∑
EixE

†
i
and

∑
E†

i
Ei =

H

H
C
k

C
k

i

i

vv† = TrCk(vv†) = 1.

For the final claim, the operator V := (EiF
†
j
) ↓ Mm↗n(B(K)) is such a partial isometry.

Remark 5.8.5. Observe that if the Kraus operators {Ei}ni=1 and {Fi}ni=1 are obtained from
choosing two distinct ONBs using the same Stinespring representation of %, then there is a
unitary matrix u ↓ Mn(C) such that Ei =

∑
j
uijFj for all i.

Exercise 5.8.6. Show that a linear map % : B(H) ↑ B(K) is a quantum channel if and
only if there is an ancillary Hilbert space L and an isometry v : H ↑ K ↖ L such that
%(x) = TrL(vxv†) for all x ↓ B(H). Then show that if w : H ↑ K ↖ L is another isometry
such that %(x) = TrL(wxw†), then vw† commutes with 1↖B(L) and thus lies in B(K)↖ 1.

Recall that a code subspace is a subspace C ⇑ H. We say that a density matrix d ↓
B(H) is supported on C if it is a convex combination of pure states |ϖ→⇒ϖ| where |ϖ→ ↓ C;
equivalently, in the spectral decomposition d =

∑
ϖ→spec(d) εpϖ, pϖH ̸ C for all non-zero

ε ↓ spec(d).

Definition 5.8.7 — Let % : B(H) ↑ B(K) be a ‘noisy’ quantum channel, and let
C ⇑ H be a code subspace. An error correction channel for (%, C) is a quantum channel
& : B(K) ↑ B(H) such that for all density matrices d supported on C, &(%(d)) = d,
equivalently, & ◦ % = id when restricted to pCB(H)pC ↙= B(C). (Indeed, all operators
in B(C) are linear combinations of pure densities.)

Remark 5.8.8. In contrast to Definition 5.6.23 of a recovery operator, note that there is
no mention of an ancillary Hilbert space in the definition of an error correction channel as
the composite of a quantum channel with the partial trace TrA is again a quantum channel.
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Example 5.8.9 — If (E,C) satisfy the Knill-Laflamme conditions (KL1)-(KL3), then
we get an error correction channel by &(x) := TrL(vxv†) where v : K ↑ L ↖ H is
a recovery operator as in Definition 5.6.23, which exists by Theorem 5.6.27. Indeed,
given any choice of Kraus operators E1, . . . , En ↓ E defining a noisy quantum channel
%(x) :=

∑
i
EixE

†
i
, whenever d = |ϖ→⇒ϖ| for |ϖ→ ↓ C,

&(%(|ϖ→⇒ϖ|)) =
∑

i

TrL(vEi|ϖ→⇒ϖ|E†
i
v†) =

(5.6.24)

∑

i

E|ϑ↓(E
†
i
Ei)|ϖ→⇒ϖ| = |ϖ→⇒ϖ|.

The result now follows by taking convex combinations of pure densities supported on C.

Lemma 5.8.10 — Suppose ’ : Mn(C) ↑ Mn(C) is a linear map such that for every
pure density d ↓ Mn(C), ’(d) is proportional to d. Then ’ is uniformly proportional
to idMn(C).

Proof. Since every operator in Mn(C) is a linear combination of pure densities (use that
every operator is a linear combination of 4 positive operators and the Spectral Theorem
1.7.9), it su!ces to prove that whenever 1 =

∑
pi is a decomposition of 1 into minimal

projections and εi ⇔ 0 such that ’(pi) = εipi, then all the εi are equal, say to ε. Indeed,
then

’(1) =
∑

’(pi) = nε
∑

pi = nε

implies that ε is independent of the choice of minimal projections pi, and so ’(p) = εp for
all minimal projections p.

Given our choice of 1 =
∑

pi, we may extend (pi) to a system of matrix units (eij) as in
Exercise 1.4.16 by choosing an ONB {|ei→} with pi = |ei→⇒ei|. Then for all i ′= j,

dij :=
1

2
(eii + eij + eji + ejj) and qij :=

1

2
(eii ↔ eij ↔ eji + ejj)

are both pure densities (projections with rank 1). Let µij, 1ij ⇔ 0 such that ’(dij) = µijdij
and ’(qij) = 1ijqij. Then since qij = ↔dij + pi + pj, we have

↔1ijdij + 1ijpi + 1ijpj = 1ijqij = %(qij) = %(↔dij + pi + pj) = ↔µijdij + εipi + εjpj.

