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Introduction

These notes are designed to be a self contained treatment of linear algebra. The author
assumes the reader has taken an elementary course in matrix theory and is well versed with
matrices and Gaussian elimination. It is my intention that each time a definition is given,
there will be at least two examples given. Most times, the examples will be presented without
proof that they are, in fact, examples, and it will be left to the reader to verify that the
examples set forth are examples.
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Chapter 1

Background Material

1.1 Sets

Throughout these notes, sets will be denoted with curly brackets or letters. A verti-
cal bar in the middle of the curly brackets will mean “such that.” For example, N =
{1, 2, 3, . . . } is the set of natural numbers, Z = {0, 1,−1, 2,−2, . . . } is the set of integers,
Q =

{
p/q
∣∣p, q ∈ Z and q 6= 0

}
is the set of rational numbers, R is the set of real numbers

(which we will not define), and C = R + iR =
{
x+ iy

∣∣x, y ∈ R
}

where i2 + 1 = 0 is the set
of complex numbers. If z = x+ iy is in C where x, y are in R, then its complex conjugate is
the number z = x− iy. The modulus, or absolute value, of z is

|z| =
√
x2 + y2 =

√
zz.

Definition 1.1.1. To say x is an element of the set X, we write x ∈ X. We say X is a
subset of Y , denoted X ⊂ Y , if x ∈ X ⇒ x ∈ Y (the double arrow ⇒ means “implies”).
Sets X and Y are equal if both X ⊂ Y and Y ⊂ X. If X ⊂ Y and we want to emphasize
that X and Y may be equal, we will write X ⊆ Y . If X and Y are sets, we write

(1) X ∪ Y =
{
x
∣∣x ∈ X or x ∈ Y

}
,

(2) X ∩ Y =
{
x
∣∣x ∈ X and x ∈ Y

}
,

(3) X \ Y =
{
x ∈ X

∣∣x /∈ Y }, and

(4) X × Y =
{

(x, y)
∣∣x ∈ X and y ∈ Y

}
. X × Y is called the (Cartesian) product of X and

Y .

There is a set with no elements in it, and it is denoted ∅ or {}. A subset X ⊂ Y is called
proper if Y \X 6= ∅, i.e., there is a y ∈ Y \X.

Remark 1.1.2. Note that sets can contain other sets. For example, {N,Z,Q,R,C} is a set.
In particular, there is a difference between {∅} and ∅. The first is the set containing the
empty set. The second is the empty set. There is something in the first set, namely the
empty set, so it is not empty.
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Examples 1.1.3.

(1) N ∪ Z = Z, N ∩ Z = N, and Z \ N = {0,−1,−2, . . . }.

(2) ∅ ∪X = X, ∅ ∩X = ∅, X \X = ∅, and X \ ∅ = X for all sets X.

(3) R \Q is the set of irrational numbers.

(4) R× R = R2 =
{

(x, y)
∣∣x, y ∈ R

}
.

Definition 1.1.4. If X is a set, then the power set of X, denoted P(X), is
{
S
∣∣S ⊂ X

}
.

Examples 1.1.5.

(1) If X = ∅, then P(X) = {∅}.

(2) If X = {x}, then P(X) = {∅, {x}}.

(3) If X = {x, y}, then P(X) = {∅, {x}, {y}, {x, y}}.

Exercises

Exercise 1.1.6. A relation on a set X is a subset R of X × X. We usually write xRy if
(x, y) ∈ R. The relation R is called

(i) reflexive if xRx for all x ∈ X,

(ii) symmetric if xRy implies yRx for all x, y ∈ X,

(iii) antisymmetric if xRy and yRx implies x = y, and

(iv) transitive if xRy and yRz implies xRz.

(v) skew-symmetric if xRy and xRz implies yRz for all x, y, z ∈ X.

Find the following examples of a relation R on a set X:

1. X and R such that R is transitive, but not symmetric, antisymmetric, or reflexive.

2. X and R such that R is reflexive, symmetric, and transitive, but not antisymmetric,

3. X and R such that R is reflexive, antisymmetric, and transitive, but not symmetric,
and

4. X and R such that R is reflexive, symmetric, antisymmetric, and transitive.

Exercise 1.1.7. Show that a reflexive relation R on X is symmetric and transitive if and
only if R is skew-transitive.
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1.2 Functions

Definition 1.2.1. A function (or map) f from the set X to the set Y , denoted f : X → Y ,
is a rule that associates to each x ∈ X a unique y ∈ Y , denoted f(x). The sets X and Y are
called the domain and codomain of f respectively. The function f is called

(1) injective (or one-to-one) if f(x) = f(y) implies x = y,

(2) surjective (or onto) if for all y ∈ Y there is an x ∈ X such that f(x) = y, and

(3) bijective if f is both injective and surjective.
To say the element x ∈ X maps to the element y ∈ Y via f , i.e. f(x) = y, we sometimes
write f : x 7→ y or x 7→ y when f is understood. The image, or range, of f , denoted im(f)
or f(X), is

{
y ∈ Y

∣∣ there is an x ∈ X with f(x) = y
}

. Another way of saying that f is
surjective is that im(f) = Y . The graph of f is the set

{
(x, y) ∈ X × Y

∣∣y = f(x)
}

.

Examples 1.2.2.

(1) The natural inclusion N→ Z is injective.

(2) The absolute value function Z→ N ∪ {0} is surjective.

(3) Neither of the first two is bijective. The map N → Z given by 1 7→ 0, 2 7→ 1, 3 7→ −1,
4 7→ 2, 5 7→ −2 and so forth is bijective.

Definition 1.2.3. Suppose f : X → Y and g : Y → Z. The composite of g with f , denoted
g ◦ f , is the function X → Z given by (g ◦ f)(x) = g(f(x)).

Examples 1.2.4.

(1)

(2)

Proposition 1.2.5. Suppose f : X → Y and g : Y → Z.

(1) If f, g are injective, then so is g ◦ f .

(2) If f, g are surjective, then so is g ◦ f .

Proof. Exercise.

Proposition 1.2.6. Function composition is associative.

Proof. Exercise.

Definition 1.2.7. Let f : X → Y , and let W ⊂ X. Then the restriction of f to W , denoted
f |W : W → Y , is the function given by f |W (w) = f(w) for all w ∈ W .

Examples 1.2.8.

(1)

(2)

9



Proposition 1.2.9. Let f : X → Y .

(1) f is injective if and only if it has a left inverse, i.e. a function g : Y → X such that
g ◦ f = idX , the identity on X.

(2) f is surjective if and only if it has a right inverse, i.e. a function g : Y → X such that
f ◦ g = idY .

Proof.

(1) Suppose f is injective. Then for each y ∈ im(f), there is a unique x with f(x) = y. Pick
x0 ∈ X, and define a function g : Y → X as follows:

g(y) =

{
x if f(x) = y

x0 else.

It is immediate that g ◦ f = idf . Suppose now that there is a g such that g ◦ f = idX . Then
if f(x1) = f(x2), applying g to the equation yields x1 = g ◦ f(x1) = g ◦ f(x2) = x2, so f is
injective.

(2) Suppose f is surjective. Then the sets Iy =
{
x ∈ X

∣∣f(x) = y
}

are nonempty for each
y ∈ Y . By the axiom of choice, we may choose a representative xy ∈ Iy for each y ∈ Y .
Construct a function g : Y → X by setting g(y) = xy. It is immediate that f ◦ g = idY .
Suppose now that f has a right inverse g. Then if y ∈ Y , we have that f ◦ g(y) = y, so
y ∈ im(f) and f is surjective.

Remark 1.2.10. The axiom of choice is formulated as follows:
Let X be a collection of nonempty sets. A choice function f is a function such that for

every S ∈ X, f(S) ∈ S.

Axiom of Choice: There exists a choice function f on X if X is a set of nonempty sets.
Note that in the proof of 1.2.9 (2), our collection of nonempty sets is

{
Iy
∣∣y ∈ Y }, and

our choice function is Iy 7→ xy.

We give a corollary whose proof uses a uniqueness technique found frequently in mathe-
matics.

Corollary 1.2.11. f : X → Y is bijective if and only if it admits an inverse g : Y → X
such that f ◦ g = idY and g ◦ f = idX .

Proof. It is clear by 1.2.9 that if an inverse exists, f is bijective as it admits both a left and
right inverse. Suppose now that f is bijective. Then by the preceding proposition, there is
a left inverse g and a right inverse h. We then see that

g = g ◦ idY = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idX ◦h = h,

so g = h is an inverse of f . Note that this direction uses the axiom of choice as it was used
in 1.2.9. To prove this fact without the axiom of choice, we define g : Y → X by g(y) = x
if f(x) = y. As the sets Iy as in the proof of 1.2.9 each only have one element in them, the
axiom of choice is unnecessary.
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Remarks 1.2.12.

(1) The proof of 1.2.11 also shows that if f admits an inverse, then it is unique.

(2) Note that we used the associativity of composition of functions in the proof of 1.2.11.

Definition 1.2.13. For n ∈ N, let [n] = {1, 2, . . . , n}. The set X

(1) has n elements if there exists a bijection [n]→ A,

(2) is finite if there is a surjection [n]→ X for some n ∈ N,

(3) is infinite if there is an injection N→ X (equivalently if X is not finite),

(4) is countable if there is a surjection N→ X,

(5) is denumerable if there is a bijection N→ X,

(6) is uncountable if X is not countable.

Examples 1.2.14.

(1) [n] has n elements and N is denumerable.

(2) Q is countable, and R is uncountable.

(3) [n] is countable, but not denumerable.

(4) If X has n elements, then P(X) has 2n elements.

Definition 1.2.15. If A is a finite set, then |A| ∈ N is the number n such that A has n
elements.

Exercises

Exercise 1.2.16. Prove 1.2.5.

Exercise 1.2.17. Show that Q is countable.
Hint: Find a surjection Z2 \ Z × {0} → Q, and construct a surjection N → Z2 \ Z × {0}.
Then use 1.2.5.

1.3 Fields

Definition 1.3.1. A binary operation on a set X is a function #: X × X → X given by
(x, y) 7→ x#y. A binary operation #: X ×X → X is called

(1) associative if x#(y#z) = (x#y)#z for all x, y, z ∈ X, and

(2) commutative if x#y = y#x for all x, y ∈ X.

Examples 1.3.2.

(1) Addition and multiplication on Z,Q,R,C are associative and commutative binary oper-
ations.
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(2) The cross product × : R3 × R3 → R3 is not commutative or associative.

Definition 1.3.3. A field (F,+, ·) is a triple consisting of a set F and two binary operations
+ and · on F called addition and multiplication respectively such that the following axioms
are satisfied:

(F1) additive associativity : (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F;

(F2) additive identity : there exists 0 ∈ F such that a+ 0 = a = 0 + a for all a ∈ F;

(F3) additive inverse: for each a ∈ F, there exists an element b ∈ F such that a + b = 0 =
b+ a;

(F4) additive commutativity : a+ b = b+ a for all a, b ∈ F;

(F5) distributivity : a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ F;

(F6) multiplicative associativity : (a · b) · c = a · (b · c) for all a, b, c ∈ F;

(F7) multiplicative identity : there exists 1 ∈ F \ {0} such that a · 1 = a = 1 · a for all a ∈ F;

(F8) multiplicative inverse: for each a ∈ F \ {0}, there exists b ∈ F \ {0} such that a · b =
1 = b · a;

(F9) multiplicative commutativity : a · b = b · a for all a, b ∈ F.

Examples 1.3.4.

(1) Q,R,C are fields.

(2) Q(
√
n) =

{
x+ y

√
n
∣∣x, y ∈ Q

}
is a field.

Remark 1.3.5. These axioms are also used in defining the following algebraic structures:

axioms name axioms name
(F1) semigroup (F1)-(F5) nonassociative ring
(F1)-(F2) monoid (F1)-(F6) ring
(F1)-(F3) group (F1)-(F7) ring with unity
(F1)-(F4) abelian group (F1)-(F8) division ring

(F1)-(F9) field

Remarks 1.3.6.

(1) The additive inverse of a ∈ F in (F3) is usually denoted −a.

(2) The multiplicative inverse of a ∈ F \ {0} in (F8) is usually denoted a−1 or 1/a.

(3) For simplicity, we will often denote the field by F instead of (F,+, ·).

Definition 1.3.7. Let F be a field. A subfield K ⊂ F is a subset such that +|K×K and ·|K×K
are well defined binary operations on K, (K,+|K×K, ·|K×K) is a field, and the multiplicative
identity of K is the the multiplicative identity of F.
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Examples 1.3.8.

(1) Q is a subfield of R and R is a subfield of C.

(2) Q(
√

2) is a subfield of R.

(3) The irrational numbers R \Q do not form a subfield of R.

Finite Fields

Theorem 1.3.9 (Euclidean Algorithm). Suppose x ∈ Z≥0 and n ∈ N. Then there are unique
k, r ∈ Z≥0 with r < n such that x = kn+ r.

Proof. There is a smallest k ∈ Z≥0 such that kn ≤ x. Set r = x − kn. Then r < n and
x = kn+ r. It is obvious that k, r are unique.

Definition 1.3.10. For x ∈ Z≥0 and n ∈ N, we define

x mod n = r

if x = kn+ r with r < n.

Examples 1.3.11.

(1)

(2)

Definition 1.3.12.

(1) For x, y ∈ Z, we say x divides y, denoted x|y, if there is a k ∈ Z such that x = ky.

(2) For x, y ∈ N, the greatest common divisor, denoted gcd(x, y), is the largest number k ∈ N
such that k|x and k|y.

(3) We call x, y ∈ N relatively prime if gcd(x, y) = 1.

(4) A number p ∈ N \ {1} is called prime if gcd(p, n) = 1 for all n ∈ [p− 1].

Proposition 1.3.13. x, y ∈ N are relatively prime if and only if there are r, s ∈ Z such that
rx+ sy = 1.

Proof. Now if gcd(x, y) = k, then k|(rx + sy) for all r, s ∈ Z, so existence of r, s ∈ Z such
that rx+ sy = 1 implies gcd(x, y) = 1.

Now suppose gcd(x, y) = 1. Let S =
{
sx+ ty ∈ N

∣∣s, t ∈ Z
}

. Then S has a smallest
element n = sx + ty for some s, t ∈ Z. By the Euclidean Algorithm 1.3.9, there are unique
k, r ∈ Z≥0 with r < n such that x = kn+ r. But then

r = x− kn = x− k(sx+ ty) = (1− ks)x+ (−kt)y ∈ S.

But r < n, so r = 0, and x = kn. Similarly, we have an l ∈ Z≥0 such that y = ln. Hence
n|x and n|y, so n = 1.
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Definition 1.3.14. For n ∈ N\{1}, we define Z/n = {0, 1, . . . , n−1}, and we define binary
operations # and ∗ on Z/n by

x#y = (x+ y) mod n and x ∗ y = (xy) mod n.

Proposition 1.3.15. (Z/n,#, ∗) is a field if and only if n is prime.

Proof. First note that Z/n has additive inverses as the additive inverse of x ∈ Z/n is n− x.
It then follows that Z/n is a commutative ring with unit (one must check that addition and
multiplication are compatible with the operation x 7→ x mod n). Thus Z/n is a field if
and only if it has multiplicative inverses. We claim that x ∈ Z/n \ {0} has a multiplicative
inverse if and only if gcd(x, n) = 1, which will immediately imply the result.

Suppose gcd(x, n) = 1. By 1.3.13, we have r, s ∈ N with rx+ sn = 1. Hence

(r mod n) ∗ x = (rx) mod n = (rx+ sn) mod n = 1 mod n = 1,

so x has a multiplicative inverse.
Now suppose x has a multiplicative inverse y. Then

(xy) mod n = 1,

so there is an k ∈ Z such that xy = kn + 1. Thus xy + (−k)n = 1, and gcd(x, n) = 1 by
1.3.13.

Exercises

Exercise 1.3.16 (Fields). Show that Q(
√

2) =
{
a+ b

√
2
∣∣a, b ∈ Q

}
is a field where addition

and multiplication are the restriction of addition and multiplication in R.

Exercise 1.3.17. Construct an addition and multiplication table for Z/2, Z/3, and Z/5 and
deduce they are fields from the tables.

1.4 Matrices

This section is assumed to be prerequisite knowledge for the student, and definitions in this
section will be given without examples, and all results will be stated without proof. For this
section, F is a field.

Definition 1.4.1. An m × n matrix A over F is a function A : [m] × [n] → F. Usually, A
is denoted by an m × n array of elements of F, and the i, jth entry, denoted Ai,j, is A(i, j)
where (i, j) ∈ [m] × [n]. The set of all m × n matrices over F is denoted Mm×n(F), and we
will write Mn(F) = Mn×n(F). The ith row of the matrix A is the 1× n matrix A|{i}×[n], and
the jth row is the m×1 matrix A|[m]×{j}. The identity matrix I ∈Mn(F) is the matrix given
by

Ii,j =

{
0 if i 6= j

1 if i = j.

14



Definition 1.4.2.

(1) If A,B ∈Mm×n(F), then A+B is the matrix in Mm×n(F) given by (A+B)i,j = Ai,j+Bi,j.

(2) If A ∈Mm×n(F) and λ ∈ F, then λA ∈Mm×n(F) is the matrix given by (λA)i,j = λAi,j.

(3) If A ∈Mm×n(F) and B ∈Mn×p(F), then AB ∈Mm×p(F) is the matrix given by

(AB)i,j =
n∑
k=1

Ai,kBk,j.

(4) If A ∈Mm×n(F) and B ∈Mm×p(F), then [A|B] ∈Mm×(n+p)(F) is the matrix given by

[A|B]i,j =

{
Ai,j if j ≤ n

Bi,j−n else.

Remark 1.4.3. Note that matrix addition and multiplication are associative.

Proposition 1.4.4. The identity matrix I ∈ Mn(F) is the unique matrix in Mn(F) such
that AI = A for all A ∈ Mm×n(F) for all m ∈ N and IB = B for all B ∈ Mn×p(F) for all
p ∈ N.

Proof. It is clear that AI = A for all A ∈ Mm×n(F) for all m ∈ N and IB = B for all
B ∈Mn×p(F) for all p ∈ N. If J ∈Mn(F) is another such matrix, then J = IJ = I.

Definition 1.4.5. A matrix A ∈ Mn(F) is invertible if there is a matrix B ∈ Mn(F) such
that AB = BA = I.

Proposition 1.4.6. If A ∈Mn(F) is invertible, then the inverse is unique.

Remark 1.4.7. In this case, the unique inverse of A is usually denoted A−1.

Definition 1.4.8.

(1) The transpose of the matrix A ∈Mm×n(F) is the matrix AT ∈Mn×m(F) given by (AT )i,j =
Aj,i.

(2) The adjoint of the matrix A ∈Mm×n(C) is the matrix A∗ ∈Mn×m(C) given by (A∗)i,j =
Aj,i.

Proposition 1.4.9.

(1) If A,B ∈Mm×n(F) and λ ∈ F, then (A+λB)T = AT +λBT . If F = C, then (A+λB)∗ =
A∗ + λB∗.

(2) If A ∈Mm×n(F) and B ∈Mn×p(F), then (AB)T = BTAT . If F = C, then (AB)∗ = B∗A∗.

(3) If A ∈ Mn(F) is invertible, then AT is invertible, and (AT )−1 = (A−1)T . If F = C, then
A∗ is invertible, and (A∗)−1 = (A−1)∗.

Definition 1.4.10. Let A ∈Mn(F). We call A
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(1) upper triangular if i > j implies Ai,j = 0,

(2) lower triangular if AT is upper triangular, i.e. j > i implies Ai,j = 0, and

(3) diagonal if A is both upper and lower triangular, i.e. i 6= j implies Ai,j = 0.

Definition 1.4.11. Let A ∈Mn(F). We call A

(1) block upper triangular if there are square matrices A1, . . . , Am with m ≥ 2 such that

A =

A1 ∗
. . .

0 Am


where the ∗ denotes entries in F.

(2) block lower triangular if AT is block upper triangular, and

(3) block diagonal if A is both block upper triangular and block lower triangular.

Definition 1.4.12. Matrices A,B ∈ Mn(F) are similar, denoted A ∼ B, if there is an
invertible S ∈Mn(F) such that S−1AS = B.

Exercises

Let F be a field.

Exercise 1.4.13. Show that similarity gives a relation on Mn(F) that is reflexive, symmetric,
and transitive (see 1.1.6).

Exercise 1.4.14. Prove 1.4.9.

1.5 Systems of Linear Equations

This section is assumed to be prerequisite knowledge for the student, and definitions in this
section will be given without examples, and all results will be stated without proof. For this
section, F is a field.

Definition 1.5.1.

(1) An F-linear equation, or a linear equation over F, is an equation of the form

n∑
i=1

λixi = λ1x1 + · · ·+ λnxn = µ where λ1, . . . , λn, µ ∈ F.

The xi’s are called the variables, and λi is called the coefficient of the variable xi. An F-linear
equation is completely determined by a matrix

A =
(
λ1 · · · λn

)
∈M1×n(F)

and a number µ ∈ F. In this sense, we can give an equivalent definition of an F-linear
equation as a pair (A, µ) with A ∈M1×n(F) and a µ ∈ F.
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(2) A solution of the F-linear equation

n∑
i=1

λixi = λ1x1 + · · ·+ λnxn = µ

is an element
(r1, . . . , rn) ∈ Fn = F× · · · × F︸ ︷︷ ︸

n copies

such that
n∑
i=1

λiri = λ1r1 + · · ·+ λnrn = µ.

Equivalently, a solution to the F-linear equation (A, µ) is an x ∈Mn×1(F) such that Ax = µ.

(3) A system of F-linear equations is a finite number m of F-linear equations:

n∑
i=1

λ1,ixi = λ1,1x1 + · · ·+ λ1,nxn = µ1

...
n∑
i=1

λm,ixi = λm,1x1 + · · ·+ λm,nxn = µn

where λi,j ∈ F for all i, j. Equivalently, a system of F-linear equations is a pair (A, y) where
A ∈Mm×n(F) and y ∈Mm×1(F).

(4) A solution to the system of F-linear equations

n∑
i=1

λ1,ixi = λ1,1x1 + · · ·+ λ1,nxn = µ1

...
n∑
i=1

λm,ixi = λm,1x1 + · · ·+ λm,nxn = µn

is an element (r1, . . . , rn) ∈ Fn such that

n∑
i=1

λ1,iri = λ1,1r1 + · · ·+ λ1,nrn = µ1

...
n∑
i=1

λm,iri = λm,1r1 + · · ·+ λm,nrn = µn.

Equivalently, a solution to the system of F-linear equations (A, y) is an x ∈ Mn×1(F) such
that Ax = y.

17



Definition 1.5.2.

(1) An elementary row operation on a matrix A ∈Mm×n(F) is performed by

(i) doing nothing,

(ii) switching two rows,

(iii) multiplying one row by a constant λ ∈ F, or

(iv) replacing the ith row with the sum of the ith row and a scalar (constant) multiple of
another row.

(2) An n× n elementary matrix is a matrix obtained from the identity matrix I ∈Mn(F) by
performing not more than one elementary row operation.

(3) Matrices A,B ∈Mm×n(F) are row equivalent if there are elementary matrices E1, . . . , En
such that A = En · · ·E1B.

Remark 1.5.3. Elementary row operations are invertible, i.e. every elementary row operation
can be undone by another elementary row operation.

Proposition 1.5.4. Performing an elementary row operation on a matrix A ∈Mm×n(F) is
equivalent to multiplying A by the elementary matrix obtained by doing the same elementary
row operation to the identity.

Corollary 1.5.5. Elementary matrices are invertible.

Proposition 1.5.6. Suppose A ∈ Mn(F). Then A is invertible if and only if A is row
equivalent to I.

Definition 1.5.7. A pivot of the ith row of the matrix A ∈ Mm×n(F) is the first nonzero
entry in the ith row. If there is no such entry, then the row has no pivots.

Definition 1.5.8. Let A ∈Mm×n(F).

(1) A is said to be in row echelon form if the pivot in the (i + 1)th row (if it exists) is in a
column strictly to the right of the pivot in the ith row (if it exists) for i = 1, . . . , n − 1, i.e.
if the pivot of the ith row is Ai,j and the pivot of the (i+ 1)th row is A(i+1),k, then k > j.

