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Introduction

These notes are designed to be a self contained treatment of linear algebra. The author
assumes the reader has taken an elementary course in matrix theory and is well versed with
matrices and Gaussian elimination. It is my intention that each time a definition is given,
there will be at least two examples given. Most times, the examples will be presented without
proof that they are, in fact, examples, and it will be left to the reader to verify that the
examples set forth are examples.






Chapter 1

Background Material

1.1 Sets

Throughout these notes, sets will be denoted with curly brackets or letters. A verti-
cal bar in the middle of the curly brackets will mean “such that.” For example, N =
{1,2,3,...} is the set of natural numbers, Z = {0,1,—1,2,—2,...} is the set of integers,
Q= {p/q}p, q €7 and q # 0} is the set of rational numbers, R is the set of real numbers
(which we will not define), and C =R + iR = {z + z‘y}x, y € R} where i* 4+ 1 = 0 is the set
of complex numbers. If z = x + iy is in C where x,y are in R, then its complex conjugate is
the number Z = x — ¢y. The modulus, or absolute value, of z is

lz| = V2?2 +y?2 = Vzz.

Definition 1.1.1. To say x is an element of the set X, we write x € X. We say X is a
subset of Y, denoted X C Y, if z € X = x € Y (the double arrow = means “implies”).
Sets X and Y are equal if both X C YV and Y C X. If X C Y and we want to emphasize
that X and Y may be equal, we will write X C Y. If X and Y are sets, we write

1) XUY:{a:’:UEX or z €Y},
2 XﬂYZ{J?’iL‘EX anda:EY},
3) X\Y ={zeX|z¢Y}, and

4) X xY ={(z,y)|r € X and y € Y}. X xY is called the (Cartesian) product of X and
Y.

There is a set with no elements in it, and it is denoted () or {}. A subset X C Y is called
proper if Y\ X # (), i.e., thereisay e Y \ X.

(
(
(
(

Remark 1.1.2. Note that sets can contain other sets. For example, {N,Z,Q, R, C} is a set.
In particular, there is a difference between {0} and (). The first is the set containing the
empty set. The second is the empty set. There is something in the first set, namely the
empty set, so it is not empty.



Examples 1.1.3.

(1) NUZ=Z,NNZ=N,and Z\N={0,-1,-2,...}.

(2) UX=X,0NnX=0,X\X=0,and X\ 0 =X for all sets X.
(3) R\ Q is the set of irrational numbers.

(4) RxR=R?={(z,y)|z,y € R}.

Definition 1.1.4. If X is a set, then the power set of X, denoted P(X), is {S|S C X }.

Examples 1.1.5.
(1) If X =0, then P(X) = {0}.
(2) If X = {z}, then P(X) = {0, {z}}.
(3) If X = {w,y}, then P(X) = {0, {z}, {y}, {o,y}}.

Exercises

Exercise 1.1.6. A relation on a set X is a subset R of X x X. We usually write 2Ry if
(z,y) € R. The relation R is called

(i) reflexive if 2R« for all z € X,

(ii) symmetric if Ry implies yRz for all x,y € X,

(iii) antisymmetric if 2Ry and yRz implies z = y, and

(iv) transitive if Ry and yRz implies 2R z.

(v) skew-symmetric if Ry and zRz implies yRz for all z,y,z € X.

Find the following examples of a relation R on a set X:

1. X and R such that R is transitive, but not symmetric, antisymmetric, or reflexive.
2. X and R such that R is reflexive, symmetric, and transitive, but not antisymmetric,

3. X and R such that R is reflexive, antisymmetric, and transitive, but not symmetric,
and

4. X and R such that R is reflexive, symmetric, antisymmetric, and transitive.

Exercise 1.1.7. Show that a reflexive relation R on X is symmetric and transitive if and
only if R is skew-transitive.



1.2 Functions

Definition 1.2.1. A function (or map) f from the set X to the set Y, denoted f: X — Y,
is a rule that associates to each x € X a unique y € Y, denoted f(z). The sets X and Y are
called the domain and codomain of f respectively. The function f is called

(1) injective (or one-to-one) if f(x) = f(y) implies x = y,

(2) surjective (or onto) if for all y € Y there is an x € X such that f(z) =y, and

(3) bijective if f is both injective and surjective.

To say the element € X maps to the element y € Y via f, i.e. f(z) = y, we sometimes
write f: x +— y or x +— y when f is understood. The image, or range, of f, denoted im(f)
or f(X), is {y € Y| there is an = € X with f(z) = y}. Another way of saying that f is
surjective is that im(f) =Y. The graph of f is the set {(x,y) € X x Y‘y = f(w)}
Examples 1.2.2.

(1) The natural inclusion N — Z is injective.

(2) The absolute value function Z — N U {0} is surjective.

(3) Neither of the first two is bijective. The map N — Z given by 1 +— 0, 2 +— 1, 3 — —1,
4+ 2, 5+— —2 and so forth is bijective.

Definition 1.2.3. Suppose f: X — Y and g: Y — Z. The composite of g with f, denoted
go f,is the function X — Z given by (go f)(z) = g(f(x)).

Examples 1.2.4.

(1)

(2)

Proposition 1.2.5. Suppose f: X - Y and g: Y — Z.
(1) If f,qg are injective, then so is go f.

(2) If f,q are surjective, then so is go f.

Proof. Exercise. O
Proposition 1.2.6. Function composition is associative.
Proof. Exercise. O]

Definition 1.2.7. Let f: X — Y, and let W C X. Then the restriction of f to W, denoted
flw: W — Y, is the function given by f|w(w) = f(w) for all w € W.

Examples 1.2.8.
(1)
(2)



Proposition 1.2.9. Let f: X — Y.

(1) f is injective if and only if it has a left inverse, i.e. a function g: Y — X such that
go f =idy, the identity on X.

(2) f is surjective if and only if it has a right inverse, i.e. a function g: Y — X such that
fog=idy.

Proof.

(1) Suppose f is injective. Then for each y € im(f), there is a unique = with f(z) = y. Pick
xp € X, and define a function g: ¥ — X as follows:

To else.

It is immediate that go f = id;. Suppose now that there is a g such that go f =idx. Then
if f(x1) = f(x2), applying g to the equation yields ;7 = go f(x1) = go f(xs) = x9, so f is
injective.

(2) Suppose f is surjective. Then the sets I, = {a: € X‘f(a:) = y} are nonempty for each
y € Y. By the axiom of choice, we may choose a representative x, € I, for each y € Y.
Construct a function g: Y — X by setting g(y) = x,. It is immediate that f o g = idy.
Suppose now that f has a right inverse g. Then if y € Y, we have that f o g(y) = v, so
y € im(f) and f is surjective. O

Remark 1.2.10. The axiom of choice is formulated as follows:
Let X be a collection of nonempty sets. A choice function f is a function such that for
every S € X, f(S) € S.

Axiom of Choice: There exists a choice function f on X if X is a set of nonempty sets.
Note that in the proof of 1.2.9 (2), our collection of nonempty sets is {Iy|y € Y}, and
our choice function is I, — .

We give a corollary whose proof uses a uniqueness technique found frequently in mathe-
matics.

Corollary 1.2.11. f: X — Y is bijective if and only if it admits an inverse g: Y — X
such that f og=1idy and go f = idx.

Proof. 1t is clear by 1.2.9 that if an inverse exists, f is bijective as it admits both a left and
right inverse. Suppose now that f is bijective. Then by the preceding proposition, there is
a left inverse g and a right inverse h. We then see that

g=goidy =go(foh)=(gof)oh=idyxoh=h,

so g = h is an inverse of f. Note that this direction uses the axiom of choice as it was used
in 1.2.9. To prove this fact without the axiom of choice, we define g: Y — X by ¢g(y) = =
if f(z) =y. As the sets I, as in the proof of 1.2.9 each only have one element in them, the
axiom of choice is unnecessary. O

10



Remarks 1.2.12.
(1) The proof of 1.2.11 also shows that if f admits an inverse, then it is unique.

(2) Note that we used the associativity of composition of functions in the proof of 1.2.11.

Definition 1.2.13. For n € N, let [n] = {1,2,...,n}. The set X
1) has n elements if there exists a bijection [n] — A,
2) is finite if there is a surjection [n] — X for some n € N,

3) is infinite if there is an injection N — X (equivalently if X is not finite),

)
6

(1)

(2)

(3)

(4) is countable if there is a surjection N — X
(5) is denumerable if there is a bijection N — X
(6)

is uncountable if X is not countable.

Examples 1.2.14.
(1) [n] has n elements and N is denumerable.
(2) Q is countable, and R is uncountable.
(3) [n] is countable, but not denumerable.
(4) If X has n elements, then P(X) has 2" elements.

Definition 1.2.15. If A is a finite set, then |A| € N is the number n such that A has n
elements.

Exercises

Exercise 1.2.16. Prove 1.2.5.

Exercise 1.2.17. Show that Q is countable.
Hint: Find a surjection Z* \ Z x {0} — Q, and construct a surjection N — Z> \ Z x {0}.
Then use 1.2.5.

1.3 Fields
Definition 1.3.1. A binary operation on a set X is a function #: X x X — X given by
(x,y) — x#y. A binary operation #: X x X — X is called

(1) associative if x#(y#z) = (x#y)#z for all z,y,z € X, and

(2) commutative if z#y = y#z for all z,y € X.

Examples 1.3.2.

(1) Addition and multiplication on Z,Q, R, C are associative and commutative binary oper-
ations.

11



(2) The cross product x: R? x R?* — R? is not commutative or associative.

Definition 1.3.3. A field (I, +, -) is a triple consisting of a set I and two binary operations
+ and - on [ called addition and multiplication respectively such that the following axioms
are satisfied:

(F1) additive associativity: (a +b) +c=a+ (b+c) for all a,b, c € F;
(F2) additive identity: there exists 0 € F such that a+0=a =0+ a for all a € F;

(F3) additive inverse: for each a € F, there exists an element b € F such that a +b =0 =
b+ a;
F4) additive commutativity: a +b = b+ a for all a,b € T,

F5) distributivity: a-(b+c¢)=a-b+a-cand (a+b)-c=a-c+0b-cforall a,b,ceTF,;

F7) multiplicative identity: there exists 1 € F\ {0} such that a-1=a=1-a for all a € F;

(F4)
(F5)
(F6) multiplicative associativity: (a-b)-c=a- (b-c) for all a,b,c € F;
(F7)
(F8)

multiplicative inverse: for each a € F\ {0}, there exists b € F \ {0} such that a-b =
1=0-a;

(F9) multiplicative commutativity: a-b=b-a for all a,b € F.

Examples 1.3.4.
(1) Q,R,C are fields.

(2) Q(v/n) = {z +yy/n|z,y € Q} is a field.

Remark 1.3.5. These axioms are also used in defining the following algebraic structures:

AXIOMS NAME AXIOMS NAME

(F1) semigroup (F1)-(F5) nonassociative ring

(F1)-(F2) monoid (F1)-(F6) ring

(F1)-(F3) group (F1)-(F7) ring with unity

(F1)-(F4) abelian group (F1)-(F8) division ring
(F1)-(F9) field

Remarks 1.3.6.
(1) The additive inverse of a € F in (F3) is usually denoted —a.
(2) The multiplicative inverse of a € F \ {0} in (F8) is usually denoted a™! or 1/a.
(3) For simplicity, we will often denote the field by F instead of (F,+,-).

Definition 1.3.7. Let F be a field. A subfield K C F is a subset such that +|xxx and -|xxx
are well defined binary operations on K, (K, +|kxxk, -|kxx) is a field, and the multiplicative
identity of K is the the multiplicative identity of F.

12



Examples 1.3.8.
(1) Q is a subfield of R and R is a subfield of C.
(2) Q(v/2) is a subfield of R.
(3) The irrational numbers R \ Q do not form a subfield of R.

Finite Fields

Theorem 1.3.9 (Euclidean Algorithm). Suppose x € Z>o andn € N. Then there are unique
k,r € Z>o with r <n such that x = kn +r.

Proof. There is a smallest k € Zxq such that kn < x. Set r = x — kn. Then r < n and
x = kn +r. It is obvious that k,r are unique. O

Definition 1.3.10. For x € Z>, and n € N, we define
r modn=r

if £ =kn+r with r < n.

Examples 1.3.11.

(1)

(2)

Definition 1.3.12.

(1) For z,y € Z, we say x divides y, denoted x|y, if there is a k € Z such that x = ky.

(2) For z,y € N, the greatest common divisor, denoted ged(x, y), is the largest number k € N
such that k|z and kl|y.

(3) We call x,y € N relatively prime if ged(z,y) = 1.
(4) A number p € N\ {1} is called prime if ged(p,n) =1 for all n € [p — 1].

Proposition 1.3.13. z,y € N are relatively prime if and only if there are r,s € Z such that
re+ sy = 1.

Proof. Now if ged(x,y) = k, then k|(rz + sy) for all r,s € Z, so existence of r, s € Z such
that rz + sy = 1 implies ged(z,y) = 1.

Now suppose ged(z,y) = 1. Let S = {SIE +ty € Nis,t € Z}. Then S has a smallest
element n = sx + ty for some s,t € Z. By the Euclidean Algorithm 1.3.9, there are unique
k,r € Z>o, with r < n such that = kn + r. But then

r=x—kn=ux—k(sx+ty)=(1—ks)x+ (—kt)y € S.

But r < n, sor =0, and x = kn. Similarly, we have an [ € Z>( such that y = In. Hence
n|x and nly, son = 1. O

13



Definition 1.3.14. For n € N\ {1}, we define Z/n = {0,1,...,n— 1}, and we define binary
operations # and x on Z/n by

x#y=(r+y) modn and z*y = (zy) mod n.
Proposition 1.3.15. (Z/n,#,x) is a field if and only if n is prime.

Proof. First note that Z/n has additive inverses as the additive inverse of x € Z/n is n — .
It then follows that Z/n is a commutative ring with unit (one must check that addition and
multiplication are compatible with the operation  +— z mod n). Thus Z/n is a field if
and only if it has multiplicative inverses. We claim that = € Z/n \ {0} has a multiplicative
inverse if and only if ged(z,n) = 1, which will immediately imply the result.

Suppose ged(z,n) = 1. By 1.3.13, we have r, s € N with rz + sn = 1. Hence

(r modn)*xz=(rr) modn=(rr+sn) modn=1 modn=1,

so x has a multiplicative inverse.
Now suppose = has a multiplicative inverse y. Then

(xy) modn =1,

so there is an k € Z such that 2y = kn + 1. Thus zy + (—k)n = 1, and ged(z,n) = 1 by
1.3.13. [

Exercises

Exercise 1.3.16 (Fields). Show that Q(v2) = {a + bv/2|a,b € Q} is a field where addition
and multiplication are the restriction of addition and multiplication in R.

Exercise 1.3.17. Construct an addition and multiplication table for Z/2, Z/3, and Z /5 and
deduce they are fields from the tables.

1.4 Matrices

This section is assumed to be prerequisite knowledge for the student, and definitions in this
section will be given without examples, and all results will be stated without proof. For this
section, F is a field.

Definition 1.4.1. An m x n matrix A over F is a function A: [m] x [n] — F. Usually, A
is denoted by an m x n array of elements of F, and the 4, ;™ entry, denoted A4, ;, is A(i, j)
where (7,7) € [m] x [n]. The set of all m x n matrices over F is denoted M,,.,(F), and we
will write M, (F) = M, x,(FF). The i*" row of the matrix A is the 1 x n matrix Aliyxn), and
the j™ row is the m x 1 matrix A|j,x(;;. The identity matrix I € M, (F) is the matrix given
by
0 ifi#j
Y ifdi=g

14



Definition 1.4.2.
(1) If A, B € My« (F), then A+ B is the matrix in M,,x, (F) given by (A+B);; = Ai j+ B, ;.
(2) f A€ Myxn(F) and X € F, then NA € M,,«,,(F) is the matrix given by (AA);; = A\A, ;.
(3) If A€ Myun(F) and B € M, ,(F), then AB € M,,x,(F) is the matrix given by

(AB),; = Z A 1By,
k=1

(4) If A€ Myn(F) and B € My, p(IF), then [A|B] € M, (nip)(IF) is the matrix given by

[AlBli,; = {B !
i,j—n else.

Remark 1.4.3. Note that matrix addition and multiplication are associative.

Proposition 1.4.4. The identity matriz I € M,(F) is the unique matriz in M,(F) such
that AI = A for all A € M, yn(F) for allm € N and IB = B for all B € M,x,(F) for all
p e N.

Proof. 1t is clear that Al = A for all A € M,,»,(F) for all m € N and IB = B for all
B € M, ,(F) for all p € N. If J € M, (F) is another such matrix, then J =1J = I. O

Definition 1.4.5. A matrix A € M, (FF) is invertible if there is a matrix B € M, (F) such
that AB= BA=1.

Proposition 1.4.6. If A € M, (F) is invertible, then the inverse is unique.
Remark 1.4.7. In this case, the unique inverse of A is usually denoted A~

Definition 1.4.8.

(1) The transpose of the matrix A € M,,x,(F) is the matrix AT € M, ., (F) given by (A7), ; =
Aj,i.

(2) The adjoint of the matrix A € M,,«,,(C) is the matrix A* € M, ,,(C) given by (A*);; =
A

Jit+

Proposition 1.4.9.

(1) If A, B € Myxn(F) and X\ € F, then (A+AB)" = A" + AB". IfF = C, then (A+\B)* =
A* + \B*.

(2) If A € Myyn(F) and B € My (F), then (AB)" = BTA”. IfF = C, then (AB)* = B*A*.
(3) If A € M,(F) is invertible, then AT is invertible, and (AT)™' = (A™Y)T. IfF = C, then
A* is invertible, and (A*)™! = (A71)*.

Definition 1.4.10. Let A € M, (F). We call A

15



(1) upper triangular if ¢ > j implies A; ; = 0,

(2) lower triangular if AT is upper triangular, i.e. j > i implies 4;; = 0, and

(3) diagonal if A is both upper and lower triangular, i.e. ¢ # j implies A, ; = 0.
Definition 1.4.11. Let A € M, (F). We call A

(1) block upper triangular if there are square matrices Ay, ..., A,, with m > 2 such that

Al *

0 Am
where the * denotes entries in F.

(2) block lower triangular if AT is block upper triangular, and

(3) block diagonal if A is both block upper triangular and block lower triangular.

Definition 1.4.12. Matrices A, B € M, (F) are similar, denoted A ~ B, if there is an
invertible S € M, (F) such that S~'AS = B.

Exercises

Let F be a field.

Exercise 1.4.13. Show that similarity gives a relation on M, (F) that is reflexive, symmetric,
and transitive (see 1.1.6).

Exercise 1.4.14. Prove 1.4.9.

1.5 Systems of Linear Equations

This section is assumed to be prerequisite knowledge for the student, and definitions in this
section will be given without examples, and all results will be stated without proof. For this
section, F is a field.

Definition 1.5.1.

(1) An F-linear equation, or a linear equation over F, is an equation of the form
Z)\iazi =\Nx1+ -+ A\, = p where Ay, ... A\, u €.
i=1

The x;’s are called the variables, and J\; is called the coefficient of the variable z;. An [F-linear
equation is completely determined by a matrix

A=A - M) € My (F)

and a number y € F. In this sense, we can give an equivalent definition of an F-linear
equation as a pair (A, u) with A € M4, (F) and a p € F.

16



(2) A solution of the F-linear equation
i=1

is an element
(ri,...,mp) EF*=Fx.--- xF
—_——
n copies

such that .
> Ari =M A =
i=1

Equivalently, a solution to the F-linear equation (A, ) is an x € M,,«1(F) such that Az = pu.

(3) A system of F-linear equations is a finite number m of F-linear equations:

Z ALiTi = AaZy - ATy =
i=1

Z Am,ixi - /\m,lxl +-+ /\m,nxn = HUn
=1

where \; ; € IF for all 7, j. Equivalently, a system of F-linear equations is a pair (A,y) where

(4) A solution to the system of F-linear equations

Z ALiTi = A%+ ATy =

=1

Z Am,ixi = Am,lxl +-+ Am,nwn = Hn

i=1

is an element (rq,...,7,) € F" such that

Z ALiTi = A+ F A =
i=1

Z /\m,iri = )\m,lrl + -+ )\m,n'rn = HUn-
=1

Equivalently, a solution to the system of F-linear equations (A,y) is an @ € M, (F) such
that Az = .

17



Definition 1.5.2.

(1) An elementary row operation on a matrix A € M,,x,(IF) is performed by
(i) doing nothing,

) switching two rows,

(iii) multiplying one row by a constant A € F, or
)

replacing the i*" row with the sum of the i*" row and a scalar (constant) multiple of
another row.

(2) An n x n elementary matrix is a matrix obtained from the identity matrix I € M, (F) by
performing not more than one elementary row operation.

(3) Matrices A, B € M,,x,(F) are row equivalent if there are elementary matrices F, ..., E,
such that A =FE,, --- E\B.

Remark 1.5.3. Elementary row operations are invertible, i.e. every elementary row operation
can be undone by another elementary row operation.

Proposition 1.5.4. Performing an elementary row operation on a matric A € My,«n(F) is
equivalent to multiplying A by the elementary matrix obtained by doing the same elementary
row operation to the identity.

Corollary 1.5.5. Elementary matrices are invertible.

Proposition 1.5.6. Suppose A € M, (F). Then A is invertible if and only if A is row
equivalent to I.

Definition 1.5.7. A pivot of the i*® row of the matrix A € M,,»,(F) is the first nonzero
entry in the i** row. If there is no such entry, then the row has no pivots.

Definition 1.5.8. Let A € M,,,(F).

(1) A is said to be in row echelon form if the pivot in the (i + 1)™ row (if it exists) is in a
column strictly to the right of the pivot in the i row (if it exists) for i = 1,...,n — 1, i.e.
if the pivot of the i row is A;; and the pivot of the (i + 1)™ row is A(i1)x, then k > j.

(2) A is said to be in reduced row echelon form, or is said to be row reduced, if A is in row
echelon form, all pivots of A are equal to 1, and all entries that occur above a pivot are
Z€eToes.

Theorem 1.5.9 (Gaussian Elimination Algorithm). Every matriz over F is row equivalent
to a matrix in row echelon form, and every matrix over F is row equivalent to a unique
matrix in reduced row echelon form.

Theorem 1.5.10. Suppose A € Myxn(F). The system of F-linear equations (A,y) has a
solution if and only if the augmented matriz [Aly] can be row reduced so that no pivot occurs
in the (n + 1) column. The solution is unique if and only if A can be row reduced to the
identity matriz.

18



Exercises

Let [ be a field.
Exercise 1.5.11. Prove 1.5.5.

Exercise 1.5.12. Prove 1.5.9.

Exercise 1.5.13. Prove 1.5.10.

Exercise 1.5.14. Prove 1.5.6.
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Chapter 2

Vector Spaces

The objects that we will study this semester are vector spaces. The main theorem in this
chapter is that vector spaces over a field I are classified by their dimension. In this chapter
F will denote a field.

2.1 Definition

Definition 2.1.1. A vector space consists of
(1) a scalar field F;
(2) aset V, whose elements are called vectors;

(3) a binary operation + called vector addition on V' such that
(V1) addition is associative, i.e. u+ (v +w) = (u+v) +w for all u,v,w €V,

(V2) addition is commutative, i.e. u+ v =v 4 u for all u,v € V

(V3) wvector additive identity: there is a vector 0 € V' such that 04+ v = v for all v € V, and

(V4) wector additive inverse: for each v € V| there is a —v € V such that v + (—v) = 0;

(4) and amap -: F x V — V given by (A,v) — X - v called a scalar multiplication such that
(V5) scalar unit: 1-x = x for all v € V and

(V6) scalar associativity: A - (p-v) = (Ap)-v for all v € V and A, pu € TF;

such that the distributive properties hold:
(V) M- (u4+v)=A-u)+ (X-v) forall A € F and u,v € V and
(V&) A+ pu)-v=N-v)+(u-v)forall \,py € Fand v e V.

Examples 2.1.2.
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(1) (F,+,-) is a vector space over I where 0 is the additive identity and —z is the additive
inverse of z € F.

(2) Let M,,xn(F) denote the m x n matrices over F. (M, «x(F),+,-) is a vector space where
+ is addition of matrices and - is the usual scalar multiplication; if A = (4;;), B = (Byj) €
Man(F) and A\ € F, then (A + B)U = Az’j + Bij and (/\A>zy = )\AU

(3) Note that F" = M, (FF) is a vector space over F.
(4) Let K C F be a subfield. Then F is a vector space over K.

(5) F(X,F) = {f: X — F} is a vector space over F with pointwise addition and scalar
multiplication:

(A +9)(x) = Af(7) + g(2).

(6) C(X,F), the set of continuous functions from X C F to F is a vector space over F. We
will write C'(a,b) = C((a,b),R), and similarly for closed or half-open intervals.

(7) C'(a,b), the set of R-valued, continuously differentiable functions on the interval (a,b) C
R is a vector space over R. This example can be generalized to C"(a,b), the n-times contin-
uously differentiable functions on (a, b), and C*°(a, b), the infinitely differentiable functions.

Now that we know what a vector space is, we begin to develop the necessary tools to
prove that vector spaces over [ are classified by their dimension. From this point on, let
(V,+,) be a vector space over the field F.

Definition 2.1.3. Let (V, +,-) be a vector space over F. Then W C V' is a vector subspace
(or subspace) if +|w«w is an addition on W (W is closed under addition), |pxw is a scalar
multiplication on W (W is closed under scalar multiplication), and (W, +|wxw, - |[rxw) is a
vector space over F. A subspace W C V is called proper if W #£ V.

Examples 2.1.4.

(1) Every vector space has a zero subspace (0) consisting of the vector 0. Also, if V is a
vector space, V' is a subspace of V.

(2) R? is not a subspace of R3. R? is not even a subset of R®. There are subspaces of R?
which look exactly like R?. We will explain what this means when we discuss the concept of
isomorphism of vector spaces.

(3) If A € M,,«n(F) is an m x n matrix, then NS(A) C R" is the subspace consisting of all
x € R" such that Az = 0.

(4) C™(a,b) is a subspace of C(a,b) for all n € NU {oc}.
(5) C(a,b) is a subspace of F((a,b),R).

Proposition 2.1.5. A subset W C V' is a subspace if it is closed under addition and scalar
multiplication, i.e. Au +v € W for all u,v € W and X € F.
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Proof. 1t W is closed under addition and scalar multiplication, then clearly a|y «w and s|p.pw
will satisfy the distributive property. It remains to check that W has additive inverses and W
has 0. Since —1 € [F, we have that if w € W, —1-w € W. It is an easy exercise to check that

—1-w = —w, the additive inverse of w. Now since w, —w € W, we have w+ (—w) =0 € W,
and we are finished. m
Exercises

V' will denote a vector space over F. When confusion can arise, 0y, will denote the additive
identity of V', and O will denote the additive identity of F.

Exercise 2.1.6. Show that (R.o,#,*) is a vector space over R where x#y = zy is the
addition and r x z = 2" is the scalar multiplication.

Exercise 2.1.7.

Show that if V' is a vector space over I, then the additive identity is unique. Show if v € V|
then the additive inverse of v is unique.

Exercise 2.1.8. Let A € F. Show that A -0y = Oy.

Exercise 2.1.9. Let v € V and A € F\ {0}. Show that A -v = 0 implies v = 0.
Exercise 2.1.10. Let v € V. Show that O - v = Oy

Exercise 2.1.11. Let v € V. Show that (—1) - v = —v, the additive inverse of v.

Exercise 2.1.12 (Complexification). Let (V,+, ) be a vector space over R. Let Vo =V xV,
and define functions 4+: Vg x Ve — Ve and -: C x Ve — V¢ by

(ug,v1) + (ug, v2) = (ug + ug, vy + v2) and (x + 1y) - (ug,v1) = (xuy — Yo1, Yyus + Tv7).
(1) Show (Vg¢,+,-) is a vector space over C called the complexification of the real vector space
V.
(2) Show that (0,v) =i(v,0) for all v € V.

Note: This implies that we can think of V' C Vi as all vectors of the form (v,0), and we can
write (u,v) = u + iv. Addition and scalar multiplication can then be rewritten in the naive
way as

(ug+ivy) + (ug+ive) = (ug+ug)+i(vy+vg) and (x+1y)-(uy+ivy) = zuy —yv; +i(yus +xvy).

For w = u+iv € Vg, the real part of u+iv € Vi is Re(w) = u € V, the imaginary part is
Im(v) =v €V, and the conjugate is W = u — iv € V.

(3) Show that u; + iv; = uy + ivy if and only if u; = uy and v; = vy. Hence, two vectors are
equal if and only if their real and imaginary parts are equal.

(4) Find (R")c and (Myxn(R))c.
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Hint: Use the identification Vz = V + ¢V described in the note.
Exercise 2.1.13 (Quotient Spaces). Let W C V be a subspace. For v € V| define
v+ W = {v+w’w€ W}
v+ W is called a coset of W. Let V/W = {v + W‘v € V}, the set of cosets of W.

(1) Show that w+ W = v+ W if and only if u —v € W.

(2) Define an addition # and a scalar multiplication x on V/W so that (V/W, #, %) is a vector
space.

2.2 Linear Combinations, Span, and (Internal) Direct

Sum
Definition 2.2.1. Let vy,...,v, € V. A linear combination of vy, ..., v, is a vector of the
form .
v = Z )\ivi
i=1
where \; € F for all e = 1,...,n. It is convention that the empty linear combination is equal

to zero (i.e. the sum of no vectors is zero).