As dij, pi, pj are linearly independent, we must have εi = 1ij = εj as desired.

The following exercise is the mixed state version of Lemma 5.6.26.

Exercise 5.8.11. Suppose % : B(C) ↑ B(L) ↖ B(C) is a completely positive map such
that for every (pure) density d ↓ B(C), TrL(%(d)) is proportional to d. Then % = xL ↖ ↔
for some fixed positive operator xL ↓ B(L). In particular, % ◦& is proportional to idB(C).
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Corollary 5.8.12 — Suppose (&, C) is an error correction channel for %(x) =
∑

i
EixE

†
i

where E = {E1, . . . , En} ⇑ B(H,K) is a set of Kraus operators. Then for each i =
1, . . . , n, the completely positive map ’i : B(C) ↑ B(H) given by x ∝↑ &(EixE

†
i
) is

proportional to idB(C).

Proof. Set εi := ⇒ϖ|E†
i
Ei|ϖ→, and observe that

∑
i
εi = 1. We calculate that whenever

εi ′= 0,
di := ε↔1

i
&(Ei|ϖ→⇒ϖ|E†

i
) ↓ B(C)

is a density matrix such that

∑
εidi =

∑
&(Ei|ϖ→⇒ϖ|E†

i
) = &(%(|ϖ→⇒ϖ|) = |ϖ→⇒ϖ|.

Since pure densities are extremal in the space of densities by Exercise 5.4.5, we conclude
that di = |ϖ→⇒ϖ| whenever εi ′= 0. Hence for all pure densities d ↓ B(C), we see that ’i(d)
is proportional to d. Applying Lemma 5.8.10, we see that ’i is proportional to idB(C).

Theorem 5.8.13 — Given a ‘noisy’ quantum channel %(x) =
∑

i
EixE

†
i
for a set of

Kraus operators E = {E1, . . . , En} ↓ B(H,K), the subspace C ⇑ H admits an error
correction channel if and only if (E,C) satisfy the Knill-Laflamme conditions (KL1)-
(KL3).

Proof. Suppose & is an error correction channel for (%, C). Then for all i = 1, . . . , n and
state vectors |ϖ→ ↓ C,

⇒ϖ|E†
i
Ei|ϖ→ = TrB(C)(&(Ei|ϖ→⇒ϖ|Ei)) = TrB(C)(’i(|ϖ→⇒ϖ|)) = TrB(C)(εi · |ϖ→⇒ϖ|) = εi

where εi is the scalar such that ’i = εi · idB(C) from Corollary 5.8.12. Clearly the above
calculation is independent of |ϖ→, and thus (KL3) holds.

The converse direction is Example 5.8.9.

5.9 Quantum circuits and quantum teleportation

So far, we have tried to stay away basis-dependent proofs and explanations. However, the
actual implementation of quantum protocols via quantum circuits is typically carried out in
the Z-computational basis on an n-qubits system Hn =


n
C

2.
A quantum circuit is a concatenation of various unitary operators on Hn, along with

measurements which turn qubits into classical bits in {0, 1}. Quantum circuits are usually
represented in the graphical calculus reading left-to-right instead of bottom-to-top, similar to
the conventions in computer science where methods are applied to objects in object oriented
programming, or functions are applied to inputs in functional programming. So to think
about a quantum circuit in the usual graphical calculus, just turn your head 90⇔ to the right.
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(Unfortunately, you will have to rotate the labels in the diagram as well.) Typically, each
qubit is represented by a horizontal line, and the initial state of each qubit is typically an
element of the Z-computational basis. More interesting states are then created via various
state preparation protocols.

Warning 5.9.1 — Operator order in a quantum circuit is reversed with respect to the
operator order of matrix multiplication. For example,

|0→ Z X means XZ|0→.

Unitary operators are called quantum gates or unitary gates, which can be applied to any
number of qubits we like. Given a generating set of quantum gates, the depth of a circuit
with respect to that generating set is the minimal number of simple tensors of generating
gates needed to form the circuit.