(2) A is said to be in reduced row echelon form, or is said to be row reduced, if A is in row
echelon form, all pivots of A are equal to 1, and all entries that occur above a pivot are
zeroes.

Theorem 1.5.9 (Gaussian Elimination Algorithm). Every matrix over F is row equivalent
to a matrix in row echelon form, and every matrix over F is row equivalent to a unique
matrix in reduced row echelon form.

Theorem 1.5.10. Suppose A ∈ Mm×n(F). The system of F-linear equations (A, y) has a
solution if and only if the augmented matrix [A|y] can be row reduced so that no pivot occurs
in the (n + 1)th column. The solution is unique if and only if A can be row reduced to the
identity matrix.
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Exercises

Let F be a field.

Exercise 1.5.11. Prove 1.5.5.

Exercise 1.5.12. Prove 1.5.9.

Exercise 1.5.13. Prove 1.5.10.

Exercise 1.5.14. Prove 1.5.6.
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Chapter 2

Vector Spaces

The objects that we will study this semester are vector spaces. The main theorem in this
chapter is that vector spaces over a field F are classified by their dimension. In this chapter
F will denote a field.

2.1 Definition

Definition 2.1.1. A vector space consists of

(1) a scalar field F;

(2) a set V , whose elements are called vectors;

(3) a binary operation + called vector addition on V such that

(V1) addition is associative, i.e. u+ (v + w) = (u+ v) + w for all u, v, w ∈ V ,

(V2) addition is commutative, i.e. u+ v = v + u for all u, v ∈ V

(V3) vector additive identity : there is a vector 0 ∈ V such that 0 + v = v for all v ∈ V , and

(V4) vector additive inverse: for each v ∈ V , there is a −v ∈ V such that v + (−v) = 0;

(4) and a map · : F× V → V given by (λ, v) 7→ λ · v called a scalar multiplication such that

(V5) scalar unit : 1 · x = x for all v ∈ V and

(V6) scalar associativity : λ · (µ · v) = (λµ) · v for all v ∈ V and λ, µ ∈ F;

such that the distributive properties hold:

(V7) λ · (u+ v) = (λ · u) + (λ · v) for all λ ∈ F and u, v ∈ V and

(V8) (λ+ µ) · v = (λ · v) + (µ · v) for all λ, µ ∈ F and v ∈ V .

Examples 2.1.2.
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(1) (F,+, ·) is a vector space over F where 0 is the additive identity and −x is the additive
inverse of x ∈ F.

(2) Let Mm×n(F) denote the m× n matrices over F. (Mn×k(F),+, ·) is a vector space where
+ is addition of matrices and · is the usual scalar multiplication; if A = (Aij), B = (Bij) ∈
Mm×n(F) and λ ∈ F, then (A+B)ij = Aij +Bij and (λA)ij = λAij.

(3) Note that Fn = Mn×1(F) is a vector space over F.

(4) Let K ⊂ F be a subfield. Then F is a vector space over K.

(5) F (X,F) = {f : X → F} is a vector space over F with pointwise addition and scalar
multiplication:

(λf + g)(x) = λf(x) + g(x).

(6) C(X,F), the set of continuous functions from X ⊂ F to F is a vector space over F. We
will write C(a, b) = C((a, b),R), and similarly for closed or half-open intervals.

(7) C1(a, b), the set of R-valued, continuously differentiable functions on the interval (a, b) ⊂
R is a vector space over R. This example can be generalized to Cn(a, b), the n-times contin-
uously differentiable functions on (a, b), and C∞(a, b), the infinitely differentiable functions.

Now that we know what a vector space is, we begin to develop the necessary tools to
prove that vector spaces over F are classified by their dimension. From this point on, let
(V,+, ·) be a vector space over the field F.

Definition 2.1.3. Let (V,+, ·) be a vector space over F. Then W ⊂ V is a vector subspace
(or subspace) if +|W×W is an addition on W (W is closed under addition), ·|F×W is a scalar
multiplication on W (W is closed under scalar multiplication), and (W,+|W×W , ·|F×W ) is a
vector space over F. A subspace W ⊂ V is called proper if W 6= V .

Examples 2.1.4.

(1) Every vector space has a zero subspace (0) consisting of the vector 0. Also, if V is a
vector space, V is a subspace of V .

(2) R2 is not a subspace of R3. R2 is not even a subset of R3. There are subspaces of R3

which look exactly like R2. We will explain what this means when we discuss the concept of
isomorphism of vector spaces.

(3) If A ∈ Mm×n(F) is an m× n matrix, then NS(A) ⊂ Rn is the subspace consisting of all
x ∈ Rn such that Ax = 0.

(4) Cn(a, b) is a subspace of C(a, b) for all n ∈ N ∪ {∞}.

(5) C(a, b) is a subspace of F ((a, b),R).

Proposition 2.1.5. A subset W ⊂ V is a subspace if it is closed under addition and scalar
multiplication, i.e. λu+ v ∈ W for all u, v ∈ W and λ ∈ F.
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Proof. If W is closed under addition and scalar multiplication, then clearly a|W×W and s|F×W
will satisfy the distributive property. It remains to check that W has additive inverses and W
has 0. Since −1 ∈ F, we have that if w ∈ W , −1 ·w ∈ W . It is an easy exercise to check that
−1 ·w = −w, the additive inverse of w. Now since w,−w ∈ W , we have w+ (−w) = 0 ∈ W ,
and we are finished.

Exercises

V will denote a vector space over F. When confusion can arise, 0V will denote the additive
identity of V , and 0F will denote the additive identity of F.

Exercise 2.1.6. Show that (R>0,#, ?) is a vector space over R where x#y = xy is the
addition and r ? x = xr is the scalar multiplication.

Exercise 2.1.7.

Show that if V is a vector space over F, then the additive identity is unique. Show if v ∈ V ,
then the additive inverse of v is unique.

Exercise 2.1.8. Let λ ∈ F. Show that λ · 0V = 0V .

Exercise 2.1.9. Let v ∈ V and λ ∈ F \ {0}. Show that λ · v = 0 implies v = 0.

Exercise 2.1.10. Let v ∈ V . Show that 0F · v = 0V .

Exercise 2.1.11. Let v ∈ V . Show that (−1) · v = −v, the additive inverse of v.

Exercise 2.1.12 (Complexification). Let (V,+, ·) be a vector space over R. Let VC = V ×V ,
and define functions +: VC × VC → VC and · : C× VC → VC by

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2) and (x+ iy) · (u1, v1) = (xu1 − yv1, yu1 + xv1).

(1) Show (VC,+, ·) is a vector space over C called the complexification of the real vector space
V .

(2) Show that (0, v) = i(v, 0) for all v ∈ V .

Note: This implies that we can think of V ⊂ VC as all vectors of the form (v, 0), and we can
write (u, v) = u + iv. Addition and scalar multiplication can then be rewritten in the naive
way as

(u1+iv1)+(u2+iv2) = (u1+u2)+i(v1+v2) and (x+iy)·(u1+iv1) = xu1−yv1+i(yu1+xv1).

For w = u + iv ∈ VC, the real part of u + iv ∈ VC is Re(w) = u ∈ V , the imaginary part is
Im(v) = v ∈ V , and the conjugate is w = u− iv ∈ VC.

(3) Show that u1 + iv1 = u2 + iv2 if and only if u1 = u2 and v1 = v2. Hence, two vectors are
equal if and only if their real and imaginary parts are equal.

(4) Find (Rn)C and (Mm×n(R))C.
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Hint: Use the identification VC = V + iV described in the note.

Exercise 2.1.13 (Quotient Spaces). Let W ⊂ V be a subspace. For v ∈ V , define

v +W =
{
v + w

∣∣w ∈ W} .
v +W is called a coset of W . Let V/W =

{
v +W

∣∣v ∈ V }, the set of cosets of W .

(1) Show that u+W = v +W if and only if u− v ∈ W .

(2) Define an addition # and a scalar multiplication ∗ on V/W so that (V/W,#, ∗) is a vector
space.

2.2 Linear Combinations, Span, and (Internal) Direct

Sum

Definition 2.2.1. Let v1, . . . , vn ∈ V . A linear combination of v1, . . . , vn is a vector of the
form

v =
n∑
i=1

λivi

where λi ∈ F for all i = 1, . . . , n. It is convention that the empty linear combination is equal
to zero (i.e. the sum of no vectors is zero).

Definition 2.2.2. Let S ⊂ V be a subset. Then

span(S) =
⋂{

W
∣∣W is a subspace of V with S ⊂ W

}
.

Examples 2.2.3.

(1) If A ∈ Mm×n(F) is a matrix, then the row space of A is the subspace of Rn spanned by
the rows of A and the column space of A is the subspace of Rm spanned by the columns of
A. These subspaces are denoted RS(A) and CS(A) respectively.

(2) span(∅) = (0), the zero subspace.

Remarks 2.2.4. Suppose S ⊂ V .

(1) span(S) is the smallest subspace of V containing S, i.e. if W is a subspace containing S,
then span(S) ⊂ W .

(2) Since span(S) is closed under addition and scalar multiplication, we have that all (finite)
linear combinations of elements of S are contained in span(S). As the set of all linear
combinations of elements of S forms a subspace, we have that

span(S) =

{
n∑
i=1

λivi

∣∣∣∣n ∈ Z≥0, λi ∈ F, vi ∈ S for all i = 1, . . . , n

}
.

Note that this still makes sense for S = ∅ as span(S) contains the empty linear combination,
zero.
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Definition 2.2.5. If V is a vector space and W1, . . . ,Wn ⊂ V are subspaces, then we define
the subspace

W1 + · · ·+Wn =
n∑
i=1

Wi =

{
n∑
i=1

wi

∣∣∣∣wi ∈ Wi for all i ∈ [n]

}
⊂ V.

Examples 2.2.6.

(1) span{(1, 0)}+ span{(0, 1)} = R2.

(2)

Proposition 2.2.7. Suppose W1, . . . ,Wn ⊂ V are subspaces. Then

n∑
i=1

Wi = span

(
n⋃
i=1

Wi

)
.

Proof. Suppose v ∈
n∑
i=1

Wi. Then v is a linear combination of elements of the Wi’s. so

v ∈ span

(
n⋃
i=1

Wi

)
.

Now suppose v ∈ span

(
n⋃
i=1

Wi

)
. Then v is a linear combination of elements of the Wi’s,

so there are w1
1, . . . , w

1
m1
, . . . , wn1 , . . . , w

n
mn and scalars λ1

1, . . . , λ
1
m1
, . . . , λn1 , . . . , λ

n
mn such that

wij ∈ Wi for all j ∈ [mj] and

v =
n∑
i=1

mj∑
j=1

λijw
i
j.

For i ∈ [n], set

ui =

mj∑
j=1

λijw
i
j ∈ Wi

to see that v =
n∑
i=1

ui ∈
n∑
i=1

Wi.

Definition-Proposition 2.2.8. Suppose W1, . . . ,Wn ⊂ V are subspaces, and let

W =
n∑
i=1

Wi.

The following conditions are equivalent:

(1) Wi ∩
∑
j 6=i

Wj = (0) for all i ∈ [n],
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(2) for each v ∈ W , there are unique wi ∈ Wi for i ∈ [n] such that v =
n∑
i=1

wi.

(3) if wi ∈ Wi for i ∈ [n] such that
n∑
i=1

wi = 0, then wi = 0 for all i ∈ [n].

If any of the above three conditions are satisfied, we call W the direct sum of the Wi’s,
denoted

W =
n⊕
i=1

Wi.

Proof.

(1)⇒ (2): Suppose Wi ∩
∑
j 6=i

Wj = (0) for all i ∈ [n], and let v ∈ W . Since W =
n∑
i=1

Wi,

there are wi ∈ Wi for i ∈ [n] such that v =
n∑
i=1

wi. Suppose v =
n∑
i=1

w′i with w′i ∈ Wi for all

i ∈ [n]. Then

0 = v − v =
n∑
i=1

wi −
n∑
i=1

w′i =
n∑
i=1

wi − w′i.

Since w′i − wi ∈ Wi for all i ∈ [n], we have

w′j − wj =
∑
i 6=j

wi − w′i ∈ Wj ∩
∑
i 6=j

Wi = (0),

so wj − w′j = 0. Similarly, wi = w′i for all i ∈ [n], and the expression is unique.

(2)⇒ (3): Trivial.

(3)⇒ (1): Now suppose (3) holds. Suppose

w ∈ Wi ∩
∑
j 6=i

Wj

for i ∈ [n]. Then we have wj ∈ Wj for all j 6= i such that

w =
∑
j 6=i

wj.

Setting wi = −w, we have that

0 = w − w =
n∑
j=1

wj,

so wj = 0 for all j ∈ [n], and wi = 0 = −w. Thus w = 0.
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Remarks 2.2.9.

(1) If V =
n⊕
i=1

Wi and v =
n∑
i=1

wi where wi ∈ Wi for all i ∈ [n], then wi is called the

Wi-component of w for i ∈ [n].

(2) The proof (1) ⇒ (2) highlights another important proof technique called the “in two
places at once” technique.

Examples 2.2.10.

(1) V = V ⊕ (0) for all vector spaces V .

(2) R2 = span{(1, 0)} ⊕ span{(0, 1)}.
(2) C(R,R) = {even functions} ⊕ {odd functions}.
(2) Suppose Y ⊂ X, a set. Then

F (X,F) =
{
f ∈ F (X,F)

∣∣f(y) = 0 for all y ∈ Y
}
⊕
{
f ∈ F (X,F)

∣∣f(x) = 0 for all x /∈ Y
}
.

Exercises

2.3 Linear Independence and Bases

Definition 2.3.1. A subset S ⊂ V is linearly independent if for every finite subset {v1, . . . , vn} ⊂
S,

n∑
i=1

λivi = 0 implies that λi = 0 for all i ∈ [n].

We say the vectors v1, . . . , vn are linearly independent if {v1, . . . , vn} is linearly independent.
If a set S is not linearly independent, it is linearly dependent.

Examples 2.3.2.

(1) Letting ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Fn where the 1 is in the ith slot for i ∈ [n], we get
that

{
ei
∣∣i ∈ [n]

}
is linearly independent.

(2) Define Ei,j ∈Mm×n(F) by

(Ei,j)k,l =

{
1 if i = k, j = l

0 else.

Then
{
Ei,j

∣∣i ∈ [m], j ∈ [n]
}

is linearly independent.

(3) The functions δx : X → F given by

δx(y) =

{
0 if x 6= y

1 if x = y

are linearly independent in F (X,F), i.e.
{
δx
∣∣x ∈ X} is linearly independent.

27



Remark 2.3.3. Note that the zero element of a vector space is never in a linearly independent
set.

Proposition 2.3.4. Let S1 ⊂ S2 ⊂ V .

(1) If S1 is linearly dependent, then so is S2.

(2) If S2 is linearly independent, then so is S1.

Proof.

(1) If S1 is linearly dependent, then there is a finite subset {v1, . . . , vn} ⊂ S1 and scalars
λ1, . . . , λn not all zero such that

n∑
i=1

λivi = 0.

Then as {v1, . . . , vn} is a finite subset of S2, S2 is not linearly independent.

(2) Let {v1, . . . , vn} ⊂ S1, and suppose

n∑
i=1

λivi = 0.

If S2 is infinite, then λi = 0 for all i as {v1, . . . , vn} is a finite subset of S2. If S2 is finite,
then we have S2 = S1 ∪ {w1, . . . , wm}, and we have that

n∑
i=1

λivi +
m∑
j=1

µjwj = 0 with µj = 0 for all j = 1, . . . ,m,

so λi = 0 for all i = 1, . . . , n.

Remark 2.3.5. Note that in the proof of 2.3.4 (1), we have scalars λ1, . . . , λn which are not
all zero. This means that there is a λi 6= 0 for some i ∈ {1, . . . , n}. This is different than if
λ1, . . . , λn were all not zero. The order of “not” and “all” is extremely important, and it is
often confused by many beginning students.

Proposition 2.3.6. Suppose S is a linearly independent subset of V , and suppose v /∈
span(S). Then S ∪ {v} is linearly independent.

Proof. Let {v1, . . . , vn} be a finite subset of S. Then we know

n∑
i=1

λivi = 0 =⇒ λi = 0 for all i.

Now suppose

µv +
n∑
i=1

µivi = 0.
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If µ 6= 0, then we have

v =
−1

µ

n∑
i=1

µivi =
n∑
i=1

−µi
µ
vi.

Hence v is a linear combination of the vi’s, and v ∈ span(S), a contradiction. Hence µ = 0,
and all µi = 0.

Proposition 2.3.7. Let S ⊂ V be a linearly independent, and let v ∈ span(S) \ {0}. Then
there are unique v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F \ {0} such that

v =
n∑
i=1

λivi.

Proof. As v ∈ span(S), v can be written as a linear combination of elements of S. As v 6= 0,
there are v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F \ {0} such that

v =
n∑
i=1

λivi.

Suppose there are w1, . . . , wm ∈ S and µ1, . . . , µm ∈ F \ {0} such that

v =
m∑
j=1

µjwj.

Let T = {v1, . . . , vn} ∩ {w1, . . . , wm}. If T = ∅, then

0 = v − v =
n∑
i=1

λivi −
m∑
j=1

µjwj,

so λi = 0 for all i ∈ [n] and µj = 0 for all j ∈ [m] as S is linearly independent, a contradiction.
Let {u1, . . . , uk} = {v1, . . . , vn} ∩ {w1, . . . , wm}. After reindexing, we may assume ui = vi =
wi for all i ∈ [k]. Thus

0 = v−v =
k∑
i=1

λivi+
n∑

i=k+1

λivi−
k∑
j=1

µjwj−
m∑

j=k+1

µjwj =
k∑
i=1

(λi−µi)ui+
n∑

i=k+1

λivi−
m∑

j=k+1

µjwj,

so λi = µi for all i ∈ [k], λi = 0 for all i = k + 1, . . . , n, and µj = 0 for all j = k + 1, . . . ,m,
so we have that k = n = m, and the expression is unique.

Definition 2.3.8. A subset B ⊂ V is called a basis for V if B is linearly independent and
V = span(B) (B spans V ).

Examples 2.3.9.

(1) The set
{
ei
∣∣i ∈ [n]

}
is the standard basis of Fn.
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(2) The matrices Ei,j which have as entries all zeroes except a 1 in the (i, j)th entry form the
standard basis of Mm×n(F).

(3) The functions δx : X → F given by

δx(y) =

{
0 if x 6= y

1 if x = y

form a basis of F (X,F) if and only if X is finite. Note that the function f(x) = 1 for all
x ∈ X is not a finite linear combination of these functions if X is infinite.

Definition 2.3.10. A vector space is finitely generated if there is a finite subset S ⊂ V such
that span(S) = V . Such a set S is called a finite generating set for V .

Examples 2.3.11.

(1) Any vector space with a finite basis is finitely generated. For example, Fn and Mm×n(F)
are finitely generated.

(2) The matrices Eij which have as entries all zeroes except a 1 in the ijth entry form the
standard basis of Mm×n(F).

(3) We will see shortly that C(a, b) for a < b is not finitely generated.

Exercises

Exercise 2.3.12 (Symmetric and Exterior Algebras).

(1) Find a basis for the following real vector spaces:

(a) S2(Rn) =
{
A ∈Mn(R)

∣∣A = AT
}

, i.e. the real symmetric matrices and

(b)
∧2(Rn) =

{
A ∈Mn(R)

∣∣A = −AT
}

, ie. the real antisymmetric (or skew-symmetric)
matrices.

(2) Show that Mn(R) = S2(Rn)⊕
∧2(Rn).

Exercise 2.3.13 (Even and Odd Functions). A function f ∈ C(R,R) is called even if
f(x) = f(−x) for all x ∈ R and odd if f(x) = −f(−x) for all x ∈ R. Show that

(1) the subset of even, respectively odd, functions is a subspace of C(R,R) and

(2) C(R,R) = {even functions} ⊕ {odd functions}.

Exercise 2.3.14. Let S1, S2 ⊂ V be subsets of V .

(1) What is span(span(S1))?

(2) Show that if S1 ⊂ S2, then span(S1) ⊂ span(S2).

(3) Suppose S1 q S2 is linearly independent. Show

span(S1 q S2) = span(S1)⊕ span(S2).
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Exercise 2.3.15.

(1) Let B = {v1, . . . , vn} be a basis for V . Suppose W is a k-dimensional subspace of V .
Show that for any subset {vi1 , . . . , vim} of B with m > n − k, there is a nonzero vector
w ∈ W that is a linear combination of {vi1 , . . . , vim}.

(2) Let W be a subspace of V having the property that there exists a unique subspace W ′

such that V = W ⊕W ′. Show that W = V or W = (0).

2.4 Finitely Generated Vector Spaces and Dimension

For this section, V will denote a finitely generated vector space over F.

Lemma 2.4.1. Let A ∈Mm×n(F ) be a matrix.

(1) y ∈ CS(A) ⊂ Fm if and only if there is an x ∈ Fn such that Ax = y.

(2) If v1, . . . , vn are n vectors in Fm with m < n, then {v1, . . . , vn} is linearly dependent.

Proof.

(1) Let A1, . . . , An be the columns of A. We have

y ∈ CS(A)⇐⇒ there are λ1, . . . , λn such that y =
n∑
i=1

λiAi

⇐⇒ there are λ1, . . . , λn such that if x =


λ1

λ2
...
λn

 , then Ax = y

⇐⇒ there is an x ∈ Fn such that Ax = y.

(2) We must show there are scalars λ1, . . . , λn, not all zero, such that

n∑
i=1

λivi = 0.

Form a matrix A ∈Mm×n(F) by letting the ith column be vi: A = [v1|v2| · · · |vm]. By (1), the
above condition is now equivalent to finding a nonzero x ∈ Fn such that Ax = 0. To solve
this system of linear equations, we augment the matrix so it has n+1 columns by letting the
last column be all zeroes. Performing Gaussian elimination, we get a row reduced matrix
U which is row equivalent to the matrix B = [A|0]. Now, the number of pivots (the first
entry of a row that is nonzero) of U must be less than or equal to m as there are only m
rows. Hence, at least one of the first n columns does not have a pivot in it. These columns
correspond to free variables when we are looking for solutions of the original system of linear
equations, i.e. there is a nonzero x such that Ax = 0.
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Theorem 2.4.2. Suppose S1 is a finite set that spans V and S2 ⊂ V is linearly independent.
Then S2 is finite and |S2| ≤ |S1|.

Proof. Let S1 = {v1, . . . , vm} and {w1, . . . , wn} ⊂ S2. We show n ≤ m. Since S1 spans V ,
there are scalars λi,j ∈ F such that

wj =
m∑
i=1

λi,jvi for all j = 1, . . . , n.

Let A ∈ Mm×n(F) by Ai,j = λi,j. If m > n, then the rows of A are linearly dependent by
2.4.1, so there is an x = (µ1, . . . , µn)T ∈ Rn \ {0} such that Ax = 0. This means that

n∑
j=1

Ai,jµj =
n∑
j=1

λi,jµj = 0 for all i ∈ [m].

This implies that

n∑
j=1

µjwj =
n∑
j=1

µj

m∑
i=1

λi,jvi =
m∑
i=1

(
n∑
j=1

λi,jµj

)
vi = 0,

a contradiction as {w1, . . . , wn} is linearly independent. Hence n ≤ m.

Corollary 2.4.3. Suppose V has a finite basis B with n elements. Then every basis of V
has n elements.

Proof. Let B′ be another basis of V . Then by 2.4.2, B′ is finite and |B′| ≤ |B|. Applying
2.4.2 after switching B,B′ yields |B| ≤ |B′|, and we are finished.

Corollary 2.4.4. Every infinite subset of a finitely generated vector space is linearly depen-
dent.

Definition 2.4.5. The vector space V is finite dimensional if there is a finite subset B ⊂ V
such that B is a basis for V . The number of elements of B is the dimension of V , denoted
dim(V ). A vector space that is not finite dimensional is infinite dimensional. In this case,
we will write dim(V ) =∞.

Examples 2.4.6.

(1) Mm×n(F) has dimension mn.

(2) If a 6= b, then C(a, b) and Cn(a, b) are infinite dimensional for all n ∈ N ∪ {∞}.
(3) F (X,F) is finite dimensional if and only if X is finite.