Definition 2.2.2. Let S C V be a subset. Then
span(S) = ﬂ {W‘W is a subspace of V with S C W} .

Examples 2.2.3.

(1) If A € Mp,«n(F) is a matrix, then the row space of A is the subspace of R" spanned by
the rows of A and the column space of A is the subspace of R™ spanned by the columns of
A. These subspaces are denoted RS(A) and C'S(A) respectively.

(2) span(()) = (0), the zero subspace.
Remarks 2.2.4. Suppose S C V.

(1) span(S) is the smallest subspace of V' containing S, i.e. if W is a subspace containing S,
then span(S) C W.

(2) Since span(S) is closed under addition and scalar multiplication, we have that all (finite)
linear combinations of elements of S are contained in span(S). As the set of all linear
combinations of elements of S forms a subspace, we have that

span(S) = {Z A\iV;

i=1

n € Zso, N\ €F, viGSforallizl,...,n}.

Note that this still makes sense for S = () as span(.S) contains the empty linear combination,
zZero.
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Definition 2.2.5. If V is a vector space and Wy, ..., W, C V are subspaces, then we define
the subspace

n

W1+--~+Wn:2n:Wi:{Zwi
=1

=1

w,»EVV,»forallie[n]}CV.

Examples 2.2.6.
(1) span{(1,0)} + span{(0,1)} = R2
(2)

Proposition 2.2.7. Suppose Wy, ..., W,, CV are subspaces. Then

n n
ZW" = span <U I%) .
i=1 i=1
n
Proof. Suppose v € ZWZ Then v is a linear combination of elements of the W;’s. so

i=1
v € span (U Wz)
i=1

n
Now suppose v € span (U Wz) . Then v is a linear combination of elements of the W;’s,
i=1

solthere are w%,...,w#l,...,w?,...,w;‘ln and scalars )\%,...,A;zl,...,A’IL,...,)\”mn such that
w; € W, for all j € [m;] and
n My
_ i
-
i=1 j=1
For i € [n], set
m;
u; = Z)\;wz e Ww;
j=1
n n
to see thatv:ZuiEZWi. O
i=1 i=1

Definition-Proposition 2.2.8. Suppose W1, ..., W,, CV are subspaces, and let

n

W=> W.

i=1
The following conditions are equivalent:

(1) I/VZ-HZW]- = (0) for all i € [n],
i
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(2) for each v € W, there are unique w; € W; for i € [n] such that v = Zwi.

i=1
(3) if w; € W; for i € [n] such thatsz—O then w; = 0 for all i € [n].

If any of the above three condztzons are satisfied, we call W the direct sum of the W;’s,

denoted .
W =Ew.
i=1

Proof.

(1) = (2): Suppose W; N> _W; = (0) for all i € [n], and let v € W. Since W = > W,

j#i i=1

there are w; € W; for i € [n| such that v = Z w;. Suppose v = Zw; with w] € W; for all
i=1 i=1

n n n

/ /

Ozv—vzg wi—g wi:E w; — W;.
i=1 i=1 i=1

Since w; —w; € W; for all i € [n], we have

w —wj; = Zwl w; cW; QZW

1#£j i#£]

€ [n]. Then

so w; — w; = 0. Similarly, w; = wj for all i € [n], and the expression is unique.
(2) = (3): Trivial.
(3) = (1): Now suppose (3) holds. Suppose

U}EWZQZWJ
i

for i € [n]. Then we have w; € W; for all j # i such that

U}—ij

J#i
Setting w; = —w, we have that
O=w—-w= Z wj,
j=1
so w; =0 for all j € [n], and w; = 0 = —w. Thus w = 0. O
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Remarks 2.2. 9

) IfV = @m and v Zwi where w; € W; for all i € [n], then w; is called the

=1
Wi- component of w for i € [n].

(2) The proof (1) = (2) highlights another important proof technique called the “in two
places at once” technique.

Examples 2.2.10.
(1) V=V & (0) for all vector spaces V.
(2) R? = span{(1,0)} @ span{(0,1)}.
(2) C(R,R) = {even functions} & {odd functions}.
(2) Suppose Y C X, a set. Then
F(X,F)={fe F(X,F)|fly)=0forall ye Y} @ {f € F(X,F)|f(z) =0 forall z ¢ Y} .

Exercises

2.3 Linear Independence and Bases
Definition 2.3.1. A subset S C V is linearly independent if for every finite subset {vy, ..., v,} C
S,

> Ay = 0 implies that A; = 0 for all i € [n].

i=1
We say the vectors vy, ..., v, are linearly independent if {vy, ..., v,} is linearly independent.
If a set S is not linearly independent, it is linearly dependent.

Examples 2.3.2.

(1) Letting e; = (0,...,0,1,0,...,0)T € F* where the 1 is in the i*® slot for i € [n], we get
that {e;|i € [n]} is linearly independent.

(2) Define E™ € M,y (F) by

o 1 ifi=kj=I
EYN ., = ’
( ki {O else.

Then {E"|i € [m],j € [n]} is linearly independent.
(3) The functions d,: X — F given by

0 ifx
0 (y) = . 79
1 ifex=y

are linearly independent in F/(X,F), i.e. {52}13 eX } is linearly independent.
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Remark 2.3.3. Note that the zero element of a vector space is never in a linearly independent
set.

Proposition 2.3.4. Let S; C Sy C V.

(1) If Sy is linearly dependent, then so is Ss.
(2) If Sy is linearly independent, then so is Sj.
Proof.

(1) If S; is linearly dependent, then there is a finite subset {vy,...,v,} C S; and scalars
A1, ..., A\, not all zero such that
i=1

Then as {vy,...,v,} is a finite subset of Sy, S5 is not linearly independent.

(2) Let {vy,...,v,} C S, and suppose

=1

If Sy is infinite, then A\; = 0 for all ¢ as {vy,...,v,} is a finite subset of Sy. If Sy is finite,
then we have Sy = S; U {wy,...,w,}, and we have that

Zz\ivi+2ujwj:0 with p; =0 forall j=1,...,m,

=1 7=1
soN;=0foralli=1,...,n. O

Remark 2.3.5. Note that in the proof of 2.3.4 (1), we have scalars Aq,...,\, which are not
all zero. This means that there is a A\; # 0 for some ¢ € {1,...,n}. This is different than if
A, ..., A, were all not zero. The order of “not” and “all” is extremely important, and it is
often confused by many beginning students.

Proposition 2.3.6. Suppose S is a linearly independent subset of V, and suppose v ¢
span(S). Then S U{v} is linearly independent.

Proof. Let {vy,...,v,} be a finite subset of S. Then we know

ZAMZO:AFO for all 1.

i=1
Now suppose

JAy + i,uﬂ)i = 0.

=1

28



If 4 # 0, then we have

U:_ WiV = Z Ml i
=1

1

Hence v is a linear combination of the v;’s, and v € span(S ), a contradiction. Hence pu = 0,
and all p; = 0. O

Proposition 2.3.7. Let S C V be a linearly independent, and let v € span(S) \ {0}. Then
there are unique vy,...,v, € S and A,..., N\, € F\ {0} such that

n
v = E )\ﬂ)l
i=1

Proof. As v € span(.S), v can be written as a linear combination of elements of S. As v # 0,
there are vq,...,v, € S and A\, ..., A, € F\ {0} such that

n
v = E /\ﬂ}z
i=1

Suppose there are wy, ..., w,, € S and 1, ..., f, € F\ {0} such that

m
= § H5W;
Jj=1

Let T = {vy,...,v.} N{ws,...,wy}. T =10, then

so\; =0foralli € [n] and p; = 0 for all j € [m] as S is linearly independent, a contradiction.
Let {uy,...,ux} = {v1,..., v} N{wq,...,wy}. After reindexing, we may assume u; = v; =
w; for all ¢ € [k]. Thus

0=v— U—Z)\vﬁrz AU — Zp]wj Zujw] Z)\ ,uzul—i—z AU — Zu]wj,

i=k+1 j=k+1 i=k+1 j=k+1

so N, =p;forallie[k], \;, =0foralli=Fk+1,...,n,and y; =0forall j=k+1,...,m,
so we have that £ = n = m, and the expression is unique. O

Definition 2.3.8. A subset B C V is called a basis for V if B is linearly independent and
V' = span(B) (B spans V).

Examples 2.3.9.
(1) The set {e;|i € [n]} is the standard basis of F".
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(2) The matrices E*/ which have as entries all zeroes except a 1 in the (7, 7)'" entry form the

standard basis of M, (F).
(3) The functions d,: X — F given by

0 ifz
Sy =" MY
1 ifex=y

form a basis of F(X,F) if and only if X is finite. Note that the function f(z) = 1 for all
x € X is not a finite linear combination of these functions if X is infinite.

Definition 2.3.10. A vector space is finitely generated if there is a finite subset S C V such
that span(S) = V. Such a set S is called a finite generating set for V.

Examples 2.3.11.

(1) Any vector space with a finite basis is finitely generated. For example, F" and M, ., (F)
are finitely generated.

(2) The matrices F;; which have as entries all zeroes except a 1 in the i entry form the
standard basis of M, (IF).

(3) We will see shortly that C'(a,b) for a < b is not finitely generated.

Exercises

Exercise 2.3.12 (Symmetric and Exterior Algebras).

(1) Find a basis for the following real vector spaces:
(a) S?(R") = {A € M,(R)|A = AT}, ie. the real symmetric matrices and
(b) A*(R") = {A € M,(R)|A=—AT}, ie. the real antisymmetric (or skew-symmetric)
matrices.
(2) Show that M, (R) = S2(R") & A*(R™).

Exercise 2.3.13 (Even and Odd Functions). A function f € C(R,R) is called even if
f(z) = f(—x) for all z € R and odd if f(z) = —f(—=) for all x € R. Show that

(1) the subset of even, respectively odd, functions is a subspace of C(R,R) and
(2) C(R,R) = {even functions} & {odd functions}.
Exercise 2.3.14. Let S;, Sy C V be subsets of V.
(1) What is span(span(Sh))?
(2) Show that if S} C Sy, then span(S;) C span(Ss).
(3) Suppose Sy I .55 is linearly independent. Show

span(Sy 11 .Sy) = span(S;) @ span(Ss).
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Exercise 2.3.15.

(1) Let B = {vy,...,v,} be a basis for V' . Suppose W is a k-dimensional subspace of V.
Show that for any subset {v;,...,v;, } of B with m > n — k, there is a nonzero vector
w € W that is a linear combination of {v;,,...,v;, }.

(2) Let W be a subspace of V having the property that there exists a unique subspace W’
such that V =W @ W’. Show that W =V or W = (0).

2.4 Finitely Generated Vector Spaces and Dimension

For this section, V will denote a finitely generated vector space over F.

Lemma 2.4.1. Let A € M,«,,(F) be a matriz.
(1) y € CS(A) C F™ if and only if there is an x € F"™ such that Az = y.

(2) If vq,...,v, are n vectors in F™ with m < n, then {vy,...,v,} is linearly dependent.

Proof.
(1) Let Ay,..., A, be the columns of A. We have

y € CS(A) <= there are A\q,..., A\, such that y = Z)\ZAi
i=1

A1
A2
<= thereare \;,...,\, suchthatif xt =] |, then Ax =y

An
<= there is an x € F" such that Az = y.

(2) We must show there are scalars Ay, ..., \,, not all zero, such that

=1

Form a matrix A € M,,,(F) by letting the i*" column be v;: A = [v1]va] - - |vy]. By (1), the
above condition is now equivalent to finding a nonzero x € F" such that Ax = 0. To solve
this system of linear equations, we augment the matrix so it has n+ 1 columns by letting the
last column be all zeroes. Performing Gaussian elimination, we get a row reduced matrix
U which is row equivalent to the matrix B = [A|0]. Now, the number of pivots (the first
entry of a row that is nonzero) of U must be less than or equal to m as there are only m
rows. Hence, at least one of the first n columns does not have a pivot in it. These columns
correspond to free variables when we are looking for solutions of the original system of linear
equations, i.e. there is a nonzero x such that Ax = 0. O
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Theorem 2.4.2. Suppose Sy is a finite set that spans V and Sy C V' s linearly independent.
Then Sy is finite and |Sa| < |S].

Proof. Let S; = {vy,...,vn} and {wy,...,w,} C Sy. We show n < m. Since S; spans V,
there are scalars \; ; € IF such that

w; :ZAi,jvi for all j = 1,...,71.
i=1

Let A € Myun(F) by A;; = Aij. If m > n, then the rows of A are linearly dependent by
2.4.1, so there is an © = (g, ..., )T € R™\ {0} such that Az = 0. This means that

ZAMW = Z)\m,uj =0 for all ¢ € [m].
j=1

Jj=1

This implies that

Zujwj = Z,uj Z Ai Ui = Z (Z )\z‘,juj) v; =0,
j=1 j=1 =1 1 \j=1

=
a contradiction as {wy, ..., w,} is linearly independent. Hence n < m. O

Corollary 2.4.3. Suppose V' has a finite basis B with n elements. Then every basis of V
has n elements.

Proof. Let B’ be another basis of V. Then by 2.4.2, B’ is finite and |B’| < |B|. Applying
2.4.2 after switching B, B’ yields |B| < |B’|, and we are finished. O

Corollary 2.4.4. Fvery infinite subset of a finitely generated vector space is linearly depen-
dent.

Definition 2.4.5. The vector space V is finite dimensional if there is a finite subset B C V'
such that B is a basis for V. The number of elements of B is the dimension of V', denoted
dim(V). A vector space that is not finite dimensional is infinite dimensional. In this case,
we will write dim(V') = oo.
Examples 2.4.6.

(1) Mpxn(F) has dimension mn.

(2) If a # b, then C(a,b) and C"(a,b) are infinite dimensional for all n € N U {oo}.

(3) F(X,F) is finite dimensional if and only if X is finite.

Theorem 2.4.7 (Contraction). Let S C 'V be a finite subset such that S spans V.
(1) There is a subset B C S such that B is a basis of V.
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(2) If dim(V') =n and S has n elements, then S is a basis for V.

Proof.

(1) IfS is not a basis, then S is not linearly independent. Thus, there is some vector v € S
such that v is a linear combination of the other elements of S. Set S; = S\ {v}. It is
clear that S7 spans V. If S] is not a basis, repeat the process to get S,. Repeating this
process as many times as necessary, since S is finite, we will eventually get that S, is linearly
independent for some n € N, and thus a basis for V.

(2) Suppose S is not a basis for V. Then by (1), there is a proper subset T" of S such that T’
is a basis for V. But T has fewer elements than S, a contradiction to 2.4.3. m

Corollary 2.4.8 (Existence of Bases). Let V' be a finitely generated vector space. Then V
has a basis.

Proof. This follows immediately from 2.4.7 (1). O

Corollary 2.4.9. The vector space V' is finitely generated if and only if V' is finite dimen-
stonal.

Proof. By 2.4.8, we see that a finitely generated vector space has a finite basis. The other
direction is trivial. O]

Lemma 2.4.10. A subspace W of a finite dimensional vector space V' s finitely generated.

Proof. We construct a maximal linearly independent subset .S of W' as as follows: if W = (0),
we are finished. Otherwise, choose wy; € W \ {0}, and set S; = {w;}, and note that S is
linearly independent by 2.3.6. If W, = span(S;) = W, we are finished. Otherwise, choose
wy € W\ Wy, and set Sy = {w;,ws}, which is again linearly independent by 2.3.6. If
Wy = span(Sy) = W, we are finished. Otherwise we may repeat this process. This algorithm
will terminate as all linearly independent subsets of W must have less than or equal to dim (V')
elements by 2.4.2. Now it is clear by 2.3.6 that our maximal linearly independent set S C W
must be a basis for W by 2.3.6. Hence W is finitely generated. n

Theorem 2.4.11 (Extension). Let W be a subspace of V.. Let B be a basis of W (we know
one ezists by 2.4.8 and 2.4.10).

(1) If |B| = dim(V), then W = V.

(2) There is a basis C' of V' such that B C C.

Proof.

(1) Suppose B = {wy,...,w,} and dim(V) = n. Suppose W # V. Then there is a w41 €
VAW, and B; = B U {wy41} is linearly independent by 2.3.6. This is a contradiction to
2.4.2 as every linearly independent subset of V' must have less than or equal to n elements.

Hence W = V.
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(2) Ifspan(B) # V, then pick v; € V'\span(B). It is immediate from 2.3.6 that B; = BU{v; }
is linearly independent. If span(B;) # V, then we may pick v, € V' \ span(B;), and once
again by 2.3.6, By = B;U{wy} is linearly independent. Repeating this process as many times
as necessary, we will have that eventually B,, will have dim(V') elements and be linearly
independent, so its span must be V by (1). ]

Corollary 2.4.12. Let W be a subspace of V', and let B be a basis of W. Ifdim(V) =n < oo,
then dim(W) < dim(V). If in addition W is a proper subspace, then dim(W) < dim(V).

Proof. This is immediate from 2.4.11. O

Proposition 2.4.13. Suppose V' is finite dimensional and W7y, ..., W, are subspaces of V'
such that
V=w.
i=1

(1) Fori=1,...,n, let n; = dim(W;) and let B; = {v{,... v} } be a basis for W;. Then
B = HBi 1s a basis for V.
i=1

(2) dim(V) = Zdim(Wi).

Proof.
(1) Tt is clear that B spans V. We must show it is linearly independent. Suppose

S% = 0.

i=1 j=1

Then setting w; = Z Aw!, we have Z w; =0, sow; =0 for all i € [n] by 2.2.8. Now since
=1 i=1
B is a basis for all i € [n], X = 0 for all , .

(2) This is immediate from (1). O

Exercises

Exercise 2.4.14 (Dimension Formulas). Let W;, W, be subspaces of a vector space V.
(1) Show that dim(W; + W3) 4+ dim(W; N Wy) = dim(W;) + dim(W3).
(2) Suppose Wiy N Wy = (0). Find an expression for dim(W; & W3) similar to the formula
found in (1).
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(3) Let W be a subspace of V', and suppose V' = W; & W,. Show that if W, C W or Wy, C W,
then
W=(WnwWwy) e (WnWs).

Is this still true if we omit the condition “W; C W or Wy C W”?

Exercise 2.4.15 (Complexification 2). Let V' be a vector space over R.
(1) Show that dimg (V') = dimc (V). Deduce that dimg(Ve) = 2 dimg(V).

(2) If T € L(V), we define the complexification of the operator T' to be the operator T¢ €
L(V¢) given by
Te(u+ i) = Tu+iTv.

(a) Show that the complexicifation of multiplication by A € M,,(R) on R™ is multiplication
by A € M,(C) on C".

(b) Show that the complexification of multiplication by f € F(X,R) on F(X,R) is multi-
plication by f € F(X,C) on F(X,C).

2.5 Existence of Bases

A question now arises: do all vector spaces have bases? The answer to this question is yes
as we will see shortly. We saw in the previous section that this result is very easy for finitely
generated vector spaces. However, to prove this in full generality, we will need Zorn’s Lemma
which is logically equivalent to the Axiom of Choice, i.e. assuming one, we can prove the
other. We will not prove the equivalence of these two statements as it is beyond the scope
of this course. For this section, V' will denote a vector space over F (which is not necessarily
finitely generated).

Definition 2.5.1.
(1) A partial order on the set P is a subset R of P x P (a relation R on P), such that

(i) (reflexive) (p,p) € R for all p € P,
(ii) (antisymmetric) (p,q) € R and (¢,p) € R, then p = ¢, and
(iii) (transitive) (p,q),(q,r) € R implies (p,r) € R.
Usually, we denote (p,q) € R as p < q. Hence, we may restate these conditions as:
(i) p<pforall pe P,
(ii) p < ¢ and ¢ < p implies p = ¢, and

(iii) p < ¢ and ¢ < r implies p < r.
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Note that we may not always compare p,q € P. In this sense the order is partial. The pair
(P, <), or sometimes P if < is understood, is called a partially ordered set.

(2) Suppose P is partially ordered set. The subset 7" is totally ordered if for every s,t € T,
we have either s <t or t < s. Note that we can compare all elements of a totally ordered
set.

(3) An upper bound for a totally ordered subset " C P, a partially ordered set, is an element
rz € Psuchthatt <z forallteT.

(4) An element m € P is called maximal if p € P with m < p implies p = m.

Examples 2.5.2.

(1) Let X be a set, and let P(X) be the power set of X, i.e. the set of all subsets of X. Then
we may partially order P(X) by inclusion, i.e. we say S; < Sy for Sy, 5, € P(X) if S; C Ss.
Note that this is not a total order unless X has only one element. Furthermore, note that
P(X) has a unique maximal element: X.

(2) We may partially order P(X) by reverse inclusion, i.e. we say So < S; for 51,5, € P(X)
if 57 C S5. Note once again that this is not a total order unless X has one element. Also,
P(X) has a unique maximal element for this order as well: (.

Lemma 2.5.3 (Zorn). Suppose every nonempty totally ordered subset T of a nonempty
partially ordered set P has an upper bound. Then P has a maximal element.

Remark 2.5.4. Note that the maximal element may not be (and probably is not) unique.
Theorem 2.5.5 (Existence of Bases). Let V' be a vector space. Then V has a basis.

Proof. Let P be the set of all linearly independent subsets of V. We partially order P by
inclusion. Let T" be a totally ordered subset of P. We show that T" has an upper bound.
Our candidate for an upper bound will be

X =t

teT

the union of all sets contained in 7.

We must show X € P, i.e. X is linearly independent. Let Y = {yi,...,y,} be a finite
subset of X. Then there are ty,...,t, € T such that y; € t; for all « = 1,...,n. Since T is
totally ordered, one of the t;’s contains the others. Call this set s. Then Y C s, but s is
linearly independent. Hence Y is linearly independent, and thus so is X.

We must show that X is indeed an upper bound for 7. This is obvious as t C X for all
teT. Hencet < X forallteT.

Now, we invoke Zorn’s lemma to get a maximal element B of P. We claim that B is a
basis for V, i.e. it spans V (B is linearly independent as it is in P). Suppose not. Then
there is some v € V' \ span(B). Then B U {v} is linearly independent, and B C B U {v}.
Hence, B < BU {v}, but B # B U {v}. This is a contradiction to the maximality of B.
Hence B is a basis for V. m
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Theorem 2.5.6 (Extension). Let W be a subspace of V.. Let B be a basis of W. Then there
15 a basis C' of V' such that B C C.

Proof. Let P be the set whose elements are linearly independent subsets of V' containing
B partially ordered by inclusion. As in the proof of 2.5.5, we see that each totally ordered
subset has an upper bound, so P has a maximal element C' € P (which means B C C).
Once again, as in the proof of 2.5.5, we must have that C' is a basis for V. n

Theorem 2.5.7 (Contraction). Let S C V be a subset such that S spans V. Then there is
a subset B C S such that B is a basis of V.

Proof. Let P be the set whose elements are linearly independent subsets of S partially
ordered by inclusion. As in the proof of 2.5.5, we see that each totally ordered subset has
an upper bound, so P has a maximal element B € P (which means B C S). Once again, as
in the proof of 2.5.5, we must have that B is a basis for V. O

Proposition 2.5.8. Let W C V be a subspace. Then there is a (non-unique) subspace U of
V' such that V =U & W.

Proof. This is merely a restatement of 2.5.6. Let B be a basis of W, and extend B to a basis
C of V. Set U = span(C'\ B). Then clearly UNW = (0) and U+ W =V soV=Us W
by 2.2.8. Note that if V' is finitely generated, we may use 2.4.11 instead of 2.5.6. O

Exercises

Exercise 2.5.9.
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Chapter 3

Linear Transformations

For this chapter, unless stated otherwise, V, W will be vector spaces over F.

3.1 Linear Transformations

Definition 3.1.1. A linear transformation from the vector space V' to the vector space W,
denoted T": V — W, is a function from V to W such that

T(\u+v) = AT(u) + T(v)

for all A € F and uw,v € V. This condition is called F-linearity. Often T'(v) is denoted T'v.
Sometimes we will refer to a linear transformation as a linear operator, an operator, or a
map. The set of all linear transformations from V' to W is denoted L(V,W). If V=W, we
write L(V) = L(V, V).

Examples 3.1.2.

(1) There is a zero linear transformation 0: V' — W given by 0(v) =0 € W for all v € V.
There is an identity linear transformation I € L(V') given by Iv = v for all v € V.

(2) Let A € My, (F). Then left multiplication by A defines a linear transformation L4 : F* —
F™ given by x — Ax.

(3) The projection maps F" — F given by €} (), ..., \,)T = \; for i € [n] are F-linear.
(4) Integration from a to b where a,b € R is a map Cla,b] — R.

(5) The derivative map D: C"(a,b) — C™" *(a,b) given by f + f’is an operator.

(

6) Let x € X, a set. Then evaluation at z is a linear transformation ev,: F'(X,F) — F given
by fi— f(z).
(7) Suppose B = {v1,...,v,} is a basis for V. Then the projection maps v;: V' — F given

by
U;»( (Z )\zvz> = /\j
=1
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are linear transformations.

Definition 3.1.3. Let V' be a vector space over R, and let Vi be as in 2.1.12. If T' € L(V),
we define the complexification of the operator 7" to be the operator T¢ € L(V¢) given by

Te(u+iv) = Tu+iTw.

Examples 3.1.4.

(1) The complexification of multiplication by the matrix A on R™ is multiplication by the
matrix A on C".

(2) The complexification of multiplication by = on R[z| is multiplication by = on Clz].

Remarks 3.1.5.

(1) Note that a linear transformation is completely determined by what it does to a basis. If
{v;} is a basis for V' and we know what T'v; is for all i, then by linearity, we know T'v for any
vector v € V. Hence, to define a linear transformation, one only needs to specify where a
basis goes, and then we may “extend it by linearity,” i.e. if {v;} is a basis for V', we specify
Tv; for all 7, and then we decree that

T (zn: )\jvj) = zn: )\jTUj
j=1 j=1

for all finite subsets {vy,...,v,} C {v;}. This rule defines 7" on all of V' as {v;} spans V,
and T is well defined since {v;} is linearly independent.

For example, in example 7 above, v} is the unique map that sends v; to one, and v; to
zero for ¢ # 7.

(2) If T} and Ty are linear transformations V' — W and A € F, then we may define T} +
Ty: V. — W by (Ty + Ty)v = Tyv + Thv, and we may define \XT1: V. — W by (A\T})v =
A(Tyv). Hence, if V and W are vector spaces over F, then L(V, W), the set of all F-linear
transformations V' — W, is a vector space (it is easy to see that + is an addition and - is a
scalar multiplication which satisfy the distributive property, each linear transformation has
an additive inverse, and there is a zero linear transformation).

Example 3.1.6. The map L: M., (F) — L(F",F™) given by A — L, is a linear transfor-

mation.

Exercises

Exercise 3.1.7. Let v € V. Show that ev,: L(V,W) — W given by T+ T is a linear
operator.
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3.2 Kernel and Image

Note that we may talk about injectivity and surjectivity of operators as they are functions.
The immediate question to ask is, “Why should we care about linear transformations?” The
answer is that these maps are the “natural” maps to consider when we are thinking about
vector spaces. As we shall see, linear transformations preserve vector space structure in the
sense of the following definition and proposition:

Definition 3.2.1. Let T € L(V, W). Let the kernel of T', denoted ker(T'), be {v € V|Tv =0
and let the image, or range, of T, denoted im(7") or TV, be {w € W‘w =Twv for some v € V' }.

Examples 3.2.2.
(1) Let A € My, (F) and consider L4. Then ker(Ls) = NS(A) and im(L4) = CS(A).

(2) Consider ev,: F(X,F) — F. Then ker(ev,) = {f: X — ]F|f(x) =0} and im(ev,) =F as
A0y — A

(3) If B={vy,...,v,} is a basis for V, then ker(v]) = span{wy, ..., v,} and im(v}) = F.
(4) Let D: C*[0,1] — C10,1] be the derivative map f — f’. Then ker(D) = {constant functions}
and im(D) = C|0, 1] as

D/f(t) dt = f(z) for all z € [0,1]

by the fundamental theorem of calculus, i.e. D has a right inverse.
Proposition 3.2.3. Let T € L(V,W). ker(T) and im(T') are vector spaces.

Proof. 1t suffices to show they are closed under addition and scalar multiplication. Clearly
Tv =0 = Tu implies T'(Au +v) = 0 for all u,v € ker(7') and A € F, so ker(7") is a subspace
of V, and thus a vector space. Let y,z € im(T') and p € F, and let w,x € V such that
Tw=yand Tz = z. Then T(Aw + x) = Ay + z € im(7T"), so im(T") is a subspace of W, and
thus a vector space. O

Proposition 3.2.4. T € L(V, W) is injective if and only if ker(T) = (0).

Proof. Suppose T is injective. Then since T0 = 0, if Tv = 0, then v = 0. Suppose now that
ker(T') = (0). Let z,y € V such that Tx =Ty. Then T'(x —y) =0,s0 z —y = 0 and = = y.
Hence T' is injective. O

Proposition 3.2.5. Suppose T € L(V,W) is bijective, and let {v;} be a basis for V.. Then
{Tv;} is a basis for W.