Notation 5.9.2 — We provide one of the most common generating sets used for quan-
tum circuits.

Name Graphical notation Operator

Identity 1

(
1 0
0 1

)

Pauli X X or ∈
(
0 1
1 0

)

Pauli Y Y

(
0 ↔i
i 0

)

Pauli Z Z

(
1 0
0 ↔1

)

Hadamard H H
1⇓
2

(
1 1
1 ↔1

)

Phase S S

(
1 0
0 i

)

Phase T T

(
1 0
0 exp(i↽/4)

)

CNOT or CX
X

or ∈





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




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CZ
Z

or





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ↔1





Swap or
∋
∋





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





In the above table, CM stands for the controlled M gate for an operator M ↓ M2(C),
which means that M is applied to the second qubit if and only if the first qubit is |1→ in
the Z-computational basis. That is, CM is a block diagonal matrix:

CM =
M

=

(
12

M

)
= pZ1=1 ↖ 1 + pZ1=↔1 ↖M.

In the Z-computational basis, this means

CM |ij→ =

|0j→ if i = 0

|1→ ↖M |j→ if i = 1.

Example 5.9.3 (Bell state preparation protocol) — We now give a state preparation
protocol for the Bell basis states |φij→ from Example 5.2.12. Starting with |ij→, we get
|φij→ by the depth 2 quantum circuit

|φij→ =
|i→
|j→

H

∈
.

Observe that |φij→ = (Cij ↖ 1)|φ00→ where Cij is the correction factor

ij Cij

00 I2
01 X
10 Z
11 ZX

Thus if we start only with the initial state |00→, then we may prepare |φij→ with the
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depth ≃ 3 quantum circuit

|φij→ =
|0→
|0→

H Cij

∈
.

Example 5.9.4 (Quantum teleportation protocol [BBC+93]) — If Alice and Bob share
an entangled 2-qubit state, then Alice may send a third qubit |ϖ→ directly to Bob only
communicating 2 classical bits, which do not reveal the state |ϖ→.

|φ00→


|ϖ→

|ϖ→

Alice’s qubits

Bob’s qubit

j

i

H

∈

Cij

(5.9.5)

In the protocol above, Alice and Bob share the Bell state |φ00→, but this is not essential.
Observe that Alice applies the Bell state preparation protocol in reverse, and then mea-
sures both qubits. When she measures the values ij for her qubits, Alice has e”ectively
applied the bra/functional

2 · ⇒φij| = 2 · ⇒φ00|(C†
ij
↖ 1),

which includes the normalization factor to account for the fact that after the projective
measurement, the 3-qubit state must have norm 1. (Exercise: work out this normal-
ization factor!) This means that the above protocol can e”ectively be written in the
graphical calculus as

|ϖ→ |φ00→

C†
ij

Cij

2⇒φ00|

=

|ϖ→

|φ00→

C†
ij

Cij

2⇒φ00|
1C2

=

|ϖ→

C†
ij

Cij

= |ϖ→. (5.9.6)

One sees that dashed rectangle above is the operator 1C2 by expaning 1C2 = |0→⇒0|+|1→⇒1|.

Exercise 5.9.7. Adapt the above protocol to the setting where Alice and Bob share one of
the other Bell basis states.
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Remark 5.9.8. Some researchers like to make a comparison between the quantum tele-
portation protocol and the zig-zag/snake axiom for ev and coev for C

2. This comparison

necessitates identifying C
2
with C

2 via a choice of ONB. Since quantum circuits favor working
in the Z-computational basis, there is a preferred choice of basis, even if it is not canonical.

Exercise 5.9.9. Using the isomorphism C
2 ↙= C

2 via the linear map ⇒j| ∝↑ |j→, quantify
how the dashed rectangle in (5.9.6) relates to the zig-zag/snake axiom.

Exercise 5.9.10. Show that (12 ↖ Cij)|φ00→ = (C†
ij
↖ 12)|φ00→. Use this fact to cancel the

Cij in (5.9.6) before using the zig-zag/snake axiom.

For more applications of the material in this chapter to quantum information theory, we
suggest the reader look into the superdense coding protocol and quantum key distribution,
especially the BB84 and E91 protocols.
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