Theorem 2.4.7 (Contraction). Let S ⊂ V be a finite subset such that S spans V .

(1) There is a subset B ⊂ S such that B is a basis of V .
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(2) If dim(V ) = n and S has n elements, then S is a basis for V .

Proof.

(1) IfS is not a basis, then S is not linearly independent. Thus, there is some vector v ∈ S
such that v is a linear combination of the other elements of S. Set S1 = S \ {v}. It is
clear that S1 spans V . If S1 is not a basis, repeat the process to get S2. Repeating this
process as many times as necessary, since S is finite, we will eventually get that Sn is linearly
independent for some n ∈ N, and thus a basis for V .

(2) Suppose S is not a basis for V . Then by (1), there is a proper subset T of S such that T
is a basis for V . But T has fewer elements than S, a contradiction to 2.4.3.

Corollary 2.4.8 (Existence of Bases). Let V be a finitely generated vector space. Then V
has a basis.

Proof. This follows immediately from 2.4.7 (1).

Corollary 2.4.9. The vector space V is finitely generated if and only if V is finite dimen-
sional.

Proof. By 2.4.8, we see that a finitely generated vector space has a finite basis. The other
direction is trivial.

Lemma 2.4.10. A subspace W of a finite dimensional vector space V is finitely generated.

Proof. We construct a maximal linearly independent subset S of W as as follows: if W = (0),
we are finished. Otherwise, choose w1 ∈ W \ {0}, and set S1 = {w1}, and note that S1 is
linearly independent by 2.3.6. If W1 = span(S1) = W , we are finished. Otherwise, choose
w2 ∈ W \ W1, and set S2 = {w1, w2}, which is again linearly independent by 2.3.6. If
W2 = span(S2) = W , we are finished. Otherwise we may repeat this process. This algorithm
will terminate as all linearly independent subsets ofW must have less than or equal to dim(V )
elements by 2.4.2. Now it is clear by 2.3.6 that our maximal linearly independent set S ⊂ W
must be a basis for W by 2.3.6. Hence W is finitely generated.

Theorem 2.4.11 (Extension). Let W be a subspace of V . Let B be a basis of W (we know
one exists by 2.4.8 and 2.4.10).

(1) If |B| = dim(V ), then W = V .

(2) There is a basis C of V such that B ⊂ C.

Proof.

(1) Suppose B = {w1, . . . , wn} and dim(V ) = n. Suppose W 6= V . Then there is a wn+1 ∈
V \W , and B1 = B ∪ {wn+1} is linearly independent by 2.3.6. This is a contradiction to
2.4.2 as every linearly independent subset of V must have less than or equal to n elements.
Hence W = V .
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(2) If span(B) 6= V , then pick v1 ∈ V \span(B). It is immediate from 2.3.6 that B1 = B∪{v1}
is linearly independent. If span(B1) 6= V , then we may pick v2 ∈ V \ span(B1), and once
again by 2.3.6, B2 = B1∪{v2} is linearly independent. Repeating this process as many times
as necessary, we will have that eventually Bn will have dim(V ) elements and be linearly
independent, so its span must be V by (1).

Corollary 2.4.12. Let W be a subspace of V , and let B be a basis of W . If dim(V ) = n <∞,
then dim(W ) ≤ dim(V ). If in addition W is a proper subspace, then dim(W ) < dim(V ).

Proof. This is immediate from 2.4.11.

Proposition 2.4.13. Suppose V is finite dimensional and W1, . . . ,Wn are subspaces of V
such that

V =
n⊕
i=1

Wi.

(1) For i = 1, . . . , n, let ni = dim(Wi) and let Bi = {vi1, . . . , vuni} be a basis for Wi. Then

B =
n∐
i=1

Bi is a basis for V .

(2) dim(V ) =
n∑
i=1

dim(Wi).

Proof.

(1) It is clear that B spans V . We must show it is linearly independent. Suppose

n∑
i=1

ni∑
j=1

λijv
i
j = 0.

Then setting wj =

ni∑
j=1

λijw
i
j, we have

n∑
i=1

wi = 0, so wi = 0 for all i ∈ [n] by 2.2.8. Now since

Bi is a basis for all i ∈ [n], λij = 0 for all i, j.

(2) This is immediate from (1).

Exercises

Exercise 2.4.14 (Dimension Formulas). Let W1,W2 be subspaces of a vector space V .

(1) Show that dim(W1 +W2) + dim(W1 ∩W2) = dim(W1) + dim(W2).

(2) Suppose W1 ∩W2 = (0). Find an expression for dim(W1 ⊕W2) similar to the formula
found in (1).
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(3) Let W be a subspace of V , and suppose V = W1⊕W2. Show that if W1 ⊂ W or W2 ⊂ W ,
then

W = (W ∩W1)⊕ (W ∩W2).

Is this still true if we omit the condition “W1 ⊂ W or W2 ⊂ W”?

Exercise 2.4.15 (Complexification 2). Let V be a vector space over R.

(1) Show that dimR(V ) = dimC(VC). Deduce that dimR(VC) = 2 dimR(V ).

(2) If T ∈ L(V ), we define the complexification of the operator T to be the operator TC ∈
L(VC) given by

TC(u+ iv) = Tu+ iTv.

(a) Show that the complexicifation of multiplication by A ∈Mn(R) on Rn is multiplication
by A ∈Mn(C) on Cn.

(b) Show that the complexification of multiplication by f ∈ F (X,R) on F (X,R) is multi-
plication by f ∈ F (X,C) on F (X,C).

2.5 Existence of Bases

A question now arises: do all vector spaces have bases? The answer to this question is yes
as we will see shortly. We saw in the previous section that this result is very easy for finitely
generated vector spaces. However, to prove this in full generality, we will need Zorn’s Lemma
which is logically equivalent to the Axiom of Choice, i.e. assuming one, we can prove the
other. We will not prove the equivalence of these two statements as it is beyond the scope
of this course. For this section, V will denote a vector space over F (which is not necessarily
finitely generated).

Definition 2.5.1.

(1) A partial order on the set P is a subset R of P × P (a relation R on P ), such that

(i) (reflexive) (p, p) ∈ R for all p ∈ P ,

(ii) (antisymmetric) (p, q) ∈ R and (q, p) ∈ R, then p = q, and

(iii) (transitive) (p, q), (q, r) ∈ R implies (p, r) ∈ R.

Usually, we denote (p, q) ∈ R as p ≤ q. Hence, we may restate these conditions as:

(i) p ≤ p for all p ∈ P ,

(ii) p ≤ q and q ≤ p implies p = q, and

(iii) p ≤ q and q ≤ r implies p ≤ r.
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Note that we may not always compare p, q ∈ P . In this sense the order is partial. The pair
(P,≤), or sometimes P if ≤ is understood, is called a partially ordered set.

(2) Suppose P is partially ordered set. The subset T is totally ordered if for every s, t ∈ T ,
we have either s ≤ t or t ≤ s. Note that we can compare all elements of a totally ordered
set.

(3) An upper bound for a totally ordered subset T ⊂ P , a partially ordered set, is an element
x ∈ P such that t ≤ x for all t ∈ T .

(4) An element m ∈ P is called maximal if p ∈ P with m ≤ p implies p = m.

Examples 2.5.2.

(1) Let X be a set, and let P(X) be the power set of X, i.e. the set of all subsets of X. Then
we may partially order P(X) by inclusion, i.e. we say S1 ≤ S2 for S1, S2 ∈ P(X) if S1 ⊆ S2.
Note that this is not a total order unless X has only one element. Furthermore, note that
P(X) has a unique maximal element: X.

(2) We may partially order P(X) by reverse inclusion, i.e. we say S2 ≤ S1 for S1, S2 ∈ P(X)
if S1 ⊆ S2. Note once again that this is not a total order unless X has one element. Also,
P(X) has a unique maximal element for this order as well: ∅.

Lemma 2.5.3 (Zorn). Suppose every nonempty totally ordered subset T of a nonempty
partially ordered set P has an upper bound. Then P has a maximal element.

Remark 2.5.4. Note that the maximal element may not be (and probably is not) unique.

Theorem 2.5.5 (Existence of Bases). Let V be a vector space. Then V has a basis.

Proof. Let P be the set of all linearly independent subsets of V . We partially order P by
inclusion. Let T be a totally ordered subset of P . We show that T has an upper bound.
Our candidate for an upper bound will be

X =
⋃
t∈T

t,

the union of all sets contained in T .
We must show X ∈ P , i.e. X is linearly independent. Let Y = {y1, . . . , yn} be a finite

subset of X. Then there are t1, . . . , tn ∈ T such that yi ∈ ti for all i = 1, . . . , n. Since T is
totally ordered, one of the ti’s contains the others. Call this set s. Then Y ⊂ s, but s is
linearly independent. Hence Y is linearly independent, and thus so is X.

We must show that X is indeed an upper bound for T . This is obvious as t ⊂ X for all
t ∈ T . Hence t ≤ X for all t ∈ T .

Now, we invoke Zorn’s lemma to get a maximal element B of P . We claim that B is a
basis for V , i.e. it spans V (B is linearly independent as it is in P ). Suppose not. Then
there is some v ∈ V \ span(B). Then B ∪ {v} is linearly independent, and B ⊂ B ∪ {v}.
Hence, B ≤ B ∪ {v}, but B 6= B ∪ {v}. This is a contradiction to the maximality of B.
Hence B is a basis for V .
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Theorem 2.5.6 (Extension). Let W be a subspace of V . Let B be a basis of W . Then there
is a basis C of V such that B ⊂ C.

Proof. Let P be the set whose elements are linearly independent subsets of V containing
B partially ordered by inclusion. As in the proof of 2.5.5, we see that each totally ordered
subset has an upper bound, so P has a maximal element C ∈ P (which means B ⊂ C).
Once again, as in the proof of 2.5.5, we must have that C is a basis for V .

Theorem 2.5.7 (Contraction). Let S ⊂ V be a subset such that S spans V . Then there is
a subset B ⊂ S such that B is a basis of V .

Proof. Let P be the set whose elements are linearly independent subsets of S partially
ordered by inclusion. As in the proof of 2.5.5, we see that each totally ordered subset has
an upper bound, so P has a maximal element B ∈ P (which means B ⊂ S). Once again, as
in the proof of 2.5.5, we must have that B is a basis for V .

Proposition 2.5.8. Let W ⊂ V be a subspace. Then there is a (non-unique) subspace U of
V such that V = U ⊕W .

Proof. This is merely a restatement of 2.5.6. Let B be a basis of W , and extend B to a basis
C of V . Set U = span(C \ B). Then clearly U ∩W = (0) and U +W = V , so V = U ⊕W
by 2.2.8. Note that if V is finitely generated, we may use 2.4.11 instead of 2.5.6.

Exercises

Exercise 2.5.9.
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Chapter 3

Linear Transformations

For this chapter, unless stated otherwise, V,W will be vector spaces over F.

3.1 Linear Transformations

Definition 3.1.1. A linear transformation from the vector space V to the vector space W ,
denoted T : V → W , is a function from V to W such that

T (λu+ v) = λT (u) + T (v)

for all λ ∈ F and u, v ∈ V . This condition is called F-linearity. Often T (v) is denoted Tv.
Sometimes we will refer to a linear transformation as a linear operator, an operator, or a
map. The set of all linear transformations from V to W is denoted L(V,W ). If V = W , we
write L(V ) = L(V, V ).

Examples 3.1.2.

(1) There is a zero linear transformation 0: V → W given by 0(v) = 0 ∈ W for all v ∈ V .
There is an identity linear transformation I ∈ L(V ) given by Iv = v for all v ∈ V .

(2) LetA ∈Mm×n(F). Then left multiplication byA defines a linear transformation LA : Fn →
Fm given by x 7→ Ax.

(3) The projection maps Fn → F given by e∗i (λ1, . . . , λn)T = λi for i ∈ [n] are F-linear.

(4) Integration from a to b where a, b ∈ R is a map C[a, b]→ R.

(5) The derivative map D : Cn(a, b)→ Cn−1(a, b) given by f 7→ f ′ is an operator.

(6) Let x ∈ X, a set. Then evaluation at x is a linear transformation evx : F (X,F)→ F given
by f 7→ f(x).

(7) Suppose B = {v1, . . . , vn} is a basis for V . Then the projection maps v∗j : V → F given
by

v∗j

(
n∑
i=1

λivi

)
= λj
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are linear transformations.

Definition 3.1.3. Let V be a vector space over R, and let VC be as in 2.1.12. If T ∈ L(V ),
we define the complexification of the operator T to be the operator TC ∈ L(VC) given by

TC(u+ iv) = Tu+ iTv.

Examples 3.1.4.

(1) The complexification of multiplication by the matrix A on Rn is multiplication by the
matrix A on Cn.

(2) The complexification of multiplication by x on R[x] is multiplication by x on C[x].

Remarks 3.1.5.

(1) Note that a linear transformation is completely determined by what it does to a basis. If
{vi} is a basis for V and we know what Tvi is for all i, then by linearity, we know Tv for any
vector v ∈ V . Hence, to define a linear transformation, one only needs to specify where a
basis goes, and then we may “extend it by linearity,” i.e. if {vi} is a basis for V , we specify
Tvi for all i, and then we decree that

T

(
n∑
j=1

λjvj

)
=

n∑
j=1

λjTvj

for all finite subsets {v1, . . . , vn} ⊂ {vi}. This rule defines T on all of V as {vi} spans V ,
and T is well defined since {vi} is linearly independent.

For example, in example 7 above, v∗j is the unique map that sends vj to one, and vi to
zero for i 6= j.

(2) If T1 and T2 are linear transformations V → W and λ ∈ F, then we may define T1 +
T2 : V → W by (T1 + T2)v = T1v + T2v, and we may define λT1 : V → W by (λT1)v =
λ(T1v). Hence, if V and W are vector spaces over F, then L(V,W ), the set of all F-linear
transformations V → W , is a vector space (it is easy to see that + is an addition and · is a
scalar multiplication which satisfy the distributive property, each linear transformation has
an additive inverse, and there is a zero linear transformation).

Example 3.1.6. The map L : Mm×n(F)→ L(Fn,Fm) given by A 7→ LA is a linear transfor-
mation.

Exercises

Exercise 3.1.7. Let v ∈ V . Show that evv : L(V,W ) → W given by T 7→ Tv is a linear
operator.
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3.2 Kernel and Image

Note that we may talk about injectivity and surjectivity of operators as they are functions.
The immediate question to ask is, “Why should we care about linear transformations?” The
answer is that these maps are the “natural” maps to consider when we are thinking about
vector spaces. As we shall see, linear transformations preserve vector space structure in the
sense of the following definition and proposition:

Definition 3.2.1. Let T ∈ L(V,W ). Let the kernel of T , denoted ker(T ), be
{
v ∈ V

∣∣Tv = 0
}

and let the image, or range, of T , denoted im(T ) or TV , be
{
w ∈ W

∣∣w = Tv for some v ∈ V
}

.

Examples 3.2.2.

(1) Let A ∈Mm×n(F) and consider LA. Then ker(LA) = NS(A) and im(LA) = CS(A).

(2) Consider evx : F (X,F)→ F. Then ker(evx) =
{
f : X → F

∣∣f(x) = 0
}

and im(evx) = F as
λδx 7→ λ.

(3) If B = {v1, . . . , vn} is a basis for V , then ker(v∗1) = span{v2, . . . , vn} and im(v∗1) = F.

(4) LetD : C1[0, 1]→ C[0, 1] be the derivative map f 7→ f ′. Then ker(D) = {constant functions}
and im(D) = C[0, 1] as

D

x∫
0

f(t) dt = f(x) for all x ∈ [0, 1]

by the fundamental theorem of calculus, i.e. D has a right inverse.

Proposition 3.2.3. Let T ∈ L(V,W ). ker(T ) and im(T ) are vector spaces.

Proof. It suffices to show they are closed under addition and scalar multiplication. Clearly
Tv = 0 = Tu implies T (λu+ v) = 0 for all u, v ∈ ker(T ) and λ ∈ F, so ker(T ) is a subspace
of V , and thus a vector space. Let y, z ∈ im(T ) and µ ∈ F, and let w, x ∈ V such that
Tw = y and Tx = z. Then T (λw + x) = λy + z ∈ im(T ), so im(T ) is a subspace of W , and
thus a vector space.

Proposition 3.2.4. T ∈ L(V,W ) is injective if and only if ker(T ) = (0).

Proof. Suppose T is injective. Then since T0 = 0, if Tv = 0, then v = 0. Suppose now that
ker(T ) = (0). Let x, y ∈ V such that Tx = Ty. Then T (x− y) = 0, so x− y = 0 and x = y.
Hence T is injective.

Proposition 3.2.5. Suppose T ∈ L(V,W ) is bijective, and let {vi} be a basis for V . Then
{Tvi} is a basis for W .

Proof. We show {Tvi} is linearly independent. Suppose {Tv1, . . . , T vn} is a finite subset of
{Tvi}, and suppose

n∑
j=1

λjTvj = T

(
n∑
j=1

λjvj

)
= 0.
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Then since T is injective, by 3.2.4
n∑
j=1

λjvj = 0.

Now since {vi} is linearly independent, we have λj = 0 for all j = 1, . . . , n.
We show {Tvi} spans W . Let w ∈ W . Then there is a v ∈ V such that Tv = w as T is

surjective. Then v ∈ span{vi}, so there are v1, . . . , vn ∈ {vi} and λ1, . . . , λn ∈ F such that

v =
n∑
j=1

λjvj.

Then

w = Tv = T

n∑
j=1

λjvj =
n∑
j=1

λjTvj,

so w ∈ span{Tvi}.

Definition 3.2.6. An operator T ∈ L(V,W ) is called invertible, or an isomorphism (of vector
spaces), if there is a linear operator S ∈ L(W,V ) such that T ◦S = idW and S◦T = idV , where
id means the identity linear transformation. Often, when composing linear transformations,
we will omit the ◦ and write ST and TS. We call vector spaces V,W isomorphic, denoted
V ∼= W , if there is an isomorphism T ∈ L(V,W ).

Examples 3.2.7.

(1) Fn ∼= V if dim(V ) = n.

(2) F (X,F) ∼= Fn if |X| = n.

Proposition 3.2.8. T ∈ L(V,W ) is invertible if and only if it is bijective.

Proof. It is clear that an invertible operator is bijective.
Suppose T is bijective. Then there is an inverse function S : W → V . It remains to show

S is a linear transformation. Suppose y, z ∈ W and λ ∈ F. Then there are w, x ∈ W such
that Tw = y and Tx = z. Then

S(λy + z) = S(λTw + Tz) = ST (λw + x) = λw + x = λSTw + STx = λSy + Sz.

Hence S is a linear transformation.

Remark 3.2.9. If T is an isomorphism, then T maps bases to bases. In this way, we can
identify the domain and codomain of T as the same vector space. In particular, if V ∼= W ,
then dim(V ) = dim(W ) (we allow the possibility that both are ∞).

Proposition 3.2.10. Suppose dim(V ) = dim(W ) = n <∞. Then there is an isomorphism
T : V → W .
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Proof. Let {v1, . . . , vn} be a basis for V and {w1, . . . , wn} be a basis for W . Define a linear
transformation T : V → W by Tvi = wi for i = 1, . . . , n, and extend by linearity. It is easy to
see that the inverse of T is the operator S : W → V defined by Swi = vi for all i = 1, . . . , n
and extending by linearity.

Remark 3.2.11. We see that if U ∼= V via isomorphism T and V ∼= W via isomorphism S,
then U ∼= W via isomorphism ST .

Our task is now to prove the Rank-Nullity Theorem. One particular application of this
theorem is that injectivity, surjectivity, and bijectivity are all equivalent for T ∈ L(V,W )
when V,W are of the same finite dimension.

Lemma 3.2.12. Let T ∈ L(V,W ), and let M be a subspace such that V = ker(T )⊕M (one
exists by 2.5.8).

(1) T |M is injective.

(2) im(T |M) = im(T ).

(3) T |M is an isomorphism M → im(T ).

Proof.

(1) Suppose u, v ∈M such that Tu = Tv. Then T (u− v) = 0, so u− v ∈M ∩ ker(T ) = (0).
Hence u− v = 0, and u = v.

(2) Let B = {u1, . . . , un} be a basis for ker(T ), and let C = {w1, . . . , wm} be a basis for
M . Then by 2.4.13, B ∪ C is a basis for V . Hence {Tu1, . . . , Tun, Tw1, . . . , Twm} spans
im(T ). But since Tui = 0 for all i, we have that {Tw1, . . . , Twm} spans im(T ). Thus
im(T ) = im(T |M).

(3) By (1), T |M is injective, and by (2), T |M is surjective onto im(T ). Hence it is bijective
and thus an isomorphism.

Theorem 3.2.13 (Rank-Nullity). Suppose V is finite dimensional, and let T ∈ L(V,W ).
Then

dim(V ) = dim(im(T )) + dim(ker(T )).

Proof. By 2.5.8 there is a subspace M of V such that V = ker(T )⊕M . By 2.4.13, dim(V ) =
dim(ker(T )) + dim(M). We must show dim(M) = dim(im(T )). This follows immediately
from 3.2.12 and 3.2.9.

Remark 3.2.14. Suppose V is finite dimensional, and let T ∈ L(V,W ). Then dim(im(T )) is
sometimes called the rank of T , denoted rank(T ), and dim(ker(T )) is sometimes called the
nullity of T , denoted nullity(T ). Using this terminology, 3.2.13 says that

dim(V ) = rank(T ) + nullity(T ),

which is how 3.2.13 gets the name “Rank-Nullity Theorem.”
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Corollary 3.2.15. Let V,W be finite dimensional vector spaces with dim(V ) = dim(W ),
and let T ∈ L(V,W ). The following are equivalent:

(1) T is injective,

(2) T is surjective, and

(3) T is bijective.

Proof.

(3)⇒ (1): Obvious.

(1)⇒ (2): Suppose T is injective. Then dim(ker(T )) = 0, so dim(V ) = dim(im(T )) =
dim(W ), and T is surjective.

(2)⇒ (3): Suppose T is surjective. Then by similar reasoning, dim(ker(T )) = 0, so T is
injective. Hence T is bijective.

Exercises

Exercise 3.2.16. Let T ∈ L(V,W ), let S = {v1, . . . , vn} ⊂ V , and recall that TS =
{Tv1, . . . , T vn} ⊂ W .

(1) Prove or disprove the following statements:

(a) If S is linearly independent, then TS is linearly independent.

(b) If TS is linearly independent, then S is linearly independent.

(c) If S spans V , then TS spans W .

(d) If TS spans W , then S spans V .

(e) If S is a basis for V , then TS is a basis for W .

(f) If TS is a basis for W , then S is a basis for V .

(2) For each of the false statements above (if there are any), find a condition on T which
makes the statement true.

Exercise 3.2.17 (Rank of a Matrix).

(1) Let A ∈Mn(F). Prove that dim(CS(A)) = dim(RS(A)). This number is called the rank
of A, denoted rank(A).

(2) Show that rank(A) = rank(LA).

Exercise 3.2.18. [Square Matrix Theorem] Prove the following (celebrated) theorem from
matrix theory. For A ∈Mn(F), the following are equivalent:

(1) A is invertible,
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(2) There is a B ∈Mn(F) such that AB = I,

(3) There is a B ∈Mn(F) such that BA = I,

(4) A is nonsingular, i.e. if Ax = 0 for x ∈ Fn, then x = 0,

(5) For all y ∈ Fn, there is a unique x ∈ Fn such that Ax = y,

(6) For all y ∈ Fn, there is an x ∈ Fn such that Ax = y,

(7) CS(A) = Fn,

(8) RS(A) = Fn,

(9) rank(A) = n, and

(10) A is row equivalent to I.

Exercise 3.2.19 (Quotient Spaces 2). Let W ⊂ V be a subspace.

(1) Show that the map q : V → V/W given by v 7→ v+W is a surjective linear transformation
such that ker(q) = W .

(2) Suppose V is finite dimensional. Using q, find dim(V/W ) in terms of dim(V ) and dim(W ).

(3) Show that if T ∈ L(V, U) and W ⊂ ker(T ), then T factors uniquely through q, i.e. there

is a unique linear transformation T̃ : V/W → U such that the diagram

V
T //

q ""DD
DD

DD
DD

U

V/W
eT

<<zzzzzzzz

commutes, i.e. T = T̃ ◦ q. Show that if W = ker(T ), then T̃ is injective.