Proof. We show {T'v;} is linearly independent. Suppose {T'vy,...,Tv,} is a finite subset of

{Tv;}, and suppose
Z )\jT’Uj =T (Z )\jvj) =0.
j=1 j=1
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Then since T is injective, by 3.2.4

i )\jvj =0.
j=1

Now since {v;} is linearly independent, we have A\; =0 forall j =1,...,n.
We show {T'v;} spans W. Let w € W. Then there is a v € V such that Tv = w as T is
surjective. Then v € span{v;}, so there are vy,...,v, € {v;} and Ay,..., A\, € F such that

n
v = E )\j'l}j.
Jj=1

Then
w="Tv= TZ)\jvj = Z)\jTUja
j=1 j=1

so w € span{Tv;}. O
Definition 3.2.6. An operator I' € L(V, W) is called invertible, or an isomorphism (of vector
spaces), if there is a linear operator S € L(W, V') such that ToS = idy and SoT = idy, where
id means the identity linear transformation. Often, when composing linear transformations,
we will omit the o and write ST and T'S. We call vector spaces V, W isomorphic, denoted
V = W, if there is an isomorphism 7" € L(V, W).
Examples 3.2.7.

(1) F* =V if dim(V) = n.

(2) F(X,F)=F"if | X|=n.

Proposition 3.2.8. T' € L(V, W) is invertible if and only if it is bijective.

Proof. 1t is clear that an invertible operator is bijective.

Suppose T is bijective. Then there is an inverse function S: W — V. It remains to show
S is a linear transformation. Suppose y,z € W and A € F. Then there are w,x € W such
that Tw = y and Tx = z. Then

Sy +2)=S\NTw+Tz)=STA\w+z) = w +x = ASTw+ STz = \Sy + S=z.
Hence S is a linear transformation. O

Remark 3.2.9. If T is an isomorphism, then 7" maps bases to bases. In this way, we can
identify the domain and codomain of T" as the same vector space. In particular, if V = W,
then dim(V') = dim(W) (we allow the possibility that both are o).

Proposition 3.2.10. Suppose dim(V') = dim(W) = n < co. Then there is an isomorphism
T:V —=W.
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Proof. Let {v1,...,v,} be a basis for V' and {wy,...,w,} be a basis for W. Define a linear
transformation T': V. — W by Twv; = w; for i = 1,...,n, and extend by linearity. It is easy to
see that the inverse of T' is the operator S: W — V defined by Sw; =wv; foralli =1,...,n
and extending by linearity. O

Remark 3.2.11. We see that if U = V via isomorphism 7" and V' = W via isomorphism S,
then U = W via isomorphism ST

Our task is now to prove the Rank-Nullity Theorem. One particular application of this
theorem is that injectivity, surjectivity, and bijectivity are all equivalent for T' € L(V, W)
when V., W are of the same finite dimension.

Lemma 3.2.12. Let T € L(V,W), and let M be a subspace such that V = ker(T) @ M (one
exists by 2.5.8).
(1) T\ is injective.
(2) m(T|yr) = im(T).
(3) T\ is an isomorphism M — im(T).

Proof.

(1) Suppose u,v € M such that Tu = Tv. Then T'(u —v) =0, so u —v € M Nker(T) = (0).
Hence u — v =0, and u = v.

(2) Let B = {uy,...,u,} be a basis for ker(T"), and let C' = {ws,...,w,} be a basis for
M. Then by 2.4.13, BUC is a basis for V. Hence {Tuy,...,Tu,, Twy,...,Tw,} spans
im(7). But since Tu; = 0 for all 4, we have that {Twy,...,Tw,} spans im(T"). Thus
im(7T") = im(T| ).

(3) By (1), T is injective, and by (2), T'|as is surjective onto im(7"). Hence it is bijective
and thus an isomorphism. O

Theorem 3.2.13 (Rank-Nullity). Suppose V' is finite dimensional, and let T € L(V,W).
Then
dim(V) = dim(im(7")) + dim(ker(7")).

Proof. By 2.5.8 there is a subspace M of V' such that V' = ker(T) & M. By 2.4.13, dim(V') =
dim(ker(7")) + dim(M). We must show dim(M) = dim(im(7)). This follows immediately
from 3.2.12 and 3.2.9. [l

Remark 3.2.14. Suppose V is finite dimensional, and let T' € L(V,W). Then dim(im(7)) is
sometimes called the rank of 7', denoted rank(7"), and dim(ker(7")) is sometimes called the
nullity of 7', denoted nullity(7"). Using this terminology, 3.2.13 says that

dim (V') = rank(7") + nullity(7),

which is how 3.2.13 gets the name “Rank-Nullity Theorem.”
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Corollary 3.2.15. Let V,W be finite dimensional vector spaces with dim(V') = dim(W),
and let T € L(V,W). The following are equivalent:

(1) T is injective,
(2) T is surjective, and
(3) T is bijective.

Proof.

@)= @):
(1) = (2): Suppose T is injective. Then dim(ker(7)) = 0, so dim(V) = dim(im(7")) =
~dim(W), and T is surjective.

Obvious.

(2) = (3): Suppose T is surjective. Then by similar reasoning, dim(ker(7")) = 0, so T is
injective. Hence T' is bijective. O

Exercises

Exercise 3.2.16. Let T € L(V,W), let S = {vy,...,v,} C V, and recall that T'S =
{Tvy,...,Tv,} CW.

(1) Prove or disprove the following statements:

If S is linearly independent, then T'S is linearly independent.

If T'S spans W, then S spans V.
If S is a basis for V', then T'S is a basis for W.
f) If T'S is a basis for W, then S is a basis for V.

(2) For each of the false statements above (if there are any), find a condition on T which
makes the statement true.
Exercise 3.2.17 (Rank of a Matrix).

(1) Let A € M, (F). Prove that dim(CS(A)) = dim(RS(A)). This number is called the rank
of A, denoted rank(A).

(2) Show that rank(A) = rank(Ly).

Exercise 3.2.18. [Square Matrix Theorem] Prove the following (celebrated) theorem from
matrix theory. For A € M, (F), the following are equivalent:

(1) A is invertible,
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5) For all y € F™, there is a unique x € F" such that Az =y,
For all y € F™, there is an = € F” such that Az =y,

7) CS(A) =F,

8) RS(A)=F",

Exercise 3.2.19 (Quotient Spaces 2). Let W C V be a subspace.

(1) Show that the map q: V' — V/W given by v — v+ W is a surjective linear transformation
such that ker(q) = W.

(2) Suppose V is finite dimensional. Using ¢, find dim(V/W) in terms of dim(V") and dim(W).

(3) Show that if "€ L(V,U) and W C ker(T'), then T factors uniquely through g, i.e. there
is a unique linear transformation 7': V/W — U such that the diagram

1% a U
N A
V/W

commutes, i.e. T = To q. Show that if W = ker(7'), then T is injective.

3.3 Dual Spaces

We now study L(V,F) in the case of a finite dimensional vector space V over F.

Definition 3.3.1. Let V' be a vector space over [F. The dual of V', denoted V*, is the vector
space of all linear transformations V' — F, i.e. V* = L(V,F). Elements of V* are called
linear functionals.

Proposition 3.3.2. Let V' be a vector space over F, and let ¢ € V*. Then either ¢ =0 or
® 18 surjective.

Proof. We know that dim(im(y)) < 1. Ifit is 0, then ¢ = 0. If it is 1, then ¢ is surjective. [

Definition-Proposition 3.3.3. Let B = {vy,...,v,} be a basis for the finite dimensional
vector space V.. Then B* ={vf,... vt} is a basis for V* called the dual basis.
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Proof. We must show that B* is a basis for V*. First, we show B* is linearly independent.

Suppose
> Ay =0,
i=1

the zero linear transformation. Then we have that

(i)\ﬂ)?) vy = /\j =0
=1

for all 7 = 1,...,n. Thus, B* is linearly independent. We show B* spans V*. Suppose
p e V* Let A\; = p(v;) for j =1,...,n. Then we have that

(cp— Zn:/\iv;‘) v; =0
i=1

for all 7 =1,...,n. Since a linear transformation is completely determined by its values on

a basis, we have that
p= D Mf=0=p=> \u.
i=1 i=1

[]

Remark 3.3.4. One of the most useful techniques to show linear independence is the “kill-off”
method used in the previous proof:

(zn: )\11):) ’Uj = )‘j = O
1=1

Applying the v; allows us to see that each A; is zero. We will see this technique again when
we discuss eigenvalues and eigenvectors.

Proposition 3.3.5. Let V' be a finite dimensional vector space over F. There is a canonical
isomorphism ev: V. — V** = (V*)* given by v — ev,, the linear transformation V* — F
given by the evaluation map: ev,(¢) = o(v).

Proof. First, it is clear that ev is a linear transformation as evy,, = Aev, +ev,. Hence, we
must show the map ev is bijective. Suppose ev, = 0. Then ev, is the zero linear functional
on V* i.e., for all p € V* p(v) = 0. Since ¢ is completely determined by where it sends a
basis of V', we know that ¢ = 0. Hence, the map ev is injective. Suppose now that x € V**.
Let B = {v1,...,v,} be a basis for V" and let B* = {v},...,v%} be the dual basis. Setting
Aj = z(vj) for j =1,...,n, we see that if

n
u = g AiVi,
i=1
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then (z —ev,)v; = 0 for all j = 1,...,n. Once more since a linear transformation is
completely determined by where it sends a basis, we have x —ev,, = 0, so x = ev,, and ev is
surjective. ]

Remark 3.3.6. The word “canonical” here means “completely determined,” or “the best
one.” It is independent of any choices of basis or vector in the space.

Proposition 3.3.7. Let V' be a finite dimensional vector space over F. Then V is isomorphic
to V*, but not canonically.

Proof. Let B = {vy,...,v,} be a basis for V. Then B* is a basis for V*. Define a linear
transformation 7': V. — V* by v; +— o} for all v; € B, and extend this map by linearity.
Then T is an isomorphism as there is the obvious inverse map. O

Remark 3.3.8. It is important to ask why there is no canonical isomorphism between V'
and V*. The naive, but incorrect, thing to ask is whether v +— v* would give a canonical
isomorphism V' — V*. Note that the definition of v* requires a basis of V as in 3.3.3.
We cannot define the coordinate projection v* without a distinguished basis. For example,
if V= F? and v = (1,0), we can complete {v} to a basis in many different ways. Let
By = {v,(0,1)} and By = {v,(1,1)}. Then we see that v*(1,1) = 1 relative to B;, but
v*(1,1) = 0 relative to Bs.

Exercises

Exercise 3.3.9 (Dual Spaces of Infinite Dimensional Spaces). Suppose B = {vn‘n S N} is
a basis of V. Is it true that V* = span {v;“l n e N}?

3.4 Coordinates

For this section, V, W will denote finite dimensional vector spaced over F. We now discuss
the way in which all finite dimensional vector spaces over I look like F” (non-uniquely). We
then study L(V, W), with the main result being that if dim(V') = n and dim(WW') = m, then
L(V,W) = M,,xn(F) (non-uniquely) which is left to the reader as an exercise.

Definition 3.4.1. Let V' be a finite dimensional vector space over F, and let B = (vy, ..., v,)
be an ordered basis for V. The map [-]g: V — R" given by

A v (v)

n A v (v
T Srra e B
i=1 ' '

A vl (v)

is called the coordinate map with respect to B. We say that [v]|p are coordinates for v with
respect to the basis B. Note that we denote an ordered basis as a sequence of vectors in
parentheses rather than a set of vectors contained in curly brackets.
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Proposition 3.4.2. The coordinate map is an isomorphism.

Proof. Tt is clear that the coordinate map is a linear transformation as [Au+v]p = A[u|p+[v]s
for all u,v € V and A € F. We must show [-] is bijective. We show it is injective. Suppose

that [v]p = (0,...,0)T. Then since
vV = Z )\ivi
i=1

for unique A, ..., A\, € F, we must have that \; =0 for all i = 1,...,n, and v = 0. Hence
the map is injective. We show the map is surjective. Suppose (A1,...,A\,)T € F*. Then
define the vector u by

i=1

Then [u]p = (A1,...,\)T, so the map is surjective. O

Definition 3.4.3. Let V and W be finite dimensional vector spaces, let B = (vy,...,v,) be
an ordered basis for V', let C' = (wy, ..., w,,) be an ordered basis for W, and let T' € L(V, W).
The matrix [T]G € M,,x,(F) is given by

([T15)i = wi (Tv;) = e; ([Tv;]c)

where w} is projection onto the i*" coordinate in W and e} is the projection onto the 7
coordinate in [F™.
We can also define [T% as the matrix whose (i,7)™ entry is A;; where the \; ; are the
unique elements of F such that
m
TUj = Z )\i,jwi.
i=1

We can see this in terms of matrix augmentation as follows:

715 = [iTule

ce ‘[Tvn]C} .

The matrix [T] is called coordinate matrix for 7' with respect to B and C. If V. =W
and B = C, then we denote [T]% as [T]5.
Remark 3.4.4. Note that the j™ column of [T is [Tv;]c.

Examples 3.4.5.

(1) Let B = (v1,...,v4) be an ordered basis for the finite dimensional vector space V. Let
S € L(V,V) be given by Sv; = v;41 for i # 4 and Svq = v;. Then

000 1
1000
[5]3_0100
0010
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(2) Let S be as above, but consider the ordered basis B’ = (vy4,...,v1). Then

0100
0010
[S]B’_0001
1000

(3) Let S be as above, but consider the ordered basis B’ = (vs, vg, v4,v1). Then

00
[Slp =

O = OO
S O O

1
0 0
10
Proposition 3.4.6. Let V and W be finite dimensional vector spaces, let B = (vy,...,v,) be

an ordered basis for V, let C = (wy, ..., wy,) be an ordered basis for W, and let T' € L(V,W).
Then the diagram

w

-
&
&)
Q

w

commutes, i.e. [T|[v]p = [Tv]c for allv € V.

Proof. To show both matrices are equal, we must show that their entries are equal. We know
([T]g)i,j - 6: [ij]c. Hence

n n

([T13[v]B)ix = Z([T]g)i,j([U]B)j,l = Z {[Tvjle([vl)j1 = € Z B)ia[Tvile
=€ [Z([U]B)jplT?’j =¢; TZ([U]B)J',WJ'] = e;[Tv]e = ([Tv]c)in

as []o, €F, and T are linear transformations, and

v = Z([U]B)jlvj-

]

Remarks 3.4.7. When we proved 2.4.3 and 2.5.6 (1), we used the coordinate map implicitly.
The algorithm of Gaussian elimination proves the hard result of 2.4.2, which in turn, proves
these technical theorems after we identify the vector space with F" for some n.

Proposition 3.4.8. Suppose S,T € L(V,W) and A € F, and suppose that B = {vy,...,v,}
is a basis for V and C = {wy,...,wy,} is a basis for W. Then [S + XT|S = [S]§ + \[T]%.
Thus [15: L(V,W) — M,,xn(F) is a linear transformation.
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Proof. First, we note that this follows immediately from 3.4.2 and 3.4.6 as
[S+AT 5 = [(S+AT)[z]3' e = [Slalp' +AT[2]5 e = [Sla]p'le+ATl5 e = [S)pa+ AT 5e
for all x € F™.

We give a direct proof as well. We have that

m m

Sv; =Y ([S19)ijwi and Tv; = ([T]5);wi

i=1 i=1
for all j € [n]. Thus

m

(S+ AT)v; = Sv; + ATv; = > ([S15)ijw: + AZ([T]g)i,J’wi = (([1919)i + A(TIB)i )ws.

=1 =1

m

for all j € [n], and ([S +XT1S); = (1S1):; + A(T1S)is. 50 [S +XTIG = [SI5 + A[TIG. O

Proposition 3.4.9. Suppose T € L(U,V) and S € L(V,W), and suppose that A = {us, ..., upn}
is a basis for U, B = {vy,...,v,} is a basis for V, and C = {wy,...,w,} is a basis for W.
Then [ST|S = [SIS[T]5.

Proof. We have that
STuj = SZ([T]@Z;J‘%‘ = Z([T]f)m(svi) => ([T1%)i; (Z([S]g)mwk)

= (Z([S]%M[T]Em) wi =) ([SIBITIR),,; wr

k=1 =1

for all j € [m], so [ST]S = [SI§[T]5. O

Exercises

V, W will denote vector spaces. Let T" € L(V,W).
Exercise 3.4.10.

Exercise 3.4.11.

Exercise 3.4.12. Suppose dim(V) =n < oo and dim(W) = m < oo, and let B, C be bases
for V, W respectively.

(1) Show that L(V, W) = M,,«n(F).
(2) Show T is invertible if and only if [T]§ is invertible.

Exercise 3.4.13. Suppose V is finite dimensional and B,C are two bases of V. Show
15 ~ [Te.
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Chapter 4

Polynomials

In this section, we discuss the background material on polynomials needed for linear algebra.
The two main results of this section are the Euclidean Algorithm and the Fundamental
Theorem of Algebra. The first is a result on factoring polynomials, and the second says
that every polynomial in C[z] has a root. The latter result relies on a result from complex
analysis which is stated but not proved. For this section, [ is a field.

4.1 The Algebra of Polynomials

Definition 4.1.1. A polynomial p over F is a sequence p = (a;)iez., where a; € F for all
i € Z>o such that there is an n € N such that a; = 0 for all i > n. The minimal n € Zsg
such that a; = 0 for all i > n (if it exists) is called the degree of p, denoted deg(p), and we
define the degree of the zero polynomial, the sequence of all zeroes, denoted 0, to be —oc.
The leading coeflicient of of p, denoted LC(p) is @geg(p), and the leading coefficient of 0 is 0.
Note that p = 0 if and only if LC(p) = 0. A polynomial p € F[z] is called monic if LC(p) = 1.

Often, we identify a polynomial with the function it induces. The zero polynomial 0
induces the zero function 0: F — F by z +— 0. A nonzero polynomial p = (a;) induces a
function still denoted p: F — [ given by

Sometimes when we identify the polynomial with the function, we call p a polynomial over
F with indeterminate z, and q; is called the coefficient of the 2’ term for i = 1,...,n. If we
say that p is the polynomial given by

p(Z) = Z a’iziv
1=0

then it is implied that p = (a;) where a; = 0 for all ¢ > n. Note that it is still possible in
this case that deg(p) < n.
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The set of all polynomials over F is denoted F[z]. The set of all polynomials of degree
less than or equal to n € Zs¢ is denoted P, (F). If p,q € Flz] with p = (a;) and ¢ = (b;),
then we define the polynomial p + g = (¢;) € Flz] by ¢; = a; + b; for all i € Z>(. Note that
if we identify p, ¢ with the functions they induce:

deg(p) ' deg(q) 4
p(z) = Z a;z" and q(z) = Z bz,
i=0 i=0
the polynomial p + g € F[z] is given by
deg(p) ~  deg(g)  max{deg(p)deg(q)} ‘
(P+a)(z) =p2) +q2) = Y aid + Y biz' = > (a; + b;)z".
i=0 i=0 i=1

We define the polynomial pg = (¢;) € F[z] by

Cp = Z a;b; for all k € Z>y.

i+j=k

Alternatively, if we are using the function notation,

deg(p) (deg(q)  deg(p)tdeg(q)
IEIRPATE OSSN (Z aibj)
=0 =0 k=0 i+j=k

If A € Fand p = (a;) € F[z], then we define the polynomial Ap = (¢;) by ¢; = Aa; for all
i € Z>o. Alternatively, we have

deg(p) ' deg(p) ‘
(AD)(2) = Ap(z) = A D a2’ = Y (Aay)2'.
i=0 i=0

Examples 4.1.2.
(1) p(z) = 22 + 1 is a polynomial in F[z].
(2) A linear polynomial is a polynomial of degree 1, i.e. it is of the form Az — p for A\, p € F
with A # 0.
Remarks 4.1.3.
1) It is clear that LC(pq) = LC(p) LC(q), so pq is monic if and only if p, ¢ are monic.
2) A consequence of (1) is that pg = 0 implies p = 0 or ¢ = 0 for p,q € Fz].
3) Another consequence of (1) is that deg(pg) = deg(p) + deg(q) for all p, ¢ € F|z].

4) deg(p+q) < max{deg(p),deg(q)} for all p,q € F[2], and if p, g # 0, we have deg(p+q) <
deg(p) + deg(q).

(
(
(
(
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Definition 4.1.4. An F-algebra, or an algebra over F, is a vector space (A, +, -) and a binary
operation * on A called multiplication such that the following axioms hold:

(A1) multiplicative associativity: (a*b)xc=ax* (bxc) for all a,b,c € A,
(A2) distributivity: ax (b+c¢) =axb+bxcand (a+b)xc=axc+bxcforall a,b,c € A, and

(A3) compatibility with scalar multiplication: X-(axb) = (X-a)*b for all A € F and a,b € A.
The algebra is called unital if there is a multiplicative identity 1 € A such that ax1 = 1xa =a
for all a € A, and the algebra is called commutative if a x b = b * a for all a,b € A.

Examples 4.1.5.

(1) The zero vector space (0) is a unital, commutative algebra over F with multiplication
given as 0% 0 = 0. The unit in the algebra in this case is 0.

(2) M,(F) is an algebra over F.

(3) L(V) is an algebra over I if V' is a vector space over F where multiplication is given by
SxT =SoT=ST.

(4
(5

) C(a,b) is an algebra over R. This is also true for closed and half open intervals.
) C™(a,b) is an algebra over R for all n € NU {oo}.

Proposition 4.1.6. F[z] is an F-algebra with addition, multiplication, and scalar multipli-
cation defined as in 4.1.1.

Proof. Exercise. m

Exercises

Exercise 4.1.7 (Ideals). Anideal I in an F-algebra A is a subspace I C A such that axz € T
and zxa el forallz el and a € A.

(1) Show that I = {p € F[2]|p(0) = 0} is an ideal in F[z].
(2) Show that I, = {f € C[a,b]|f(z) = 0} is an ideal in C[a,d] for all z € [a, b].

(3) Show that I = {f € C(R,R)}there are a,b € R such that f(z) =0 for all z < a,z > b}
is an ideal in C'(R,R) (note that the a,b € R depend on the f).

Exercise 4.1.8 (Ideals of Matrix Algebras). Find all ideals of M, (F).

Exercise 4.1.9. Let P,(IF) be the subset of F[z] consisting of all polynomials of degree less
than or equal to n, i.e.

P,(F) = {p € F[2]| deg(p) < n}.
Show that P,(F) is a subspace of F[z] and dim(P,(F) = n + 1.
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Exercise 4.1.10. Let B = (1,z,2% %), respectively C = (1,z,2%), be an ordered basis
of P3(F), respectively Py(F); let B’ = (23,22, 2,1), respectively C' = (z% x,1) be another
ordered basis of P3(IF), respectively Py(F); and let D € L(P5(F), P»(FF)) be the derivative
map

az® 4+ bz* + cz +d — 3az* + 2bz + ¢ for all a,b,c € F.

Find [D]%. and [D]5,.

4.2 The Euclidean Algorithm

Theorem 4.2.1 (Euclidean Algorithm). Let p,q € F[z] \ {0} with deg(q) < deg(p). Then
there are unique k,r € F[z] such that p = gk + r and deg(r) < deg(q).

Proof. Suppose

Zalz and ¢q(z sz

where m > n, a,, # 0, and b, # 0. Then set

m@»:%&%%mmpx@:p@»—mumwx

and note that deg(p2) < deg(p). If deg(p2) < deg(q), we are finished by setting k = k; and
r = py. Otherwise, set

fa(2) = EGEL0 and pa(2) = () — ().

ad note that deg(ps) < deg(po). If deg(ps) < deg(q), we are finished by setting k = k; + ko
and r = p3. Otherwise, set

k3(z) = ———=29€WP)™" and py(2) = p3(z) — ks(2)q(2),

ad note that deg(py) < deg(ps). If deg(ps) < deg(q), we are finished by setting k = ky+ko+ks
and r = py. Otherwise, we may repeat this process as many times as necessary, and note
that this algorithm will terminate as deg(p;+1) < deg(p;) (eventually deg(p;) < deg(q) for
some q).

It remains to show k, r are unique. Suppose p = ki1q+r; = kag+rs with deg(r), deg(ra) <
deg(q). Then 0 = (ky — k2)g + (r1 — r2). Now since deg(r; — r3) < deg(q), we have that

0 =LC((k1 = k2)q + (11 — r2)) = LC((k1 — k2)q) = LC(ky — k2) LC(q),

so k1 = ko as g # 0. It immediately follows that ry = rs. O
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Exercises

Exercise 4.2.2 (Principal Ideals). Suppose A is a unital, commutative algebra over F. An
ideal I C A is called principal if there is an x € I such that [ = {ax|a € A}. Show that
every ideal of F|z] is principal (see 4.1.7).

4.3 Prime Factorization

Definition 4.3.1. For p, ¢ € F[z], we say p divides ¢, denoted p|q, if there is a polynomial
k € F[z] such that kp = q.

Examples 4.3.2.
(1) (z£1)|(22-1).
(2) (2414) | (224 1) in C[z], but there are no nonconstant polynomials in R[z] that divide
2%+ 1.

Remark 4.3.3. Note that the above defines a relation on [F[z] that is reflexive and transitive
(see 1.1.6). It is also antisymmetric on the set of monic polynomials.

Definition 4.3.4. A polynomial p € F[z] with deg(p) > 1 is called irreducible (or prime) if
q € F[z] with ¢ | p and deg(q) < deg(p) implies ¢ is constant.
Examples 4.3.5.

(1) Every linear (degree 1) polynomial is irreducible.

(2) 22+ 1 is irreducible over R (in R[z]), but not over C (in C[z]).
Definition 4.3.6. Polynomials py, ..., p, € F[z] where n > 2 and deg(p;) > 1 for all i € [n]
are called relatively prime if ¢ | p; for all ¢ € [n] implies ¢ is constant.
Examples 4.3.7.

(1) Any n > 2 distinct monic linear polynomials in F[z] is relatively prime.

(2) Any n > 2 distinct quadratics 2? + az + b € R[z] such that a®> — 4b < 0 are relatively
prime.

(3) Any quadratic 2? + az + b € R[z] with a*> — 4b < 0 and any linear polynomial in R[z] are
relatively prime.

Proposition 4.3.8. py,...,p, € F[z| where n > 2 are relatively prime if and only if there
are qi, ..., ¢y € F[2] such that

Z qipi = 1.

i=1
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Proof. Suppose there are q, ..., q, € F[z] such that

Z qipi = 1,
i=1

and suppose ¢|p; for all ¢ € [n]. Then ¢|1, so ¢ must be constant, and the p;’s are relatively
prime.
Suppose now that the p;’s are relatively prime. Choose polynomials q,...,q, € F[z]

such that
F=> ap
i=1

has minimal degree which is not —oo (in particular, f # 0). Now we know deg(f) < deg(p;)
as we could have ¢; = 1 and ¢; = 0 for all ¢ # j. By the Euclidean algorithm, for j € [n],
there are unique k;, r; with deg(r;) < deg(f) such that p; = k; f + r;. Since

rp=pj—kf=p; _kz%pi = (1 —/fQj)pj‘i‘qu@'pn
i=1 i#j

we must have that r; = 0 for all j € [n] since deg(f) was chosen to be minimal. Thus f|p;
for all i € [n], so f must be constant. As f # 0, we may divide by f, and replacing ¢; with
q;/ f for all i € [n], we get the desired result. O

Corollary 4.3.9. Suppose p,qi,...,q, € F[z] where n > 2 and p is irreducible. Then if
pl(q1-qn), | q for somei € [n].
Proof. We proceed by induction on n > 2.

n = 2: Suppose q1,q2 € F[z] and p | ¢1q2. If p | ¢, we are finished. Otherwise, p,q; are
relatively prime (if k& is nonconstant and k | p, then k = p, but k 1 ¢1). By 4.3.8, there are
g1, g2 € F[z] such that g;p + g2g1 = 1. We then get

G2 = §1Q2p + 92q1G2-

As p|91@2]7 and p’92Q1QQ, we have p’Qz-

n— 1= n: We have p|(q1 - Gn_1)qn, S0 by the case n = 2, either p|g,, in which case we are
finished, or plq; - - - ¢,—1, in which case we apply the induction hypothesis to get p|g; for some
i€ n—1]. [

Lemma 4.3.10. Suppose p,q,r € F[z] with p # 0 such that pg = pr. Then q =r.

Proof. We have p(¢ —r) = 0. As LC(p(¢ — r)) = LC(p)LC(¢ — r), we must have that
LC(g—1r)=0,and g =r. O
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Theorem 4.3.11 (Unique Factorization). Let p € F[z] with deg(p) > 1. Then there are
unique monic irreducible polynomials pr, ..., p, and a unique constant X € F\ {0} such that

n
p=Xp1-pa=A]] s
=1

Proof.
Existence: We proceed by induction on deg(p).
deg(p) = 1: This case is trivial as p/ LC(p) is a monic irreducible polynomial and p = LC(p)(p/ LC(p)).

deg(p) > 1: We assume the result holds for all polynomials of degree less than deg(p). If p is
irreducible, then so is p/ LC(p), and we have p = LC(p)(p/ LC(p)). If p is not irreducible,
there is are nonconstant polynomials ¢,r € F[z] with deg(q),deg(r) < deg(p) such that
p = qr. As the result holds for ¢, r, we have that the result holds for p.

Uniqueness: Suppose

p=A Hpi =K H 4
i=1 j=1
where all p;, g;’s are monic, irreducible polynomials. Then A = p = LC(p). Now p,, divides
Q1 Gm, SO pplg; for some i € [m]. After relabeling, we may assume i = m. But then
Prn = Gm, SO

P1 Pn—1Pn = 41" " 4m—1Pn-

By 4.3.10, we have that p; ---p,—1 = ¢1 - - - ¢m—1, and we may repeat this process. Eventually,
we see that n = m and that the ¢;’s are at most a rearrangement of the p;’s. ]

Exercises

Exercise 4.3.12. Suppose p, q € F[z] are relatively prime. Show that p" and ¢™ are rela-
tively prime for n,m € N.

Exercise 4.3.13. Let A\{,..., \, € F be distinct and let pq,...,u, € F. Show that there is
a unique polynomial p € F[z] of degree n— 1 such that p()\;) = p; for all i € [n]. Deduce that

a polynomial of degree d is uniquely determined by where it sends d + 1 (distinct) points of
F.

Exercise 4.3.14 (Greatest Common Divisors and Least Common Multiples). Let py,ps €
F[z] with degree > 1.

(1) Show that there is a unique monic polynomial ¢ € F[z] of minimal degree such that p; | ¢
and py | ¢. This polynomial, usually denoted lem(py, p2), is called the least common multiple
of p; and ps.

(2) Show that there is a unique polynomial ¢ € [F[z] of maximal degree with LT(q) = 1 such
that ¢ | p1 and ¢ | p2. This polynomial, usually denoted ged(py,p2), is called the greatest
common divisor of p; and p,.
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4.4 Irreducible Polynomials

For this section, ' will denote a field and K C F will be a subfield such that F is a finite
dimensional K-vector space.

Definition 4.4.1. )\ € [ is called a root of p € K[z] where deg(p) > 1 if p(\) = 0.

Definition-Proposition 4.4.2. Let A € F. The irreducible polynomial of A over the field

K is the unique monic irreducible polynomial Irrg x € Klz]| of minimal degree such that
II‘I‘K’)\(A) =0.

Proof.
Existence: Since A € F, \¥ € F for all k € Zs,. The set {)ﬂk € Zzo} cannot be linearly
independent over K as I is a finite dimensional K-vector space, so there are scalars g, . . ., tin

with p, # 0 such that
SN —0— 3 Fii_g
i=0 im0 Hn
Define p € K][z] by

p(z) =) By,
Then p(A\) = 0, so there is a monic polynomial in K[z] with A as a root.

Pick a monic polynomial ¢ € K[z] of minimal degree such that ¢(\) = 0. Then ¢ is
irreducible (otherwise, there are k,r € K[z] of degree > 1 such that ¢ = kr, so ¢(\) =
kE(A)r(A) = 0, so either k(\) = 0 or 7(\) = 0, a contradiction as ¢ was chosen of minimal
degree).

Uniqueness: Suppose p,q € K[z] are both monic polynomials of minimal degree such that
p(A) = q(A) = 0. Then deg(p) = deg(q), so by the Euclidean algorithm, there are k, r € K|z]
with deg(r) < deg(q) such that p = kq + r. Now p(A\) = k(A)g(A) + 7(A), so r(A) = 0. This
is only possible if » = 0 as deg(r) < deg(q). Hence p = kq with deg(p) = deg(q), so k is a
constant. As p,q are both monic, £k =1, and p = q. O

Corollary 4.4.3. Suppose A € F. Then X € K if and only if deg(Irrg ») = 1.
Corollary 4.4.4. Suppose A € F and dimg (F) = n. Then deg(Irrg ) < n.
Lemma 4.4.5. Suppose X\ € F is a root of p € K[z| where deg(p) > 1. Then Irrg , |p.

Proof. The proof is similar to 4.4.2. Without loss of generality, we may assume p is monic (if
not, we replace p with p/ LC(p). Now since deg(Irrk ») < deg(p), by the Euclidean algorithm,
there are k,r € K[z] with deg(r) < deg(Irrk ) such that p = kIrrk , +r. We immediately
see r(\) =0, sor =0. O
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Example 4.4.6. We know that C is a two dimensional real vector space. If A € C is a root
of p € R[z], then X is also a root of p. In fact, since p(A\) = 0, we have that p(\) = p(A) =0
since the coefficients of p are all real numbers. Hence, the irreducible polynomial in R[z| for
A € C is given by

I (2) z— A if \eR
IT Z) = —
A (2= Nz =N =22—2Re(N)z+ [\ if \¢R

Definition 4.4.7. The polynomial p € F[z] splits (into linear factors) if there are A\, A\1,..., \, €
[F such that

Examples 4.4.8.
(1) Every constant polynomial trivially splits in F[z].
(2) The polynomial 2% + 1 splits in C[z] but not in R[z].
Definition 4.4.9. The field I is called algebraically closed if every p € F|z] splits.

Exercises

4.5 The Fundamental Theorem of Algebra

Definition 4.5.1. A function f: C — C is entire if there is a power series representation

[e.9]

f(z) =) an2"

n=0
where a,, € C for all n € Z>( that converges for all z € C.
Examples 4.5.2.
(1) Every polynomial in C[z] is entire as its power series representation is itself.

(2) f(z) = e* is entire as

ef = %
(3) f(z) = cos(z) is entire as N )
cos(z) = ;(—1)” (;n)‘
(4) f(z) =sin(z) is entire as
sin2) = Y (1) o



In order to prove the Fundamental Theorem of Algebra, we will need a theorem from
complex analysis. We state it without proof.

Theorem 4.5.3 (Liouville). Every bounded, entire function f: C — C is constant.

Theorem 4.5.4 (Fundamental Theorem of Algebra). Every nonconstant polynomial in Clz]
has a root.

Proof. Let p be a polynomial in C|[z]. If p has no roots, then 1/p is entire and bounded. By
Liouville’s Theorem, 1/p is constant, so p is constant. ]

Remark 4.5.5. Let p € C[z] be a nonconstant polynomial, and let n = deg(p). Then by
4.5.4, p has a root, say p, so there is a p; € C[z] such that p(z) = (2 — u1)p1(2). If p; is
nonconstant, then apply 4.5.4 again to see p; has a root g, so there is a ps € C[z] with
deg(p2) = n — 2 such that p(z) = (2 — p1)(z — p2)p2(z). Repeating this process, we see that
pn, must be constant as a polynomial has at most n roots. Hence there are pq,...,u, € C
such that

n

p(z) = kH(z — ;) =k(z — 1) -+ (2 — p,) for some k € C.

j=1

Hence every polynomial in C[z] splits.

Proposition 4.5.6. Fvery nonconstant polynomial p € R|z] splits into linear and quadratic
factors.

Proof. We know p has a root A € C by 4.5.4, so by 4.4.6, Irry |p, i.e. there is a py € R[Z]
with deg(ps) < deg(p) such that p = Irryps. If py is constant we are finished. If not,
we may repeat the process for p, to get p3, and so forth. This process will terminate as
deg(pn) < deg(pn+1)- O

Exercises

4.6 The Polynomial Functional Calculus

Definition 4.6.1 (Polynomial Functional Calculus). Given a polynomial
p(2) =D A2’ €F[2],
=0
and T € L(V), we can define an operator by
p(T) =) \T
=0

with the convention that 7° = I.
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Proposition 4.6.2. The polynomial functional calculus satisfies:
(1) (p+a)(T) = p(T) +¢q(T) for all p,q € Flz] and T € L(V)),

(2) (pa)(T) = p(T)q(T) = ¢(T)p(T) for all p,q € F[z] and T € L(V),
(3) Ap)(T) = Ap(T) for all X\ € F, p e Flz] and T € L(V), and
( (T

(4) (poq)(T)=p(q(T)) for all p,q € F[z] and T € L(V).

Proof. Exercise.

Exercises

Exercise 4.6.3. Prove 4.6.2.
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Chapter 5

Eigenvalues, Eigenvectors, and the
Spectrum

For this chapter, V' will denote a vector space over F. We begin our study of operators in
L(V) by studying the spectrum of an element 7" € L(V) which gives a lot of information
about the operator. We then discuss methods for calculating the spectrum sp(7") when V is
finite dimensional, namely the characteristic and minimal polynomials. For A € M, (F), we
will identify L4 € L(F™) with the matrix A.

5.1 Eigenvalues and Eigenvectors

Definition 5.1.1. Let T € L(V).
(1) The spectrum of T', denoted sp(T), is {A € F|T — AI is not invertible}.

(2) If v € V'\ {0} such that Tv = Av for some A € F, then v is called an eigenvector of T'
with corresponding eigenvalue \.

(3) If X is an eigenvalue of T', i.e. there is an eigenvector v of T' with corresponding eigenvalue
A, then F) = {w € V|Tw = )xw} is the eigenspace associated to the eigenvalue A. It is clear
that FE) is a subspace of V.

Proposition 5.1.2. Suppose V' is finite dimensional. Then A € F is an eigenvalue of
T e L(V) if and only if X € sp(V).

Proof. By 3.2.15, T'— Al is not invertible if and only if 7" — AI is not injective. It is clear
that T" — AI is not injective if and only if there is an eigenvector v of T with corresponding
eigenvalue A. O

Remark 5.1.3. Note that 5.1.2 depends on the finite dimensionality of V' as 3.2.15 depends
on the finite dimensionality of V.

Examples 5.1.4.
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(1) Suppose A € M, (FF) is an upper triangular matrix. Then sp(L,) is the set of distinct
values on the diagonal of A. This can be seen as A — A is not invertible if and only if A
appears on the diagonal of A.

(2) The eigenvalues of the operator

A= % G }) € M, (F)

are 0, 1 corresponding to respective eigenvectors

50) w5 (1)

If we had an eigenvector associated to the eigenvalue A, then

L1 1\ fa) _1[fa+b) _ \ (@
2\1 1)\b) 2\a+bd) b)’
so a + b = 2\ a = 2X\b. Thus A(a — b) = 0, so either A = 0, or a = b. In the latter case, we
have A =1 as a =b# 0. Hence sp(L4) = {0,1}.
(3) The operator
0 —1
B = (1 0 ) € My (R)

has no eigenvalues. In fact, if

0 -1\ (a —b a
() 6)=()=6)
then we must have that A\a = —b and A\b = a, so —b = Aa = \?b, and (A\* + 1)b = 0. Now

the first is nonzero as A € R, so b = 0. Thus a = 0, and B has no eigenvectors.
If instead we consider B € M,(C), then B has eigenvalues +i corresponding to eigenvec-

tors
1 1
\/§ +i )

(4) Consider L, € L(F[z]) given by L.(p(z)) = zp(z). Then the set of eigenvalues of L, is
empty as zp(z) = Ap(z) if and only if (z — \)p(z) = 0 if and only if p = 0 for all A € F.

(5) Recall that a polynomial is really a sequence of elements of F which is eventually zero.
Now the operator L, discussed above is really the right shift operator R on F|z]:

R(ao, a1, ag,0as, . . ) = LZ(CL07 a1,09,0as, ... ) = (0, ap, A1, a9, ... )
One can also define the left shift operator L € L(F[z]) by
L(ao, ai, s, as, ... ) = (CLl, ag, a3z, A4, ... )
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Note that LR = I, the identity operator in L(F[z]), but R is not surjective as the constant
polynomials are not hit, and L is not injective as the constant polynomials are killed. Thus
L, R are not invertible, so 0 € sp(R) and 0 € sp(L). Thus R is an example of an operator
with no eigenvalues, but 0 € sp(R). In fact, the only eigenvalue of L is 0 as Lp = Ap implies

deg(p) —1 if deg(p) > 2

deg(Ap) = deg(Lp) = {_oo if deg(p) < 2

which is only possible if Ap = 0, and Lp = 0 only for the constant polynomials.
Definition 5.1.5. Suppose T' € L(V'). A subspace W C V is called T-invariant if TW C W.
Examples 5.1.6. Suppose T € L(V).

(1) (0) and V are the trivial T-invariant subspaces.

(2) ker(T') and im(7") are T-invariant subspaces.

(3) An eigenspace of T is a T-invariant subspace.

Notation 5.1.7. Given 7' € L(V) and a T-invariant subspace W C V', we define the
restriction of 7" to W in L(W), denoted T|w, by T'|w(w) = Tw for all w € W. Note that
T'|w is just the restriction of the function 7: V' — V to W with the codomain restricted as
well.

Lemma 5.1.8 (Polynomial Eigenvalue Mapping). Suppose p € F[z], T € L(V), and v is an
eigenvector for T corresponding to X € sp(T'). Then p(T)v = p(A)v, so p(A) € sp(p(T)).

Proof. Exercise. O]
Proposition 5.1.9. Let T € L(V), and suppose \1,..., N\, are eigenvalues of T'. Suppose

n

v; € B, for alli € [n] such that Zvi =0. Then v; =0 for all i € [n]. Thus

i=1

B
i=1
1s a well-defined subspace of V.
Proof. For i € [n] define f; € F[z] by
[1(z=A))

_J#
J#i
Then
)1 ifi=y
filx) = {O else.



By 5.1.8, for i € [n],

n n n

0=Ff(T)0=Ff(T) v;=>_ fi(D)v;=>_ fi\)v; =vi.

J=1 Jj=1 Jj=1
O

Remark 5.1.10. Eigenvectors corresponding to distinct eigenvalues are linearly independent,
so T' can have at most dim (V') many distinct eigenvalues.

Exercises

Exercise 5.1.11. We call two operators in S, T € L(V) similar, denoted S ~ T, if there is an
invertible J € L(V) such that J~'SJ = T. The similarity class of S is {T" € L(V)|T ~ S}.
Show

(1) ~ defines a relation on L(V') which is reflexive, symmetric, and transitive (see 1.1.6),
(2) distinct similarity classes are disjoint, and

(3) if S ~ T, then sp(S) = sp(7'). Thus the spectrum is an invariant of a similarity class.

Exercise 5.1.12 (Finite Shift Operators). Let B = {v1,...,v,} be a basis of V. Find the
spectrum of the shift operator T' € L(V') given by Tv; = v;y for i = 1,...,n — 1 and
TUn = Vq.

Exercise 5.1.13 (Infinite Shift Operators). Let

('(N,R) = {(an)

(*(N,R) = {(an)||as| € [-M, M] for all n € N for some M € N}, and
R* = {(an)|a, € R for all n € N},

acR for all n € N and Z la,| < oo},

n=1

In other words, ¢!(N,R) is the set of absolutely convergent sequences of real numbers,
(>°(N, R) is the set of bounded sequences of real numbers, and R is the set of all sequences
of real numbers.

(1) Show that ¢'(N,R), ¢*(N,R), and R> are vector spaces over R.

Hint: First show that R™ is a vector space over R, and then show ¢!(N,R) and ¢>°(N, R) are
subspaces. To show (}(N,R) is closed under addition, use the fact that if (a,) is absolutely
convergent, then we can add up the terms |a,| in any order that we want and we will still
get the same number.

(2) Define S; € L(¢*(N,R)), So € L(¢{*(N,R)) and Sy € L(R*>) by

Si(al,aQ,ag, .. ) = (ag,ag,a4, .. ) for ¢ = 0, 1,00.

66



(a) Find the set of eigenvalues, denoted Eg, for i = 0,1, oc.

(b) Why is part (a) asking you to find the set of eigenvalues of S; and not the spectrum
of S; for i =0,1,007

Exercise 5.1.14. Let F be a real vector space. A € C\ R is called a psuedoeigenvalue of
T € L(V) if X is an eigenvalue of T € L(V¢). Suppose A = a + ib is a psuedoeigenvalue of
T € L(V), and suppose u + iv € Vi \ {0} such that Te(u + iv) = Mu +iv). Set B = {u,v}.
Show

(1) W =span(B) C V is invariant for T,
(2) B is a basis for W, and

(3) ming), = Irrg .

(4) Find [T|w]s.

5.2 Determinants

In this section, we discuss how to take the determinant of a square matrix. The determinant
is a crude tool for calculating the spectrum of L4 for A € M,(F) via the characteristic
polynomial which is defined in the next section. This method is only recommended for small
matrices, and it is generally useless for large matrices without the use of a computer. Even
then, one can only get numerical approximations to the eigenvalues.

Definition 5.2.1. A permutation on [n] is a bijection o: [n] — [n]. The set of all permuta-
tions on [n] is denoted S,,. Permutations are denoted

1 - n
o(l) - a(n))
A permutation o € S, is called a transposition if o (i) = i for all but two distinct elements

J,k € [n] and o(j) = k and o(k) = j. Note that the composite of two permutations in S, is
a permutation in S,,.

Examples 5.2.2.
(1)
(2)

Definition 5.2.3. An inversion in o € S, is a pair (i,7) € [n] x [n] such that i < j and
o(i) > o(j). We call o € S, odd if there are an odd number of inversions in o, and we call o
even if there are an even number of inversions in o. Define the sign function sgn: S,, — {1}
by sgn(o) =1 if o is even and —1 if o is odd.

Examples 5.2.4.
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(1) The identity permutation has sign 1 since it has no inversions, and a transposition has
sign —1 as it has only one inversion.

(2)
Definition 5.2.5. The determinant of A € M,,(F) is

det(A) = > sen(o) [ [ Aio
i=1

oESy

Example 5.2.6. We calculate the determinant of the 2 x 2 matrix

A= (‘C” Z) € My(F).

There are two permutations in Sy: the identity permutation and the transposition switching
1 and 2. Call these id, o respectively. It is clear that id has no inversions and ¢ has one
inversion, so sgn(id) = 1 and sgn(o) = —1. Hence

det(A) = <sgn(1d) H Ai,id(i)) + (sgn(a) H Az 0 > A1 1A2 2+( )ALQAQJ =ad—bc € F.
i=1 i=1

Proposition 5.2.7. For A € M,(F), we can calculate det(A) recursively. Let A% €
M,,_1(F) be the matriz obtained from A by deleting the i™ row and j™ column. Then firing

i € [n], we have
n

det(A) =Y (—1)"A; ; det(A™).
j=1
This procedure is commonly referred to as taking the determinant of A by expanding along
the i row of A. We may also take the determinant by expanding along the 7™ column of A.
Fizing j € [n|, we get

i=1
Proof.
FINISH: We proceed by induction on n.
n = 1: Obvious.

n — 1 = n: Expanding along the i*" row and using the induction hypothesis, we see

n n n—1
ST A det(AY) = S (-1)H A, Y sen(o H (Ao
j=1 j=1 0ESH_1 =1

— Z Z 1) A; (sgn ﬁ A ok ))
j=1o€S,—1 k=1

where [n — 1] is identified with
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Corollary 5.2.8. If A € M, (F) has a row or column of zeroes, then det(A) = 0.
Lemma 5.2.9. Let A € M, (F).

(1) det(A) = det(AT).

(2) If A is block upper triangular, i.e., there are square matrices Ay, ..., Ay, such that

Al *
A= . ,
0 A
then .
det(A) = Hdet(Ai).
i=1
Proof.

(1) This is obvious by 5.2.7 as taking the determinant of A along the i*! row of A is the same
as taking the determinant of A” along the i'" column of AT,

(2) We proceed by cases.
Case 1: Suppose m = 2. We proceed by induction on k where A; € M(IF).

k=1: Ay € M;(F), the result is trivial by taking the determinant along the first column as
Al’l = A2 and A271 =0.

k —1 = k: Suppose A; € M(F) with £ > 1. Then taking the determinant along the first

column, we have '
i1 (Al)l’l k <
Abt = ( 0 A2) for all 1 <k,

so applying the induction hypothesis, we have det(A"!) = det((A;)"!) det(Ay) for all i < k.
Then as A;1 = 0 for all ¢ > k, we have

det(A) = (=1)'"A;y det(A™) =) "(—1)"" Ay det((Ay)"") det(Az) = det(A;) det(Ay).

i=1 =1
Case 2: Suppose m > 2, and set

A2 * A
Blz :>A:(01 gl)
0 Anm

Applying case 1 gives det(A) = det(A;)det(B;). We may repeat this trick to peel off the
A;’s to get

m

det(A) = [ ] Ai.

=1
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Corollary 5.2.10. If A is block lower triangular or block diagonal, then det(A) is the product
of the determinants of the blocks on the diagonal. If A is upper triangular, lower triangular,
or diagonal, then det(A) is the product of the diagonal entries.

Proposition 5.2.11. Suppose A € M,(F), and let E € M,(F) be an elementary matriz.
Then det(EA) = det(FE) det(A).
Proof. There are four cases depending on the type of elementary matrix.

Case 1: If £ = I, the result is trivial.

Case 2: We must show
(a) the determinant of the matrix E obtained by switching two rows of [ is —1, and
(b) switching two rows of A switches the sign of det(A).

Note that the result is trivial if the two rows are adjacent by 5.2.7. To get the result if the
rows are not adjacent, we note that the interchanging of two rows can be accomplished by
an odd number of adjacent switches. If we want to switch rows ¢ and 7 with ¢ < j, we switch
7 with 7 — 1, then 7 — 1 with j — 2, all the way to i + 1 with ¢ for a total of 7 — ¢ switches.
We then switch i + 1 with ¢ + 2 as the old i*" row is now in the (i + 1) place, we switch
1+ 2 with ¢ + 3, all the way up to switching j — 1 with j for a total of j — i — 1 switches.
Hence, we switch a total of 25 — 2¢ — 1 adjacent rows, which is always an odd number, and
the result holds.

Case 3: We must show

(a) the determinant of the matrix E obtained from the identity by multiplying a row by a
nonzero constant A is A\, and

(b) multiplying a row of A by a nonzero constant A changes the determinant by multiplying
by A.

We see (a) immediately holds from 5.2.9 as F is diagonal, and (b) immediately holds by
5.2.7 by expanding along the row multiplied by \. If the i*" row is multiplied by ), then

det(EA) = i(_niﬂ'(m)i,j det((EA)) = i(—niﬂ'mi,j det(A™) = det(E) det(A)

j=1 =1
as A = det(E) and (FA)% = A% as only the i*" row differs between the two matrices.

Case 4: We must show

(a) the determinant of the matrix E obtained from the identity by adding a constant
multiple of one row to another row is 1, and

(b) adding a constant multiple of the i® row of A to the k' row of A with k& # i does not
change the determinant of A.
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To prove this result, we need a lemma:

Lemma 5.2.12. Suppose A € M, (F) has two identical rows. Then det(A) = 0.

Proof. We see from Case 2 that if we switch two rows of A, the determinant changes sign. As
A has two identical rows, switching these rows does not change the sign of the determinant,
so the determinant must be zero. O

Once again, note (a) is trivial by 5.2.9 as F is either upper or lower triangular. To show
(b), we note that (EA)* = A% for all j € [n], so by 5.2.7

n n

det(EA) =Y (~1)!(EA); det((EA)M) = (=19 (A + Ay ) det(A")

1 j=1

= (=1 A det(AM) ) "(=1)* Ay det(AP) = det(A)
j=1

J/ N
—~ —~

det(B) det(A)

by 5.2.12 as B is the matrix obtained from A by replacing the &*® row with the i*" row, so
two rows of B are the same, and det(B) = 0. O

Theorem 5.2.13. A € M, (F) is invertible if and only if det(A) # 0.

Proof. There is a unique matrix U in reduced row echelon form such that A = FE,, --- E,U
for elementary matrices E1, ..., F,. By iterating 5.2.11, we have

det(A) = det(E,) - - - det(E;) det(U),

which is nonzero if and only if det(U) # 0. Now det(U) # 0 if and only if U = I as U is in
reduced row echelon form, so det(A) # 0 if and only if A is row equivalent to I if and only
if A is invertible. O

Proposition 5.2.14. Suppose A, B € M,(F). Then det(AB) = det(A) det(B).

Proof. If Aisnot invertible, then AB is not invertible by 3.2.18, so det(AB) = det(A) det(B) =
0 by 5.2.13.

Now suppose A is invertible. Then there are elementary matrices Fy, ..., E, such that
A=F,---E, as A is row equivalent to I. By repeatedly applying 5.2.11, we get

det(AB) = det(E; - - - E,B) = det(F}) - - - det(E,) det(B) = det(A) det(B).

Corollary 5.2.15. For A, B € M,(F), det(AB) = det(BA).

Proposition 5.2.16.
(1) Suppose S € M, (F) is invertible. Then det(S™1) = det(S)™*
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(2) Suppose A, B € M,,(F) and A ~ B. Then det(A) = det(B).

Proof.
(1) By 5.2.14, we have

1 =det(I) = det(S™1S) = det(S) det(S).
(2) By 5.2.14 and (1),

det(A) = det(S™'BS) = det(S™") det(B) det(S) = det(S™) det(S) det(B) = det(B).

O
Proposition 5.2.17. Suppose A, BlinM,,(F).
(1) trace(AB) = trace(BA).
(2) If A ~ B, then trace(A) = trace(B).
Proof. Exercise. m

Exercises

V' will denote a finite dimensional vector space over F.

Exercise 5.2.18 (A Faithful Representation of S,,). Show that the symmetric group S,, can
be embedded into L(V') where dim(V') = n, i.e. there is an injective function ®: S,, — L(V)
such that ®(o7) = ®(0)P(7) for all 0,7 € 5,.

Hint: Use operators like T defined in 5.1.12.

Note: If G is a group, a function ®: G — L(V) such that ®(gh) = ®(g)®(h) is called a
representation of G. An injective representation is usually called a faithful representation.

5.3 The Characteristic Polynomial

For this section, V' will denote a finite dimensional vector space over F.

Definition 5.3.1.

(1) For A € M,(F), define the characteristic polynomial of A, denoted chary € F[z], by
chars(z) = det(zI — A). Note that chary € F[z] is a monic polynomial of degree n.

(2) Let T' € L(V). Define the characteristic polynomial of T, denoted chary € F[z], by
chary(z) = det(2I — [T )

where B is some basis for V. Note that this is well defined as if C' is another basis of V,
then [T ~ [T]¢ by 3.4.13, so 2zl — [T|g ~ zI — [T]c. Now we apply 5.2.16.
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Remark 5.3.2. Note that chary = chary, if A € M, (F).

-2
we see that chary, (z) = det(2] — Ay) =2 F 1.
(2)
Remark 5.3.4. If A ~ B, then chary = charp.

Examples 5.3.3.
(1) If AL € My(F) is given by

Proposition 5.3.5. Let T € L(V'). Then X € sp(T) if and only if \ is a root of chary and
AeF.

Proof. This is immediate from 5.2.13 and 3.4.12. [

Remark 5.3.6. 5.3.5 tells us that one way to find sp(7) is to first pick a basis B of V, find
[T g, and then compute the roots of the polynomial

charr(z) = det(zI — [T]p).

The problem with this technique is that it is usually very difficult to factor polynomials of
high degree. For example, there are quadratic, cubic, and quartic equations for calculating
roots of polynomials of degree less than or equal to 4, but there is no formula for finding
roots of polynomials with degree greater than or equal to 5. Hence, if dim(V') > 5, there is
no good way known to factor the characteristic polynomial.

Another problem is that it is very hard to calculate determinants without the use of
computers. Even with a computer, we can only calculate determinants to a certain degree of
accuracy, so we are still unsure of the spectrum of the matrix if the characteristic polynomial
obtained in the fashion can be factored.

Examples 5.3.7. We will calculate the spectrum for some operators.
(1)
(2)

Exercises

V' will denote a finite dimensional vector space over F.

Exercise 5.3.8 (Roots of Unity). Suppose V' is a finite dimensional vector space over C
with ordered basis B = (v1,...,v,), and let T' € L(V') be the finite shift operator defined in
5.1.12. Compute chary(z) = det(zI — [T]p), and relate your answer to 5.1.12.

Exercise 5.3.9. Compute the characteristic polynomial of
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(1) the operator L € L(F") where B = R € M,(F) and A\ € F, and
S
0 A
0O 0 -+ 0 —ag
1 0 .- 0 —Qaq
(2) the operator Lo € L(F") where C' = T : € M,(F) and a; € F for
0 —Qn—2
0 1 —0ap—1
all i € [n —1].

5.4 The Minimal Polynomial

For this section, V' will denote a finite dimensional vector space over F.

Definition-Proposition 5.4.1. Recall that if V' is finite dimensional, then L(V') is finite
dimensional. For T' € L(V'), the set

{T”‘n c ZZO}

where T° = I cannot be linearly independent, so there is a unique monic polynomial p € C|z]
of minimal degree > 1 such that p(T') = 0. This polynomial is called the minimal polynomial,
and it is denoted miny.

Proof. We must show the polynomial p is unique. If ¢ € C[z] is monic with deg(p) = deg(q),
by the Euclidean Algorithm 4.2.1, there are polynomials unique k,r € C[z] such that p =
kq + r and deg(r) < deg(q). Since p(T') = ¢(T) = 0, we must also have that r(T") = 0, so
r = 0 as p was chosen of minimal degree. Thus p = kq, and since deg(p) = deg(q), k must
be constant. Since p and ¢ are both monic, the constant k& must be 1. O

Examples 5.4.2.

(1) If T =0, we have that miny(z) = z as this polynomial is a linear polynomial which gives
the zero operator when evaluated at T

(2) If T'= I, we have that miny(z) = z—1 for similar reasoning as above (recall that 1(7") = I,
i.e. the constant polynomial 1 evaluated at 1" is I).

(3) We have that miny is linear if and only if 7' = AI for some A € F.
Proposition 5.4.3. Let p € F[z|. Then p(T) = 0 if and only if miny | p.

Proof. Tt is obvious that if ming | p, then p(T) = 0. Suppose p(T) = 0. Since miny has
minimal degree such that ming(7") = 0, we have deg(p) > deg(ming). By 4.2.1, there
are unique k,r € C[z] with deg(r) < deg(minr) and p = kminy +r. Then since p(T) =
miny(7) = 0, we have r(T') = 0, so 7 = 0 as miny was chosen of minimal degree. Hence
miny | p. O
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Proposition 5.4.4. For T € L(V), A € sp(T) if and only if X is a root of minr.
Proof. First, suppose A € sp(T') corresponding to eigenvector v. Then
ming(7T)v = miny(A)v = 0,

so A is a root of miny. Now suppose A is a root of miny. Then (2 — A) divides miny(2), so
there is a p € Cl[z] with miny(z) = (z — A\)"p(2) for some n € N such that A is not a root of
p(z). By 5.4.3, p(T) # 0 as ming 1 p, so there is a v such that w = p(T)v # 0. Now we must
have tha

0 = ming(T)v = (T — XI)"p(T)v = (T — N\ )"w.