3.3 Dual Spaces

We now study L(V,F) in the case of a finite dimensional vector space V over F.

Definition 3.3.1. Let V be a vector space over F. The dual of V , denoted V ∗, is the vector
space of all linear transformations V → F, i.e. V ∗ = L(V,F). Elements of V ∗ are called
linear functionals.

Proposition 3.3.2. Let V be a vector space over F, and let ϕ ∈ V ∗. Then either ϕ = 0 or
ϕ is surjective.

Proof. We know that dim(im(ϕ)) ≤ 1. If it is 0, then ϕ = 0. If it is 1, then ϕ is surjective.

Definition-Proposition 3.3.3. Let B = {v1, . . . , vn} be a basis for the finite dimensional
vector space V . Then B∗ = {v∗1, . . . , v∗n} is a basis for V ∗ called the dual basis.
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Proof. We must show that B∗ is a basis for V ∗. First, we show B∗ is linearly independent.
Suppose

n∑
i=1

λiv
∗
i = 0,

the zero linear transformation. Then we have that(
n∑
i=1

λiv
∗
i

)
vj = λj = 0

for all j = 1, . . . , n. Thus, B∗ is linearly independent. We show B∗ spans V ∗. Suppose
ϕ ∈ V ∗. Let λj = ϕ(vj) for j = 1, . . . , n. Then we have that(

ϕ−
n∑
i=1

λiv
∗
i

)
vj = 0

for all j = 1, . . . , n. Since a linear transformation is completely determined by its values on
a basis, we have that

ϕ−
n∑
i=1

λiv
∗
i = 0 =⇒ ϕ =

n∑
i=1

λiv
∗
i .

Remark 3.3.4. One of the most useful techniques to show linear independence is the “kill-off”
method used in the previous proof:(

n∑
i=1

λiv
∗
i

)
vj = λj = 0.

Applying the vj allows us to see that each λj is zero. We will see this technique again when
we discuss eigenvalues and eigenvectors.

Proposition 3.3.5. Let V be a finite dimensional vector space over F. There is a canonical
isomorphism ev : V → V ∗∗ = (V ∗)∗ given by v 7→ evv, the linear transformation V ∗ → F
given by the evaluation map: evv(ϕ) = ϕ(v).

Proof. First, it is clear that ev is a linear transformation as evλu+v = λ evu + evv. Hence, we
must show the map ev is bijective. Suppose evv = 0. Then evv is the zero linear functional
on V ∗, i.e., for all ϕ ∈ V ∗, ϕ(v) = 0. Since ϕ is completely determined by where it sends a
basis of V , we know that ϕ = 0. Hence, the map ev is injective. Suppose now that x ∈ V ∗∗.
Let B = {v1, . . . , vn} be a basis for V and let B∗ = {v∗1, . . . , v∗n} be the dual basis. Setting
λj = x(v∗j ) for j = 1, . . . , n, we see that if

u =
n∑
i=1

λivi,
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then (x − evu)v
∗
j = 0 for all j = 1, . . . , n. Once more since a linear transformation is

completely determined by where it sends a basis, we have x− evu = 0, so x = evu and ev is
surjective.

Remark 3.3.6. The word “canonical” here means “completely determined,” or “the best
one.” It is independent of any choices of basis or vector in the space.

Proposition 3.3.7. Let V be a finite dimensional vector space over F. Then V is isomorphic
to V ∗, but not canonically.

Proof. Let B = {v1, . . . , vn} be a basis for V . Then B∗ is a basis for V ∗. Define a linear
transformation T : V → V ∗ by vi 7→ v∗i for all vi ∈ B, and extend this map by linearity.
Then T is an isomorphism as there is the obvious inverse map.

Remark 3.3.8. It is important to ask why there is no canonical isomorphism between V
and V ∗. The naive, but incorrect, thing to ask is whether v 7→ v∗ would give a canonical
isomorphism V → V ∗. Note that the definition of v∗ requires a basis of V as in 3.3.3.
We cannot define the coordinate projection v∗ without a distinguished basis. For example,
if V = F2 and v = (1, 0), we can complete {v} to a basis in many different ways. Let
B1 = {v, (0, 1)} and B2 = {v, (1, 1)}. Then we see that v∗(1, 1) = 1 relative to B1, but
v∗(1, 1) = 0 relative to B2.

Exercises

Exercise 3.3.9 (Dual Spaces of Infinite Dimensional Spaces). Suppose B =
{
vn
∣∣n ∈ N

}
is

a basis of V . Is it true that V ∗ = span
{
v∗n
∣∣n ∈ N

}
?

3.4 Coordinates

For this section, V,W will denote finite dimensional vector spaced over F. We now discuss
the way in which all finite dimensional vector spaces over F look like Fn (non-uniquely). We
then study L(V,W ), with the main result being that if dim(V ) = n and dim(W ) = m, then
L(V,W ) ∼= Mm×n(F) (non-uniquely) which is left to the reader as an exercise.

Definition 3.4.1. Let V be a finite dimensional vector space over F, and let B = (v1, . . . , vn)
be an ordered basis for V . The map [·]B : V → Rn given by

v =
n∑
i=1

λivi 7−→


λ1

λ2
...
λn

 =


v∗1(v)
v∗2(v)

...
v∗n(v)


is called the coordinate map with respect to B. We say that [v]B are coordinates for v with
respect to the basis B. Note that we denote an ordered basis as a sequence of vectors in
parentheses rather than a set of vectors contained in curly brackets.
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Proposition 3.4.2. The coordinate map is an isomorphism.

Proof. It is clear that the coordinate map is a linear transformation as [λu+v]B = λ[u]B+[v]B
for all u, v ∈ V and λ ∈ F. We must show [·]B is bijective. We show it is injective. Suppose
that [v]B = (0, . . . , 0)T . Then since

v =
n∑
i=1

λivi

for unique λ1, . . . , λn ∈ F, we must have that λi = 0 for all i = 1, . . . , n, and v = 0. Hence
the map is injective. We show the map is surjective. Suppose (λ1, . . . , λn)T ∈ Fn. Then
define the vector u by

u =
n∑
i=1

λivi.

Then [u]B = (λ1, . . . , λn)T , so the map is surjective.

Definition 3.4.3. Let V and W be finite dimensional vector spaces, let B = (v1, . . . , vn) be
an ordered basis for V , let C = (w1, . . . , wm) be an ordered basis for W , and let T ∈ L(V,W ).
The matrix [T ]CB ∈Mm×n(F) is given by

([T ]CB)ij = w∗i (Tvj) = e∗i ([Tvj]C)

where w∗i is projection onto the ith coordinate in W and e∗i is the projection onto the ith

coordinate in Fm.
We can also define [T ]CB as the matrix whose (i, j)th entry is λi,j where the λi,j are the

unique elements of F such that

Tvj =
m∑
i=1

λi,jwi.

We can see this in terms of matrix augmentation as follows:

[T ]CB =

[
[Tv1]C

∣∣∣∣ · · · ∣∣∣∣[Tvn]C

]
.

The matrix [T ]CB is called coordinate matrix for T with respect to B and C. If V = W
and B = C, then we denote [T ]BB as [T ]B.

Remark 3.4.4. Note that the jth column of [T ]CB is [Tvj]C .

Examples 3.4.5.

(1) Let B = (v1, . . . , v4) be an ordered basis for the finite dimensional vector space V . Let
S ∈ L(V, V ) be given by Svi = vi+1 for i 6= 4 and Sv4 = v1. Then

[S]B =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
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(2) Let S be as above, but consider the ordered basis B′ = (v4, . . . , v1). Then

[S]B′ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

(3) Let S be as above, but consider the ordered basis B′ = (v3, v2, v4, v1). Then

[S]B′ =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Proposition 3.4.6. Let V and W be finite dimensional vector spaces, let B = (v1, . . . , vn) be
an ordered basis for V , let C = (w1, . . . , wm) be an ordered basis for W , and let T ∈ L(V,W ).
Then the diagram

V
T //

[·]B
��

W

[·]C
��

V
[T ]CB // W

commutes, i.e. [T ]CB[v]B = [Tv]C for all v ∈ V .

Proof. To show both matrices are equal, we must show that their entries are equal. We know
([T ]CB)i,j = e∗i [Tvj]C . Hence

([T ]CB[v]B)i,1 =
n∑
j=1

([T ]CB)i,j([v]B)j,1 =
n∑
j=1

e∗i [Tvj]C([v]B)j,1 = e∗i

n∑
j=1

([v]B)j,1[Tvj]C

= e∗i

[
n∑
j=1

([v]B)j,1Tvj

]
C

= e∗i

[
T

n∑
j=1

([v]B)j,1vj

]
C

= e∗i [Tv]C = ([Tv]C)i,1

as [·]C , e∗i , and T are linear transformations, and

v =
n∑
j=1

([v]B)j1vj.

Remarks 3.4.7. When we proved 2.4.3 and 2.5.6 (1), we used the coordinate map implicitly.
The algorithm of Gaussian elimination proves the hard result of 2.4.2, which in turn, proves
these technical theorems after we identify the vector space with Fn for some n.

Proposition 3.4.8. Suppose S, T ∈ L(V,W ) and λ ∈ F, and suppose that B = {v1, . . . , vn}
is a basis for V and C = {w1, . . . , wm} is a basis for W . Then [S + λT ]CB = [S]CB + λ[T ]CB.
Thus [·]CB : L(V,W )→Mm×n(F) is a linear transformation.
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Proof. First, we note that this follows immediately from 3.4.2 and 3.4.6 as

[S+λT ]CBx = [(S+λT )[x]−1
B ]C = [S[x]−1

B +λT [x]−1
B ]C = [S[x]−1

B ]C+λ[T [x]−1
B ]C = [S]CBx+λ[T ]CBx

for all x ∈ Fn.
We give a direct proof as well. We have that

Svj =
m∑
i=1

([S]CB)i,jwi and Tvj =
m∑
i=1

([T ]CB)i,jwi

for all j ∈ [n]. Thus

(S + λT )vj = Svj + λTvj =
m∑
i=1

([S]CB)i,jwi + λ
m∑
i=1

([T ]CB)i,jwi =
m∑
i=1

(([S]CB)i,j + λ([T ]CB)i,j)wi.

for all j ∈ [n], and ([S + λT ]CB)i,j = ([S]CB)i,j + λ([T ]CB)i,j, so [S + λT ]CB = [S]CB + λ[T ]CB.

Proposition 3.4.9. Suppose T ∈ L(U, V ) and S ∈ L(V,W ), and suppose that A = {u1, . . . , um}
is a basis for U , B = {v1, . . . , vn} is a basis for V , and C = {w1, . . . , wp} is a basis for W .
Then [ST ]CA = [S]CB[T ]BA.

Proof. We have that

STuj = S
n∑
i=1

([T ]BA)i,jvi =
n∑
i=1

([T ]BA)i,j(Svi) =
n∑
i=1

([T ]BA)i,j

(
p∑

k=1

([S]CB)k,iwk

)

=

p∑
k=1

(
n∑
i=1

([S]CB)k,i([T ]BA)i,j

)
wk =

p∑
k=1

(
[S]CB[T ]BA

)
k,j
wk

for all j ∈ [m], so [ST ]CA = [S]CB[T ]BA.

Exercises

V,W will denote vector spaces. Let T ∈ L(V,W ).

Exercise 3.4.10.

Exercise 3.4.11.

Exercise 3.4.12. Suppose dim(V ) = n <∞ and dim(W ) = m <∞, and let B,C be bases
for V,W respectively.

(1) Show that L(V,W ) ∼= Mm×n(F).

(2) Show T is invertible if and only if [T ]CB is invertible.

Exercise 3.4.13. Suppose V is finite dimensional and B,C are two bases of V . Show
[T ]B ∼ [T ]C .
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Chapter 4

Polynomials

In this section, we discuss the background material on polynomials needed for linear algebra.
The two main results of this section are the Euclidean Algorithm and the Fundamental
Theorem of Algebra. The first is a result on factoring polynomials, and the second says
that every polynomial in C[z] has a root. The latter result relies on a result from complex
analysis which is stated but not proved. For this section, F is a field.

4.1 The Algebra of Polynomials

Definition 4.1.1. A polynomial p over F is a sequence p = (ai)i∈Z≥0
where ai ∈ F for all

i ∈ Z≥0 such that there is an n ∈ N such that ai = 0 for all i > n. The minimal n ∈ Z≥0

such that ai = 0 for all i > n (if it exists) is called the degree of p, denoted deg(p), and we
define the degree of the zero polynomial, the sequence of all zeroes, denoted 0, to be −∞.
The leading coefficient of of p, denoted LC(p) is adeg(p), and the leading coefficient of 0 is 0.
Note that p = 0 if and only if LC(p) = 0. A polynomial p ∈ F[z] is called monic if LC(p) = 1.

Often, we identify a polynomial with the function it induces. The zero polynomial 0
induces the zero function 0: F → F by z 7→ 0. A nonzero polynomial p = (ai) induces a
function still denoted p : F→ F given by

p(z) =

deg(p)∑
i=0

aiz
i.

Sometimes when we identify the polynomial with the function, we call p a polynomial over
F with indeterminate z, and ai is called the coefficient of the zi term for i = 1, . . . , n. If we
say that p is the polynomial given by

p(z) =
n∑
i=0

aiz
i,

then it is implied that p = (ai) where ai = 0 for all i > n. Note that it is still possible in
this case that deg(p) < n.
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The set of all polynomials over F is denoted F[z]. The set of all polynomials of degree
less than or equal to n ∈ Z≥0 is denoted Pn(F). If p, q ∈ F[z] with p = (ai) and q = (bi),
then we define the polynomial p + q = (ci) ∈ F[z] by ci = ai + bi for all i ∈ Z≥0. Note that
if we identify p, q with the functions they induce:

p(z) =

deg(p)∑
i=0

aiz
i and q(z) =

deg(q)∑
i=0

biz
i,

the polynomial p+ q ∈ F[z] is given by

(p+ q)(z) = p(z) + q(z) =

deg(p)∑
i=0

aiz
i +

deg(q)∑
i=0

biz
i =

max{deg(p),deg(q)}∑
i=1

(ai + bi)z
i.

We define the polynomial pq = (ci) ∈ F[z] by

ck =
∑
i+j=k

aibj for all k ∈ Z≥0.

Alternatively, if we are using the function notation,

(pq)(z) = p(z)q(z) =

deg(p)∑
i=0

aiz
i

deg(q)∑
i=0

biz
i =

deg(p)+deg(q)∑
k=0

(∑
i+j=k

aibj

)
zk.

If λ ∈ F and p = (ai) ∈ F[z], then we define the polynomial λp = (ci) by ci = λai for all
i ∈ Z≥0. Alternatively, we have

(λp)(z) = λp(z) = λ

deg(p)∑
i=0

aiz
i =

deg(p)∑
i=0

(λai)z
i.

Examples 4.1.2.

(1) p(z) = z2 + 1 is a polynomial in F[z].

(2) A linear polynomial is a polynomial of degree 1, i.e. it is of the form λz − µ for λ, µ ∈ F
with λ 6= 0.

Remarks 4.1.3.

(1) It is clear that LC(pq) = LC(p) LC(q), so pq is monic if and only if p, q are monic.

(2) A consequence of (1) is that pq = 0 implies p = 0 or q = 0 for p, q ∈ F[z].

(3) Another consequence of (1) is that deg(pq) = deg(p) + deg(q) for all p, q ∈ F[z].

(4) deg(p+ q) ≤ max{deg(p), deg(q)} for all p, q ∈ F[z], and if p, q 6= 0, we have deg(p+ q) ≤
deg(p) + deg(q).

52



Definition 4.1.4. An F-algebra, or an algebra over F, is a vector space (A,+, ·) and a binary
operation ∗ on A called multiplication such that the following axioms hold:

(A1) multiplicative associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ A,

(A2) distributivity : a∗ (b+ c) = a∗ b+ b∗ c and (a+ b)∗ c = a∗ c+ b∗ c for all a, b, c ∈ A, and

(A3) compatibility with scalar multiplication: λ · (a ∗ b) = (λ · a) ∗ b for all λ ∈ F and a, b ∈ A.
The algebra is called unital if there is a multiplicative identity 1 ∈ A such that a∗1 = 1∗a = a
for all a ∈ A, and the algebra is called commutative if a ∗ b = b ∗ a for all a, b ∈ A.

Examples 4.1.5.

(1) The zero vector space (0) is a unital, commutative algebra over F with multiplication
given as 0 ∗ 0 = 0. The unit in the algebra in this case is 0.

(2) Mn(F) is an algebra over F.

(3) L(V ) is an algebra over F if V is a vector space over F where multiplication is given by
S ∗ T = S ◦ T = ST .

(4) C(a, b) is an algebra over R. This is also true for closed and half open intervals.

(5) Cn(a, b) is an algebra over R for all n ∈ N ∪ {∞}.

Proposition 4.1.6. F[z] is an F-algebra with addition, multiplication, and scalar multipli-
cation defined as in 4.1.1.

Proof. Exercise.

Exercises

Exercise 4.1.7 (Ideals). An ideal I in an F-algebra A is a subspace I ⊂ A such that a∗x ∈ I
and x ∗ a ∈ I for all x ∈ I and a ∈ A.

(1) Show that I =
{
p ∈ F[z]

∣∣p(0) = 0
}

is an ideal in F[z].

(2) Show that Ix =
{
f ∈ C[a, b]

∣∣f(x) = 0
}

is an ideal in C[a, b] for all x ∈ [a, b].

(3) Show that I =
{
f ∈ C(R,R)

∣∣there are a, b ∈ R such that f(x) = 0 for all x < a, x > b
}

is an ideal in C(R,R) (note that the a, b ∈ R depend on the f).

Exercise 4.1.8 (Ideals of Matrix Algebras). Find all ideals of Mn(F).

Exercise 4.1.9. Let Pn(F) be the subset of F[z] consisting of all polynomials of degree less
than or equal to n, i.e.

Pn(F) =
{
p ∈ F[z]

∣∣ deg(p) ≤ n
}
.

Show that Pn(F) is a subspace of F[z] and dim(Pn(F) = n+ 1.
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Exercise 4.1.10. Let B = (1, x, x2, x3), respectively C = (1, x, x2), be an ordered basis
of P3(F), respectively P2(F); let B′ = (x3, x2, x, 1), respectively C ′ = (x2, x, 1) be another
ordered basis of P3(F), respectively P2(F); and let D ∈ L(P3(F), P2(F)) be the derivative
map

az3 + bz2 + cz + d 7−→ 3az2 + 2bz + c for all a, b, c ∈ F.

Find [D]CB. and [D]C
′

B′ .

4.2 The Euclidean Algorithm

Theorem 4.2.1 (Euclidean Algorithm). Let p, q ∈ F[z] \ {0} with deg(q) ≤ deg(p). Then
there are unique k, r ∈ F[z] such that p = qk + r and deg(r) < deg(q).

Proof. Suppose

p(z) =
m∑
i=0

aiz
i and q(z) =

n∑
i=0

biz
i

where m ≥ n, am 6= 0, and bn 6= 0. Then set

k1(z) =
am
bn
zm−n and p2(z) = p(z)− k1(z)q(z),

and note that deg(p2) < deg(p). If deg(p2) < deg(q), we are finished by setting k = k1 and
r = p2. Otherwise, set

k2(z) =
LC(p2)

bn
zdeg(p2)−n and p3(z) = p2(z)− k2(z)q(z),

ad note that deg(p3) < deg(p2). If deg(p3) < deg(q), we are finished by setting k = k1 + k2

and r = p3. Otherwise, set

k3(z) =
LC(p3)

bn
zdeg(p3)−n and p4(z) = p3(z)− k3(z)q(z),

ad note that deg(p4) < deg(p3). If deg(p4) < deg(q), we are finished by setting k = k1+k2+k3

and r = p4. Otherwise, we may repeat this process as many times as necessary, and note
that this algorithm will terminate as deg(pj+1) < deg(pj) (eventually deg(pj) < deg(q) for
some q).

It remains to show k, r are unique. Suppose p = k1q+r1 = k2q+r2 with deg(r1), deg(r2) <
deg(q). Then 0 = (k1 − k2)q + (r1 − r2). Now since deg(r1 − r2) < deg(q), we have that

0 = LC((k1 − k2)q + (r1 − r2)) = LC((k1 − k2)q) = LC(k1 − k2) LC(q),

so k1 = k2 as q 6= 0. It immediately follows that r1 = r2.
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Exercises

Exercise 4.2.2 (Principal Ideals). Suppose A is a unital, commutative algebra over F. An
ideal I ⊂ A is called principal if there is an x ∈ I such that I =

{
ax
∣∣a ∈ A}. Show that

every ideal of F[z] is principal (see 4.1.7).

4.3 Prime Factorization

Definition 4.3.1. For p, q ∈ F[z], we say p divides q, denoted p|q, if there is a polynomial
k ∈ F[z] such that kp = q.

Examples 4.3.2.

(1) (z ± 1) | (z2 − 1).

(2) (z ± i) | (z2 + 1) in C[z], but there are no nonconstant polynomials in R[z] that divide
z2 + 1.

Remark 4.3.3. Note that the above defines a relation on F[z] that is reflexive and transitive
(see 1.1.6). It is also antisymmetric on the set of monic polynomials.

Definition 4.3.4. A polynomial p ∈ F[z] with deg(p) ≥ 1 is called irreducible (or prime) if
q ∈ F[z] with q | p and deg(q) < deg(p) implies q is constant.

Examples 4.3.5.

(1) Every linear (degree 1) polynomial is irreducible.

(2) z2 + 1 is irreducible over R (in R[z]), but not over C (in C[z]).

Definition 4.3.6. Polynomials p1, . . . , pn ∈ F[z] where n ≥ 2 and deg(pi) ≥ 1 for all i ∈ [n]
are called relatively prime if q | pi for all i ∈ [n] implies q is constant.

Examples 4.3.7.

(1) Any n ≥ 2 distinct monic linear polynomials in F[z] is relatively prime.

(2) Any n ≥ 2 distinct quadratics z2 + az + b ∈ R[z] such that a2 − 4b < 0 are relatively
prime.

(3) Any quadratic z2 + az + b ∈ R[z] with a2 − 4b < 0 and any linear polynomial in R[z] are
relatively prime.

Proposition 4.3.8. p1, . . . , pn ∈ F[z] where n ≥ 2 are relatively prime if and only if there
are q1, . . . , qn ∈ F[z] such that

n∑
i=1

qipi = 1.
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Proof. Suppose there are q1, . . . , qn ∈ F[z] such that

n∑
i=1

qipi = 1,

and suppose q|pi for all i ∈ [n]. Then q|1, so q must be constant, and the pi’s are relatively
prime.

Suppose now that the pi’s are relatively prime. Choose polynomials q1, . . . , qn ∈ F[z]
such that

f =
n∑
i=1

qipi

has minimal degree which is not −∞ (in particular, f 6= 0). Now we know deg(f) ≤ deg(pj)
as we could have qj = 1 and qi = 0 for all i 6= j. By the Euclidean algorithm, for j ∈ [n],
there are unique kj, rj with deg(rj) < deg(f) such that pj = kjf + rj. Since

rj = pj − kf = pj − k
n∑
i=1

qipi = (1− kqj)pj +
∑
i 6=j

kqipi,

we must have that rj = 0 for all j ∈ [n] since deg(f) was chosen to be minimal. Thus f |pi
for all i ∈ [n], so f must be constant. As f 6= 0, we may divide by f , and replacing qi with
qi/f for all i ∈ [n], we get the desired result.

Corollary 4.3.9. Suppose p, q1, . . . , qn ∈ F[z] where n ≥ 2 and p is irreducible. Then if
p | (q1 · · · qn), p | qi for some i ∈ [n].

Proof. We proceed by induction on n ≥ 2.

n = 2: Suppose q1, q2 ∈ F[z] and p | q1q2. If p | q1, we are finished. Otherwise, p, q1 are
relatively prime (if k is nonconstant and k | p, then k = p, but k - q1). By 4.3.8, there are
g1, g2 ∈ F[z] such that g1p+ g2q1 = 1. We then get

q2 = g1q2p+ g2q1q2.