Hence (T — M )*w is an eigenvector for T' corresponding to the eigenvalue \ for some k €
{0,...,n—1}. O

Corollary 5.4.5 (Existence of Eigenvalues). Suppose F = C and T € L(V'). Then T has
an eigenvalue.

Proof. We know that miny € C[z] has a root by 4.5.4. The result follows immediately by
5.4.4. O

Remark 5.4.6. More generally, T" € L(V) has an eigenvalue if V' is a vector space over an
algebraically closed field.

Exercises
V' will denote a finite dimensional vector space over F.

Exercise 5.4.7. Find the minimal polynomial of the following operators:

1 2 3 4
5 6 7
4 _
(1) The operator Ly € L(R*) where A = 008 9
0 0 0 10
Al 0
(2) The operator Ly € L(F") where B = o € M,(F) and X € F.
S
0 A
0 0 - 0 —ag
1 0 -0 —Qaq
(3) The operator Le € L(F™) where C = R : € M,(F) and a; € F for
0 —Qp-2
0 1 —Qp—1

all i € [n—1].
(4) The finite shift operator 7" in 5.1.12.
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Chapter 6

Operator Decompositions

We begin with the easiest type of decomposition, which is matrix decomposition via idempo-
tents. We then discuss diagonalization and a generalization of diagonalization called primary
decomposition.

6.1 Idempotents

For this section, V' will denote a vector space over F, and U, W will denote subspaces of V'
such that V' = U @& W. Please note that the results of this section are highly dependent on
the specific direct sum decomposition V =U & W.

Definition 6.1.1. An operator E € L(V) is called idempotent if £? = Fo E = E.

Examples 6.1.2.
(1) The zero operator and the identity operator are idempotents.

(2) Let A € M, (F) be given by

1
n

and let £ = L4. Then E? = F as A? = A.

Facts 6.1.3. Suppose V is finite dimensional and E € L(V') is an idempotent.

(1) As E* = E, so we know E* — E = 0. If E =0, then we know ming(z) = p1(2) = z, and
if E = I, then ming(z) = pa(2) = 2z — 1, both of which divide p3(z) = 2 —z. If E # 0,1,
then we have that p1(E) # 0 and pa(E) # 0, but ps(F) = 0. As E # A for any A € F, we
have deg(ming) > 2, so ming = ps.

(2) We see that if E is a nontrivial idempotent, i.e. E # 0,1, then sp(E) = {0,1} as these
are the only roots of 2° — z.
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Definition-Proposition 6.1.4. Define Ey: V — V by Ey(v) =u if v =u+w withu € U
and w € W. Note that Ey is well defined since by 2.2.8, for each v € V' there are unique
ue U andw € W such that v=u+ w. Then

(1) Ey is a linear operator,

(2) Ef = Ev,

(3) ker(Ey) =W, and

(4) im(Ey) = {v e V|Ey(v) =v} =U.

Thus Ey is an idempotent called the idempotent onto U along W. Note that we also have
Ew € L(V), the idempotent onto W along U which satisfies conditions (1)-(4) above after
switching U and W. The operators Ey, Eyw € L(V) satisfy

(5) EwEU =0= EUEw, and

(6) I = Ey + Ew.

Proof.

(1) Let v = uy + wy, vg = ug + wy, and A € F where u; € U and w; € W for i = 1,2. Then

EU(/\UI + UQ) = EU(\(/\ul + u22+£Aw1 + wg)j) = )\Ul + ug = )\EU(’Ul) + EU(’UQ).

cU ew

(2)
(3)
(4)

If v=u+w, then E?v = EyEy(v) = Eyu = u = Eyv, so Ef = Ey.
Ey(v) = 0 if and only if the U-component of V' is zero if and only if v € W.

Ey(v) = v if and only if the W-component of v is zero if and only if v € U. This shows
U = {veV|Ey(v) =v} Cim(Ey). Suppose now that v € im(Ey). Then there is an z € V
such that Ey(z) =v. By (2), v = Eyz = Bz = Eyv, sov € {v € V|Ey(v) =v} =U.

(5) If v =u+ w, we have

Hence EWEU =0= EUEW
(6) If v =u+ w, we have

(Ev + Ew)v = Ey(u+w) + Ew(u+w) =u+w = v.
Hence Ey + By = 1. O

Remark 6.1.5. It is very important to note that Fy is dependent on the complementary
subspace W. For example, if we set

U = span { ((1)) } c F?, W, = span { ((1)) } C F?, and W, = span { G)} c F?,
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then U @ W, =V = U @ W,. Applying 6.1.4 using W7, we have that
1 1
w0 (1) =)
1 0
w0 (1) = o)

Proposition 6.1.6. Suppose E € L(V) with E = E?. Then

(1) I — FE € L(V) satisfies (I — E)> = (I — E),

(2) im(E) = {v € V|EBv = v},

(3) V =ker(E) & im(FE),

(4) E is the idempotent onto im(E) along ker(E), and

(5) I — E is the idempotent onto ker(E) along im(F).

Proof.

(1) [—E)?=1-2E+E*=1-2E+E=1—E.

(2) It is clear {v € V|Ev=v} C im(E). If v € im(E), then there is a u € V such that
Eu=wv. Then v = Fu = F?*u = Ev.

(3) Suppose v € ker(E)Nim(E). Then by (2),v = Ev = 0, sov = 0, and ker(F)Nim(F ) (0
Let v € V, and set u = Fv and w = v—wu. Then u € im(F) and Ew = Ev—FEu=u—u =
so w € ker(E), and v = w + u € ker(E) + im(E).

(4) This follows immediately from 6.1.4.

(5) We have that ker(/ — F) = im(FE) and im(/ — E) = ker(E), so the result follows from (4)
(or 6.1.4). O

but using W5, we would have

)-
0,

Exercises

Exercise 6.1.7 (Idempotents and Direct Sum). Show that

=1

for nontrivial subspaces W; C V for i € [n] if and only if there are nontrivial idempotents
E; € L(V) for i € [n] such that

) iEZ =] and
=1

Note: In this case, we can define T; ; € L(W;, W;) by T, ; = E;TE;, and note that

T = (T;;) € LW, @---@W,) = L(V).
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6.2 Matrix Decomposition

Definition 6.2.1. Let U, W be vector spaces. The external direct sum of U and W is the

vector space
o {(u>
w

where addition and scalar multiplication are defined in the obvious way:

()= () = (o) mman () = (2)

for all u,ui,us € U, w,wi,wy € W, and \ € F.

uEUandwEW}

Notation 6.2.2 (Matrix Decomposition). Since V.= U @& W, there is a canonical isomor-
phism V =U & W = U®W given by
with obvious inverse.

(+)
U+ wr—
w
If T'e L(V), then by 6.1.4,
T = (Ey + Ew)T(Ey + Ew) = EyTEy + EyTEw + EwTEy + EwTEy.

If we set T1 = EUTEU € L(U), TQ = EUTEW € L(W, U), T3 = EwTEU € L(U, W), and
Ty = EwTEw € L(W), define the operator

-~ (Tl TQ

T = T T4) :UDW — UW.

by matrix multiplication, i.e. if u € U and w € W, define
T1 TQ uy Tlu + TQU)
Ts Ty) \w/) \Tzu+ Tyw
The map given by T +— T is an isomorphism
L(V) = {(é g) ‘A e L), Be LW,U), C e L(U,W), and D & L(W)}

where addition and scalar multiplication are defined in the obvious way:

A B\, (A B\_(A+A B+B da (A BY_ (2 B
C D c o)~ \c+c p+p) ™" c D)~ \\C D
for all A, A’ € L(U), B, B' € L(W,U), C,C" € L(U,W), D,D' € L(W), and X € F.

This decomposition can be extended to the case when

V=W
i=1
for subspaces W; C V fori=1,...,n.
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Exercises
Exercise 6.2.3. Suppose V = U & W. Verify the claims made in 6.2.2 i.e.
1. V2UGW and

2 L(V) {(é g) ‘A € L), Be L(W,U), C e L(U,W), and D ¢ L(W)}.

Exercise 6.2.4.

Exercise 6.2.5. Suppose T' € L(V), V =U & W for subspaces U, W, and

(0 o)

where A € L(U), B € L(W,U),and C € L(W) as in 6.2.2. Show that sp(T") = sp(A)Usp(C).

6.3 Diagonalization

For this section, V' will denote a finite dimensional vector space over F. The main results of
this section are characterization of when an operator 7' € L(V) is diagonalizable in terms of
its associated eigenspaces and in terms of its minimal polynomial.

Definition 6.3.1. Let 7' € L(V). T is diagonalizable if there is a basis of V' consisting of
eigenvectors of T. A matrix A € M, (FF) is called diagonalizable if L, is diagonalizable.

Examples 6.3.2.
(1) Every diagonal matrix is diagonalizable.

(2) There are matrices which are not diagonalizable. For example, consider

0 1
A= (0 0) .
We see that zero is the only eigenvalue of L4, but dim(FEy) = 1. Hence there is not a basis

of R? consisting of eigenvectors of L.

Remark 6.3.3. T € L(V) is diagonalizable if and only if there is a basis B of V' such that
[T is diagonal.

Theorem 6.3.4. T' € L(H) is diagonalizable if and only if

where sp(T) = {\1,..., A}
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Proof. Certainly

is a subspace of V by 5.1.9.

Suppose T is diagonalizable. Then there is a basis of V' consisting of eigenvectors of T
Thus W =V as every element of V' can be written as a linear combination of eigenvectors
of T.

Suppose now that V' = W. Let B; be a basis for Iy, for ¢ = 1,...,m. Then by 2.4.13,

B:O&
=1

is a basis for B. Since B consists of eigenvectors of T', T is diagonalizable. O
Corollary 6.3.5. Let sp(T) = {A1,...,\n} and let n; = dim(E),). Then T € L(V) is
diagonalizable if and only if Z n; = dim(V).
i=1
Remark 6.3.6. Suppose A € M, (FF) is diagonalizable. Then there is a basis {vq,...,v,} of
F" consisting of eigenvectors of L 4 corresponding to eigenvalues Ay, ..., A,. Form the matrix
S = [v1|va] - - |va],
which is invertible by 3.2.15, and note that
STLAS = ST Avr] - o] = STHA 1| -+ - [ Aavn] = STESdiag( A, .., Ay) = diag(Ag, .., An)

where D = diag(\y, ..., \,) is the diagonal matrix in M, (FF) whose (i, 7)™ entry is );. Hence,
there is an invertible matrix S such that S™'AS = D, a diagonal matrix. This is the usual
way diagonalizability is presented in a matrix theory course. We show the converse holds,
so that this definition of diagonalizability is equivalent to the one given in these notes.

Suppose ST'AS = D, a diagonal matrix for some invertible S € M, (F). Then we know
CS(S) =F" by 3.2.18, and if B = {vy,...,v,} are the columns of S, we have

[A’U1| ce |Avn] =AS=8D = [D1’1U1| ce |Dn,n>\n]7

so B is a basis of F™ consisting of eigenvectors of L4, and A is diagonalizable.

Exercises
Exercise 6.3.7. Suppose 7' € L(V) is diagonalizable and W C V' is a T-invariant subspace.
Show T'|y is diagonalizable.

Exercise 6.3.8. Suppose V' is finite dimensional. Let S,T € L(V') be diagonalizable. Show
that S,T € L(V) commute if and only if S, T are simultaneously diagonalizable, i.e. there
is a basis of V' consisting of eigenvectors of both S and T

Hint: First show that the eigenspaces E of T are S-invariant. Then show Sy = S|g, € L(E))
is diagonalizable for all A € sp(7T').
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6.4 Nilpotents

Definition 6.4.1.

(1) An operator N € L(V) is called nilpotent if N* = 0 for some n € N. We say N is
nilpotent of order n if n is the smallest n € N such that N* = 0.

Examples 6.4.2.
(1) The matrix

is nilpotent of order 2. In fact,

is nilpotent of order n for all n € N.

(2) The block matrix

=0 v)

where 0, B € M,,(F) for some n € N is nilpotent of order 2 in M, (F).

Exercises

6.5 (eneralized Eigenvectors

For this section, V' will denote a finite dimensional vector space over [F. This main result of
this section is Theorem 12 of Section 6.8 in [3]

Definition 6.5.1. Let T € L(V'), and suppose p € F[z] is a monic irreducible factor of miny.
(1) There is a maximal m € N such that p™ | miny. Define K, = ker(p(7)™).
(2) Define G, = {v € V|p(T)"v =0 for some n € N}.

(3) If deg(p) = 1, then p(z) = z — X for some A € sp(T) by 5.4.4, and we set G\ = G,. In
this case, elements of G\ \ {0} are called generalized eigenvectors of T corresponding the the
eigenvalue A\. We say the multiplicity of A is M) = dim(G,).

Remarks 6.5.2.
(1) Note that G, and K, are both T-invariant subspaces of V.
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(2) For A € sp(T), there can be most M), linearly independent eigenvectors corresponding to
the eigenvalue \ as E) C G).

Examples 6.5.3.
(1) Every eigenvector of T' € L(V) is a generalized eigenvector of T'.

A:(g (1))

We saw earlier that A has a one eigenvalue, namely zero, and that dim(Fy) = 1 so A is not
diagonalizable. However, we see that A% = 0, so every v € F? is a generalized eigenvector
corresponding to the eigenvalue 0.

(3) Let B € My(R) be given by

(2) Suppose

0 -1 1 0
1 0 0 1
B = 0 0 0 -1
0 0 1 O

We calculate G, for all monic irreducible p | ming,,. First, we calculate charg. We see that
B — A\ is block upper triangular, so

z 1 =1 0
B B =1z 0 =1 |z 1}z 1] , o 2
charp(z) = det(zI — B) = 0 0 - 1171=1 sll-1 > =(z+ 1)~

0 0 -1 =z

We claim charp = minz,,. Note that
-1 0 0 =2 1 000 00 0 =2
) e o= 2 0 0100| (o002 0
FHble=B+I=14 ¢ 1 o|Tloo10] |ooo ol

o 0 0 -1 0001 000 O

so we see immediately that (B* + I)> = 0. We now have a candidate for ming,. Set
p(z) = (22 + 1)2. As p(B) = 0, we have that ming, | p, but as the only monic irreducible
factor of pis ¢(z) = 2°+1 and ¢(B) # 0, we must have that min;, = p. Hence K, = G, =V
as p(B)*v =0v=0forallveV.

Remark 6.5.4. If T' € L(V) is nilpotent, then every v € V' \ {0} is a generalized eigenvector
of T' corresponding to the eigenvalue zero.

Lemma 6.5.5. Let T € L(V), and suppose p,q € F[z] are two distinct monic irreducible
factors of minyp.

(1) G,nG, = (0).
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(2) q(T)|q, is bijective.

Proof.

(1) Suppose v € G, N G,. Then there are n,m € N such that p(T)"v = 0 = ¢(T)™v. But as
p", q™ are relatively prime, by 4.3.8, there are f, g € F[z] such that fp" + g¢™ = 1. Thus,

v=1UT) = f(T)p(T)"v + g(T)q(T)"™v =0,

and we are finished.

(2) First, we note that G is T-invariant, so it is ¢(7")-invariant. Next, suppose ¢(7")v = 0 for
some v € Gy. Then v € G, NG, = (0) by (1), so v = 0. Thus ¢(T')|e, is injective and thus
bijective by 3.2.15. [

Proposition 6.5.6. Let T' € L(V), and suppose p € F[z] is a monic irreducible factor of
miny. Then K, = G,.

Proof. Certainly K, C G,. Let m be the multiplicity of p, and let f be the unique monic
polynomial such that miny = fp™. We know G, is f(7T')-invariant, and as f = ¢ - - - ¢, for
monic irreducible ¢; # p which divide ming for all ¢ € [m], by 6.5.5, ¢;(T) is bijective, and
thus so is

fMDle, = (@ am)(Dle, = (@(T)le,) - (gm(T)la,)-
Thus, if € G, then there is a y € G, such that f(T)y = x, so

0 = ming(T)y = (fp")(T)y = p(T)" f(T)y = p(T)"x,

and z € K,,. O

Exercises
6.6 Primary Decomposition
Theorem 6.6.1 (Primary Decomposition). Suppose T € L(V'), and suppose
ming = py' - py;
where the p; € F[z] are distinct irreducible polynomials for i € [n]. Then
(1) V = éKpi = éGm and
i=1 i=1
(2) If T; = Tk, € L(K),) fori € [n], ming, = pj'.
Proof.
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(1) For i € [n], set

ming v
fi = o | | p?a
Pi i

and note that ming | f; f; for all i # j. The f;’s are relatively prime, so there are polynomials

gi € F[z] such that
Z figi = 1.
i=1

Set h; = f;g; for i € [n] and E; = h;(T). First note that

Y E =) h(T) = (Z hi> (T) = q(T) =1
i=1 i=1 i=1
where ¢ € F[z] is the constant polynomial given by ¢(z) = 1. Moreover,

EiE; = hi(T)hy(T) = (hih;)(T) = (9ig; fif;)(T) =0

by 5.4.3 as miny | f; f;. Hence the E;’s are idempotents:

E; = E,I = E; (Zn: E) = iE]E =E7.
=1 =1

Since they sum to I, they corrspond to a direct sum decomposition of V:

V = @ im(E
i=1
It remains to show im(E;) = K),,. If v € im(E;), then v = E;v, so

pi(T)"v = pi(T)" Eyv = pi(T)" " hi(T)v = (p;* fig:)(T)v = (ming g;)(T)v = 0.

Hence v € K, and im(E;) C K,,. Now suppose v € K,,.. If j # 4, then f;g;(T)v = 0 as
p;| f;. Thus E;v = h;(T)v = (fjg;)v =0, and

Ev= (iEﬂ)) = (i: Ej> v=1Iv=nw.
j=1 Jj=1

Hence v € im(E;), and K,, C im(E;).

(2) Since p;(T;)" € L(K,,) is the zero operator, we have that ming, |(p;)". Conversely, if
g € F|z] such that ¢(T;) = 0, then g(T")f;(T) = 0 as f;(T) is only nonzero on K, but
g(T) =0 on K, Thatis, if v €V, then by (1), we can write

v = Zvj where v; € K, for all j € [n],
j=1
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and we have that

9(T) fi(T)v = g(T) fi(T) Z vj = g(T) Z fi(T)v; = g(T)v; = 0.

Hence ming |gf;, and p;* f; divides gf;. This implies p;*|g, so miny, = p;". ]

Corollary 6.6.2. V = EB G, if and only if ming splits (into linear factors).
Aesp(T)

Corollary 6.6.3. T' € L(V) is diagonalizable if and only if mingy splits into distinct linear
factors in F[z], i.e.

minp(z) = [ (z=N.

Aesp(T)
Proof. Suppose T is diagonalizable, and set

p(z)= [] (z=N.

Aesp(T)

We claim p = miny, which will imply ming splits into distinct linear factors in F[z]. By

6.3.4,
V: @ E/\.

Aesp(T)

Let v € V. Then by 2.2.8, there are unique vy € E) for each A € sp(T') such that

so it is clear that p(T)v = 0, and p(T") = 0. Furthermore, as (z—\)| miny(z) for all A € sp(7T)
by 5.4.4, p = miny.
Suppose now that

ming(z) = H (z—A).

Aesp(T)
Then by 6.6.1, we have that

V= P ker(T-A)=  En
Aesp(T) Aesp(T)

Hence T is diagonalizable by 6.3.4. O

Exercises
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Chapter 7

Canonical Forms

For this chapter, V' will denote a finite dimensional vector space over F. We discuss the
rational canonical form and the Jordan canonical form. Along the way, we prove the Cayley-
Hamilton Theorem which relates the characteristic and minimal polynomials of an operator.
We then will show to what extent these canonical forms are unique. Finally, we discuss the
holomorphic functional calculus which is an application of the Jordan canonical form.

7.1 Cyclic Subspaces

Definition 7.1.1. Let p € F[z] be the monic polynomial given by

0 O 0 —ao

1 0 0 —aq
0 )

0 1 —Qp—1

Examples 7.1.2.
(1) Suppose p(z) = z — A. Then the companion matrix for p is (A) € M;(F).
(2) Suppose p(z) = 22 + 1 € My(F). Then the companion matrix for p is

L)
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(3) If p(z) = 2", then the companion matrix for p is

0 0
1
0 1 0

Proposition 7.1.3. Let A € M,(F) be the companion matriz of p € F[z]. Then chary =
ming = p.

Proof. The routine exercise of checking that p = chary and p(A) = 0 are left to the reader.
Note that if {ey,...,e,} is the standard basis of F", we have that Ae; = e;41 for i € [n — 1],
SO {Aiel‘i =0,...,n— 1} is linearly independent. Thus deg(miny) > n as g(A)e; # 0 for
all nonzero ¢ € F[z] with deg(q) < n. As deg(p) = n, p is a monic polynomial of least degree
such that p(A) = 0, and thus p = miny. ]

Definition 7.1.4. Suppose T € L(V).

(1) For v € V, the T-cyclic subspace generated by v is Zr, = span {T”v|n € Zzo}~

(2) A subspace W C V is called T-cyclic if there is a w € W such that W = Zr,,. This w is
called a T-cyclic vector for W.
Examples 7.1.5.

(1) If A € M, (F) is a companion matrix for p € F[z], then F" is L4-cyclic with cyclic vector
e; as Ae; = ;41 for all i € [n —1].

(2)
Remarks 7.1.6.

(1) Every T-cyclic subspace is T-invariant. In fact, if w € Zr,, then there is an n € N and
there are scalars Ag, ..., \, € [F such that

w = i NT, so Tw = i NT e Zp,.

=0 =0

(2) Suppose W is a T-invariant subspace and w € W. Then Zr,, C W as T'w € W for all
1€ N.
Proposition 7.1.7. Suppose v € V\{0}. There there is ann € Zsq such that {Tiv’i =0,... ,n}

is a basis for Zrp,.

Proof. As V is finite dimensional, the set {Tiv|i € Zzo} is linearly dependent, so we can
pick a maximal n € Zx( such that B = {Tiv‘i =0,... ,n} is linearly independent. We
claim that T7™v € span(B) for all m > n so B is the desired basis. We prove this claim by
induction on m. The base case is m =n + 1.
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m = n + 1: We already know T""'v € span(B) as n was chosen to be maximal. Hence there
are scalars Ao, ..., \, € F such that

Ty = Z NT .
i=0
m = m + 1: Suppose now that T%v € span(B) for all i =0, ..., m. Then
Ty =ty = e Z N = Z AT "y € span(DB)
i=0 i=0

by the induction hypothesis. O

Definition 7.1.8. Suppose W C V is a nontrivial T-cyclic subspace of V. Then a T-cyclic
basis of W is a basis of the form {w, Tw,...,T"w} for some n € Z>q. We know such a basis
exists by 7.1.7. It W = Zr,, then the T-cyclic basis associated to v is denoted Br,,.

Examples 7.1.9.

(1) If A € M,(F) is a companion matrix for p € F[z], then the standard basis for F" is an
L 4-cyclic basis. In fact, F" = Z,, ,, and the standard basis is equal to By, .

(2)

Proposition 7.1.10. Suppose T € L(V'), and suppose V is T-cyclic.

(1) Let B be a T-cyclic basis for V.. Then [T|g is the companion matriz for miny.
(2) deg(miny) = dim(V).

Proof.

(1) Let n = dim(V'). We know that [T]p is a companion matrix for some polynomial p € F[z]
as B ={v,Tv,...,T" v}, and

0 0 0 —ag
1 0 0 —aq
(s = | (7ols| 05| [ 77s] = '
-0 —ap—2
0 1 —Qp—1
where
n—1 n—1
Ty = — Z a;T"v and p(z) = 2" + Z a;?".
i=0 i=1
Now mianB = miny = p by 7.1.3.
(2) This follows immediately from (1). O
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Lemma 7.1.11. Suppose p is a monic irreducible factor of miny for T € L(V), and d =
deg(p). Suppose that v € V \ {0} and m € N is minimal with p(T)"v = 0. Then Br, =
{Tiv‘i =0,...,dm —1} (so Zr, has dimension d).

Proof. Let W = Zr,, and note that W is a T-invariant subspace. Set S = T'|y, and note
that p(7")™v = 0 implies that p(7)™w = 0 for all w € W. Hence p(S)™ = 0, and ming | p™
by 5.4.3. But p is irreducible, so ming = p* for some k < m, but as p(T)*v # 0 for all k < m,
we must have ming = p™. As W is S-cyclic, we must have that

dm = deg(p™) = deg(ming) = dim(W)

by 7.1.10, so |Br,| = dm. The result now follows by 7.1.7. O

Exercises

Exercise 7.1.12. Let T' € L(V) with miny = p™ for some monic irreducible p € F[z] and
some m € N. Show the following are equivalent:

(1) V is T-cyclic,
(2) deg(miny) = dim(V'), and

(3) miny = chary.

7.2 Rational Canonical Form

The proof of the main theorem in this section is adapted from [2].

Definition 7.2.1. Let T € L(V).

(1) Subspaces Z1,..., Z, are called a rational canonical decomposition of V' for T if

.y
=1

Z; is T-cyclic for all i € [n], and Z; C K, for some monic irreducible p; | miny for all 7 € [n].

(2) A basis B of V is called a rational canonical basis for 7" if B is the disjoint union of
nonempty sets B;, denoted

n

B=]]B:

i=1
such that each B; is a T-cyclic basis for span(B;) C K, for some monic irreducible p; | miny
for all i € [n].

(3) The matrix [T]p is called a rational canonical form of T"if B is a rational canonical basis
for T
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(4) The matrix A € M, (F) is said to be in rational canonical form if the standard basis of
F™ is a rational canonical basis for L 4.

Remark 7.2.2. Note that if B is a rational canonical basis for T', then [T] is a block diagonal
matrix such that each block is a companion matrix for a polynomial ¢ € F[z] of the form p™
where p € F[z] is monic and irreducible and m € N.

Proposition 7.2.3. Suppose T € L(V') such that mingy = p™ for some monic, irreducible
p € Flz] and some m € N. Suppose vy, ...,v, € V such that

Sl - H BT,wi
i=1
18 linearly independent so that
W=D 2,
i=1

is a subspace of V.. For each i € |n|, Suppose there is v; € V' such that p(T)v; = w;, i.e.
w; € im(p(T)) for all i € [n]. Then

52 = H BT,’UZ'
=1

15 linearly independent.

Proof. Set Z; = Zr,, T; =Tz, and m; = |Br,,| for each ¢ € [n]. Suppose

i i )\i,jiji =0.

i=1 j=1

For i € [n], let
filz) = Z Aij2) so that 0 = Z fi(T)v;.
=1 i=1
Applying p(T), we get
0=p(T) Y filTwi =Y H(D)p(T)v: =Y _ fi(T)w:.
i=1 i=1 i=1

Now as f;(T)w; € Z; and W is a direct sum of the Z;’s, we must have f;(T)w; = 0 for all
i € [n]. Hence f;(T;) = 0 on Z;, and miny, | f;. Since miny(7;) = 0, we must have that

miny, | ming, so ming, = p* for some k < m. Hence p|f; for all i € [n]. Let g; € F[z] such
that pg; = f; for all i € [n]. Then

Z fi(T)v; = Z%(T)P(T)Ui = Zgi(T)wi =0,
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so once again, g;(T)w; = 0 for all i € [n] as W is the direct sum of the Z;’s and ¢;(T)w; € Z;
for all ¢ € [n]. But then

0= gl(T>wl = fz(T>Uz = Z )\i,jTjUz'y
j=1

so we must have that X’ = 0 for all i € [n] and j € [m;] as Br,, is linearly independent. []
Proposition 7.2.4. Suppose T € L(V') with miny = p™ for some monic, irreducible p € F|z]
and some m € N. Suppose that W is a T-invariant subspace of V' with basis B.
(1) Suppose v € ker(p(T')) \ W. Then BU Br, is linearly independent.
(2) There are vy, ..., v, € ker(p(T)) such that

B'=BU 0 Bra,

i=1
is linearly independent and contains ker(p(T)).

Proof.

(1) Let d = deg(miny), and note that Br, = {Tiv}i =0,...,d— 1} by 7.1.11. Suppose
B={v,...,v,} and

n d—1
Z A\iv; +w =0 where w = Zujij.
i=1 Jj=0

Then w € span(B) = W and w € Zg,, both of which are T-invariant subspaces. Thus we
have Zp,, C W and Zr,, C Zr,, so we have

ZT@ C ZT,v NW C ZT,v-
If w# 0, then p(T)w = 0 as p(T)|z,, = 0, so by 7.1.11,
d= dim(ZT,w) S dim(ZTw N W) S dim(ZTﬂ,) = d,

so equality holds. But then Zr, = Zp, N W, which is a subset of W, a contradiction as
vé¢W. Thusw =0, and g; =0forall j =0,...,d—1. But as B is a basis, we have \; =0
for all i € [n].

(2) Ifker(p(T)) € W, then pick v; € W\ker(p(T)). By (1), BUBrz,, is linearly independent,
and Wi = span(B U Br,,) is T-invariant. If ker(p(T)) € W1, pick vy € Wi \ ker(p(T')). By
(1), BUBr,, UBr,, is linearly independent, and Wy = span(BU Br,, UBr,,) is T-invariant.
We can repeat this process until W}, contains ker(p(7")) for some k € N. O

Lemma 7.2.5. Suppose T € L(V) such that miny = p™ where p € Flz] is monic and
wrreducible and m € N. Then there is a rational canonical basis B for T'.
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Proof. We proceed by induction on m € N.
m = 1: Then V = ker(p(T)), so we may apply 7.2.4 with W = (0) to get a basis for ker(p(7T)).

m — 1= m: We know W = im(p(T)) is T-invariant, and 7’|y has minimal polynomial p™~!.
By the induction hypothesis, we have a rational canonical basis

B= ﬁ[ Brw,
=1

for T'|w. As W =1im(p(T)), there are v; € V for i € [n] such that p(T)v; = w;, and

C == ﬁ BT,vi
i=1

is linearly independent by 7.2.3. By 7.2.4, there are uy, ..., u; € ker(p(T")) such that
k
D=Cu][]Br.,
i=1

is linearly independent and contains ker(p(T')). Let U = span(D). We claim that U = V.
First, note that U is T-invariant, so it is p(7") invariant. Let S = p(T)|y. Then
im(S) = SU = Sspan(C) O W =im(p(T)), and ker(S) D ker(p(T))
as U contains ker(p(7)). By 3.2.13
dim(U) = dim(im(S)) + dim(ker(8)) > dim(im(p(T))) + dim(ker(p(T))) = dim(V"),
so U = V. Thus D is a rational canonical basis for 7. ]
Theorem 7.2.6. Every T € L(V) has a rational canonical decomposition.

Proof. By 4.3.11, we can factor miny uniquely:

n
ming = | | i
i=1

where p; € F[z] are distinct monic irreducible factors of ming and m; € N for all i € [n]. By

6.6.1, we have
V=K,
i=1

where K, = ker(p;(T)™) are T-invariant subspaces, and if 7; = T'|f,_, then ming, = p;** for
all 7 € [n]. By 7.2.5, we know that there is a rational canonical basis B; for T; on K,,, so

is the desired rational canonical basis of 7. OJ
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n

Corollary 7.2.7. For T € L(V'), there is a rational canonical decomposition V- = @ Zr,,

=1
into cyclic subspaces.
Proof. By 7.2.6 there is a rational canonical basis
B =[] Bru
i=1
for vy, ..., v, € V. Setting Zr,, = span(Br,,), we get the desired result. O

Exercises

Exercise 7.2.8. Classify all pairs of polynomials (m, p) € F[z]? such that there is an operator
T € L(V) where V is a finite dimensional vector space over F such that miny = m and
chary = p.

Exercise 7.2.9. Show that two matrices A, B € M, (F) are similar if and only if they share
a rational canonical form, i.e. there are bases C,D of F" such that [Lalc = [Lg]p is in
rational canonical form.

Exercise 7.2.10. Prove or disprove: A square matrix A € M, (F) is similar to its transpose
AT If the statement is false, find a condition which makes it true.

7.3 The Cayley-Hamilton Theorem

Theorem 7.3.1 (Cayley-Hamilton). For T'€ L(V'), charp(T) = 0.

Proof. Factor ming into irreducibles as in 4.3.11:

n
ming = | | Pt
i=1

Let B be a rational canonical basis for 7" as in 7.2.6. By 7.1.10, [T is block diagonal, so let
Ay, ..., A; be the blocks. We know that A; is the companion matrix for pgj where i; € [n]
and n; € N for j € [k]. As
Al minT(Al)
0 = [miny(7)]p = miny([T]p) = ming = .
Ak Hlll’lT(Ak)
we must have that né < m, for all i € [n]. But as miny is the minimal polynomial of [T,

we must have that n’ = m; for some i € [n]. By 7.1.3, we see that chary(z) = det(zI — [T]p)
is a product

charp(z) = det(21 — [T)g) = Hpi<z)7‘i
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where r; > m; for all i € [n]. Thus,

n n

chary(T) = [ [ pi(2)"(T) = ming(T) [ [ p(T)" ™ = 0.

=1 i=1

Corollary 7.3.2. miny | chary for all T € L(V).

Proposition 7.3.3. Let A € M, (F).
(1) The coefficient of the 2"~ term in chara(z) is equal to — trace(A).
(2) The constant term in chars(z) is equal to (—1)" det(A).

Proof. First note that the result is trivial if A is the companion matrix to a polynomial
=2z"+ Zalz € F[z] as chary(z) = p(z), trace(A) = —a,_1, and det(A) = (—1)"ap.

For the general case, let B be a rational canonical basis for L, so that [A]p is a block
diagonal matrix

Ay 0
0 A,
n;—1
where each block A; is the companion matrix of some polynomial p;(z) = 2™ + Z alZ e
F[z]. As A ~ [A]p, we have that
chars(z) = det(z1 — le

trace(A) = trace([A]p), and det(A) = det([A]p).
(1) Tt is easy to see that the trace of [A]p is the sum of the traces of the A;, i.e.

m

trace(A) = trace([A]p) = Z trace(A Z —al, ;.
i=1

i=1

Now one sees that the (n — 1) coefficient of char, is exactly the negative of the right hand
side as

n m

o) [T (#+ ter) = (St o

i=1 i=1

since the (n — 1)™ terms in the product above are obtained by taking the (n; — 1)™ term
of p; and multiplying by the leading term (the 2™ term) for j # 7. Similarly, the constant
term of char, is obtained by taking the product of the constant terms of the p;’s.
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(2) In (1), we calculated that the constant term of chary is Z ap. But this is (—1)" det(A)

i=1
as
m m

det(A) = det([A]p) = Hdet(Ai) =[[-mal = (-1 ] ] a.

i=1 =1

Exercises

7.4 Jordan Canonical Form

Definition 7.4.1. A Jordan block of size n associated to A € F is a matrix J € M, (F) such
that

A ifi=y
Jij=41 ifj=1+1
0 else,
i.e. J looks like
A1 0
1
0 A

Proposition 7.4.2. Suppose J € M, (F) is a Jordan block associated to \. Then char;(z) =
miny(z) = (z — \)™.

Proof. Obvious. O

Remark 7.4.3. Let T € L(V) and A € sp(T). If m € N is maximal such that (z — A\)™ | miny
and S = Tg,, then (z— )™ = ming by 6.6.1. This means that the operator N = (T'—\I)|q,
is nilpotent of order m. Now by 7.2.6, there is a rational canonical decomposition for N

k
G)\ = @ ZN,’UZ'
=1

for some k € N where v; € G, for all i € [n]. Set n; = |Bn,,| for each i € [n]. Then
By, = {(T = XI)v;|j =0,...,n; — 1},

and note that [N|py, py, is a matrix in M,, (F) of the form

N,v;
0 0
1
0 1 0
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as the minimal polynomial of N|BNM is 2. Setting Cn,,, = {(T — )\I)jvi|j =n;—1,... ,0},
i.e. reordering By,,,, we have that [N|cy , |cy,, is a matrix in M,,(F) of the form

N,v;
0 1 0
-1 ’
0 0

i.e. it is a Jordan block associated to 0 of size n;. Thus, we see that if we set

k
B =[] Bxw
=1

we have that [N]p is a block diagonal matrix where the i*® block is the companion matrix
of the polynomial 2™ and if we set

k
C=]]CNu
=1

we have that [N]¢ is a block diagonal matrix where the i block is a Jordan block of size n;
associated to 0. Thus [T'|g,]c = [N]c + Al is a block diagonal matrix where the i*" block is
a Jordan block of size n; associated to \.

Theorem 7.4.4. Suppose T € L(V') and ming splits in F[z]. Then there is a basis B of V
such that [T is a block diagonal matriz where each block is a Jordan block. The diagonal
elements of [T|p are precisely the eigenvalues of T, and if X € sp(T), X appears exactly My
times on the diagonal of [Tp.

Proof. By 6.6.2, we have miny splits if and only if

V= EB G,.

Aesp(T)

by 7.4.3, for each A € sp(T), there is a basis By of G, such that T'|g, is a block diagonal
matrix in My, (F) where each block is a Jordan block associated to A. Setting

gives the desired result. O

Definition 7.4.5.

(1) Let T'e L(V). A basis B for V as in 7.4.4 is called a Jordan canonical basis for 7', and
the matrix [T|p is called a Jordan canonical form of T
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(2) A matrix A € M,(FF) is said to be in Jordan canonical form if the standard basis is a
Jordan canonical basis of F™ for L 4.

Examples 7.4.6.
(1)
(2)
Definition 7.4.7. Let T € L(V). Recall that if v € G\{0} for some A € sp(T), then there is

aminimal n such that (T—AI)"v = 0. This means that Br_r, = {(T'— Al)'v|[i =0,...,n— 1}
is a basis for Zp_yz,.

(1) Theset Cr_xio = (T—X)"tu,...,(T—=A)v,v) is called a Jordan chain for T" associated
to the eigenvalue A of length n. The vector (T'— M) 'v is called the lead vector of the
Jordan chain Cp_y,, and note that it is an eigenvector corresponding to the eigenvalue .

Examples 7.4.8.
(1) Suppose J € M, (F) is a Jordan block associated to A € F

A1 0
J =

1

0 A

One can easily see that (J — A)e; = e;—1 for all 1 < ¢ < n and (J — A )e; = 0, so the
standard basis of " is a Jordan chain for L; associated to A\ with lead vector e;.

(2) If Ais a block diagonal matrix

J1 0
A=
0 JIn

where J; is a Jordan block associated to A € F for all i € [n], then we see by (1) that the
standard basis is a disjoint union of Jordan chains associated to .

Corollary 7.4.9. Suppose B is a Jordan canonical basis for T € L(V'). Then B is a disjoint
unton of Jordan chains associated to the eigenvalues of \.

Proof. Let sp(T) = {A1,...,\,}. We have that [T]p is a block diagonal matrix



where each A; is a block diagonal matrix corresponding to A; € sp(7") composed of Jordan

blocks:

0 Ji

and set T; = T’Gxi' Then [T;]p, = A;, and it is easy to check that B; is the disjoint union of
Jordan chains associated to \; for all i € [n]. Hence B is a disjoint union of Jordan chains
associated to the eigenvalues of T'. O]

Exercises

Exercise 7.4.10. Classify all pairs of polynomials (m,p) € C[z]* such that there is an

operator T' € L(V') where V is a finite dimensional vector space over C such that miny = m
and chary = p.

Exercise 7.4.11. Show that two matrices A, B € M,,(C) are similar if and only if they share
a Jordan canonical form.

7.5 Uniqueness of Canonical Forms

In this section, we discuss to what extent a rational canonical form of T" € L(V') is unique,
and to what extend the rational canonical form is unique if miny splits. The information
from this section is adapted from sections 7.2 and 7.4 of [2].

Notation 7.5.1 (Jordan Canonical Dot Diagrams).

Ordering Jordan Blocks: Suppose T' € L(V) such that miny splits, and let B is a Jordan
canonical basis for T'. If A € sp(T") and m € N is the largest integer such that (z—\)™ | ming,
then we have that S = T|g, € L(G,) has minimal polynomial 2™, and there is a subset
C C B that is a Jordan canonical basis for S. This means that [S]c is a block diagonal
matrix, so let Ay, ..., A, be these blocks, i.e

Ay 0
[Sle = ..
0 A,

We know that A; is a Jordan block of size m; where m; < m for all i € [n]. We now impose
the condition that in order for [S]c to be in Jordan canonical form, we must have that
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m; > myyq for all i € [n—1]. This means that to find a Jordan canonical basis for T' € L(V),
we first decompose G, into T-cyclic subspaces for all A € sp(T'), then we take bases of these
T-cyclic subspaces, and then we order these bases by how many elements they have.

Nilpotent Operators: Suppose miny = 2™ for some A € F. Let

.
=1

be a Jordan canonical basis of V' consisting of disjoint Jordan chains Cr,, for i € [n]. We
can picture B as an array of dots called a Jordan canonical dot diagram for T relative to the
basis B. For i € [n], let m; = |Cr,,|, and note that the ordering of Jordan blocks requires
that m; > m;y for all ¢ € [n — 1]. Write B as an array of dots such that

(1) the array contains n columns starting at the top,
(2) the i*™ column contains m; dots, and

(3) the (i,7)™ dot is labelled T™i Jv;.

° Tml_lvl ° Tm2_11}2 ° Tm"_lvn
Y Tml*z/Ul . Y TinQ'UQ . ° Tmn*QfUn
° T,
[ J Un
° Tvs
o U2
TU1
U1

Operators: Suppose that 77 € L(V), and let B be a Jordan canonical basis for T. Let
By, =BNG, for A € sp(T’) and Ty = T'|¢,. Then T — AI is nilpotent, so we may apply (2)
to get a dot diagram for Ty — AI relative to B for each A € sp(T). The dot diagram for T
relative to B is the disjoint union of the dot diagrams for T) relative to the By for A € sp(T).

Lemma 7.5.2. Suppose T' € L(V') is nilpotent of order m, i.e. ming(z) = z™. Let B be a
Jordan canonical basis for T, and let r; denote the number of dots in the i row of the dot
diagram for T relative to B as in 7.5.1 for i € [n]. Then

k
(1) If Ry = er for k € [n], then Ry, = nullity(T*) = dim(ker(T%)) for all k € [n],

(2) r = dim(V) — rank(7T), and

(3) rp = rank(T*1) — rank(T*) for all k > 1.
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Hence the dot diagram for T is independent of the choice of Jordan canonical basis B for T
as each r; is completely determined by T, and the Jordan canonical form [T|p is unique.

Proof.

(1) We see that there are at least Ry, linearly independent vectors in ker(T%), namely T™i /v,
for all i € [n] and j € [k], so nullity(T*) > Ry. Moreover, {T*(T™Jv;)|i € [n] and j > k}
is a linearly independent subset of B, so rank(T*) > | B| — Ry. By the rank-nullity theorem,
we have

|B| = rank(T*) + nullity(T*) > |B| — Ry, + Ry = |B|,

so equality holds, and we must have that nullity (T%) = Rj.

(2) This is immediate from (1) and the rank-nullity theorem.
(3) For k > 1, by (1) we have that

TE = Zn—i r; = (dim(V)—nullity(7%))— (dim (V) —nullity (7)) = rank(7*)—rank(7*1).

[]

Theorem 7.5.3. Suppose T' € L(V) and miny splits in Fz]. Two Jordan canonical forms
(using the convention of 7.5.1) of T € L(V') differ only by a permutation of the eigenvalues
of T.

Proof. If B is a Jordan canonical basis of T" as in 7.5.1, we set By = BN G, and T\ = T|g,
for all A € sp(T"), and we note that

B = ]_[ B,.

Aesp(T)
Note further that Ty — A/ is nilpotent, and [Ty — Al]p, is in Jordan canonical form, which is

unique by 7.5.2. Hence [T)]p, = [Tx — Al]p, + Al is unique, so is unique up to the ordering
of the A € sp(T). In fact, if {A1,..., A\, } is an enumeration of sp(7") and

B=]]B:.
i=1
then setting 7; = T, and B; = B,,, we have

[Tl]Bl 0
T)p = '
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Notation 7.5.4 (Rational Canonical Dot Diagrams).

Ordering Companion Blocks: Let B is a rational canonical basis for T € L(V). If p € F|z]
is a monic irreducible factor of miny and m € N is the largest integer such that p™ | ming,
then we have that S = T'|g, € L(K,) has minimal polynomial p™, and there is a subset
C C B that is a rational canonical basis for S. This means that [S]¢ is a block diagonal
matrix, so let Ay, ..., A, be these blocks, i.e

Ay 0
[Sle = -

0 A,
We know that A; is the companion matrix for p™ where m; < m for all i € [n]. We now
impose the condition that in order for [S]¢ to be in rational canonical form, we must have
that m; > m;,q for all i € [n — 1]. This means that to find a rational canonical basis for
T € L(V), we first decompose K, into T-cyclic subspaces for all monic irreducible p € F[z]

dividing miny, then we take bases of these T-cyclic subspaces, and then we order these bases
by how many elements they have.

Case 1: Suppose miny = p™ for some monic, irreducible p € F[z] and some m € N. Let

B= f[ Bra,
=1

be a rational canonical basis of V' for T'. B can be represented as an array of dots called a
rational canonical dot diagram for T relative to B. For i € [n], let B; = Br.,,, let Z; = Zr,,,
let T; = Tz, and let m; € N be the minimal number such that p(T")™v; = 0, i.e. ming, = p™
and m; < m for all 7 € [n]. Set d = deg(p), and note that |B;| = dm; by 7.1.11. Now by the
ordering of the companion blocks, we must have that m; > m;,; for all ¢ € [n — 1]. The dot
diagram for T relative to B is given by an array of dots such that

1. the array contains n columns starting at the top,
2. the ¢ column has m,; dots, and
3. the (4,7)"™ dot is labelled p(T)™ ;.

Note that there are exactly |B|/d dots in the dot diagram.

Operators: As before, for a general T' € L(V'), we let B be a Rational canonical basis for T,
and we let B, = BNG), and T}, = T'|¢, for each distinct monic irreducible p | miny. The dot
diagram for 7" is then the disjoint union of the dot diagrams for the 7},’s relative to the B,’s.

Lemma 7.5.5. Suppose T € L(V') with miny = p™ for a monic irreducible p € F[z] and
some m € N. Let d = deg(p), let
B =[] Bra
i=1
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be a rational canonical basis of V' for T, and let m; € N be minimal such that p(T)™iv; = 0.
Let r; be the number of dots in the j™ row of the dot diagram for T relative to B for j € [I].
Then

(1) Set Cf = {(p(T)™"T'v;|h € [mi]} is a p(T)-cyclic basis for Zy riy for 0 <1< d

d—1
and i € [n]. Then C; = ]_[C’lZ s a basis for Z; = Zr,,, so it is a Jordan canonical
1=0
basis of Z; for p(T)|z,. Hence C' = HC" is a Jordan canonical basis of V' for p(T).
i=1

(2) r = é(dim(V) —rank(p(7))), and

(3) r; = é(rank(p(T)j_l) — rank(p(T))) for j > 1.

Hence the dot diagram for T is independent of the choice of rational canonical basis B for T
as each r; is completely determined by p(T'), and the rational canonical form [T is unique.

Proof. We have that (2) and (3) are immediate from (1) and 7.5.2 as the Jordan canonical
form of p(T'), a nilpotent operator of order m, is unique. It suffices to prove (1).

We may suppose p(z) # z as this case would be similar to 7.5.3 as in this case, ming
would split. The fact that C? is linearly independent for all i, comes from 7.1.11 as T"v; # 0
and m; is minimal such that p(T)™T'v; = 0 (in fact the restriction of T' to Z; is invertible
as if ¢(z) = 2!, then ¢(T') is bijective on G, = V by the proof of 6.5.5 as p, q are relatively
prime).

We show C; is a basis for Z; for a fixed i € [n]. Suppose

d

D

=0 h=1

—_

m;

N ap(T)™ Ty = 0,

and set
d—1

qn(2) = Z A2t for b€ [myl.

=0

Then we see that deg(gs) < d for all h € [m;], and

> (1™ gu(T)v; = 0.
h=1
Now setting
q(z) =Y p(2)" "qu(z),
h=1



we have that deg(q) < deg(p™) and q(T)v; = 0. If p 1 q, then p,q are relatively prime, so
q(T) is invertible on G, = V' by the proof of 6.5.5, which is a contradiction as ¢(7")v; = 0.
Hence p | ¢. Let s € N be maximal such that p® | ¢, and let f € F[z] such that fp® = q. If
f # 0, then p, f are relatively prime, so f(7) is invertible on G, = V. But then

0=f(T)7'0 = f(T)"" [(T)p(T)*vi = p(T)"v;,

so we must have that s > m;, a contradiction as deg(q) < deg(p™). Hence f =0, so ¢ = 0.
As deg(qn) < d = deg(p) for all h, we must have that

0=LC(q) = LC(p™'q1) = LC(p™ ") LC(q1) = q1 = 0.
Once more, as deg(g,) < d for all h, we now have that
0=LC(q) = LC(p™2¢2) = LC(p™ *) LC(2) = ¢2 = 0.

We repeat this process to see that g, = 0 for all h € [m;]. Hence A,; = 0 for all h, [, and C;
is linearly independent. Now we see that |C;| = dm; = dim(Z;) = dm; by 7.1.11, and we are
finished by the extension theorem.

It follows immediately that C' is a basis for V as V = @ Z;. m

i=1

Theorem 7.5.6. Suppose T' € L(V'). Two rational canonical forms of T € L(V') differ only
by a permutation of the irreducible monic factor powers of miny.

Proof. This follows immediately from 7.5.5 and 6.6.1. O

Exercises

V' will denote a finite dimensional vector space over F.

Exercise 7.5.7. Recall that spectrum is an invariant of similarity class by 5.1.11. In this
sense, we may define the spectrum of a similarity class of L(V') to be the spectrum of one of
its elements. Given distinct A1, Ay, A3 € C, how many similarity classes of matrices in M7(C)
have spectrum {1, Ao, A3}7

7.6 Holomorphic Functional Calculus

For this section, V' will define a finite dimensional vector space over C.

Definition 7.6.1.
(1) The open ball of radius r > 0 centered at z; € C is

B.(20) = {z € C||lz — z| <} .
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(2) A subset U C C is called open if for each z € U, there is an € > 0 such that B.(z) C U.

Examples 7.6.2.
(1)
(2)

Definition 7.6.3. Suppose U C C is open. A function f: U — C is called holomorphic (on
U) if for each 2y € U, there is a power series representation of f on B.(z9) C U for some
€ >0, i.e., for each 2y € U, there is an € > 0 and a sequence (\;)kez,.,o Such that

F(2) = Az — =)

converges for all z € B.(z). Note that if f is holomorphic on U, then f is infinitely many
times differentiable at each point in U. We have

P = 30 k(= 200, (2) = 30 Mek(k = 1)z = )2, et
k=1 k=2

In particular,

This is Taylor’s Formula.
Examples 7.6.4.
(1)
(2)
Definition 7.6.5 (Holomorphic Functional Calculus).
Jordan Blocks: Suppose A € M, (C) is a Jordan block, i.e. there is a A € C such that

Al 0
A:

1

0 A

We see that we can write A canonically as A = D + N with D € M,,(C) diagonal (D = \I)
and N € M, (C) nilpotent of order n:

A 0 0 1 0
A= +
1
0 A 0 0
D N



Now sp(T") = {A}, so if ¢ > 0 and f: B.(\) — C is holomorphic, then there is a sequence
(Hn)nezyeqo Such that

fz) = mlz= A"

converges for all z € B.(\), so we may define

Mo M1 -+ Hn—1
o] n—1 . . .
fA) =f(D+N)=> m(D+N-A)F =Y N =
k=0 k=0 M1
0 Ho

, (n—1)
FO) POy e LW

ROV
0 ey

Matrices: Suppose A € M, (C). Then there is an invertible S € M, (C) and a matrix J €
M, (C) in Jordan canonical form such that J = S7'AS. Let Ky, ..., K, be the Jordan blocks
of J, and let \; € sp(A) be the diagonal entry of K; for i € [n] . Let U C C be open such

that sp(A) C U, and suppose f: U — C is holomorphic. By the above discussion, we know
how to define f(K;) for all i € [n]. We define

fEKY) 0
fJ) =
0 fEK)

We then define f(A) = Sf(J)S™!. We must check that f(A) is well defined. If J;, J, are two
Jordan canonical forms of A, then there are invertible Sy, Sy € M, (F) such that J; = S, LAS;
for i = 1,2. We must show S, f(J1)S;" = Saf(J2)S;*. By 7.5.3, we know J; and J, differ
only by a permutation of the Jordan blocks, and since J; = 3;152J255151, we must have
that S = S, 'S, is a generalized permutation matrix. It is easy to see that f(Jy) = Sf(J;)S™!

as the Jordan blocks do not interact under multiplication by the generalized permutation
matrix. Thus Sy f(J;)S; ! = Saf(J2)S5 !, and we are finished.

Operators: Suppose T' € L(V). By 7.4.4, there is a Jordan canonical basis B for T', so [T]p
is in Jordan canonical form. Thus, we define

We must check that if B’ is another Jordan canonical basis for T, then [f([T]5)]5" =
[f([T]5/)]5 - This follows directly from the above discussion and 3.4.13.

Examples 7.6.6.
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(1) If p € F[z], we have that the p(T) defined in 4.6.2 agrees with the p(T") defined in 7.6.5.
Hence the holomorphic functional calculus is a generalization of the polynomial functional
calculus when V' is a complex vector space.

(2) We will compute cos(A) for

We have that
U— (1. 1) € My(C)

—1

is a unitary matrix that maps the standard orthonormal basis to the orthonormal basis

consisting of eigenvectors of
0 -1
A= (1 ! ) .
We then see that

i 0 1 1\"/o -1\ /1 1 \
0y )= (L ) €D e
Since A = UDU*, by the entire functional calculus, we have that
cos(A) = cos(UDU™) = U cos(D)U* = U cos (é —Oz) U*

= cos(i) 0 * = U cos * = cos
=U ( 0 cos(—z')) U* = U cosh(1)IU h(1)1.

Theorem 7.6.7 (Spectral Mapping). Suppose T € L(V) and U C C is open such that
sp(T') C U. Then sp(f(T)) = f(sp(T)).

Proof. Exercise. O]

Proposition 7.6.8. Let T € L(V), let f,g: U — C be holomorphic such that sp(T) C U,
and let h: V. — C be holomorphic such that sp(f(T)) C V. The holomorphic functional
calculus satisfies

(1) (f +9)(T) = f(T) + 9(T),

(2) (fo)(T) = fF(T)g(T),
(3) A)I(T) = ) for all A € C, and
(

MA(T
(4) (ho [)(T) = h(f(T)).

Proof. Exercise. O]
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Exercises

V' will denote a finite dimensional vector space over C.

. (0 —1 q 0 —m
smloanexpWO.

Exercise 7.6.10. Suppose V' is a finite dimensional vector space over C and T € L(V') with
sp(T) C Bi(1) € C. Use the holomorphic functional calculus to show T is invertible.

1 1
Hint: Look at f(z) = — = ﬁ
VA — —Z

Exercise 7.6.9. Compute

. When is f holomorphic?

Exercise 7.6.11 (Square Roots). Determine which matrices in M, (C) have square roots,
i.e. all A € M,(C) such that there is a B € M, (C) with B? = A.

Hint: The function g: C\ {0} — C given by g(z) = /2 is holomorphic. First look at the case
where A is a single Jordan block associated to A € C. In particular, when does a Jordan
block associated to A = 0 have a square root?
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Chapter 8

Sesquilinear Forms and Inner Product
Spaces

For this chapter, IF will denote either R or C, and V will denote a vector space over F.

8.1 Sesquilinear Forms

Definition 8.1.1. A sesquilinear form on V' is a function (-,-): V' x V' — F such that

(i) (-,-) is linear in the first variable, i.e. for each v € V, the function (-,v): V — F given
by u + (u,v) is a linear transformation, and

(ii) (-,-) is conjugate linear in the second variable, i.e. for each v € V, the function
(v,-): V — F given by u +— (v, u) is a linear transformation.

The sesquilinear form (-, -) is called

1) self adjoint if (u,v) = m for all u,v € V,
2) positive if (v,v) >0 for all v € V, and

3) definite if (v,v) = 0 implies v = 0.

4) an inner product it is a positive definite self-adjoint sesquilinear form.
An inner product space over F is a vector space V over F together with an inner product on

V.
Remarks 8.1.2.

(1) Note that linearity in the first variable and self adjointness of a sesquilinear form (-, -)
implies that (-,-) is conjugate linear in the second variable.

(
(
(
(

(2) If V is a vector space over R, then a sesquilinear form on V' is usually called a bilinear
form, and the adjective “self adjoint” is replaced by “symmetric.” Note that in this case,
conjugate linear in the second variable means linear in the second variable. Note further
that if (-,-) is linear in the first variable and symmetric, then it is also linear in the second
variable.
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Examples 8.1.3.
(1) The function

n

(u,0) =) ei(u)e;(v)

=1

is the standard inner product on F™.

(2) Let xg,21,...,2, be n+ 1 points in F. Then

(p,q) = Zp(wi)qtvi)

is an inner product on P, if m < n, but it is not definite if m > n (including m = o).

(3) The function
b

(f.g) = / f(2)9(x) dz

a

is the standard inner product on C([a, b],F)
(4) trace: M, (F) — F given by

trace(A) = Z Ay

induces an inner product on M,,x,(F) by (A, B) = tr(B*A).
(5) Let a,b € R. Then the function

(p,q) = / p(z)q(z) da

is an inner product on F|z].

(6) Suppose V is a real inner product space. Then the complexification V¢ defined in 2.1.12
is a complex inner product space with inner product given by

(uy + 101, ug + fve)c = (U, v1) + (v1, v2) + i({ug, v1) — (ug, va)).
In particular, note that (-, )¢ is definite.

Proposition 8.1.4 (Polarization Identity).

(1) If V is a vector space space over R and (-,-) is a symmetric bilinear form, then

Au,v) = (u+v,u+v) — (u—v,u—0).
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(2) If V is a vector space space over C and (-,-) is a self adjoint sesquilinear form, then

3
Au,v) =Y iF(u+ v, u+ i*v).
k=0

Proof. This is immediate from the definition of a symmetric bilinear form or self adjoint
sesquilinear form respectively. O

Proposition 8.1.5 (Cauchy-Schwartz Inequality). Let (-, ) be a positive, self adjoint sesquilin-
ear form on V. Then
[(u, v)|* < {u,u)(v,v) for all u,v € V.