As p|g1q2p and p|g2q1q2, we have p|q2.

n− 1⇒ n: We have p|(q1 · · · qn−1)qn, so by the case n = 2, either p|qn, in which case we are
finished, or p|q1 · · · qn−1, in which case we apply the induction hypothesis to get p|qi for some
i ∈ [n− 1].

Lemma 4.3.10. Suppose p, q, r ∈ F[z] with p 6= 0 such that pq = pr. Then q = r.

Proof. We have p(q − r) = 0. As LC(p(q − r)) = LC(p) LC(q − r), we must have that
LC(q − r) = 0, and q = r.
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Theorem 4.3.11 (Unique Factorization). Let p ∈ F[z] with deg(p) ≥ 1. Then there are
unique monic irreducible polynomials p1, . . . , pn and a unique constant λ ∈ F \ {0} such that

p = λp1 · · · pn = λ

n∏
i=1

pi.

Proof.

Existence: We proceed by induction on deg(p).

deg(p) = 1: This case is trivial as p/LC(p) is a monic irreducible polynomial and p = LC(p)(p/LC(p)).

deg(p) > 1: We assume the result holds for all polynomials of degree less than deg(p). If p is
irreducible, then so is p/LC(p), and we have p = LC(p)(p/LC(p)). If p is not irreducible,
there is are nonconstant polynomials q, r ∈ F[z] with deg(q), deg(r) < deg(p) such that
p = qr. As the result holds for q, r, we have that the result holds for p.

Uniqueness: Suppose

p = λ
n∏
i=1

pi = µ
m∏
j=1

qi

where all pi, qj’s are monic, irreducible polynomials. Then λ = µ = LC(p). Now pn divides
q1 · · · qm, so pn|qi for some i ∈ [m]. After relabeling, we may assume i = m. But then
pn = qm, so

p1 · · · pn−1pn = q1 · · · qm−1pn.

By 4.3.10, we have that p1 · · · pn−1 = q1 · · · qm−1, and we may repeat this process. Eventually,
we see that n = m and that the qj’s are at most a rearrangement of the pi’s.

Exercises

Exercise 4.3.12. Suppose p, q ∈ F[z] are relatively prime. Show that pn and qm are rela-
tively prime for n,m ∈ N.

Exercise 4.3.13. Let λ1, . . . , λn ∈ F be distinct and let µ1, . . . , µn ∈ F. Show that there is
a unique polynomial p ∈ F[z] of degree n−1 such that p(λi) = µi for all i ∈ [n]. Deduce that
a polynomial of degree d is uniquely determined by where it sends d+ 1 (distinct) points of
F.

Exercise 4.3.14 (Greatest Common Divisors and Least Common Multiples). Let p1, p2 ∈
F[z] with degree ≥ 1.

(1) Show that there is a unique monic polynomial q ∈ F[z] of minimal degree such that p1 | q
and p2 | q. This polynomial, usually denoted lcm(p1, p2), is called the least common multiple
of p1 and p2.

(2) Show that there is a unique polynomial q ∈ F[z] of maximal degree with LT(q) = 1 such
that q | p1 and q | p2. This polynomial, usually denoted gcd(p1, p2), is called the greatest
common divisor of p1 and p2.

57



4.4 Irreducible Polynomials

For this section, F will denote a field and K ⊂ F will be a subfield such that F is a finite
dimensional K-vector space.

Definition 4.4.1. λ ∈ F is called a root of p ∈ K[z] where deg(p) ≥ 1 if p(λ) = 0.

Definition-Proposition 4.4.2. Let λ ∈ F. The irreducible polynomial of λ over the field
K is the unique monic irreducible polynomial IrrK,λ ∈ K[z] of minimal degree such that
IrrK,λ(λ) = 0.

Proof.

Existence: Since λ ∈ F, λk ∈ F for all k ∈ Z≥0. The set
{
λk
∣∣k ∈ Z≥0

}
cannot be linearly

independent over K as F is a finite dimensional K-vector space, so there are scalars µ0, . . . , µn
with µn 6= 0 such that

n∑
i=0

µiλ
i = 0 =⇒

n∑
i=0

µi
µn
λi = 0.

Define p ∈ K[z] by

p(z) =
n∑
i=0

µi
µn
zi.

Then p(λ) = 0, so there is a monic polynomial in K[z] with λ as a root.
Pick a monic polynomial q ∈ K[z] of minimal degree such that q(λ) = 0. Then q is

irreducible (otherwise, there are k, r ∈ K[z] of degree ≥ 1 such that q = kr, so q(λ) =
k(λ)r(λ) = 0, so either k(λ) = 0 or r(λ) = 0, a contradiction as q was chosen of minimal
degree).

Uniqueness: Suppose p, q ∈ K[z] are both monic polynomials of minimal degree such that
p(λ) = q(λ) = 0. Then deg(p) = deg(q), so by the Euclidean algorithm, there are k, r ∈ K[z]
with deg(r) < deg(q) such that p = kq + r. Now p(λ) = k(λ)q(λ) + r(λ), so r(λ) = 0. This
is only possible if r = 0 as deg(r) < deg(q). Hence p = kq with deg(p) = deg(q), so k is a
constant. As p, q are both monic, k = 1, and p = q.

Corollary 4.4.3. Suppose λ ∈ F. Then λ ∈ K if and only if deg(IrrK,λ) = 1.

Corollary 4.4.4. Suppose λ ∈ F and dimK(F) = n. Then deg(IrrK,λ) ≤ n.

Lemma 4.4.5. Suppose λ ∈ F is a root of p ∈ K[x] where deg(p) ≥ 1. Then IrrK,λ |p.

Proof. The proof is similar to 4.4.2. Without loss of generality, we may assume p is monic (if
not, we replace p with p/LC(p). Now since deg(IrrK,λ) ≤ deg(p), by the Euclidean algorithm,
there are k, r ∈ K[z] with deg(r) < deg(IrrK,λ) such that p = k IrrK,λ +r. We immediately
see r(λ) = 0, so r = 0.
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Example 4.4.6. We know that C is a two dimensional real vector space. If λ ∈ C is a root
of p ∈ R[z], then λ is also a root of p. In fact, since p(λ) = 0, we have that p(λ) = p(λ) = 0
since the coefficients of p are all real numbers. Hence, the irreducible polynomial in R[z] for
λ ∈ C is given by

IrrR,λ(z) =

{
z − λ if λ ∈ R
(z − λ)(z − λ) = z2 − 2 Re(λ)z + |λ|2 if λ /∈ R.

Definition 4.4.7. The polynomial p ∈ F[z] splits (into linear factors) if there are λ, λ1, . . . , λn ∈
F such that

p(z) = λ
n∏
i=1

(z − λi).

Examples 4.4.8.

(1) Every constant polynomial trivially splits in F[z].

(2) The polynomial z2 + 1 splits in C[z] but not in R[z].

Definition 4.4.9. The field F is called algebraically closed if every p ∈ F[z] splits.

Exercises

4.5 The Fundamental Theorem of Algebra

Definition 4.5.1. A function f : C→ C is entire if there is a power series representation

f(z) =
∞∑
n=0

anz
n

where an ∈ C for all n ∈ Z≥0 that converges for all z ∈ C.

Examples 4.5.2.

(1) Every polynomial in C[z] is entire as its power series representation is itself.

(2) f(z) = ez is entire as

ez =
∞∑
j=0

zn

n!

(3) f(z) = cos(z) is entire as

cos(z) =
∞∑
j=0

(−1)n
z2n

(2n)!

(4) f(z) = sin(z) is entire as

sin(z) =
∞∑
j=0

(−1)n
z2n+1

(2n+ 1)!
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In order to prove the Fundamental Theorem of Algebra, we will need a theorem from
complex analysis. We state it without proof.

Theorem 4.5.3 (Liouville). Every bounded, entire function f : C→ C is constant.

Theorem 4.5.4 (Fundamental Theorem of Algebra). Every nonconstant polynomial in C[x]
has a root.

Proof. Let p be a polynomial in C[z]. If p has no roots, then 1/p is entire and bounded. By
Liouville’s Theorem, 1/p is constant, so p is constant.

Remark 4.5.5. Let p ∈ C[z] be a nonconstant polynomial, and let n = deg(p). Then by
4.5.4, p has a root, say µ1, so there is a p1 ∈ C[z] such that p(z) = (z − µ1)p1(z). If p1 is
nonconstant, then apply 4.5.4 again to see p1 has a root µ2, so there is a p2 ∈ C[z] with
deg(p2) = n− 2 such that p(z) = (z − µ1)(z − µ2)p2(z). Repeating this process, we see that
pn must be constant as a polynomial has at most n roots. Hence there are µ1, . . . , µn ∈ C
such that

p(z) = k
n∏
j=1

(z − µj) = k(z − µ1) · · · (z − µn) for some k ∈ C.

Hence every polynomial in C[z] splits.

Proposition 4.5.6. Every nonconstant polynomial p ∈ R[z] splits into linear and quadratic
factors.

Proof. We know p has a root λ ∈ C by 4.5.4, so by 4.4.6, Irrλ |p, i.e. there is a p2 ∈ R[z]
with deg(p2) < deg(p) such that p = Irrλ p2. If p2 is constant we are finished. If not,
we may repeat the process for p2 to get p3, and so forth. This process will terminate as
deg(pn) < deg(pn+1).

Exercises

4.6 The Polynomial Functional Calculus

Definition 4.6.1 (Polynomial Functional Calculus). Given a polynomial

p(z) =
n∑
j=0

λjz
j ∈ F[z],

and T ∈ L(V ), we can define an operator by

p(T ) =
n∑
j=0

λjT
j

with the convention that T 0 = I.
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Proposition 4.6.2. The polynomial functional calculus satisfies:

(1) (p+ q)(T ) = p(T ) + q(T ) for all p, q ∈ F[z] and T ∈ L(V ),

(2) (pq)(T ) = p(T )q(T ) = q(T )p(T ) for all p, q ∈ F[z] and T ∈ L(V ),

(3) (λp)(T ) = λp(T ) for all λ ∈ F, p ∈ F[z] and T ∈ L(V ), and

(4) (p ◦ q)(T ) = p(q(T )) for all p, q ∈ F[z] and T ∈ L(V ).

Proof. Exercise.

Exercises

Exercise 4.6.3. Prove 4.6.2.
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Chapter 5

Eigenvalues, Eigenvectors, and the
Spectrum

For this chapter, V will denote a vector space over F. We begin our study of operators in
L(V ) by studying the spectrum of an element T ∈ L(V ) which gives a lot of information
about the operator. We then discuss methods for calculating the spectrum sp(T ) when V is
finite dimensional, namely the characteristic and minimal polynomials. For A ∈ Mn(F), we
will identify LA ∈ L(Fn) with the matrix A.

5.1 Eigenvalues and Eigenvectors

Definition 5.1.1. Let T ∈ L(V ).

(1) The spectrum of T , denoted sp(T ), is
{
λ ∈ F

∣∣T − λI is not invertible
}

.

(2) If v ∈ V \ {0} such that Tv = λv for some λ ∈ F, then v is called an eigenvector of T
with corresponding eigenvalue λ.

(3) If λ is an eigenvalue of T , i.e. there is an eigenvector v of T with corresponding eigenvalue
λ, then Eλ =

{
w ∈ V

∣∣Tw = λw
}

is the eigenspace associated to the eigenvalue λ. It is clear
that Eλ is a subspace of V .

Proposition 5.1.2. Suppose V is finite dimensional. Then λ ∈ F is an eigenvalue of
T ∈ L(V ) if and only if λ ∈ sp(V ).

Proof. By 3.2.15, T − λI is not invertible if and only if T − λI is not injective. It is clear
that T − λI is not injective if and only if there is an eigenvector v of T with corresponding
eigenvalue λ.

Remark 5.1.3. Note that 5.1.2 depends on the finite dimensionality of V as 3.2.15 depends
on the finite dimensionality of V .

Examples 5.1.4.
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(1) Suppose A ∈ Mn(F) is an upper triangular matrix. Then sp(LA) is the set of distinct
values on the diagonal of A. This can be seen as A − λI is not invertible if and only if λ
appears on the diagonal of A.

(2) The eigenvalues of the operator

A =
1

2

(
1 1
1 1

)
∈Mn(F)

are 0, 1 corresponding to respective eigenvectors

1√
2

(
1
1

)
and

1√
2

(
1
−1

)
.

If we had an eigenvector associated to the eigenvalue λ, then

1

2

(
1 1
1 1

)(
a
b

)
=

1

2

(
a+ b
a+ b

)
= λ

(
a
b

)
,

so a + b = 2λa = 2λb. Thus λ(a − b) = 0, so either λ = 0, or a = b. In the latter case, we
have λ = 1 as a = b 6= 0. Hence sp(LA) = {0, 1}.

(3) The operator

B =

(
0 −1
1 0

)
∈M2(R)

has no eigenvalues. In fact, if(
0 −1
1 0

)(
a
b

)
=

(
−b
a

)
= λ

(
a
b

)
,

then we must have that λa = −b and λb = a, so −b = λa = λ2b, and (λ2 + 1)b = 0. Now
the first is nonzero as λ ∈ R, so b = 0. Thus a = 0, and B has no eigenvectors.

If instead we consider B ∈M2(C), then B has eigenvalues ±i corresponding to eigenvec-
tors

1√
2

(
1
±i

)
.

(4) Consider Lz ∈ L(F[z]) given by Lz(p(z)) = zp(z). Then the set of eigenvalues of Lz is
empty as zp(z) = λp(z) if and only if (z − λ)p(z) = 0 if and only if p = 0 for all λ ∈ F.

(5) Recall that a polynomial is really a sequence of elements of F which is eventually zero.
Now the operator Lz discussed above is really the right shift operator R on F[z]:

R(a0, a1, a2, a3, . . . ) = Lz(a0, a1, a2, a3, . . . ) = (0, a0, a1, a2, . . . ).

One can also define the left shift operator L ∈ L(F[z]) by

L(a0, a1, a2, a3, . . . ) = (a1, a2, a3, a4, . . . ).
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Note that LR = I, the identity operator in L(F[z]), but R is not surjective as the constant
polynomials are not hit, and L is not injective as the constant polynomials are killed. Thus
L,R are not invertible, so 0 ∈ sp(R) and 0 ∈ sp(L). Thus R is an example of an operator
with no eigenvalues, but 0 ∈ sp(R). In fact, the only eigenvalue of L is 0 as Lp = λp implies

deg(λp) = deg(Lp) =

{
deg(p)− 1 if deg(p) ≥ 2

−∞ if deg(p) < 2

which is only possible if λp = 0, and Lp = 0 only for the constant polynomials.

Definition 5.1.5. Suppose T ∈ L(V ). A subspace W ⊂ V is called T -invariant if TW ⊂ W .

Examples 5.1.6. Suppose T ∈ L(V ).

(1) (0) and V are the trivial T -invariant subspaces.

(2) ker(T ) and im(T ) are T -invariant subspaces.

(3) An eigenspace of T is a T -invariant subspace.

Notation 5.1.7. Given T ∈ L(V ) and a T -invariant subspace W ⊂ V , we define the
restriction of T to W in L(W ), denoted T |W , by T |W (w) = Tw for all w ∈ W . Note that
T |W is just the restriction of the function T : V → V to W with the codomain restricted as
well.

Lemma 5.1.8 (Polynomial Eigenvalue Mapping). Suppose p ∈ F[z], T ∈ L(V ), and v is an
eigenvector for T corresponding to λ ∈ sp(T ). Then p(T )v = p(λ)v, so p(λ) ∈ sp(p(T )).

Proof. Exercise.

Proposition 5.1.9. Let T ∈ L(V ), and suppose λ1, . . . , λn are eigenvalues of T . Suppose

vi ∈ Eλi for all i ∈ [n] such that
n∑
i=1

vi = 0. Then vi = 0 for all i ∈ [n]. Thus

n⊕
i=1

Eλi

is a well-defined subspace of V .

Proof. For i ∈ [n] define fi ∈ F[z] by

fi(z) =

∏
j 6=i

(z − λj)∏
j 6=i

(λi − λj)
.

Then

fi(λj) =

{
1 if i = j

0 else.
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By 5.1.8, for i ∈ [n],

0 = fi(T )0 = fi(T )
n∑
j=1

vj =
n∑
j=1

fi(T )vj =
n∑
j=1

fi(λj)vj = vi.

Remark 5.1.10. Eigenvectors corresponding to distinct eigenvalues are linearly independent,
so T can have at most dim(V ) many distinct eigenvalues.

Exercises

Exercise 5.1.11. We call two operators in S, T ∈ L(V ) similar, denoted S ∼ T , if there is an
invertible J ∈ L(V ) such that J−1SJ = T . The similarity class of S is

{
T ∈ L(V )

∣∣T ∼ S
}

.
Show

(1) ∼ defines a relation on L(V ) which is reflexive, symmetric, and transitive (see 1.1.6),

(2) distinct similarity classes are disjoint, and

(3) if S ∼ T , then sp(S) = sp(T ). Thus the spectrum is an invariant of a similarity class.

Exercise 5.1.12 (Finite Shift Operators). Let B = {v1, . . . , vn} be a basis of V . Find the
spectrum of the shift operator T ∈ L(V ) given by Tvi = vi+1 for i = 1, . . . , n − 1 and
Tvn = v1.

Exercise 5.1.13 (Infinite Shift Operators). Let

`1(N,R) =

{
(an)

∣∣∣∣a∈R for all n ∈ N and
n∑
n=1

|an| <∞

}
,

`∞(N,R) =
{

(an)
∣∣|an| ∈ [−M,M ] for all n ∈ N for some M ∈ N

}
, and

R∞ =
{

(an)
∣∣an ∈ R for all n ∈ N

}
.

In other words, `1(N,R) is the set of absolutely convergent sequences of real numbers,
`∞(N,R) is the set of bounded sequences of real numbers, and R∞ is the set of all sequences
of real numbers.

(1) Show that `1(N,R), `∞(N,R), and R∞ are vector spaces over R.

Hint: First show that R∞ is a vector space over R, and then show `1(N,R) and `∞(N,R) are
subspaces. To show `1(N,R) is closed under addition, use the fact that if (an) is absolutely
convergent, then we can add up the terms |an| in any order that we want and we will still
get the same number.

(2) Define S1 ∈ L(`1(N,R)), S∞ ∈ L(`∞(N,R)) and S0 ∈ L(R∞) by

Si(a1, a2, a3, . . . ) = (a2, a3, a4, . . . ) for i = 0, 1,∞.
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(a) Find the set of eigenvalues, denoted ESi for i = 0, 1,∞.

(b) Why is part (a) asking you to find the set of eigenvalues of Si and not the spectrum
of Si for i = 0, 1,∞?

Exercise 5.1.14. Let F be a real vector space. λ ∈ C \ R is called a psuedoeigenvalue of
T ∈ L(V ) if λ is an eigenvalue of TC ∈ L(VC). Suppose λ = a + ib is a psuedoeigenvalue of
T ∈ L(V ), and suppose u+ iv ∈ VC \ {0} such that TC(u+ iv) = λ(u+ iv). Set B = {u, v}.
Show

(1) W = span(B) ⊂ V is invariant for T ,

(2) B is a basis for W , and

(3) minT |W = IrrR,λ.

(4) Find [T |W ]B.

5.2 Determinants

In this section, we discuss how to take the determinant of a square matrix. The determinant
is a crude tool for calculating the spectrum of LA for A ∈ Mn(F) via the characteristic
polynomial which is defined in the next section. This method is only recommended for small
matrices, and it is generally useless for large matrices without the use of a computer. Even
then, one can only get numerical approximations to the eigenvalues.

Definition 5.2.1. A permutation on [n] is a bijection σ : [n]→ [n]. The set of all permuta-
tions on [n] is denoted Sn. Permutations are denoted(

1 · · · n
σ(1) · · · σ(n)

)
.

A permutation σ ∈ Sn is called a transposition if σ(i) = i for all but two distinct elements
j, k ∈ [n] and σ(j) = k and σ(k) = j. Note that the composite of two permutations in Sn is
a permutation in Sn.

Examples 5.2.2.

(1)

(2)

Definition 5.2.3. An inversion in σ ∈ Sn is a pair (i, j) ∈ [n] × [n] such that i < j and
σ(i) > σ(j). We call σ ∈ Sn odd if there are an odd number of inversions in σ, and we call σ
even if there are an even number of inversions in σ. Define the sign function sgn: Sn → {±1}
by sgn(σ) = 1 if σ is even and −1 if σ is odd.

Examples 5.2.4.
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(1) The identity permutation has sign 1 since it has no inversions, and a transposition has
sign −1 as it has only one inversion.

(2)

Definition 5.2.5. The determinant of A ∈Mn(F) is

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i).

Example 5.2.6. We calculate the determinant of the 2× 2 matrix

A =

(
a b
c d

)
∈M2(F).

There are two permutations in S2: the identity permutation and the transposition switching
1 and 2. Call these id, σ respectively. It is clear that id has no inversions and σ has one
inversion, so sgn(id) = 1 and sgn(σ) = −1. Hence

det(A) =

(
sgn(id)

n∏
i=1

Ai,id(i)

)
+

(
sgn(σ)

n∏
i=1

Ai,σ(i)

)
= A1,1A2,2+(−1)A1,2A2,1 = ad−bc ∈ F.

Proposition 5.2.7. For A ∈ Mn(F), we can calculate det(A) recursively. Let Ai,j ∈
Mn−1(F) be the matrix obtained from A by deleting the ith row and jth column. Then fixing
i ∈ [n], we have

det(A) =
n∑
j=1

(−1)i+jAi,j det(Ai,j).

This procedure is commonly referred to as taking the determinant of A by expanding along
the ith row of A. We may also take the determinant by expanding along the jth column of A.
Fixing j ∈ [n], we get

det(A) =
n∑
i=1

(−1)i+jAi,j det(Ai,j).

Proof.

FINISH: We proceed by induction on n.

n = 1: Obvious.

n− 1⇒ n: Expanding along the ith row and using the induction hypothesis, we see

n∑
j=1

(−1)i+jAi,j det(Ai,j) =
n∑
j=1

(−1)i+jAi,j
∑

σ∈Sn−1

sgn(σ)
n−1∏
k=1

(Ai,j)k,σ(k)

=
n∑
j=1

∑
σ∈Sn−1

(−1)i+jAi,j

(
sgn(σ)

n−1∏
k=1

(Ai,j)k,σ(k)

)
where [n− 1] is identified with

68



Corollary 5.2.8. If A ∈Mn(F) has a row or column of zeroes, then det(A) = 0.

Lemma 5.2.9. Let A ∈Mn(F).

(1) det(A) = det(AT ).

(2) If A is block upper triangular, i.e., there are square matrices A1, . . . , Am such that

A =

A1 ∗
. . .

0 Am

 ,

then

det(A) =
m∏
i=1

det(Ai).

Proof.

(1) This is obvious by 5.2.7 as taking the determinant of A along the ith row of A is the same
as taking the determinant of AT along the ith column of AT .

(2) We proceed by cases.

Case 1: Suppose m = 2. We proceed by induction on k where A1 ∈Mk(F).

k = 1: A1 ∈ M1(F), the result is trivial by taking the determinant along the first column as
A1,1 = A2 and A2,1 = 0.

k − 1⇒ k: Suppose A1 ∈ Mk(F) with k > 1. Then taking the determinant along the first
column, we have

Ai,1 =

(
(A1)

i,1 ∗
0 A2

)
for all i ≤ k,

so applying the induction hypothesis, we have det(Ai,1) = det((A1)
i,1) det(A2) for all i ≤ k.

Then as Ai,1 = 0 for all i > k, we have

det(A) =
k∑
i=1

(−1)1+iAi,1 det(Ai,1) =
k∑
i=1

(−1)i+1Ai,1 det((A1)
i,1) det(A2) = det(A1) det(A2).

Case 2: Suppose m > 2, and set

B1 =

A2 ∗
. . .

0 Am

 =⇒ A =

(
A1 ∗
0 B1

)
.

Applying case 1 gives det(A) = det(A1) det(B1). We may repeat this trick to peel off the
Ai’s to get

det(A) =
m∏
i=1

Ai.
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Corollary 5.2.10. If A is block lower triangular or block diagonal, then det(A) is the product
of the determinants of the blocks on the diagonal. If A is upper triangular, lower triangular,
or diagonal, then det(A) is the product of the diagonal entries.

Proposition 5.2.11. Suppose A ∈ Mn(F), and let E ∈ Mn(F) be an elementary matrix.
Then det(EA) = det(E) det(A).

Proof. There are four cases depending on the type of elementary matrix.

Case 1: If E = I, the result is trivial.

Case 2: We must show

(a) the determinant of the matrix E obtained by switching two rows of I is −1, and

(b) switching two rows of A switches the sign of det(A).

Note that the result is trivial if the two rows are adjacent by 5.2.7. To get the result if the
rows are not adjacent, we note that the interchanging of two rows can be accomplished by
an odd number of adjacent switches. If we want to switch rows i and j with i < j, we switch
j with j − 1, then j − 1 with j − 2, all the way to i + 1 with i for a total of j − i switches.
We then switch i + 1 with i + 2 as the old ith row is now in the (i + 1)th place, we switch
i + 2 with i + 3, all the way up to switching j − 1 with j for a total of j − i − 1 switches.
Hence, we switch a total of 2j − 2i− 1 adjacent rows, which is always an odd number, and
the result holds.

Case 3: We must show

(a) the determinant of the matrix E obtained from the identity by multiplying a row by a
nonzero constant λ is λ, and

(b) multiplying a row of A by a nonzero constant λ changes the determinant by multiplying
by λ.

We see (a) immediately holds from 5.2.9 as E is diagonal, and (b) immediately holds by
5.2.7 by expanding along the row multiplied by λ. If the ith row is multiplied by λ, then

det(EA) =
n∑
j=1

(−1)i+j(EA)i,j det((EA)i,j) =
n∑
j=1

(−1)i+jλAi,j det(Ai,j) = det(E) det(A)

as λ = det(E) and (EA)i,j = Ai,j as only the ith row differs between the two matrices.

Case 4: We must show

(a) the determinant of the matrix E obtained from the identity by adding a constant
multiple of one row to another row is 1, and

(b) adding a constant multiple of the ith row of A to the kth row of A with k 6= i does not
change the determinant of A.
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To prove this result, we need a lemma:

Lemma 5.2.12. Suppose A ∈Mn(F) has two identical rows. Then det(A) = 0.

Proof. We see from Case 2 that if we switch two rows of A, the determinant changes sign. As
A has two identical rows, switching these rows does not change the sign of the determinant,
so the determinant must be zero.

Once again, note (a) is trivial by 5.2.9 as E is either upper or lower triangular. To show
(b), we note that (EA)k,j = Ak,j for all j ∈ [n], so by 5.2.7

det(EA) =
n∑
j=1

(−1)k+j(EA)k,j det((EA)k,j) =
n∑
j=1

(−1)k+j(Ai,j + Ak,j) det(Ak,j)

=
n∑
j=1

(−1)i+jAi,j det(Ak,j)︸ ︷︷ ︸
det(B)

+
n∑
j=1

(−1)k+jAk,j det(Ak,j)︸ ︷︷ ︸
det(A)

= det(A)

by 5.2.12 as B is the matrix obtained from A by replacing the kth row with the ith row, so
two rows of B are the same, and det(B) = 0.

Theorem 5.2.13. A ∈Mn(F) is invertible if and only if det(A) 6= 0.

Proof. There is a unique matrix U in reduced row echelon form such that A = En · · ·E1U
for elementary matrices E1, . . . , En. By iterating 5.2.11, we have

det(A) = det(En) · · · det(E1) det(U),

which is nonzero if and only if det(U) 6= 0. Now det(U) 6= 0 if and only if U = I as U is in
reduced row echelon form, so det(A) 6= 0 if and only if A is row equivalent to I if and only
if A is invertible.

Proposition 5.2.14. Suppose A,B ∈Mn(F). Then det(AB) = det(A) det(B).

Proof. IfA is not invertible, thenAB is not invertible by 3.2.18, so det(AB) = det(A) det(B) =
0 by 5.2.13.

Now suppose A is invertible. Then there are elementary matrices E1, . . . , En such that
A = E1 · · ·En as A is row equivalent to I. By repeatedly applying 5.2.11, we get

det(AB) = det(E1 · · ·EnB) = det(E1) · · · det(En) det(B) = det(A) det(B).

Corollary 5.2.15. For A,B ∈Mn(F), det(AB) = det(BA).

Proposition 5.2.16.

(1) Suppose S ∈Mn(F) is invertible. Then det(S−1) = det(S)−1
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(2) Suppose A,B ∈Mn(F) and A ∼ B. Then det(A) = det(B).

Proof.

(1) By 5.2.14, we have

1 = det(I) = det(S−1S) = det(S−1) det(S).

(2) By 5.2.14 and (1),

det(A) = det(S−1BS) = det(S−1) det(B) det(S) = det(S−1) det(S) det(B) = det(B).

Proposition 5.2.17. Suppose A,B|inMn(F).

(1) trace(AB) = trace(BA).

(2) If A ∼ B, then trace(A) = trace(B).

Proof. Exercise.

Exercises

V will denote a finite dimensional vector space over F.

Exercise 5.2.18 (A Faithful Representation of Sn). Show that the symmetric group Sn can
be embedded into L(V ) where dim(V ) = n, i.e. there is an injective function Φ: Sn → L(V )
such that Φ(στ) = Φ(σ)Φ(τ) for all σ, τ ∈ Sn.

Hint: Use operators like T defined in 5.1.12.

Note: If G is a group, a function Φ: G → L(V ) such that Φ(gh) = Φ(g)Φ(h) is called a
representation of G. An injective representation is usually called a faithful representation.

5.3 The Characteristic Polynomial

For this section, V will denote a finite dimensional vector space over F.

Definition 5.3.1.

(1) For A ∈ Mn(F), define the characteristic polynomial of A, denoted charA ∈ F[z], by
charA(z) = det(zI − A). Note that charA ∈ F[z] is a monic polynomial of degree n.

(2) Let T ∈ L(V ). Define the characteristic polynomial of T , denoted charT ∈ F[z], by

charT (z) = det(zI − [T ]B)

where B is some basis for V . Note that this is well defined as if C is another basis of V ,
then [T ]B ∼ [T ]C by 3.4.13, so zI − [T ]B ∼ zI − [T ]C . Now we apply 5.2.16.
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Remark 5.3.2. Note that charA = charLA if A ∈Mn(F).

Examples 5.3.3.

(1) If A± ∈M2(F) is given by

A± =

(
0 ±1
1 0

)
,

we see that charA±(z) = det(zI − A±) = z2 ∓ 1.

(2)

Remark 5.3.4. If A ∼ B, then charA = charB.

Proposition 5.3.5. Let T ∈ L(V ). Then λ ∈ sp(T ) if and only if λ is a root of charT and
λ ∈ F.

Proof. This is immediate from 5.2.13 and 3.4.12.

Remark 5.3.6. 5.3.5 tells us that one way to find sp(T ) is to first pick a basis B of V , find
[T ]B, and then compute the roots of the polynomial

charT (z) = det(zI − [T ]B).

The problem with this technique is that it is usually very difficult to factor polynomials of
high degree. For example, there are quadratic, cubic, and quartic equations for calculating
roots of polynomials of degree less than or equal to 4, but there is no formula for finding
roots of polynomials with degree greater than or equal to 5. Hence, if dim(V ) ≥ 5, there is
no good way known to factor the characteristic polynomial.

Another problem is that it is very hard to calculate determinants without the use of
computers. Even with a computer, we can only calculate determinants to a certain degree of
accuracy, so we are still unsure of the spectrum of the matrix if the characteristic polynomial
obtained in the fashion can be factored.

Examples 5.3.7. We will calculate the spectrum for some operators.

(1)

(2)

Exercises

V will denote a finite dimensional vector space over F.

Exercise 5.3.8 (Roots of Unity). Suppose V is a finite dimensional vector space over C
with ordered basis B = (v1, . . . , vn), and let T ∈ L(V ) be the finite shift operator defined in
5.1.12. Compute charT (z) = det(zI − [T ]B), and relate your answer to 5.1.12.

Exercise 5.3.9. Compute the characteristic polynomial of
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(1) the operator LB ∈ L(Fn) where B =


λ 1 0

. . . . . .
. . . 1

0 λ

 ∈Mn(F) and λ ∈ F, and

(2) the operator LC ∈ L(Fn) where C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . . . . .
...

...
. . . 0 −an−2

0 1 −an−1

 ∈ Mn(F) and ai ∈ F for

all i ∈ [n− 1].

5.4 The Minimal Polynomial

For this section, V will denote a finite dimensional vector space over F.

Definition-Proposition 5.4.1. Recall that if V is finite dimensional, then L(V ) is finite
dimensional. For T ∈ L(V ), the set {

T n
∣∣n ∈ Z≥0

}
where T 0 = I cannot be linearly independent, so there is a unique monic polynomial p ∈ C[z]
of minimal degree ≥ 1 such that p(T ) = 0. This polynomial is called the minimal polynomial,
and it is denoted minT .

Proof. We must show the polynomial p is unique. If q ∈ C[z] is monic with deg(p) = deg(q),
by the Euclidean Algorithm 4.2.1, there are polynomials unique k, r ∈ C[z] such that p =
kq + r and deg(r) < deg(q). Since p(T ) = q(T ) = 0, we must also have that r(T ) = 0, so
r = 0 as p was chosen of minimal degree. Thus p = kq, and since deg(p) = deg(q), k must
be constant. Since p and q are both monic, the constant k must be 1.

Examples 5.4.2.

(1) If T = 0, we have that minT (z) = z as this polynomial is a linear polynomial which gives
the zero operator when evaluated at T .

(2) If T = I, we have that minT (z) = z−1 for similar reasoning as above (recall that 1(T ) = I,
i.e. the constant polynomial 1 evaluated at T is I).

(3) We have that minT is linear if and only if T = λI for some λ ∈ F.

Proposition 5.4.3. Let p ∈ F[z]. Then p(T ) = 0 if and only if minT | p.

Proof. It is obvious that if minT | p, then p(T ) = 0. Suppose p(T ) = 0. Since minT has
minimal degree such that minT (T ) = 0, we have deg(p) ≥ deg(minT ). By 4.2.1, there
are unique k, r ∈ C[z] with deg(r) < deg(minT ) and p = kminT +r. Then since p(T ) =
minT (T ) = 0, we have r(T ) = 0, so r = 0 as minT was chosen of minimal degree. Hence
minT | p.
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Proposition 5.4.4. For T ∈ L(V ), λ ∈ sp(T ) if and only if λ is a root of minT .

Proof. First, suppose λ ∈ sp(T ) corresponding to eigenvector v. Then

minT (T )v = minT (λ)v = 0,

so λ is a root of minT . Now suppose λ is a root of minT . Then (z − λ) divides minT (z), so
there is a p ∈ C[z] with minT (z) = (z − λ)np(z) for some n ∈ N such that λ is not a root of
p(z). By 5.4.3, p(T ) 6= 0 as minT - p, so there is a v such that w = p(T )v 6= 0. Now we must
have tha

0 = minT (T )v = (T − λI)np(T )v = (T − λI)nw.

Hence (T − λI)kw is an eigenvector for T corresponding to the eigenvalue λ for some k ∈
{0, . . . , n− 1}.

Corollary 5.4.5 (Existence of Eigenvalues). Suppose F = C and T ∈ L(V ). Then T has
an eigenvalue.

Proof. We know that minT ∈ C[z] has a root by 4.5.4. The result follows immediately by
5.4.4.

Remark 5.4.6. More generally, T ∈ L(V ) has an eigenvalue if V is a vector space over an
algebraically closed field.

Exercises

V will denote a finite dimensional vector space over F.

Exercise 5.4.7. Find the minimal polynomial of the following operators:

(1) The operator LA ∈ L(R4) where A =


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

.

(2) The operator LB ∈ L(Fn) where B =


λ 1 0

. . . . . .
. . . 1

0 λ

 ∈Mn(F) and λ ∈ F.

(3) The operator LC ∈ L(Fn) where C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . . . . .
...

...
. . . 0 −an−2

0 1 −an−1

 ∈ Mn(F) and ai ∈ F for

all i ∈ [n− 1].

(4) The finite shift operator T in 5.1.12.
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Chapter 6

Operator Decompositions

We begin with the easiest type of decomposition, which is matrix decomposition via idempo-
tents. We then discuss diagonalization and a generalization of diagonalization called primary
decomposition.

6.1 Idempotents

For this section, V will denote a vector space over F, and U,W will denote subspaces of V
such that V = U ⊕W . Please note that the results of this section are highly dependent on
the specific direct sum decomposition V = U ⊕W .

Definition 6.1.1. An operator E ∈ L(V ) is called idempotent if E2 = E ◦ E = E.

Examples 6.1.2.

(1) The zero operator and the identity operator are idempotents.

(2) Let A ∈Mn(F) be given by

A =
1

n

1 · · · 1
...

...
1 · · · 1

 ,

and let E = LA. Then E2 = E as A2 = A.

Facts 6.1.3. Suppose V is finite dimensional and E ∈ L(V ) is an idempotent.

(1) As E2 = E, so we know E2 − E = 0. If E = 0, then we know minE(z) = p1(z) = z, and
if E = I, then minE(z) = p2(z) = z − 1, both of which divide p3(z) = z2 − z. If E 6= 0, I,
then we have that p1(E) 6= 0 and p2(E) 6= 0, but p3(E) = 0. As E 6= λI for any λ ∈ F, we
have deg(minE) ≥ 2, so minE = p3.

(2) We see that if E is a nontrivial idempotent, i.e. E 6= 0, I, then sp(E) = {0, 1} as these
are the only roots of z2 − z.
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Definition-Proposition 6.1.4. Define EU : V → V by EU(v) = u if v = u+w with u ∈ U
and w ∈ W . Note that EU is well defined since by 2.2.8, for each v ∈ V there are unique
u ∈ U and w ∈ W such that v = u+ w. Then

(1) EU is a linear operator,

(2) E2
U = EU ,

(3) ker(EU) = W , and

(4) im(EU) =
{
v ∈ V

∣∣EU(v) = v
}

= U .

Thus EU is an idempotent called the idempotent onto U along W . Note that we also have
EW ∈ L(V ), the idempotent onto W along U which satisfies conditions (1)-(4) above after
switching U and W . The operators EU , EW ∈ L(V ) satisfy

(5) EWEU = 0 = EUEW , and

(6) I = EU + EW .

Proof.

(1) Let v = u1 + w1, v2 = u2 + w2, and λ ∈ F where ui ∈ U and wi ∈ W for i = 1, 2. Then

EU(λv1 + v2) = EU((λu1 + u2)︸ ︷︷ ︸
∈U

+ (λw1 + w2)︸ ︷︷ ︸
∈W

) = λu1 + u2 = λEU(v1) + EU(v2).

(2) If v = u+ w, then E2
Uv = EUEU(v) = EUu = u = EUv, so E2

U = EU .

(3) EU(v) = 0 if and only if the U -component of V is zero if and only if v ∈ W .

(4) EU(v) = v if and only if the W -component of v is zero if and only if v ∈ U . This shows
U =

{
v ∈ V

∣∣EU(v) = v
}
⊆ im(EU). Suppose now that v ∈ im(EU). Then there is an x ∈ V

such that EU(x) = v. By (2), v = EUx = E2
Ux = EUv, so v ∈

{
v ∈ V

∣∣EU(v) = v
}

= U .

(5) If v = u+ w, we have

EWEU(v) = EWEU(u+ w) = EW (u) = 0 = EU(w) = EUEW (u+ w) = EUEWv.

Hence EWEU = 0 = EUEW .

(6) If v = u+ w, we have

(EU + EW )v = EU(u+ w) + EW (u+ w) = u+ w = v.

Hence EU + EW = I.

Remark 6.1.5. It is very important to note that EU is dependent on the complementary
subspace W . For example, if we set

U = span

{(
1
0

)}
⊂ F2, W1 = span

{(
0
1

)}
⊂ F2, and W2 = span

{(
1
1

)}
⊂ F2,
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then U ⊕W1 = V = U ⊕W2. Applying 6.1.4 using W1, we have that

EU

(
1
1

)
=

(
1
0

)
,

but using W2, we would have

EU

(
1
1

)
=

(
0
0

)
.

Proposition 6.1.6. Suppose E ∈ L(V ) with E = E2. Then

(1) I − E ∈ L(V ) satisfies (I − E)2 = (I − E),

(2) im(E) =
{
v ∈ V

∣∣Ev = v
}

,

(3) V = ker(E)⊕ im(E),

(4) E is the idempotent onto im(E) along ker(E), and

(5) I − E is the idempotent onto ker(E) along im(E).

Proof.

(1) (I − E)2 = I − 2E + E2 = I − 2E + E = I − E.

(2) It is clear
{
v ∈ V

∣∣Ev = v
}
⊆ im(E). If v ∈ im(E), then there is a u ∈ V such that

Eu = v. Then v = Eu = E2u = Ev.

(3) Suppose v ∈ ker(E)∩im(E). Then by (2), v = Ev = 0, so v = 0, and ker(E)∩im(E) = (0).
Let v ∈ V , and set u = Ev and w = v−u. Then u ∈ im(E) and Ew = Ev−Eu = u−u = 0,
so w ∈ ker(E), and v = w + u ∈ ker(E) + im(E).

(4) This follows immediately from 6.1.4.

(5) We have that ker(I −E) = im(E) and im(I −E) = ker(E), so the result follows from (4)
(or 6.1.4).

Exercises

Exercise 6.1.7 (Idempotents and Direct Sum). Show that

V =
n⊕
i=1

Wi

for nontrivial subspaces Wi ⊂ V for i ∈ [n] if and only if there are nontrivial idempotents
Ei ∈ L(V ) for i ∈ [n] such that

(1)
n∑
i=1

Ei = I and

(2) EiEj = 0 for all i 6= j.

Note: In this case, we can define Ti,j ∈ L(Wj,Wi) by Ti,j = EiTEj, and note that

T̃ = (Ti,j) ∈ L(W1⊕ · · ·⊕Wn) ∼= L(V ).
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6.2 Matrix Decomposition

Definition 6.2.1. Let U,W be vector spaces. The external direct sum of U and W is the
vector space

U⊕W =

{(
u
w

) ∣∣∣∣u ∈ U and w ∈ W
}

where addition and scalar multiplication are defined in the obvious way:(
u1

w1

)
+

(
u2

w2

)
=

(
u1 + u2

w1 + w2

)
and λ

(
u
w

)
=

(
λu
λw

)
for all u, u1, u2 ∈ U , w,w1, w2 ∈ W , and λ ∈ F.

Notation 6.2.2 (Matrix Decomposition). Since V = U ⊕W , there is a canonical isomor-
phism V = U ⊕W ∼= U⊕W given by

u+ w 7−→
(
u
w

)
with obvious inverse.

If T ∈ L(V ), then by 6.1.4,

T = (EU + EW )T (EU + EW ) = EUTEU + EUTEW + EWTEU + EWTEW .

If we set T1 = EUTEU ∈ L(U), T2 = EUTEW ∈ L(W,U), T3 = EWTEU ∈ L(U,W ), and
T4 = EWTEW ∈ L(W ), define the operator

T̃ =

(
T1 T2

T3 T4

)
: U⊕W → U⊕W.

by matrix multiplication, i.e. if u ∈ U and w ∈ W , define(
T1 T2

T3 T4

)(
u
w

)
=

(
T1u+ T2w
T3u+ T4w

)
The map given by T 7→ T̃ is an isomorphism

L(V ) ∼=
{(

A B
C D

) ∣∣∣∣A ∈ L(U), B ∈ L(W,U), C ∈ L(U,W ), and D ∈ L(W )

}
where addition and scalar multiplication are defined in the obvious way:(

A B
C D

)
+

(
A′ B′

C ′ D′

)
=

(
A+ A′ B +B′

C + C ′ D +D′

)
and λ

(
A B
C D

)
=

(
λA λB
λC λD

)
for all A,A′ ∈ L(U), B,B′ ∈ L(W,U), C,C ′ ∈ L(U,W ), D,D′ ∈ L(W ), and λ ∈ F.

This decomposition can be extended to the case when

V =
n⊕
i=1

Wi

for subspaces Wi ⊂ V for i = 1, . . . , n.
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Exercises

Exercise 6.2.3. Suppose V = U ⊕W . Verify the claims made in 6.2.2, i.e.

1. V ∼= U⊕W and

2. L(V ) ∼=
{(

A B
C D

) ∣∣∣∣A ∈ L(U), B ∈ L(W,U), C ∈ L(U,W ), and D ∈ L(W )

}
.

Exercise 6.2.4.

Exercise 6.2.5. Suppose T ∈ L(V ), V = U ⊕W for subspaces U,W , and

T̃ =

(
A B
0 C

)
where A ∈ L(U), B ∈ L(W,U), and C ∈ L(W ) as in 6.2.2. Show that sp(T ) = sp(A)∪sp(C).

6.3 Diagonalization

For this section, V will denote a finite dimensional vector space over F. The main results of
this section are characterization of when an operator T ∈ L(V ) is diagonalizable in terms of
its associated eigenspaces and in terms of its minimal polynomial.

Definition 6.3.1. Let T ∈ L(V ). T is diagonalizable if there is a basis of V consisting of
eigenvectors of T . A matrix A ∈Mn(F) is called diagonalizable if LA is diagonalizable.

Examples 6.3.2.

(1) Every diagonal matrix is diagonalizable.

(2) There are matrices which are not diagonalizable. For example, consider

A =

(
0 1
0 0

)
.

We see that zero is the only eigenvalue of LA, but dim(E0) = 1. Hence there is not a basis
of R2 consisting of eigenvectors of LA.

Remark 6.3.3. T ∈ L(V ) is diagonalizable if and only if there is a basis B of V such that
[T ]B is diagonal.

Theorem 6.3.4. T ∈ L(H) is diagonalizable if and only if

V =
m⊕
i=1

Eλi

where sp(T ) = {λ1, . . . , λm}.
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Proof. Certainly

W =
m⊕
i=1

Eλi

is a subspace of V by 5.1.9.
Suppose T is diagonalizable. Then there is a basis of V consisting of eigenvectors of T .

Thus W = V as every element of V can be written as a linear combination of eigenvectors
of T .

Suppose now that V = W . Let Bi be a basis for Eλi for i = 1, . . . ,m. Then by 2.4.13,

B =
m⋃
i=1

Bi

is a basis for B. Since B consists of eigenvectors of T , T is diagonalizable.

Corollary 6.3.5. Let sp(T ) = {λ1, . . . , λn} and let ni = dim(Eλi). Then T ∈ L(V ) is

diagonalizable if and only if
n∑
i=1

ni = dim(V ).

Remark 6.3.6. Suppose A ∈ Mn(F) is diagonalizable. Then there is a basis {v1, . . . , vn} of
Fn consisting of eigenvectors of LA corresponding to eigenvalues λ1, . . . , λn. Form the matrix

S = [v1|v2| · · · |vn],

which is invertible by 3.2.15, and note that

S−1AS = S−1A[v1| · · · |vn] = S−1[λ1v1| · · · |λnvn] = S−1Sdiag(λ1, . . . , λn) = diag(λ1, . . . , λn)

where D = diag(λ1, . . . , λn) is the diagonal matrix in Mn(F) whose (i, i)th entry is λi. Hence,
there is an invertible matrix S such that S−1AS = D, a diagonal matrix. This is the usual
way diagonalizability is presented in a matrix theory course. We show the converse holds,
so that this definition of diagonalizability is equivalent to the one given in these notes.

Suppose S−1AS = D, a diagonal matrix for some invertible S ∈ Mn(F). Then we know
CS(S) = Fn by 3.2.18, and if B = {v1, . . . , vn} are the columns of S, we have

[Av1| · · · |Avn] = AS = SD = [D1,1v1| . . . |Dn,nλn],

so B is a basis of Fn consisting of eigenvectors of LA, and A is diagonalizable.

Exercises

Exercise 6.3.7. Suppose T ∈ L(V ) is diagonalizable and W ⊂ V is a T -invariant subspace.
Show T |W is diagonalizable.

Exercise 6.3.8. Suppose V is finite dimensional. Let S, T ∈ L(V ) be diagonalizable. Show
that S, T ∈ L(V ) commute if and only if S, T are simultaneously diagonalizable, i.e. there
is a basis of V consisting of eigenvectors of both S and T .