Proof. Let u,v € V. Since (-, ) is positive, we know that for all A € F |
0 < (u—Av,u— ) = (u,u) —2Re Mu,v) + [A*(v,v). (%)

Case 1: If (v,v) = 0, then 2Re A(u,v) < (u,u). Since this holds for all A, we must have
(u,v) = 0.

Case 2: If (v,v) # 0, then in particular, equation (%) holds for

N <U7U>
A )
Hence,
_ e(v7u> w (v,u)|? o0 — (o) — [(u, v)* | [{u, v)]? . w0
0< {u,u)=2R (v,v>< )t (v, v) (v, 0 = {u, u)=2 (v, v) (v,v) {u, ) (v, v)
Thus, ,
'%fg' < (uyu) = [(u, )2 < (u, u) (v, v).
OJ
Exercises

Exercise 8.1.6. Show that the sesquilinear form

(f.g) = / f(2)9(x) dz

on C([a,b],F) is an inner product.

Hint: Show that if |f(x)| > 0 for some x € [a,b], then by the continuity of f, there is some
d > 0 such that |f(y)| > 0 for all y € (z — d§,x + 0) N (a,b).

Exercise 8.1.7. Show that the function (-,-)o: M, (F) x M, (F) — F given by (A, B)y =
trace(B*A) is an inner product on M, (F).
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8.2 Inner Products and Norms

From this point on, (V,(-,-)) will denote an inner product space over F.
We illustrate an important proof technique called “true for all, then true for a specific

b}

one

Proposition 8.2.1.

(1) Suppose u,v € V such that (u,w) = (v,w) for allw € W. Then u = v.

(2) Suppose S,T € L(V') such that (Sx,y) = (Tx,y) for allx,y € V. Then S =T.
(3) Suppose S, T € L(V) such that (x,Sy) = (x,Ty) for all z,y € V. Then S =T.

Proof.

(1) We have that (u—v,w) =0 for all w € V. In particular, this holds for w = u —v. Hence
(u—v,u—v)=0,s0 u—ov—0 by definiteness. Hence u = v.

(2) Let x € V, and set u = Sx and v = T'z. Applying (1), we see Sz = Tx. Since this is true
for all x € V, we have S =T

(3) This follows immediately from self-adjointness of an inner product and (2). ]
Definition 8.2.2. A norm on V is a function || - ||: V' — Rs( such that
(i) (definiteness) ||v|| = 0 implies v = 0,
(ii) (homogeneity) ||Av|| = |A| - ||v|| for all A € F and v € V', and
(iii) (triangle inequality) ||u + v|| < ||u|| + ||v|| for all u,v € V.

Examples 8.2.3.

(1) The Euclidean norm on F™ is given by

loll =

We will see in 8.2.4 that it is the norm induced by the standard inner product on F”".
(2) The 1-norm on C([a,b],F) is given by

b
11 = [ 111 o

and the 2-norm is given by
1/2

b
1£lle = / P do
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We will see in 8.2.4 that the 2-norm is the norm induced from the standard inner product
on C([a,b],F). The oo-norm is given by

| flloe = max {|f ()| € [a,b]} .

It exists by the Extreme Value Theorem, which says that a continuous, real-valued function,
namely |f], achieves its maximum on a closed, bounded interval, namely [a, b]. These norms
are all different. For example, if [a, b] = [0,27] and f: [0,27] — R is given by f(x) = sin(x),
then [[f[ly =4, [[fll2 = 7, and || f]lec = 1.

(3) The norms defined in (2) can all be defined for F[z] as well.

Proposition 8.2.4. The function || - ||: V — Rsq given by ||v|| = \/(v,v) is a norm. It is
usually called the induced norm on V.

Proof. Clearly || - || is definite by definition. It is homogeneous since

[Avll = v/ (dw, Av) = VAR (v, 0) = |A] - o]l

Now the Cauchy-Schwartz inequality can be written as |(u,v)| < ||u||||v]| after taking square
roots, so we have

lu+v||? = (u+v,u+v) = (u,u) +2Re(u,v) + (v,v)
< (u,w) + 2w, 0)] + (v, 0) < Jull* + 2full o]l + [ol* = ((full + [lv])*.
Taking square roots now gives the desired result. O]

Remark 8.2.5. In many books, the Cauchy-Scwartz inequality is proved for inner products
(not positive, self adjoint sesquilinear forms as was done in 8.1.5), and it is usually in the
form used in the proof of 8.2.4:

[(u, v)| < flulll|v]].

Proposition 8.2.6 (Parallelogram Identity). The induced norm || - || on V satisfies
w4 v|? + [Ju—v|* = 2||ul|® + 2||v]|* for all u,v € V.
Proof. This is immediate from the definition of || - ||. O

Definition 8.2.7.

(1) If u,v € V and (u,v) = 0, then we say u is perpendicular to v. Sometimes this is denoted
as u L v.

(2) Let S C V be a subset. Then S+ = {v e V|v Ls forall s € S} is a subspace of V.

(3) We say the set S; is orthogonal to the set Sy, denoted S; L Sy if v € S; and w € Sy
implies v L w.

Examples 8.2.8.

115



(1) The standard basis vectors in F™ are all pairwise orthogonal. If we pick v € F", then
{vo}t 2 Frt

(2) Suppose we have the inner product on R[z] given by

1

(p,q) = / p(2)2(@) dz.

0

Then 1 L x — 1/2. Moreover, {1} is infinite dimensional as 2" — 1/(n + 1) € {1}+ for all
n € N.

Proposition 8.2.9 (Pythagorean Theorem). Suppose u,v € V' such that w L v. Then
[+ [* = flu]|* + [[o]*.
Proof. ||lu+v[]?> = (u+v,u+v) = (u,u) + 2Re(u,v) + (v,v) = ||ul|® + ||v|*. ]

Exercises

Exercise 8.2.10.

8.3 Orthonormality

Definition 8.3.1.
(1) A subset S C V is called an orthogonal set if u,v € S with u # v implies that u L v.

(2) A subset S C V is called an orthonormal set if S is an orthogonal set and v € S implies
lvfl = 1.

Examples 8.3.2.

(1) Zero is never in an orthonromal set, but can be in an orthogonal set.

Proposition 8.3.3. Let S be an orthogonal set such that 0 ¢ S. Then S is linearly inde-
pendent. Hence all orthonormal sets are linearly independent.

Proof. Let {vy,...,v,} be a finite subset of S, and suppose there are scalars A\y,..., A\, € F

such that .
i=1

Then we have a linear functional v; = (-, v;) € V* given by v} (u) = (u,v;) for allu € V. We
apply ¢; to the above expression (“hit is with v;”) to get

0= (Z Ai”i) = Awp (o) = ) Nilvs,v5) = Ai(vg,v5) = Allog 1>
i=1 i=1 i=1
as (v;,v;) = 0 if i # j. Since v; # 0, we have |Jv;||* # 0, so \; = 0. O
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Theorem 8.3.4 (Gram-Schmidt Orthonormalization). Let S = {vy,...,v,} be a linearly
independent subset of V.. Then there is an orthonormal set {uy,...,u,} such that for each

ke {l,...,n}, span{uy,...,ux} = span{vy, ..., vg}.
Proof. The proof is by induction on n.
n = 1: Setting u; = vy /||v1]| works.

n — 1 = n: Suppose we have a linearly independent set S = {vy,...,v,}. By the induc-
tion hypothesis, there is an orthonormal set {ui,...,u,_1} such that spanf{uy,... , ux} =
span{vy, ..., v} for each k € {1,...,n — 1}. Set

n—1
w
Wy, = Uy — E (Vps1,ui)u; and u, = ——.
i=1 HwnH

It is clear that wy41 L u; for all j =1,...,n — 1 by applying the linear functional (-, u;):

n—1

(Wna1,U5) = (Ungrs ) = D (Unr, ) (i, w5) = (U, 1) — (Ongr, ug) (g, ug) = 0.
i=1
Hence u, L u; for all j =1,...,n—1, and R = {uy,...,Up+1} is an orthonormal set. It
remains to show that span(S) = span(R). Recall that span(S \ {u,}) = span(R \ {v,}). It
is clear that span(R) C span(S) since vy, ...,v,-1 € span(S) and v, is a linear combination
of uy, ..., u,. But we immediately see span(S) C span(R) as uq, ..., u,—1 € span(R) and u,
is a linear combination of uq,...,u,_1 and v,. O

Definition 8.3.5. If V' is a finite dimensional inner product space over F, a subset B C V'
is called an orthonormal basis of V' if B is an orthonormal set and B is a basis of V.

Examples 8.3.6.
(1) The standard basis of F™ is an orthonormal basis.

(2) The set {1,z,z?%, ..., 2"} is a basis, but not an orthonormal basis of P, with the inner
product given by

1
(p.q) = / p(x)q(x) de.
0
Theorem 8.3.7 (Existence of Orthonormal Bases). Let V' be a finite dimensional inner

product space over F. Then V' has an orthonormal basis.

Proof. Let B be a basis of V. By 8.3.4, there is an orthonormal set C' such that span(B) =
span(C'). Moreover, C'is linearly independent by 8.3.3. Hence C' is an orthonormal basis for
V. ]
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Proposition 8.3.8. Let B = {vy,...,v,} CV be an orthogonal set that is also basis of V.
Then if w €'V,

w, Uy
o=y,

i—1 <Ui7 Ui>
If B is an orthonormal basis for V', then this expression simplifies to

n

w = Z(w,v,}vi,

i=1
and the (w,v;) are called Fourier coefficients of w with respect to B.

Proof. Since B spans V, there are scalars Ay, ..., \, € F such that

n
i=1

Now we apply (-,v;) to see that

n

(w,v) =Y Nivi,v3) = A {vg,05)

i=1
as (v;,v;) = 0 if ¢ # j. Dividing by (v;,v;) gives the desired formula. O

Proposition 8.3.9 (Parseval’s Identity). Suppose B = {vy,...,v,} be an orthonormal basis
of V.. Then

[l =" v, v)|* for all v e V.

i=1
Proof. The reader may check that this identity follows immediately from 8.3.8 using induc-
tion and the Pythagorean Theorem (8.2.9). O

Fact 8.3.10. Suppose B = (v1,...,v,) is an ordered basis of the vector space V.. We may
impose an inner product on V' by setting

(u,v)p = ([u]s, [v]B)En,

and we check that
1 ifi=j
0 else,

(vi, vj) B = ([vi] B, [V;]B)Fm = (€i, €5)Fn = {

so B is an orthonormal basis of V' with inner product (-, -)g. Moreover, we see that the linear
functional v; = (-, v;) for all j € [n]. If

n
V= E )\ﬂ)i,
i=1

then we have that

<U7Uj>B = <Z )\Z‘Ui,l)j> = Z/\i<1)i,’l}j>3 = )‘j = U;(U).



Exercises

Exercise 8.3.11. Use Gram-Schmidt orthonormalization on {1, z,2% 2%} to find an or-
thonormal basis for P3(F) with inner product

1

(p,q) = /p(z)q(z) dz.

0

Exercise 8.3.12. Suppose {vy,...,v,} is an orthonormal basis for V. Show that the linear
functionals (-v;,v;): L(V) — F given by T +— (T'v;, v;) are a basis for L(V)*.

8.4 Finite Dimensional Inner Product Subspaces

Lemma 8.4.1. Let W be a finite dimensional subspace of V', and let {wy,...,w,} be an
orthonormal basis for W. Then x € W+ if o L w; foralli=1,...,n.

Proof. Let w € W. Then by 8.3.8,

Then we have

soxr €W O

Proposition 8.4.2. Let W C V be a finite dimensional subspace, and let v € V. Then there
is a unique w € W minimizing ||[v — w||, i.e. [[v —w| < |lv —w'| for all w € W.
Proof. Let {wy,...,w,} be an orthonormal basis for W. Set

n

w = Z(v,wi)wi eWw

i=1
and u = v —w. We have u € W+ by 8.4.1 as (u,w;) =0forall j =1,...,n:

n

(u, wi) = (v, w;) =Y (v, wi)(wi, wy) = (v,w5) = (v, w;) (w;, w;) = 0.

i=1

We show w € W is the unique vector minimizing the distance to v. Suppose w' € W
such that [|jv — w'|| < ||[v — w|. Since v = u + w and v L (w —w'), by 8.2.9,

ull* + flw = w'lf* = flu + (w — w)[I* = flo = /| < JJv—w]* = ul*.

II’=0and w = w'. O

Hence ||w — w
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Definition 8.4.3. Let W C V be a finite dimensional subspace. Then Py, the projection
onto W, is the operator in L(V') defined by Py (v) = w where w is the unique vector in W
closest to v which exists by 8.4.2.

Examples 8.4.4.

(1) Let v € V. The projection onto span{v} denoted by P,, is is the operator in L(V') given

by
WMU
ol

The corresponding component operator is the linear functional C, € V* given by

u —

{u, v)
[o]|>
Note that if ||v|| = 1, the formulas simplify to P,(u) = (u,v)v and C,(u) = (u,v).
(2) Suppose u,v € V with u,v # 0 and u = Av for some A € F. Then P, = P,.

(3) Let W be a finite dimensional subspace of V| and let {wy,...,w,} be an orthonormal
basis of WW. Then the projection onto W is the operator in L(V') given by

n
U — Z(u,wi>wi.
i=1

In particular, this definition is independent of the choice of orthonormal basis for W.

Lemma 8.4.5. Let W C V be a finite dimensional subspace. Then
(1) P% = Py,

(2) im(Py) ={veV|Py(v)=v} =W,

(3) ker(Py) =W+, and

(4)V=WaeW.

Proof. We have that (2)-(4) follow immediately from 6.1.6 if (1) holds.

(1) Let v € V. Then there is a unique w € W closest to v by 8.4.2. Then by the definition
of Py, we have Py (v) = w = Py (w). Hence P2, (v) = Py(w) = w = Py(v), and P}, =
Py . O

Corollary 8.4.6. (Pyu,v) = (u, Pyv) for all u,v € V.

Proof. Let u,v € V. Then by 2.2.8, there are unique w;,w, € W and z;, o € W+ such that
uw=w; +2; and v = wy + 2. Then

<PWu,v) = <Pw(U)1 + :cl),wQ + l’g) = <w1,w2 +.’172> = <w1,w2>

= (w1 + o1, we) = (w1 + x1, Py (we + x2)) = (u, Pyv).
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Exercises

V' will denote an inner product space over F.

Exercise 8.4.7 (Invariant Subspaces). Let T' € L(V'), and let W C V be a finite dimensional
subspace.

(1) Show W is T-invariant if and only if Py TPy = TPy .
(2) Show W and W+ are T-invariant if and only if TPy = Py/T.
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Chapter 9

Operators on Hilbert Space

9.1 Hilbert Spaces

The preceding discussion brings up a few questions. What can we say about subspaces of
an inner product space V that are not finite dimensional? Is there a projection Py onto an
infinite dimensional subspace? Is it still true that V = W @ W= if W is infinite dimensional?
As we are not assuming a knowledge of basic topology and analysis, there is not much we can
say about these questions. Hence, we will need to restrict our attention to finite dimensional
inner product spaces, which are particular examples of Hilbert spaces.

Definition 9.1.1. For these notes, a Hilbert space over F will mean a finite dimensional
inner product space over F.

Remark 9.1.2. The study of operators on infinite dimensional Hilbert spaces is a vast area
of research that is widely popular today. One of the biggest differences between an under-
graduate course on linear algebra and a graduate course in functional analysis is that in the
undergraduate course, one only studies finite dimensional Hilbert spaces.

For this section H will denote a Hilbert space over F. In this section, we discuss various
types of operators in L(H).

Proposition 9.1.3. Let K C H be a subspace. Then (K+)* = K.

Proof. 1t is obvious that K C (K+)t. We know H = K & K+ by 8.4.5. By 8.3.7, choose
orthonormal bases B = {v,...,v,} and C = {uy, ..., u,} for K and K+ respectively. Then
B UC is an orthonormal basis for H by 2.4.13. Suppose w € (K+)t. Then by 8.3.8,

n

w = Z(w, Ui>UZ' + Z<w7 ui>ui7

i=1 i=1
but w L w; foralli=1,...,m, so w € span(B) = K. Hence K C (K+)*. O

Lemma 9.1.4. Suppose T' € L(H,V') where V is a vector space. Then T' = T Py(r)s .
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Proof. We know that H = ker(T) @ ker(T)* by 8.4.5. Let v € ker(T) and w € ker(T)*.
Then T'(v +w) =Tv +Tw =0+ Tw = Tw = T Peyryr (v + w). Thus, T =T PReyryr. O

Theorem 9.1.5 (Reisz Representation). The map ®: H — H* given by v — (-, v) is a
conjugate-linear isomorphism, i.e. ®(Au +v) = A®(u) + ®(v) for all X\ € F and u,v € H,
and ® 1is bijective.

Proof. It is obvious that the map is conjugate linear. We show ¢ is injective. Suppose
(,v) =0, i.e. (u,v) = 0 for all w € V. Then in particular, (v,v) = 0, so v = 0 by
definiteness. Note that the proof of 3.2.4 still works for conjugate-linear transformations, so
® is injective. We show @ is surjective. It is clear that ®(0) = 0. Suppose that ¢ € H* with
© # 0. Then ker(p) # H, so ker(p)t # (0). Pick v € ker(p)* such that ¢(v) # 0. Now

consider the functional ) (v)
U Pp\v

v=pfl e (F00).
[v][2 [v]]?

Since span{v} = ker(¢)*, by 9.1.4 and 3.3.2 we have

= p(v (u, v) = (u,_v)v = w)) = p(u
vl = ooyt = (Yo = ) = ot
Hence v = ¢, and & is surjective. O]

Exercises

Exercise 9.1.6 (Sesquilinear Forms and Operators). Show that there is a bijective corre-
spondence W: L(H) — {sesquilinear forms on H}.

9.2 Adjoints

Definition 9.2.1. Let 7' € L(H). Then if v € H, u +— (Tu,v) = (®(v) o T')(u) defines a
linear operator on H. By the Reisz Representation Theorem, 9.1.5, there is a vector in H,
which we will denote T™v, such that

(Tu,v) = (u, T*v) for all u e H.
We show the map T*: H — H given by v +— T™v is linear. Suppose A € F and w € H. Then
(Tu, \v +w) = MTu,v) + (Tu,w) = Mu, T*0) + (u, T*w) = (u, \T*v + T*w)

for all w € H. Hence T*(Av + w) = AT*v + T*w by 8.2.1. The map T* is called the adjoint
of T.

Examples 9.2.2.
(1) For M € L(H), (\I)* = Al
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(2) For A € M, (F), we have (L4)* = La~, multiplication by the adjoint matrix.

(3) Suppose H is a real Hilbert space and 7' € L(H). Then (1¢)* € L(Hc) is defined by the
following formula:
(Te) (u +iv) = T*u + iT™v.

In other words, (1¢)* = (T%)c.

Proposition 9.2.3. Let S,T € L(H) and X € F.

(1) The map *: L(H) — L(H) is conjugate-linear, i.e. (\T + S)* = NT™* + S,

(2) (ST)* =T*S*, and

(3) T* = (T*)* =T.

In short, % is a conjugate-linear, anti-automorphism of period two.

Proof.
(1) For all u,v € H, we have

(u, ANT+S)*v) = (AT+S)u, v) = MTu, v)+{(Su,v) = (u, N\T*0)+{u, S*v) = (u, AT*+S5*)v).

By 8.2.1 we get the desired result.
(2) For all u,v € H, we have

(u, (ST)*v) = (STu,v) = (u, T*S*v).

By 8.2.1 we get the desired result.
(3) For all u,v € H, we have

(Tu,v) = (u, T*v) = (T*v,u) = (v, T*u) = (T u,v).
Hence, by 8.2.1, we get T' = T™*. ]
Definition 9.2.4. An operator T' € L(H) is called
(1) normal if T*T = TT™,
(2) self adjoint if "= T™ (note that a self adjoint operator is normal),
(3) positive if T is self adjoint and (T'v,v) > 0 for all v € H, and
(4) positive definite if T is positive and (T'v,v) = 0 implies v = 0.
(5) A matrix A € M, (FF) is called positive (definite) if L, is positive (definite).
Examples 9.2.5.

(1) The following matrices in M(FF) are normal:

0 -1\ 1(1 1 G (0 =i
1 0 )9\1 1)\ o)
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(2)

Definition 9.2.6.
(1) An operator T' € L(H) is called an isometry if 7*T = I.
(2) An operator U € L(H) is called unitary if U*U = UU* = I.
(3) Anoperator P € L(H) is called a projection (or an orthogonal projection) if P = P* = P2
(4) An operator V € L(H) is called a partial isometry if V*V is a projection.

Examples 9.2.7.

(1) Suppose A € M, (F). Then L, is unitary if and only if A*A = AA* = [. In fact, L,
is unitary if and only if the columns of A are orthonormal if and only if the rows of A are
orthonormal.

(2) The simplest example of a projection is L4 where A € M, (F) is a diagonal matrix with
only zeroes and ones on the diagonal.

(3) If T € L(H) is a projection or (partial) isometry, and if U € L(H) is unitary, then U*TU
is a projection or (partial) isometry respectively.

(4) Let H = P, with the inner product

(p,q) = / p(x)q(x) du.

Then multiplication by p € P, is a unitary operator if and only if [p(z)| = 1 for all z € [0, 1]
if and only if p(z) = X where [A\| = 1 for all x € [0, 1].

Exercises

Exercise 9.2.8. Let B be an orthonormal basis for H, and let T € L(H). Show that
[T*]p = [T15-

Exercise 9.2.9 (Sesquilinear Forms and Operators 2). Let ¥: L(H) — {sesquilinear forms on H}

be the bijective correspondence found in 9.1.6. For T' € L(H), show that the map ¥ satisfies
(1) T is self adjoint if and only if W(T) is self adjoint,
(2) T is positive if and only if W(7") is positive, and
(2) T is positive definite if and only if W(T') is an inner product.
Exercise 9.2.10. Suppose T' € L(H). Show
(1) if T is self adjoint, then sp(7) C R,
(2) if T is positive, then sp(T) C [0, 00), and
(3) if T' is positive definite, then sp(7") C (0, c0).
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9.3 Unitaries

Lemma 9.3.1. Suppose B is an orthonormal basis of H. Then |-|p preserves inner products,
1.€.
(u,v)g = ([u]B, [v]B)F~ for all u,v € H.

Proof. Let B = {v,...,v,}, and suppose

n n
U= E wiv; and v = E Aiv;.
i—1 i=1

Then we have
[ulp = Zuiei and [v]p = Z)xiei,
i=1 i=1
SO

([uls, [v]B)r = Z#M_i = (u,v) .

Theorem 9.3.2 (Unitary). The following are equivalent for U € L(H):
(1) U is unitary,

(2) U* is unitary,

(3) U is an isometry,

(4) (Uv,Uw) = (v,w) for allv,w € H,

(5) |Uv]| = [lol| for all v € H,

(6) If B is an orthonormal basis of H, then UB is an orthonormal basis of H, i.e. U maps
orthonormal bases to bases,

(7) If B is an orthonormal basis of H, then the columns of [U]g form an orthonormal basis
of ™, and

(8) If B is an orthonormal basis of H, then the rows of [U]g form an orthonormal basis of
F™.

Proof.

(1) < (2): Obvious.

(1) = (3): Obvious.

(3) = (4): Suppose U*U = I, and let v,w € H. Then

(Uv,Uw) = (U Uv,w) = (Iv,w) = (v, w).
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(4) = (5): Suppose (Uv,Uw) = (v,w) for all v,w € H. Then
|TUv])* = (Uv, Uv) = (v,v) = (v,0) = |Jv]|*.
Now take square roots.
(5) = (1): Suppose |Uv| = ||v|| for all v € V| and let v € ker(U). Then
0= ol = [|Uv]| = [lvl],

so v = 0 and U is injective. Hence U is bijective by 3.2.15, and U is invertible. Thus
vur =1.

(4) = (6): Let B = {vy,...,v,} be an orthonormal basis of H. Then

1 ifi=y

(Uvi, Uvj) = (v, v5) = {

0 else,

so UB = {Uvy,...,Uv,} is an orthonormal basis of H.
(6) = (7): Suppose B = {v1,...,v,} is an orthonormal basis of H. Then

(U] = [[le]B

).

and we have that
([Uvils, [Uvs]g)em = ([U]plU]Blvis]; [vs]s)em = (€, €5)pn = {(1) lflsi:j

so the columns [Uv;|p of [U]p form an orthonormal basis of F".

(7) = (8): Suppose B is an orthonormal basis of H and the columns of [U]p form an or-
thonormal basis of F". Then we see that

[U1U] =1 = [U]s[U]5.
Hence if U; € My, (F) is the i*" row of [U]p for i € [n], then we have
1 ifi=j
0 else,

Uin — Ii,j - {

so the rows of [U]p form an orthonormal basis of F".

(8) = (1): Suppose B is an orthonormal basis of H and the rows of [U]p form an orthonormal
basis of F". Then by 9.2.8

[UU"]p = [U]plU"]5 = [U]s[U]p = 1,
so UU* = I. Thus U~ is injective and invertible by 3.2.15, so U*U = I, and U is unitary. []

Remark 9.3.3. Note that only (5) = (1) fails if we do not assume that H is finite dimensional.
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Exercises

Exercise 9.3.4 (The Trace). Let {vy,...,v,} be an orthonormal basis of H. Define tr: L(H) —
F by

n

tr(T) = Z(T%‘,U1>-

i=1
(1) Show that tr € L(H)*.

(2) Show that tr(7'S) = tr(ST) for all S,T" € L(H). Deduce that tr(UTU*) = tr(T') for all
unitary U € L(H). Deduce further that tr is independent of the choice of orthonormal basis
of H.

(3) Let B be an orthonormal basis of H. Show that
tr(T) = trace([T]g)

for all T' € L(H) where trace € M, (IF)* is given by

trace(A) = Z Ay
i=1

9.4 Projections

Proposition 9.4.1. There is a bijective correspondence between the set of projections P(H) C
L(H) and the set of subspaces of H.

Proof. We show the map K — Py where Pk is as in 8.4.3 is bijective. First, suppose
Pp, = Pk for subspaces L, K. Suppose u € L. Then Pk (u) = Pp(u) = u by 8.4.5, so u € K.
Hence L C K. By symmetry, i.e. switching L and K in the preceding argument, we have
that K C L,so L =K.

We must show now that all projections are of the form Py for some subspace K. Let P
be a projection, and let K = im(P). We claim that P = Px. First, note that P? = P, so if
w € K, then Pw = w. Second, if u € K+, then for all w € K,

0 = (w,u) = (Pw,u) = (w, Pu).

Hence Pu € KN K+, so Pu=0 by 8.4.5. Now let v € H = K ® K*. Then by 2.2.8 there
are unique y € K and z € K+ such that v = y + 2. Then

Pv=Py+ Pz=vy = Pry+ Pxz = Pk,
so P = Pk. O
Corollary 9.4.2. Let P € L(H) be a projection. Then
(1) H =ker(P) ®im(P) and
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(2) im(P) = {v € H|Pv = v} = ker(P)*.

Remark 9.4.3. Let P be a minimal projection, i.e. a projection onto a one dimensional
subspace. In light of 9.4.1, we see that a P is minimal in the sense that im(P) has no

nonzero proper subspaces. Hence, there are no nonzero projections that are “smaller” than
P.

Definition 9.4.4. Projections P,() € L(H) are called orthogonal, denoted P L @ if
im(P) L im(Q).
Examples 9.4.5.

(1) Suppose u,v € H with v L v. Then P, L P,.

(2) If L, K are two subspaces of H such that L 1. K, then P, 1 Pg. In particular, Px L Py
for all subspaces K C H.

Proposition 9.4.6. Let P,Q) € L(H) be projections. The following are equivalent:

(1) PLQ,

(2) PQ =0, and
(3) QP = 0.
Proof.

(1) = (2),(3): Suppose P L Q. For all u,v € H, we have

(PQu,v) = (Qu, Pv) = (u,QPv) = 0.
Hence PQQ =0 = QP by 8.2.1.
(2) < (3): We have PQ = 0 if and only if QP = (PQ)* = 0.

(2) = (1): Now suppose PQ =0 and let u € im(P) and v € im(Q). Then there are z,y € H
such that © = Px and v = Qy, and

<u7v> = <PI7Qy> = <PQU7U> = <07U> = 0.

Definition 9.4.7.

(1) We say the projection P € L(H) is larger than the projection @ € L(H), denoted P > Q
if im(Q) C im(P).

(2) If P,Q € L(H), then we define the sup of P and @ by PV Q = P (p)+im(q) and the inf
of Pand Q by PAQ = Pim(P)ﬂim(Q)-
Proposition 9.4.8.

(1) PVQ is the smallest projection larger than both P and Q, i.e. if P,QQ < F and FE € L(H)
s a projection, then PV Q < F.
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(2) PAQ is the largest projection smaller than both P and Q, i.e. if F < P,Q, and F' € L(H)
s a projection, then F' < P A Q).

Proof.

(1) Tt is clear that im(P),im(Q) C im(P) + im(Q), so P,Q < PV Q. Suppose P,Q < E.
Then im(P) C im(F) and im(Q) C im(E), so we must have that im(P) + im(Q) C im(E),
and im(P V Q) C im(F). Thus PV Q < E.