Hint: First show that the eigenspaces Eλ of T are S-invariant. Then show Sλ = S|Eλ ∈ L(Eλ)
is diagonalizable for all λ ∈ sp(T ).

82



6.4 Nilpotents

Definition 6.4.1.

(1) An operator N ∈ L(V ) is called nilpotent if Nn = 0 for some n ∈ N. We say N is
nilpotent of order n if n is the smallest n ∈ N such that Nn = 0.

Examples 6.4.2.

(1) The matrix

A =

(
0 1
0 0

)
is nilpotent of order 2. In fact,

An =


0 1 0

. . . . . .
. . . 1

0 0

 ∈Mn(F)

is nilpotent of order n for all n ∈ N.

(2) The block matrix

N =

(
0 B
0 0

)
where 0, B ∈Mn(F) for some n ∈ N is nilpotent of order 2 in M2n(F).

Exercises

6.5 Generalized Eigenvectors

For this section, V will denote a finite dimensional vector space over F. This main result of
this section is Theorem 12 of Section 6.8 in [3]

Definition 6.5.1. Let T ∈ L(V ), and suppose p ∈ F[z] is a monic irreducible factor of minT .

(1) There is a maximal m ∈ N such that pm | minT . Define Kp = ker(p(T )m).

(2) Define Gp =
{
v ∈ V

∣∣p(T )nv = 0 for some n ∈ N
}

.

(3) If deg(p) = 1, then p(z) = z − λ for some λ ∈ sp(T ) by 5.4.4, and we set Gλ = Gp. In
this case, elements of Gλ \{0} are called generalized eigenvectors of T corresponding the the
eigenvalue λ. We say the multiplicity of λ is Mλ = dim(Gλ).

Remarks 6.5.2.

(1) Note that Gp and Kp are both T -invariant subspaces of V .
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(2) For λ ∈ sp(T ), there can be most Mλ linearly independent eigenvectors corresponding to
the eigenvalue λ as Eλ ⊂ Gλ.

Examples 6.5.3.

(1) Every eigenvector of T ∈ L(V ) is a generalized eigenvector of T .

(2) Suppose

A =

(
0 1
0 0

)
.

We saw earlier that A has a one eigenvalue, namely zero, and that dim(E0) = 1 so A is not
diagonalizable. However, we see that A2 = 0, so every v ∈ F2 is a generalized eigenvector
corresponding to the eigenvalue 0.

(3) Let B ∈M4(R) be given by

B =


0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

 .

We calculate Gp for all monic irreducible p | minLB . First, we calculate charB. We see that
B − λI is block upper triangular, so

charB(z) = det(zI −B) =

∣∣∣∣∣∣∣∣
z 1 −1 0
−1 z 0 −1
0 0 z 1
0 0 −1 z

∣∣∣∣∣∣∣∣ =

∣∣∣∣ z 1
−1 z

∣∣∣∣ ∣∣∣∣ z 1
−1 z

∣∣∣∣ = (z2 + 1)2.

We claim charB = minLB . Note that

(z2 + 1)|B = B2 + I =


−1 0 0 −2
0 −1 2 0
0 0 −1 0
0 0 0 −1

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


0 0 0 −2
0 0 2 0
0 0 0 0
0 0 0 0

 ,

so we see immediately that (B2 + I)2 = 0. We now have a candidate for minLB . Set
p(z) = (z2 + 1)2. As p(B) = 0, we have that minLB | p, but as the only monic irreducible
factor of p is q(z) = z2 +1 and q(B) 6= 0, we must have that minLB = p. Hence Kp = Gp = V
as p(B)2v = 0v = 0 for all v ∈ V .

Remark 6.5.4. If T ∈ L(V ) is nilpotent, then every v ∈ V \ {0} is a generalized eigenvector
of T corresponding to the eigenvalue zero.

Lemma 6.5.5. Let T ∈ L(V ), and suppose p, q ∈ F[z] are two distinct monic irreducible
factors of minT .

(1) Gp ∩Gq = (0).
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(2) q(T )|Gp is bijective.

Proof.

(1) Suppose v ∈ Gp ∩Gq. Then there are n,m ∈ N such that p(T )nv = 0 = q(T )mv. But as
pn, qm are relatively prime, by 4.3.8, there are f, g ∈ F[z] such that fpn + gqm = 1. Thus,

v = 1(T )v = f(T )p(T )nv + g(T )q(T )mv = 0,

and we are finished.

(2) First, we note that Gp is T -invariant, so it is q(T )-invariant. Next, suppose q(T )v = 0 for
some v ∈ Gp. Then v ∈ Gp ∩Gq = (0) by (1), so v = 0. Thus q(T )|Gp is injective and thus
bijective by 3.2.15.

Proposition 6.5.6. Let T ∈ L(V ), and suppose p ∈ F[z] is a monic irreducible factor of
minT . Then Kp = Gp.

Proof. Certainly Kp ⊂ Gp. Let m be the multiplicity of p, and let f be the unique monic
polynomial such that minT = fpm. We know Gp is f(T )-invariant, and as f = q1 · · · qm for
monic irreducible qi 6= p which divide minT for all i ∈ [m], by 6.5.5, qi(T ) is bijective, and
thus so is

f(T )|Gp = (q1 · · · qm)(T )|Gp = (q1(T )|Gp) · · · (qm(T )|Gp).

Thus, if x ∈ Gp, then there is a y ∈ Gp such that f(T )y = x, so

0 = minT (T )y = (fpm)(T )y = p(T )mf(T )y = p(T )mx,

and x ∈ Kp.

Exercises

6.6 Primary Decomposition

Theorem 6.6.1 (Primary Decomposition). Suppose T ∈ L(V ), and suppose

minT = pr11 · · · prnn

where the pj ∈ F[z] are distinct irreducible polynomials for i ∈ [n]. Then

(1) V =
n⊕
i=1

Kpi =
n⊕
i=1

Gpi and

(2) If Ti = T |Kpi ∈ L(Kpi) for i ∈ [n], minTi = prij .

Proof.
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(1) For i ∈ [n], set

fi =
minT
prii

=
∏
j 6=i

p
rj
j ,

and note that minT |fifj for all i 6= j. The fi’s are relatively prime, so there are polynomials
gi ∈ F[z] such that

n∑
i=1

figi = 1.

Set hi = figi for i ∈ [n] and Ei = hi(T ). First note that

n∑
i=1

Ei =
n∑
i=1

hi(T ) =

(
n∑
i=1

hi

)
(T ) = q(T ) = I

where q ∈ F[z] is the constant polynomial given by q(z) = 1. Moreover,

EiEj = hi(T )hj(T ) = (hihj)(T ) = (gigjfifj)(T ) = 0

by 5.4.3 as minT |fifj. Hence the Ei’s are idempotents:

Ej = EjI = Ej

(
n∑
i=1

Ei

)
=

n∑
i=1

EjEi = E2
j .

Since they sum to I, they corrspond to a direct sum decomposition of V :

V =
n⊕
i=1

im(Ei).

It remains to show im(Ei) = Kpi . If v ∈ im(Ei), then v = Eiv, so

pi(T )riv = pi(T )riEiv = pi(T )rihi(T )v = (prii figi)(T )v = (minT gi)(T )v = 0.

Hence v ∈ Kpi and im(Ei) ⊂ Kpi . Now suppose v ∈ Kpi . If j 6= i, then fjgj(T )v = 0 as
prii |fj. Thus Ejv = hj(T )v = (fjgj)v = 0, and

Eiv =

(
n∑
j=1

Ejv

)
=

(
n∑
j=1

Ej

)
v = Iv = v.

Hence v ∈ im(Ei), and Kpi ⊆ im(Ei).

(2) Since pi(Ti)
ri ∈ L(Kpi) is the zero operator, we have that minTi |(pi)ri . Conversely, if

g ∈ F[z] such that g(Ti) = 0, then g(T )fi(T ) = 0 as fi(T ) is only nonzero on Kpi , but
g(T ) = 0 on Kpi . That is, if v ∈ V , then by (1), we can write

v =
n∑
j=1

vj where vj ∈ Kpj for all j ∈ [n],

86



and we have that

g(T )fi(T )v = g(T )fi(T )
n∑
j=1

vj = g(T )
n∑
j=1

fi(T )vj = g(T )vi = 0.

Hence minT |gfi, and prii fi divides gfi. This implies prii |g, so minTi = prii .

Corollary 6.6.2. V =
⊕

λ∈sp(T )

Gλ if and only if minT splits (into linear factors).

Corollary 6.6.3. T ∈ L(V ) is diagonalizable if and only if minT splits into distinct linear
factors in F[z], i.e.

minT (z) =
∏

λ∈sp(T )

(z − λ).

Proof. Suppose T is diagonalizable, and set

p(z) =
∏

λ∈sp(T )

(z − λ).

We claim p = minT , which will imply minT splits into distinct linear factors in F[z]. By
6.3.4,

V =
⊕

λ∈sp(T )

Eλ.

Let v ∈ V . Then by 2.2.8, there are unique vλ ∈ Eλ for each λ ∈ sp(T ) such that

v =
∑

λ∈sp(T )

vλ,

so it is clear that p(T )v = 0, and p(T ) = 0. Furthermore, as (z−λ)|minT (z) for all λ ∈ sp(T )
by 5.4.4, p = minT .

Suppose now that

minT (z) =
∏

λ∈sp(T )

(z − λ).

Then by 6.6.1, we have that

V =
⊕

λ∈sp(T )

ker(T − λI) =
⊕

λ∈sp(T )

Eλ.

Hence T is diagonalizable by 6.3.4.

Exercises
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Chapter 7

Canonical Forms

For this chapter, V will denote a finite dimensional vector space over F. We discuss the
rational canonical form and the Jordan canonical form. Along the way, we prove the Cayley-
Hamilton Theorem which relates the characteristic and minimal polynomials of an operator.
We then will show to what extent these canonical forms are unique. Finally, we discuss the
holomorphic functional calculus which is an application of the Jordan canonical form.

7.1 Cyclic Subspaces

Definition 7.1.1. Let p ∈ F[z] be the monic polynomial given by

p(z) = tn +
n−1∑
i=0

aiz
i.

Then the companion matrix for p is the matrix given by
0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . . . . .
...

...
. . . 0 −an−2

0 1 −an−1


Examples 7.1.2.

(1) Suppose p(z) = z − λ. Then the companion matrix for p is (λ) ∈M1(F).

(2) Suppose p(z) = z2 + 1 ∈M2(F). Then the companion matrix for p is(
0 −1
1 0

)
.
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(3) If p(z) = zn, then the companion matrix for p is
0 0

1
. . .
. . . . . .

0 1 0


Proposition 7.1.3. Let A ∈ Mn(F) be the companion matrix of p ∈ F[z]. Then charA =
minA = p.

Proof. The routine exercise of checking that p = charA and p(A) = 0 are left to the reader.
Note that if {e1, . . . , en} is the standard basis of Fn, we have that Aei = ei+1 for i ∈ [n− 1],
so
{
Aie1

∣∣i = 0, . . . , n− 1
}

is linearly independent. Thus deg(minA) ≥ n as q(A)e1 6= 0 for
all nonzero q ∈ F[z] with deg(q) < n. As deg(p) = n, p is a monic polynomial of least degree
such that p(A) = 0, and thus p = minA.

Definition 7.1.4. Suppose T ∈ L(V ).

(1) For v ∈ V , the T -cyclic subspace generated by v is ZT,v = span
{
T nv

∣∣n ∈ Z≥0

}
.

(2) A subspace W ⊂ V is called T -cyclic if there is a w ∈ W such that W = ZT,w. This w is
called a T -cyclic vector for W .

Examples 7.1.5.

(1) If A ∈Mn(F) is a companion matrix for p ∈ F[z], then Fn is LA-cyclic with cyclic vector
e1 as Aei = ei+1 for all i ∈ [n− 1].

(2)

Remarks 7.1.6.

(1) Every T -cyclic subspace is T -invariant. In fact, if w ∈ ZT,v, then there is an n ∈ N and
there are scalars λ0, . . . , λn ∈ F such that

w =
n∑
i=0

λiT
iv, so Tw =

n∑
i=0

λiT
i+1v ∈ ZT,v.

(2) Suppose W is a T -invariant subspace and w ∈ W . Then ZT,w ⊂ W as T iw ∈ W for all
i ∈ N.

Proposition 7.1.7. Suppose v ∈ V \{0}. There there is an n ∈ Z≥0 such that
{
T iv
∣∣i = 0, . . . , n

}
is a basis for ZT,v.

Proof. As V is finite dimensional, the set
{
T iv
∣∣i ∈ Z≥0

}
is linearly dependent, so we can

pick a maximal n ∈ Z≥0 such that B =
{
T iv
∣∣i = 0, . . . , n

}
is linearly independent. We

claim that Tmv ∈ span(B) for all m > n so B is the desired basis. We prove this claim by
induction on m. The base case is m = n+ 1.
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m = n+ 1: We already know T n+1v ∈ span(B) as n was chosen to be maximal. Hence there
are scalars λ0, . . . , λn ∈ F such that

T n+1v =
n∑
i=0

λiT
iv.

m⇒ m+ 1: Suppose now that T iv ∈ span(B) for all i = 0, . . . ,m. Then

Tm+1v = Tm−nT n+1v = Tm−n
n∑
i=0

λiT
iv =

n∑
i=0

λiT
m−n+iv ∈ span(B)

by the induction hypothesis.

Definition 7.1.8. Suppose W ⊂ V is a nontrivial T -cyclic subspace of V . Then a T -cyclic
basis of W is a basis of the form {w, Tw, . . . , T nw} for some n ∈ Z≥0. We know such a basis
exists by 7.1.7. If W = ZT,v, then the T -cyclic basis associated to v is denoted BT,v.

Examples 7.1.9.

(1) If A ∈ Mn(F) is a companion matrix for p ∈ F[z], then the standard basis for Fn is an
LA-cyclic basis. In fact, Fn = ZLA,e1 , and the standard basis is equal to BLA,e1 .

(2)

Proposition 7.1.10. Suppose T ∈ L(V ), and suppose V is T -cyclic.

(1) Let B be a T -cyclic basis for V . Then [T ]B is the companion matrix for minT .

(2) deg(minT ) = dim(V ).

Proof.

(1) Let n = dim(V ). We know that [T ]B is a companion matrix for some polynomial p ∈ F[z]
as B = {v, Tv, . . . , T n−1v}, and

[T ]B =

[
[Tv]B

∣∣∣∣[T 2v]B

∣∣∣∣ · · · ∣∣∣∣[T nv]B

]
=


0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . . . . .
...

...
. . . 0 −an−2

0 1 −an−1


where

T nv = −
n−1∑
i=0

aiT
iv and p(z) = zn +

n−1∑
i=1

aiz
i.

Now minL[T ]B
= minT = p by 7.1.3.

(2) This follows immediately from (1).
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Lemma 7.1.11. Suppose p is a monic irreducible factor of minT for T ∈ L(V ), and d =
deg(p). Suppose that v ∈ V \ {0} and m ∈ N is minimal with p(T )mv = 0. Then BT,v ={
T iv
∣∣i = 0, . . . , dm− 1

}
(so ZT,v has dimension d).

Proof. Let W = ZT,v, and note that W is a T -invariant subspace. Set S = T |W , and note
that p(T )mv = 0 implies that p(T )mw = 0 for all w ∈ W . Hence p(S)m = 0, and minS | pm
by 5.4.3. But p is irreducible, so minS = pk for some k ≤ m, but as p(T )kv 6= 0 for all k < m,
we must have minS = pm. As W is S-cyclic, we must have that

dm = deg(pm) = deg(minS) = dim(W )

by 7.1.10, so |BT,v| = dm. The result now follows by 7.1.7.

Exercises

Exercise 7.1.12. Let T ∈ L(V ) with minT = pm for some monic irreducible p ∈ F[z] and
some m ∈ N. Show the following are equivalent:

(1) V is T -cyclic,

(2) deg(minT ) = dim(V ), and

(3) minT = charT .

7.2 Rational Canonical Form

The proof of the main theorem in this section is adapted from [2].

Definition 7.2.1. Let T ∈ L(V ).

(1) Subspaces Z1, . . . , Zn are called a rational canonical decomposition of V for T if

V =
n⊕
i=1

Zi,

Zi is T -cyclic for all i ∈ [n], and Zi ⊂ Kpi for some monic irreducible pi | minT for all i ∈ [n].

(2) A basis B of V is called a rational canonical basis for T if B is the disjoint union of
nonempty sets Bi, denoted

B =
n∐
i=1

Bi,

such that each Bi is a T -cyclic basis for span(Bi) ⊂ Kpi for some monic irreducible pi | minT
for all i ∈ [n].

(3) The matrix [T ]B is called a rational canonical form of T if B is a rational canonical basis
for T .
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(4) The matrix A ∈ Mn(F) is said to be in rational canonical form if the standard basis of
Fn is a rational canonical basis for LA.

Remark 7.2.2. Note that if B is a rational canonical basis for T , then [T ]B is a block diagonal
matrix such that each block is a companion matrix for a polynomial q ∈ F[z] of the form pm

where p ∈ F[z] is monic and irreducible and m ∈ N.

Proposition 7.2.3. Suppose T ∈ L(V ) such that minT = pm for some monic, irreducible
p ∈ F[z] and some m ∈ N. Suppose v1, . . . , vn ∈ V such that

S1 =
n∐
i=1

BT,wi

is linearly independent so that

W =
n⊕
i=1

ZT,wi

is a subspace of V . For each i ∈ [n], Suppose there is vi ∈ V such that p(T )vi = wi, i.e.
wi ∈ im(p(T )) for all i ∈ [n]. Then

S2 =
n∐
i=1

BT,vi

is linearly independent.

Proof. Set Zi = ZT,wi , Ti = T |Zi , and mi = |BT,vi | for each i ∈ [n]. Suppose

n∑
i=1

mi∑
j=1

λi,jT
jvi = 0.

For i ∈ [n], let

fi(z) =

mi∑
j=1

λi,jz
j so that 0 =

n∑
i=1

fi(T )vi.

Applying p(T ), we get

0 = p(T )
n∑
i=1

fi(T )vi =
n∑
i=1

fi(T )p(T )vi =
n∑
i=1

fi(T )wi.

Now as fi(T )wi ∈ Zi and W is a direct sum of the Zi’s, we must have fi(T )wi = 0 for all
i ∈ [n]. Hence fi(Ti) = 0 on Zi, and minTi | fi. Since minT (Ti) = 0, we must have that
minTi | minT , so minTi = pk for some k ≤ m. Hence p|fi for all i ∈ [n]. Let gi ∈ F[z] such
that pgi = fi for all i ∈ [n]. Then

n∑
i=1

fi(T )vi =
n∑
i=1

gi(T )p(T )vi =
n∑
i=1

gi(T )wi = 0,
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so once again, gi(T )wi = 0 for all i ∈ [n] as W is the direct sum of the Zi’s and gi(T )wi ∈ Zi
for all i ∈ [n]. But then

0 = gi(T )wi = fi(T )vi =

mi∑
j=1

λi,jT
jvi,

so we must have that λij = 0 for all i ∈ [n] and j ∈ [mi] as BT,vi is linearly independent.

Proposition 7.2.4. Suppose T ∈ L(V ) with minT = pm for some monic, irreducible p ∈ F[z]
and some m ∈ N. Suppose that W is a T -invariant subspace of V with basis B.

(1) Suppose v ∈ ker(p(T )) \W . Then B ∪BT,v is linearly independent.

(2) There are v1, . . . , vn ∈ ker(p(T )) such that

B′ = B ∪
n⋃
i=1

BT,vi

is linearly independent and contains ker(p(T )).

Proof.

(1) Let d = deg(minT ), and note that BT,v =
{
T iv
∣∣i = 0, . . . , d− 1

}
by 7.1.11. Suppose

B = {v1, . . . , vn} and
n∑
i=1

λivi + w = 0 where w =
d−1∑
j=0

µjT
jv.

Then w ∈ span(B) = W and w ∈ ZT,v, both of which are T -invariant subspaces. Thus we
have ZT,w ⊂ W and ZT,w ⊂ ZT,v, so we have

ZT,w ⊂ ZT,v ∩W ⊂ ZT,v.

If w 6= 0, then p(T )w = 0 as p(T )|ZT,v = 0, so by 7.1.11,

d = dim(ZT,w) ≤ dim(ZT,v ∩W ) ≤ dim(ZT,v) = d,

so equality holds. But then ZT,v = ZT,v ∩W , which is a subset of W , a contradiction as
v /∈ W . Thus w = 0, and µj = 0 for all j = 0, . . . , d− 1. But as B is a basis, we have λi = 0
for all i ∈ [n].

(2) If ker(p(T )) * W , then pick v1 ∈ W \ker(p(T )). By (1), B∪BT,v1 is linearly independent,
and W1 = span(B ∪ BT,vt) is T -invariant. If ker(p(T )) * W1, pick v2 ∈ W1 \ ker(p(T )). By
(1), B∪BT,v1∪BT,v2 is linearly independent, and W2 = span(B∪BT,v1∪BT,v2) is T -invariant.
We can repeat this process until Wk contains ker(p(T )) for some k ∈ N.

Lemma 7.2.5. Suppose T ∈ L(V ) such that minT = pm where p ∈ F[z] is monic and
irreducible and m ∈ N. Then there is a rational canonical basis B for T .
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Proof. We proceed by induction on m ∈ N.

m = 1: Then V = ker(p(T )), so we may apply 7.2.4 with W = (0) to get a basis for ker(p(T )).

m− 1⇒ m: We know W = im(p(T )) is T -invariant, and T |W has minimal polynomial pm−1.
By the induction hypothesis, we have a rational canonical basis

B =
n∐
i=1

BT,wi

for T |W . As W = im(p(T )), there are vi ∈ V for i ∈ [n] such that p(T )vi = wi, and

C =
n∐
i=1

BT,vi

is linearly independent by 7.2.3. By 7.2.4, there are u1, . . . , uk ∈ ker(p(T )) such that

D = C ∪
k∐
i=1

BT,ui

is linearly independent and contains ker(p(T )). Let U = span(D). We claim that U = V .
First, note that U is T -invariant, so it is p(T ) invariant. Let S = p(T )|U . Then

im(S) = SU = S span(C) ⊇ W = im(p(T )), and ker(S) ⊇ ker(p(T ))

as U contains ker(p(T )). By 3.2.13

dim(U) = dim(im(S)) + dim(ker(S)) ≥ dim(im(p(T ))) + dim(ker(p(T ))) = dim(V ),

so U = V . Thus D is a rational canonical basis for T .

Theorem 7.2.6. Every T ∈ L(V ) has a rational canonical decomposition.

Proof. By 4.3.11, we can factor minT uniquely:

minT =
n∏
i=1

pmii

where pi ∈ F[z] are distinct monic irreducible factors of minT and mi ∈ N for all i ∈ [n]. By
6.6.1, we have

V =
n⊕
i=1

Kpi

where Kpi = ker(pi(T )mi) are T -invariant subspaces, and if Ti = T |Kpi , then minTi = pmii for
all i ∈ [n]. By 7.2.5, we know that there is a rational canonical basis Bi for Ti on Kpi , so

B =
n∐
i=1

Bi

is the desired rational canonical basis of T .
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Corollary 7.2.7. For T ∈ L(V ), there is a rational canonical decomposition V =
n⊕
i=1

ZT,vi

into cyclic subspaces.

Proof. By 7.2.6 there is a rational canonical basis

B =
n∐
i=1

BT,vi

for v1, . . . , vn ∈ V . Setting ZT,vi = span(BT,vi), we get the desired result.

Exercises

Exercise 7.2.8. Classify all pairs of polynomials (m, p) ∈ F[z]2 such that there is an operator
T ∈ L(V ) where V is a finite dimensional vector space over F such that minT = m and
charT = p.

Exercise 7.2.9. Show that two matrices A,B ∈Mn(F) are similar if and only if they share
a rational canonical form, i.e. there are bases C,D of Fn such that [LA]C = [LB]D is in
rational canonical form.

Exercise 7.2.10. Prove or disprove: A square matrix A ∈Mn(F) is similar to its transpose
AT . If the statement is false, find a condition which makes it true.