(2) Tt is clear that im(P) Nim(Q) C im(P),im(Q), so P A Q < P,Q. Suppose F < P,Q.
Then im(F') C im(P) and im(F) C im(Q), so we must have that im(F) C im(P) Nim(Q),
and im(F) C im(P A Q). Thus FF < PAQ. O

Proposition 9.4.9. Let P,() € L(H) be projections. The following are equivalent:
(1) im(Q) C im(P), i.e. Q < P,

(2) Q = PQ, and
(3) @ =QP.
Proof.

(1) = (2): Suppose @ < P. Then {v€ H|Quv=v} C {ve H[Pv=v}. Let v € H, and
note there are unique = € im(Q) and y € ker(Q) such that v = x + y. Then

Qu=Qr+ Qy=1x=Pxr=PQr= PQu,

so @ = PQ.
(2) < (3): We have Q = PQ if and only if Q = Q* = (PQ)* = QP.

(2) = (1): Suppose @ = PQ, and suppose v € im(Q). Then Qv = v, sov = Qu = PQuv = P,
and v € im(P). O

Corollary 9.4.10. Suppose P,Q € L(H) are projections with Q < P. Then P — Q is a
projection.

Proof. We know P — Q) is self adjoint. By 9.4.9,
(P-QP=P-QP-PQ+Q=P-Q-Q+Q=P-Q,

so P — (@) is a projection. n

Exercises

9.5 Partial Isometries

Proposition 9.5.1. Suppose V € L(H) is a partial isometry. Set P =V*V and Q = VV*
(1) P is the projection onto ker(V)= .
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(2) Q is the projection onto im(V'). In particular, V* is a partial isometry.
Proof.
(1) We show ker(P) = ker(V), so that im(P) = ker(P)*+ = ker(V)*. Tt is clear that ker(V) C
ker(P) as Vv = 0 implies Pv = V*Vv = V*0 = 0.
Now suppose v € ker(P) so Pv = 0. Then
0= (Pv,v) = (V'Vv,v) = (Vo, Vo) = [V,

so v € ker(V).

(2) By 9.1.4 and (1), we see V = V P. Suppose v € im(V). Then v = Vu for some v € H.
Then Qv =QVu=VV*Vu=VPu=Vu=wv,s0v €im(Q).
Now suppose v € im(Q). Then v = Qu = VV*v, so v € im(V). ]

Remark 9.5.2. If V is a partial isometry, then ker(V)= is called the initial subspace of V' and
m(V') is called the final subspace of V.

Theorem 9.5.3. Let V € L(H). The following are equivalent:
(1) V is a partial isometry,
(2) [Vv| = ||v|| for all v € ker(V)+,
(3) (Vu,Vv) = (u,v) for all u,v € ker(V)*, and
(4) Vlker(vyr € Lker(V)*,im(V)) is an isomorphism with inverse V* i) € L(im(V), ker(V)*).
Proof.
(1) = (2): Suppose V is a partial isometry. Then if v € ker(V)*,

Vol = (Vo, Vo) = (V*Vu,v) = (v,0) = ||v]*

by 9.5.1. Taking square roots gives ||Vv|| = ||v]|.
(2) = (3): If u,v € ker(V)*, then assuming H is a complex Hilbert space, by 8.1.4,

3
AVu, Vo) =) i (Vu+ iV, Vu + i Vo) = sznv u+ i) ||> = sz||u+z o||?
k=0

= sz(u + %, u + iFv) = 4(u, v).
k=0
Now divide by 4. The proof is similar using 8.1.4 if H is a real Hilbert space.
(3) = (1): Weshow V*V is a projection. Let w,z € H. Then there are unique y;, y» € ker(V)
and z1, 29 € ker(V)* such that w = y; + 2; and 2 = y, + 25. Then
(VVw,z) = (VV(y1 + 21), 92 + 22) = (Vi + V2, Vi + Vizg) = (Vizr, Vo) = (21, 22)

= <Zl7 Y2 + Z2> = <Pker(V)Lwa IL’>

Since this holds for all w,z € H, by 8.2.1, V*V = P v)r
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(1) = (4): We know by 9.5.1 that V*V is the projection onto ker(V)* and VV* is the pro-
jection onto im(V). Hence if S = Vl]uoye € Liker(V)*:im(V)) and T = V*|n) €
L(lm(V), ker(V)L), then ST = Iim(V) and T'S = ]ker(V)J--

(4) = (1): Suppose v € H. Then there are unique x € ker(V) and y € ker(V)* such that
v=2x+y. Then V*Vv = V*V(r+y) = VVy =y = Peu)v, so VV = Py, a
projection, and V' is a partial isometry. O

Exercises

Exercise 9.5.4 (Equivalence of Projections). Projections P,Q € L(H) are said to be equiv-
alent if there is a partial isometry V' € L(H) such that VV* = P and V*V = Q.

(1) Show that tr(P) = dim(im(P)) for all projections P € L(H).
(2) Show that projections P, € L(H) are equivalent if and only if tr(P) = tr(Q).

9.6 Dirac Notation and Rank One Operators

Notation 9.6.1 (Dirac). Given the inner product space (H{,-,)), we can define a function
(-|): Hx H—T by
(ulv) = (u,v) for all u,v € H.

In some treatments of linear algebra, the inner products are linear in the second variable
and conjugate linear in the first. We can go back and forth between these two notations by
using the above convention.

In his work on quantum mechanics, Dirac found a beautiful and powerful notation that
is now referred to as “Dirac notation” or “bras and kets.” A vector in H is sometimes called
a “ket” and is sometiems denoted using the right half of the alternate inner product defined
above:

veH or |v) € H.

A linear functional in L(H,F) is sometimes called a “bra” and is sometimes denoted using
the left half of the alternate inner product:
v* = (-, v) € H" or (v| € H*.

Now the (alternate) inner product of u,v € H is nothing more than the “bra” (u| applied to
the “ket” |v) to get the “braket” (u|v).

The power of this notation is that it allows for the opposite composition to get “rank one
operators” or “ket-bras.” If u,v € H, we define a linear transformation |u)(v| € L(H) by

w = |w) — (v|w)|u) = (w, v)u.

If we write out the equation naively, we see (|u)(v|)|w) = |u)(v|w). The term “rank one”
refers to the fact that the dimension of the image of a rank one operator is less than or equal
to one. The dimension is one if and only if u,v # 0.
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For example, recall that P, for v € H was defined to be the projection onto span{v}
given by
U, v
(1),
o]l

Thus, we see that P, = ||v||7%|v)(v|. This makes it clear that if v = \v and w,v # 0 € V
and A\ € S!, then P, = P,:

u ——

_ ] Po)Qel AP ] [v) (ol

P = = = = = P,.

B % i X e P (0] N (]
In particular, we have that P is a minimal projection if and only if P = |v)(v| for some
v € H with [|v|| = 1. Sometimes these projections are called “rank one” projections.

One can easily show that composition of rank one operators |u)({v| and |w)(z| is exactly
the naive composition:

(lu) (v (Jw){z]) = |u)(v]w){z] = (v]w)u){z] for all u,v,w,z € H,
and taking adjoints is also easy:
(Ju){v|)* = |v){(u] for all u,v € H.
Furthermore, if T' € L(H), then composition is also naive:
Tlu)(v] = |Tu){v| and [u){v|T = [u)(T"v].

Exercises

Exercise 9.6.2. Let u,v € H and T' € L(H).
(1) Show that (|u)(v])* = |v){u|.
(2) Show that T'|u){(v| = |Tu)(v| and |u){v|T = |u){T*v]|.
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Chapter 10

The Spectral Theorems and the
Functional Calculus

For this section H will denote a Hilbert space over F. The main result of this section is the
spectral theorem which says we can decompose H into invariant subspaces for T" under a few
conditions.

10.1 Spectra of Normal Operators

This section provides some of the main lemmas for the proofs of the spectral theorems.

Proposition 10.1.1. Let T' € L(H) be a normal operator.

(1) |Tv|| = || T*v]| for allv e H.

(2) Suppose v € H is an eigenvector of T' € L(H) with _corresponding eigenvalue . Then v
1s an eigenvector of T™ with corresponding eigenvalue \.

Proof.
(1) Ke have that

| Tv||? = (Tv, Tv) = (T*Tv,v) = (TT*v,v) = (T*v, T*v) = || T*v||*.

Now take square roots.

(2) Since T is normal, so is ThI. By 9.2.3, we know (T — AI)* = T* — X\I. Now we apply (1)
to get B
0= (T = ADoll = (T = AD)"™[| = [|(T" = A)o]].

Hence T*v = v. O
Proposition 10.1.2. Let T' € L(H) be normal.

(1) If vi,vy are eigenvectors of T corresponding to distinct eigenvalues A1, Ay respectively,
then v1 L vy. Hence Ey, L E,.
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(3) If S = {vy,...,v,} is a set of eigenvectors of T corresponding to distinct eigenvalues,
then S is linearly independent.

Proof.
(1) By 10.1.1 we have

>\1<U17U2> = <)\1U17U2> = <TU1U2> = <U17T*U2> = <U1,)\_2U2> = >\2<U17U2>'

The only way these two can be equal is if v; L vs.
(2) By 8.3.3, it suffices to show S is orthogonal, but this follows by (1). O

Exercises

H will denote a Hilbert space over F.

10.2 Unitary Diagonalization

Let V be a finite dimensional vector space over F. In Chapter 4, we proved that T' € L(V)
is diagonalizable if and only if

V = @Exi where sp(T) = {A1,..., Am}

i=1

. Recall that this theorem was independent of an inner product structure of V' and merely
relies on the finite dimensionality of V. In this section, we will characterize when an operator
T € L(H) is unitarily diagonalizable, which is inherently connected to the inner product
structure of H as we need an inner product structure to define a unitary operator.

Definition 10.2.1. Let 7" € L(H). T is unitarily diagonalizable if there is an orthonor-
mal basis of H consisting of eigenvectors of 7. A matrix A € M,(F) is called unitarily
diagonalizable if L, is (unitarily) diagonalizable.

Examples 10.2.2.
(1) Every diagonal matrix is unitarily diagonalizable.

(2) Not every diagonalizable matrix is unitarily diagonalizable. An example is

().
o) ()}

is a basis of R? consisting of eigenvectors of L4, but there is no orthonormal basis of R?
consisting of eigenvectors of L 4.

The basis
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Proposition 10.2.3. T' € L(H) is unitarily diagonalizble if and only if

H=@PE,, and E5, L Ex, for all i # j

i=1
where sp(T) = {A1,..., A\ }.

Proof. Suppose T is unitarily diagonalizable, and let B = {vy,...,v,,} be an orthonormal

basis of H consisting of eigenvectors of T'. Let Aq,..., )\, be the eigenvalues of T', and let
B, = BN E), for i € [n]. Then E,, = span(B;) for all i € [n] and

H= éE,\i as B = ﬁBi.
i=1 i=1

Now E), L Ej, fori# jas B; L Bj for i # j.
Suppose now that

H=@DE, and E,, L E,, forall i # j

i=1

where sp(T) = {A1,..., A\u}. For i € [n], let B; be an orthonormal basis for F),, and note
that B; L B; as E), L Ey, for all i # j. Then

is an orthonormal basis for H consisting of eigenvectors of T" as B; is an orthonormal basis
for E,, for all i € [n] and B is orthogonal. O

Corollary 10.2.4. Let T € L(H). T is unitarily diagonalizable if and only if there are
mutually orthogonal projections Py, ..., P, € L(H) and distinct scalars Ay, ..., \, € F such

that . .
I=> P and T =) \P.
i=1 i=1
Proof. We know by 10.2.3 that 7T is unitarily diagonalizable if and only if

H=@DE, and E\, L E,, forall i # j
i=1
where sp(T') = { A1, ..., \n}
Suppose that H is the orthogonal direct sum of the eigenspaces of 7. By 6.1.7, setting
P; = Pp, for alli € [n], we have that

I=> P and PP =0if i #j.

i=1
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Hence by 9.4.6, the P;’s are mutually orthogonal. Now if v € H, we have v can be written
uniquely as a sum of elements of the F),’s by 2.2.8:

n
v = E v; where v; € E),.

=1
Now it is immediate that
Ty = zn:T’UZ = zn:)\z?]l = zn:)\zpﬂ)z = Zn:)\]P] Zn:’l}i = (zn: )\]f)]) v,
i=1 =1 i=1 j=1 i=1 j=1

so we have
n

T = Z/\,-R».

i=1
Now suppose there are mutually orthogonal projections Py, ..., P, € L(H) and distinct
scalars Ay, ..., A\, € [F such that

I = iPi and T:i)\iPi.
i=1 i=1

The reader should check that sp(T) = {A1,..., A} and Ey, = im(F;). Note that Ey, L Ej,
for i # j as P; L P; for ¢ # j. Finally, by 6.1.7, we know that

7= @m(P) = @ B
=1 =1

and we are finished. O

Remark 10.2.5. Note that if € L(H) with

n

T=7) AP,

i=1

where \; € [ are distinct and the P;’s are mutually orthogonal projections in L(H) that sum
to I, we can immediately see that sp(7') = {A1,..., A\, }, and the corresponding eigenspaces
are {im(P,),...,im(P,)}.

Exercises

10.3 The Spectral Theorems

The complex, respectively real, spectral theorem is a classification of unitarily diagonalizable
operators on complex, respectively real, Hilbert space. The key result for this section is 5.4.5.
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Theorem 10.3.1 (Complex Spectral). Suppose H is a finite dimensional inner product space
over C, and let T € L(H). Then T is unitarily diagonalizable if and only if T is normal.

Proof. Suppose T is unitarily diagonalizable. Then by 10.2.4, there are \q,...,\, € C and
mutually orthogonal projections Py, ..., P, such that

I = if’i and T:i)\iﬂ.
i=1 i=1

Then
= iAiPi iA_ij = iAM—iH = iA_mPi = iA_ij iAiPi —T'T.
i=1 j=1 i=1 i=1 j=1 i=1

Suppose now that T is normal. By 5.4.5, we know T has an eigenvector. Let S =
{v1,...,v;} be a maximal orthonormal set of eigenvectors of T" corresponding to eigenvalues
A, A\ Let K = span(S). We need to show K = H, or K+ = (0). First, we show
TPk = PxT. By the Extension Theorem, we may extend S to an orthonormal basis B =
{v1,...,v,} of H. By 10.1.1, for v € H, we have

n k k

Px(Tv) = Pk Z(Tv, VU = Z(Tv,vi)PKvi = Z(Tv, VU = Z(v, T*v;)v;

i=1 i=1 i=1

= Z<U>)\_ﬂz‘>vi = Z(U,UQ)\ivi = Z(v,viﬂ% =T (Z<U, vi>vi>

i=1 1=1 i=1
T (Z<’U,UZ‘>PKUZ‘> = T(PKU)
i=1

By 8.4.7, we know that K and K= are invariant subspaces for T', so T'| 1 = (I — Px )T (I — Pk)
is a well defined normal operator in L(K*). Suppose Kt # (0), by 5.4.5 T|x: has an

eigenvector w € K+. We may assume ||w|| = 1. But then S U {w} is an orthonormal set
of eigenvectors of T" which is strictly larger than S, a contradiction. Hence K+ = (0), and
K=H. O

Lemma 10.3.2. If T € L(H) is self adjoint, then all eigenvalues of T are real.

Proof. Suppose A is an eigenvalue of T corresponding to the eigenvector v € H. Then
Mov,v) = (T, v) = (v, Tv) = Mv,v).
The only way this is possible is if A € R. m

Lemma 10.3.3. Suppose H is a finite dimensional inner product space over R, and let
T € L(H) be self adjoint. Then T has a real eigenvalue.
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Proof. Recall by 2.1.12 and 3.1.3 that the complexifcation H¢ of H is a complex Hilbert
space and that the complexification of 7' is given by Tt (u+iv) = Tu+iTv. Note that (T¢)*
is given by
(Te)* (u +iv) = T"u + iT™v,
so Tt is self adjoint, hence unitarily diagonalizable by 10.3.1:
(Te) (w4 w) =T u +1T"v = Tu + iTv = T (u + v).

Hence, there is an orthonormal basis {wy, ..., w,} of H¢ consisting of eigenvectors of T¢. For
j=1,...,n, let w; = uj +iv;, and let \; € R (by 10.3.2) be the eigenvalue corresponding
to w;. First note that T'u; = \ju; and T'v; = A\jv; by 2.1.12:

TUj + iTUj = T((j(uj' -+ ?:'Uj) = )\j(uj + Z"Uj) = )\juj + i)\jUj.

Hence one of u;,v; must be nonzero as w; # 0, and is thus an eigenvector of 7" with
corresponding real eigenvalue A;. O

Theorem 10.3.4 (Real Spectral). Suppose H is a finite dimensional inner product space
over R, and let T' € L(H). Then T is unitarily diagonalizable if and only if T is self adjoint.

Proof. Suppose T is unitarily diagonalizable. Then by 10.2.4, there are distinct A\, ..., A\, €
R and mutually orthogonal projections P, ..., P, such that

I=) P and T=) AP,
i=1 i=1
This immediately implies
oS AR=YAR-T
i=1 i=1

Now suppose T is self adjoint. Then by 10.3.3, T" has an eigenvector. Let S = {vy,..., v}
be a maximal orthonormal set of eigenvectors, and let K = span(S). Then as in the proof
of 10.3.1, we have PxT = T Pk. Note that T'|. = (I — Px)T(I — Pk) is a well defined self
adjoint operator in L(K'). The rest of the argument is exactly the same as in 10.3.1. [

Exercises

Exercise 10.3.5. Let S,T € L(H) be normal operators. Show that S,7T € L(H) commute
if and only if S, T are simultaneously unitarily diagonalizable, i.e. there is an orthonormal
basis of H consisting of eigenvectors of both .S and 7.

Exercise 10.3.6 (Rayleigh’s Principle). Suppose T' € L(H) with T'=T*, and let
Sp(T) = {)\min = )\1 < )\2 <0 < >\n = )\max}
(see 9.2.10). Show that

for all v € H \ {0} with equality at each side if and only if v is an eigenvector with the
corresponding eigenvalue.
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10.4 The Functional Calculus

Lemma 10.4.1. Suppose Py, ..., P, € L(H) are mutually orthogonal projections. Then

SR =Y P
i=1 i=1

if and only if \; = p; for alli € [n].
Proof. For i € [n], let v; € im(FP;) \ {0}. Then

Aiv; = (Z /\jpj> Vi = (Z Mjpj> Vi = HiVi,
j=1 j=1

so (A; — pi)v; =0 and A\; — p; = 0 for all i € [n]. O

Proposition 10.4.2. Let T' € L(H) be normal if F = C or self adjoint if F = R. Then T is
(1) self adjoint if and only if sp(T) C R,

(2) positive if and only if sp(T) C [0,00),

(3) a projection if and only if sp(T) = {0, 1},

(4) a unitary if and only if sp(T) C S' = {X € C||]A =1},

(5) a partial isometry if and only if sp(T) C ST U {0}.

Proof. We write
r-yar
i=1

as in 10.2.4 as T is unitarily diagonalizable by 10.3.1.
(1) Clearly \; = \; for all 4 implies that

T = i)\ipi = ik_ﬂ% =T*.
=1 =1

Now if T' = T*, then we have by 9.4.6 that \;P; = TP; = T*P; = \;P; forall j = 1...,n,
which implies \; = A; for all j.

(2) Suppose T' > 0. Then (Tw,v) > 0 for all v € H, and in particular, for all eigenvectors.
Hence A\||v]|> > 0 for all i = 1,...,n, and sp(T) C [0,00). Now suppose T is positive
and v € H. For i = 1,...,n, Let v; € im(P;) be a unit vector. Then {vq,...,v,} is an
orthonormal basis for H consisting of eigenvectors of T', and there are scalars py,...,pu, € F

such that .
v = Z ;U5
i=1
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Now this means

n n

(Tv,v) = <Tz,u,-vi, Z,uivi> = Z(vai,mvi> = ZO\iMUi, Wivi) = Z /\z‘||,ui”z‘||2 > 0.
i=1 i=1 i—1

=1 i=1

(3) We have

T=T"=T"«=> \NP=) ANP,=> NP
i=1 i=1 i=1

= N=N=ANforali=1,...,n

<\ €{0,1} foral i=1,... n.

The second <= follows by arguments similar to those in (1).

(4) We have
UU =) NPY NP=) NPP=) P=1I
i=1 j=1 =1 i=1

if and only if [N\;|* = 1 for all i = 1,...,n if and only if \; € S for all t = 1,...,n. The
result now follows by 9.3.2.

(5) We have T*T' is a projection if and only if sp(7*T) € {0,1} by (3). By the proof of
(4), we see that sp(T*T) = {|\;|*|\; € sp(T)}. It is clear that |\;[> € {0,1} if and only if
A € Sty {O} ]

Definition 10.4.3. Let T' € L(H) be normal if F = C or self adjoint if F = R. Then by 10.2.4
and the Spectral Theorem, there are mutually orthogonal projections P, ..., P, € L(H) and
scalars Ai,..., A, € F such that

1= Zn:Pi and T:Zn:)\iPi.
i=1 i=1

The spectral projections of T" are of the form

where i, are distinct elements of {1,...,n} and 0 < m < n (if m = 0, then P = 0). Note
that the spectral projections of T" are projections by 9.4.6.

Examples 10.4.4.
(1) If
1/1 1
A= 3 (1 1) € M(R),
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then A is self adjoint. We see that the eigenvalues of A are 0,1 corresponding to eigenvectors

1 /1 1 1
— and — c R2
7 0) =5 ()
We see then that our rank one projections are
11 111 11 11 -1 )

and it is clear P, P, = P, P, = 0. Hence the spectral projections of A are
00 1 11 1 1 -1 q 10
00)'2\1t 1)°2 =1 1) * o 1)

0 —1
A= (1 0) EMQ((C),
then A is normal. We see that the eigenvalues of A are 4i corresponding to eigenvectors
(1.) and (1) e C2
—1 i
We see then that our rank one projections are
1 . 1 4 1 . 1 —i 9
P = <—2) (1 z) = (—i 1) and P, = (z) (1 —z) = (z 1) € L(C?),
and we see that PP, = P, P, = 0. Hence the spectral projections of A are
0 0 1 1 1 —i d 10
00/ \=i 1)°\i 1) " N0 1)
Definition 10.4.5 (Functional Calculus). Let 7' € L(H) be normal if F = C or self adjoint

if F = R. Then T is unitarily diagonalizable by the Spectral Theorem. By 10.2.4, there are
mutually orthogonal minimal projections Py, ..., P, € L(H) such that

T = i AP
=1

For f: sp(T) — F, define the operator f(7T') € L(H) by

(2) If

F(T) =Y FN)P.
i=1
Examples 10.4.6.
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(1) For p € F[z], we have that p(T") as defined in 4.6.2 agrees with the p(7") defined in 10.4.5
for normal T'. This is shown by proving that

p (Z M%) = Zp(&)Pi,

which follows easily from the mutual orthogonality of the P;’s using 9.4.6. Hence the func-
tional calculus is a generalization of the polynomial functional calculus for a normal operator.

(2) Suppose U C C is an open set containing sp(7") and f: U — C is holomorphic. Then the
f(T') defined in 7.6.5 agrees with the f(T") defined in 10.4.5. Hence the functional calculus
is a generalization of the holomorphic functional calculus for a normal operator.

(3) Suppose we want to find cos(A) where
0 -1

We saw in 10.4.4 that the minimal nonzero spectral projections of A are

ChHEan]
() ) 3)

Now, we will apply 10.4.5 and use the fact that cos(z) is even to get

cos(A) = cos(i) (_1Z i) + cos(—i) G _1i> = cos(i) (—1z i) + cos(i) C _1i>

— cos(i) ((1) (1)) — cosh(1)1.

so we see that

Proposition 10.4.7. Let T' € L(H) be normal if F = C or self adjoint if F = R. The
functional calculus states that there is a well defined function evy: F(sp(T),F) — L(H).
This map has the following properties:

(1) evr is a linear transformation,
(2) evr is injective,
(3) evr(F) = (eve(f))* for all f € F(sp(T),F),

(4) im(evr) is contained in the normal operators if F = C or the self adjoint operators if
F =R, and

(5) eve(fog)=evyr(f) for all f € F(sp(T),F) and all g € F(sp(g9(T)),F).
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Proof. By 10.2.4 and the Spectral Theorem, there are mutually orthogonal projections
Py, ..., P, and distinct scalars A\q,..., A, such that

I = zn:Pi and T:zn:)\iPZ-.
i=1 i=1

(1) Suppose A € F and f,g € F(sp(T),F). Then

(Af+9)(T) = D_(Af+g)(Ni) Pr = Z(Af( )+g —AZf P+Zg P = M (
(2) This is immediate from 10.4.1.
(3) We have
Zf )P = (Zf ) = f(T)
(4) We have

n

=D TP

so f(T) is unitarily diagonalizable by 10.2.4,and is thus normal if F = C or self adjoint if
F=R.

(5) Note that f(g(T)) is well defined by (4). We have

(fog)(T)=> (fog)(N)P = Zf(g(/\i))Pi =f (Z g(&)B) = f(9(T)).

=1

Remark 10.4.8. We see that the spectral projections of a normal or self adjoint 7" € L(H)
are precisely of the form f(7T) where f: sp(T) — F such that im(f) C {0,1}.
Proposition 10.4.9. Suppose T € L(H). Define |T| = /T*T.

(1) |T)?> = T*T, and |T| is the unique positive square root of T*T

(2) |Tv|| = |||T|v|| for allv e H.

(3) ker(T) = ker(|T)).

Proof.

(1) That |T|?> = T*T follows immediately from 10.4.7 part (5). We know |T| is positive by
10.4.2 and 10.4.5 as T™T is positive:

(T*Tv,v) = (Tw, Tv) = ||Tv||* > 0 for all v € H.
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Suppose now that S € L(H) is positive and S? = T*T. Then there are mutually orthogonal
projections P, ..., P, and distinct scalars Ay, ..., A\, € [0,00) such that

S:zn:/\iPi =TT = S* :zn:)\?P,-.
=1

i=1

As the \;’s are distinct, the A\?’s are distinct, so applying the functional calculus, we see

FARNG o SIVETT N PV
=1 =1

(2) IfveH,
|ITv|* = (Tv, Tv) = (T"Tv,v) = (|T*v,v) = (|T|v, |T|v) = [[|T|v]*

Now take square roots.

(3) This is immediate from (2). O

Exercises

Exercise 10.4.10 (Hahn-Jordan Decomposition of an Operator).
(1) Show that every operator can be written uniquely as the sum of two self adjoint operators.

2) Show that every self adjoint operator can be written uniquely as the difference of two
J
pOSitiVG operators.

10.5 The Polar and Singular Value Decompositions

Theorem 10.5.1 (Polar Decomposition). For T' € L(H), there is a unique partial isometry
V € L(H) such that ker(V') = ker(T') = ker(|T|) and T = VI|T| where |T| = VT*T as in
10.4.9.

Proof. As |T| is positive, |T" is unitarily diagonalizable, so there is an orthonormal basis
{v1,...,v,} of H consisting of eigenvectors of |T'|. Let A; be the eigenvalue corresponding to
v; for i € [n], and note that \; € [0, 00) by 10.4.2. After relabeling, we may assume A; > \; 11
for all i € [n —1]. Let £ € {0} U [n] be minimal such that A\; = 0 for all ¢ > n. Define an
operator V' € L(H) by
Ve — )%;Tvi if i € [k]

0 else.

and extending by linearity. Note that ker(T') = span{viy1,...,v,} = ker(V).
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We show V is a partial isometry. If v € ker(V)L, then there are scalars p, ..., g, such

that
k
V= Z iU
=1

Then by 10.4.9, we have

k

i=1

k

Hi
> EITM‘

i=1

k Kk
g
Vol = {3 wives 71y K
i=1 i=1 "t

k
_ Hip,
= ' ; /\iT’UZ
k
vai
i=1

Hence V' is a partial isometry by 9.5.3.
We show V|T| =T. If v € H, then there are scalars py, ..., i, such that

n
v = E i Vs
i=1

= [Jol].

Ai

k
_ Z&)‘i”i':

=1

Then
n n n k n
V|T|v = VI|T| Zﬁbz‘vz’ = ZMWTW = Z,uz)\ivvi = ZM&%T%‘ = ZMiTUz‘ =Tv.
i=1 i=1 i=1 i=1 ¢ i=1

as A\; = 0 implies T'v; = 0 since ker(T") = ker(|T).
Suppose now that 7' = U|T| for a partial isometry U with ker(U) = ker(7). Then we
would have that Uv; = 0 if ¢« > k, and

1 1 L ! .

if i € [k]. Hence U and V agree on a basis of H, so U = V. O
Definition 10.5.2. The cigenvalues of |T'| are called the singular values of 7.

Notation 10.5.3 (Singular Value Decomposition). Let T € L(H). By 10.5.1, there is a
unique partial isometry V' with ker(V) = ker(T') and T' = V|T|. As |T| is positive, |T" is

unitarily diagonalizable, there is an orthonormal basis {v1, ..., v,} of H and scalars A, ..., A\,
such that .
T =" Nifoi)(uil.
i=1
Setting u; = Vv, for i = 1,...,n, we have that

T=UIT|=UY_ Mo (v =Y MU (vl = Nifus) (vil.
i=1 i=1 i=1
This last line is called a singular value decomposition, or Schmidt decomposition, of T
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Exercises

H will denote a Hilbert space over F.

Exercise 10.5.4. Compute the polar decomposition of

A= ((1) _01> and B — G _11) € My(C).
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