7.3 The Cayley-Hamilton Theorem

Theorem 7.3.1 (Cayley-Hamilton). For T ∈ L(V ), charT (T ) = 0.

Proof. Factor minT into irreducibles as in 4.3.11:

minT =
n∏
i=1

pmii .

Let B be a rational canonical basis for T as in 7.2.6. By 7.1.10, [T ]B is block diagonal, so let

A1, . . . , Ak be the blocks. We know that Aj is the companion matrix for p
nij
ij

where ij ∈ [n]
and nj ∈ N for j ∈ [k]. As

0 = [minT (T )]B = minT ([T ]B) = minT

A1

. . .

Ak

 =

minT (A1)
. . .

minT (Ak)

 ,

we must have that nij ≤ mi for all i ∈ [n]. But as minT is the minimal polynomial of [T ]B,
we must have that nij = mi for some i ∈ [n]. By 7.1.3, we see that charT (z) = det(zI− [T ]B)
is a product

charT (z) = det(zI − [T ]B) =
n∏
i=1

pi(z)ri
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where ri ≥ mi for all i ∈ [n]. Thus,

charT (T ) =
n∏
i=1

pi(z)ri(T ) = minT (T )
n∏
i=1

pi(T )ri−mi = 0.

Corollary 7.3.2. minT | charT for all T ∈ L(V ).

Proposition 7.3.3. Let A ∈Mn(F).

(1) The coefficient of the zn−1 term in charA(z) is equal to − trace(A).

(2) The constant term in charA(z) is equal to (−1)n det(A).

Proof. First note that the result is trivial if A is the companion matrix to a polynomial

p(z) = zn +
n−1∑
i=0

aiz
i ∈ F[z] as charA(z) = p(z), trace(A) = −an−1, and det(A) = (−1)na0.

For the general case, let B be a rational canonical basis for LA so that [A]B is a block
diagonal matrix

[A]B =

A1 0
. . .

0 Am


where each block Ai is the companion matrix of some polynomial pi(z) = zni +

ni−1∑
j=0

aijz
j ∈

F[z]. As A ∼ [A]B, we have that

charA(z) = det(zI − [A]B) =
n∏
i=1

pi(z),

trace(A) = trace([A]B), and det(A) = det([A]B).

(1) It is easy to see that the trace of [A]B is the sum of the traces of the Ai, i.e.

trace(A) = trace([A]B) =
m∑
i=1

trace(Ai) =
m∑
i=1

−aini−1.

Now one sees that the (n− 1)th coefficient of charA is exactly the negative of the right hand
side as

charA(z) =
n∏
i=1

(
zni +

ni∑
j=0

aijz
j

)
= zn +

(
m∑
i=1

aini−1

)
zn−1 + · · ·+

m∑
i=1

ai0

since the (n − 1)th terms in the product above are obtained by taking the (ni − 1)th term
of pi and multiplying by the leading term (the znj term) for j 6= i. Similarly, the constant
term of charA is obtained by taking the product of the constant terms of the pi’s.
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(2) In (1), we calculated that the constant term of charA is
m∑
i=1

ai0. But this is (−1)n det(A)

as

det(A) = det([A]B) =
m∏
i=1

det(Ai) =
m∏
i=1

(−1)niai0 = (−1)n
m∏
i=1

ai0.

Exercises

7.4 Jordan Canonical Form

Definition 7.4.1. A Jordan block of size n associated to λ ∈ F is a matrix J ∈Mn(F) such
that

Ji,j =


λ if i = j

1 if j = i+ 1

0 else,

i.e. J looks like 
λ 1 0

. . . . . .
. . . 1

0 λ

 .

Proposition 7.4.2. Suppose J ∈Mn(F) is a Jordan block associated to λ. Then charJ(z) =
minT (z) = (z − λ)n.

Proof. Obvious.

Remark 7.4.3. Let T ∈ L(V ) and λ ∈ sp(T ). If m ∈ N is maximal such that (z−λ)m | minT
and S = T |Gλ , then (z−λ)m = minS by 6.6.1. This means that the operator N = (T−λI)|Gλ
is nilpotent of order m. Now by 7.2.6, there is a rational canonical decomposition for N

Gλ =
k⊕
i=1

ZN,vi

for some k ∈ N where vi ∈ Gλ for all i ∈ [n]. Set ni = |BN,vi | for each i ∈ [n]. Then

BN,vi =
{

(T − λI)jvi
∣∣j = 0, . . . , ni − 1

}
,

and note that [N |BN,vi ]BN,vi is a matrix in Mni(F) of the form
0 0

1
. . .
. . . . . .

0 1 0


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as the minimal polynomial of N |BN,vi is zni . Setting CN,vi =
{

(T − λI)jvi
∣∣j = ni − 1, . . . , 0

}
,

i.e. reordering BN,vi , we have that [N |CN,vi ]CN,vi is a matrix in Mni(F) of the form
0 1 0

. . . . . .
. . . 1

0 0

 ,

i.e. it is a Jordan block associated to 0 of size ni. Thus, we see that if we set

B =
k∐
i=1

BN,vi ,

we have that [N ]B is a block diagonal matrix where the ith block is the companion matrix
of the polynomial zni , and if we set

C =
k∐
i=1

CN,vi ,

we have that [N ]C is a block diagonal matrix where the ith block is a Jordan block of size ni
associated to 0. Thus [T |Gλ ]C = [N ]C + λI is a block diagonal matrix where the ith block is
a Jordan block of size ni associated to λ.

Theorem 7.4.4. Suppose T ∈ L(V ) and minT splits in F[z]. Then there is a basis B of V
such that [T ]B is a block diagonal matrix where each block is a Jordan block. The diagonal
elements of [T ]B are precisely the eigenvalues of T , and if λ ∈ sp(T ), λ appears exactly Mλ

times on the diagonal of [T ]B.

Proof. By 6.6.2, we have minT splits if and only if

V =
⊕

λ∈sp(T )

Gλ.

by 7.4.3, for each λ ∈ sp(T ), there is a basis Bλ of Gλ such that T |Bλ is a block diagonal
matrix in MMλ

(F) where each block is a Jordan block associated to λ. Setting

B =
∐

λ∈sp(T )

Bλ

gives the desired result.

Definition 7.4.5.

(1) Let T ∈ L(V ). A basis B for V as in 7.4.4 is called a Jordan canonical basis for T , and
the matrix [T ]B is called a Jordan canonical form of T .
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(2) A matrix A ∈ Mn(F) is said to be in Jordan canonical form if the standard basis is a
Jordan canonical basis of Fn for LA.

Examples 7.4.6.

(1)

(2)

Definition 7.4.7. Let T ∈ L(V ). Recall that if v ∈ Gλ\{0} for some λ ∈ sp(T ), then there is
a minimal n such that (T−λI)nv = 0. This means thatBT−λI,v =

{
(T − λI)iv

∣∣i = 0, . . . , n− 1
}

is a basis for ZT−λI,v.

(1) The set CT−λI,v = ((T−λI)n−1v, . . . , (T−λI)v, v) is called a Jordan chain for T associated
to the eigenvalue λ of length n. The vector (T − λI)n−1v is called the lead vector of the
Jordan chain CT−λI,v, and note that it is an eigenvector corresponding to the eigenvalue λ.

Examples 7.4.8.

(1) Suppose J ∈Mn(F) is a Jordan block associated to λ ∈ F

J =


λ 1 0

. . . . . .
. . . 1

0 λ

 .

One can easily see that (J − λI)ei = ei−1 for all 1 < i ≤ n and (J − λI)e1 = 0, so the
standard basis of Fn is a Jordan chain for LJ associated to λ with lead vector e1.

(2) If A is a block diagonal matrix

A =

J1 0
. . .

0 Jn


where Ji is a Jordan block associated to λ ∈ F for all i ∈ [n], then we see by (1) that the
standard basis is a disjoint union of Jordan chains associated to λ.

Corollary 7.4.9. Suppose B is a Jordan canonical basis for T ∈ L(V ). Then B is a disjoint
union of Jordan chains associated to the eigenvalues of λ.

Proof. Let sp(T ) = {λ1, . . . , λn}. We have that [T ]B is a block diagonal matrix

[T ]B =

A1 0
. . .

0 An


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where each Ai is a block diagonal matrix corresponding to λi ∈ sp(T ) composed of Jordan
blocks:

Ai =

J
i
1 0

. . .

0 J ini

 .

Now set Bi = B ∩Gλi for each i ∈ [n] so that

B =
n∐
i=1

Bi,

and set Ti = T |Gλi . Then [Ti]Bi = Ai, and it is easy to check that Bi is the disjoint union of
Jordan chains associated to λi for all i ∈ [n]. Hence B is a disjoint union of Jordan chains
associated to the eigenvalues of T .

Exercises

Exercise 7.4.10. Classify all pairs of polynomials (m, p) ∈ C[z]2 such that there is an
operator T ∈ L(V ) where V is a finite dimensional vector space over C such that minT = m
and charT = p.

Exercise 7.4.11. Show that two matrices A,B ∈Mn(C) are similar if and only if they share
a Jordan canonical form.

7.5 Uniqueness of Canonical Forms

In this section, we discuss to what extent a rational canonical form of T ∈ L(V ) is unique,
and to what extend the rational canonical form is unique if minT splits. The information
from this section is adapted from sections 7.2 and 7.4 of [2].

Notation 7.5.1 (Jordan Canonical Dot Diagrams).

Ordering Jordan Blocks: Suppose T ∈ L(V ) such that minT splits, and let B is a Jordan
canonical basis for T . If λ ∈ sp(T ) and m ∈ N is the largest integer such that (z−λ)m | minT ,
then we have that S = T |Gλ ∈ L(Gλ) has minimal polynomial zm, and there is a subset
C ⊂ B that is a Jordan canonical basis for S. This means that [S]C is a block diagonal
matrix, so let A1, . . . , An be these blocks, i.e

[S]C =

A1 0
. . .

0 An

 .

We know that Ai is a Jordan block of size mi where mi ≤ m for all i ∈ [n]. We now impose
the condition that in order for [S]C to be in Jordan canonical form, we must have that
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mi ≥ mi+1 for all i ∈ [n−1]. This means that to find a Jordan canonical basis for T ∈ L(V ),
we first decompose Gλ into T -cyclic subspaces for all λ ∈ sp(T ), then we take bases of these
T -cyclic subspaces, and then we order these bases by how many elements they have.

Nilpotent Operators: Suppose minT = zm for some λ ∈ F. Let

B =
n∐
i=1

CT,vi

be a Jordan canonical basis of V consisting of disjoint Jordan chains CT,vi for i ∈ [n]. We
can picture B as an array of dots called a Jordan canonical dot diagram for T relative to the
basis B. For i ∈ [n], let mi = |CT,vi |, and note that the ordering of Jordan blocks requires
that mi ≥ mi+1 for all i ∈ [n− 1]. Write B as an array of dots such that

(1) the array contains n columns starting at the top,

(2) the ith column contains mi dots, and

(3) the (i, j)th dot is labelled Tmi−jvi.

• Tm1−1v1 · · · • Tm2−1v2 · · · • Tmn−1vn
• Tm1−2v1 · · · • Tm2−2v2 · · · • Tmn−2vn
...

...
...

...
... • Tvn

...
... • vn

... • Tv2

... • v2

• Tv1

• v1

Operators: Suppose that T ∈ L(V ), and let B be a Jordan canonical basis for T . Let
Bλ = B ∩Gλ for λ ∈ sp(T ) and Tλ = T |Gλ . Then Tλ − λI is nilpotent, so we may apply (2)
to get a dot diagram for Tλ − λI relative to Bλ for each λ ∈ sp(T ). The dot diagram for T
relative to B is the disjoint union of the dot diagrams for Tλ relative to the Bλ for λ ∈ sp(T ).

Lemma 7.5.2. Suppose T ∈ L(V ) is nilpotent of order m, i.e. minT (z) = zm. Let B be a
Jordan canonical basis for T , and let ri denote the number of dots in the ith row of the dot
diagram for T relative to B as in 7.5.1 for i ∈ [n]. Then

(1) If Rk =
k∑
j=1

rj for k ∈ [n], then Rk = nullity(T k) = dim(ker(T k)) for all k ∈ [n],

(2) r1 = dim(V )− rank(T ), and

(3) rk = rank(T k−1)− rank(T k) for all k > 1.
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Hence the dot diagram for T is independent of the choice of Jordan canonical basis B for T
as each ri is completely determined by T , and the Jordan canonical form [T ]B is unique.

Proof.

(1) We see that there are at least Rk linearly independent vectors in ker(T k), namely Tmi−jvi
for all i ∈ [n] and j ∈ [k], so nullity(T k) ≥ Rk. Moreover,

{
T k(Tmi−jvi)

∣∣i ∈ [n] and j > k
}

is a linearly independent subset of B, so rank(T k) ≥ |B| −Rk. By the rank-nullity theorem,
we have

|B| = rank(T k) + nullity(T k) ≥ |B| −Rk +Rk = |B|,

so equality holds, and we must have that nullity(T k) = Rk.

(2) This is immediate from (1) and the rank-nullity theorem.

(3) For k > 1, by (1) we have that

rk =
k∑
i=1

ri−
k−1∑
i=1

ri = (dim(V )−nullity(T k))−(dim(V )−nullity(T k−1)) = rank(T k)−rank(T k−1).

Theorem 7.5.3. Suppose T ∈ L(V ) and minT splits in F[z]. Two Jordan canonical forms
(using the convention of 7.5.1) of T ∈ L(V ) differ only by a permutation of the eigenvalues
of T .

Proof. If B is a Jordan canonical basis of T as in 7.5.1, we set Bλ = B ∩Gλ and Tλ = T |Gλ
for all λ ∈ sp(T ), and we note that

B =
∐

λ∈sp(T )

Bλ.

Note further that Tλ−λI is nilpotent, and [Tλ−λI]Bλ is in Jordan canonical form, which is
unique by 7.5.2. Hence [Tλ]Bλ = [Tλ − λI]Bλ + λI is unique, so is unique up to the ordering
of the λ ∈ sp(T ). In fact, if {λ1, . . . , λn} is an enumeration of sp(T ) and

B =
n∐
i=1

Bλi ,

then setting Ti = Tλi and Bi = Bλi , we have

[T ]B =

[T1]B1 0
. . .

0 [Tn]Bn

 .
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Notation 7.5.4 (Rational Canonical Dot Diagrams).

Ordering Companion Blocks: Let B is a rational canonical basis for T ∈ L(V ). If p ∈ F[z]
is a monic irreducible factor of minT and m ∈ N is the largest integer such that pm | minT ,
then we have that S = T |Kp ∈ L(Kp) has minimal polynomial pm, and there is a subset
C ⊂ B that is a rational canonical basis for S. This means that [S]C is a block diagonal
matrix, so let A1, . . . , An be these blocks, i.e

[S]C =

A1 0
. . .

0 An

 .

We know that Ai is the companion matrix for pmi where mi ≤ m for all i ∈ [n]. We now
impose the condition that in order for [S]C to be in rational canonical form, we must have
that mi ≥ mi+1 for all i ∈ [n − 1]. This means that to find a rational canonical basis for
T ∈ L(V ), we first decompose Kp into T -cyclic subspaces for all monic irreducible p ∈ F[z]
dividing minT , then we take bases of these T -cyclic subspaces, and then we order these bases
by how many elements they have.

Case 1: Suppose minT = pm for some monic, irreducible p ∈ F[z] and some m ∈ N. Let

B =
n∐
i=1

BT,vi

be a rational canonical basis of V for T . B can be represented as an array of dots called a
rational canonical dot diagram for T relative to B. For i ∈ [n], let Bi = BT,vi , let Zi = ZT,vi ,
let Ti = T |Zi , and let mi ∈ N be the minimal number such that p(T )mivi = 0, i.e. minTi = pmi

and mi ≤ m for all i ∈ [n]. Set d = deg(p), and note that |Bi| = dmi by 7.1.11. Now by the
ordering of the companion blocks, we must have that mi ≥ mi+1 for all i ∈ [n− 1]. The dot
diagram for T relative to B is given by an array of dots such that

1. the array contains n columns starting at the top,

2. the ith column has mi dots, and

3. the (i, j)th dot is labelled p(T )mi−jvi.

Note that there are exactly |B|/d dots in the dot diagram.

Operators: As before, for a general T ∈ L(V ), we let B be a Rational canonical basis for T ,
and we let Bp = B ∩Gp and Tp = T |Gp for each distinct monic irreducible p | minT . The dot
diagram for T is then the disjoint union of the dot diagrams for the Tp’s relative to the Bp’s.

Lemma 7.5.5. Suppose T ∈ L(V ) with minT = pm for a monic irreducible p ∈ F[z] and
some m ∈ N. Let d = deg(p), let

B =
n∐
i=1

BT,vi

104



be a rational canonical basis of V for T , and let mi ∈ N be minimal such that p(T )mivi = 0.
Let rj be the number of dots in the jth row of the dot diagram for T relative to B for j ∈ [l].
Then

(1) Set Ci
l =

{
(p(T )mi−hT lvi

∣∣h ∈ [mi]
}

is a p(T )-cyclic basis for Zp(T ),T lvi for 0 ≤ l < d

and i ∈ [n]. Then Ci =
d−1∐
l=0

Ci
l is a basis for Zi = ZT,vi, so it is a Jordan canonical

basis of Zi for p(T )|Zi. Hence C =
n∐
i=1

Ci is a Jordan canonical basis of V for p(T ).

(2) r1 =
1

d
(dim(V )− rank(p(T ))), and

(3) rj =
1

d
(rank(p(T )j−1)− rank(p(T )j)) for j > 1.

Hence the dot diagram for T is independent of the choice of rational canonical basis B for T
as each rj is completely determined by p(T ), and the rational canonical form [T ]B is unique.

Proof. We have that (2) and (3) are immediate from (1) and 7.5.2 as the Jordan canonical
form of p(T ), a nilpotent operator of order m, is unique. It suffices to prove (1).

We may suppose p(z) 6= z as this case would be similar to 7.5.3 as in this case, minT
would split. The fact that Ci

l is linearly independent for all i, l comes from 7.1.11 as T lvi 6= 0
and mi is minimal such that p(T )miT lvi = 0 (in fact the restriction of T l to Zi is invertible
as if q(z) = zl, then q(T ) is bijective on Gp = V by the proof of 6.5.5 as p, q are relatively
prime).

We show Ci is a basis for Zi for a fixed i ∈ [n]. Suppose

d−1∑
l=0

mi∑
h=1

λh,lp(T )mi−hT lvi = 0,

and set

qh(z) =
d−1∑
l=0

λh,lz
l for h ∈ [mi].

Then we see that deg(qh) < d for all h ∈ [mi], and

mi∑
h=1

p(T )mi−hqh(T )vi = 0.

Now setting

q(z) =

mi∑
h=1

p(z)mi−hqh(z),
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we have that deg(q) < deg(pmi) and q(T )vi = 0. If p - q, then p, q are relatively prime, so
q(T ) is invertible on Gp = V by the proof of 6.5.5, which is a contradiction as q(T )vi = 0.
Hence p | q. Let s ∈ N be maximal such that ps | q, and let f ∈ F[z] such that fps = q. If
f 6= 0, then p, f are relatively prime, so f(T ) is invertible on Gp = V . But then

0 = f(T )−10 = f(T )−1f(T )p(T )svi = p(T )svi,

so we must have that s ≥ mi, a contradiction as deg(q) < deg(pmi). Hence f = 0, so q = 0.
As deg(qh) < d = deg(p) for all h, we must have that

0 = LC(q) = LC(pmi−1q1) = LC(pmi−1) LC(q1) =⇒ q1 = 0.

Once more, as deg(qn) < d for all h, we now have that

0 = LC(q) = LC(pmi−2q2) = LC(pmi−2) LC(q2) =⇒ q2 = 0.

We repeat this process to see that qh = 0 for all h ∈ [mi]. Hence λh,l = 0 for all h, l, and Ci
is linearly independent. Now we see that |Ci| = dmi = dim(Zi) = dmi by 7.1.11, and we are
finished by the extension theorem.

It follows immediately that C is a basis for V as V =
n⊕
i=1

Zi.

Theorem 7.5.6. Suppose T ∈ L(V ). Two rational canonical forms of T ∈ L(V ) differ only
by a permutation of the irreducible monic factor powers of minT .

Proof. This follows immediately from 7.5.5 and 6.6.1.

Exercises

V will denote a finite dimensional vector space over F.

Exercise 7.5.7. Recall that spectrum is an invariant of similarity class by 5.1.11. In this
sense, we may define the spectrum of a similarity class of L(V ) to be the spectrum of one of
its elements. Given distinct λ1, λ2, λ3 ∈ C, how many similarity classes of matrices in M7(C)
have spectrum {λ1, λ2, λ3}?

7.6 Holomorphic Functional Calculus

For this section, V will define a finite dimensional vector space over C.

Definition 7.6.1.

(1) The open ball of radius r > 0 centered at z0 ∈ C is

Br(z0) =
{
z ∈ C

∣∣|z − z0| < r
}
.
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(2) A subset U ⊂ C is called open if for each z ∈ U , there is an ε > 0 such that Bε(z) ⊂ U .

Examples 7.6.2.

(1)

(2)

Definition 7.6.3. Suppose U ⊂ C is open. A function f : U → C is called holomorphic (on
U) if for each z0 ∈ U , there is a power series representation of f on Bε(z0) ⊂ U for some
ε > 0, i.e., for each z0 ∈ U , there is an ε > 0 and a sequence (λk)k∈Zgeq0 such that

f(z) =
∞∑
k=0

λk(z − z0)
k

converges for all z ∈ Bε(z0). Note that if f is holomorphic on U , then f is infinitely many
times differentiable at each point in U . We have

f ′(z) =
∞∑
k=1

λkk(z − z0)
k−1, f ′′(z) =

∞∑
k=2

λkk(k − 1)(z − z0)
k−2, etc.

In particular,

f (n)(z0) = λnn =⇒ λn =
f (n)(z0)

n!
.

This is Taylor’s Formula.

Examples 7.6.4.

(1)

(2)

Definition 7.6.5 (Holomorphic Functional Calculus).

Jordan Blocks: Suppose A ∈Mn(C) is a Jordan block, i.e. there is a λ ∈ C such that

A =


λ 1 0

. . . . . .
. . . 1

0 λ

 .

We see that we can write A canonically as A = D +N with D ∈Mn(C) diagonal (D = λI)
and N ∈Mn(C) nilpotent of order n:

A =


λ 0

. . .
. . .

0 λ


︸ ︷︷ ︸

D

+


0 1 0

. . . . . .
. . . 1

0 0


︸ ︷︷ ︸

N

.
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Now sp(T ) = {λ}, so if ε > 0 and f : Bε(λ) → C is holomorphic, then there is a sequence
(µn)n∈Zgeq0 such that

f(z) =
∞∑
k=0

µk(z − λ)k

converges for all z ∈ Bε(λ), so we may define

f(A) = f(D +N) =
∞∑
k=0

µk(D +N − λI)k =
n−1∑
k=0

µkN
k =


µ0 µ1 · · · µn−1

. . . . . .
...

. . . µ1

0 µ0



=


f(λ) f ′(λ) · · · f (n−1)(λ)

(n−1)!

. . . . . .
...

. . . f ′(λ)
0 f(λ)


Matrices: Suppose A ∈ Mn(C). Then there is an invertible S ∈ Mn(C) and a matrix J ∈
Mn(C) in Jordan canonical form such that J = S−1AS. Let K1, . . . , Kn be the Jordan blocks
of J , and let λi ∈ sp(A) be the diagonal entry of Ki for i ∈ [n] . Let U ⊂ C be open such
that sp(A) ⊂ U , and suppose f : U → C is holomorphic. By the above discussion, we know
how to define f(Ki) for all i ∈ [n]. We define

f(J) =

f(K1) 0
. . .

0 f(Kn)

 .

We then define f(A) = Sf(J)S−1. We must check that f(A) is well defined. If J1, J2 are two
Jordan canonical forms of A, then there are invertible S1, S2 ∈Mn(F) such that Ji = S−1

i ASi
for i = 1, 2. We must show S1f(J1)S

−1
1 = S2f(J2)S

−1
2 . By 7.5.3, we know J1 and J2 differ

only by a permutation of the Jordan blocks, and since J1 = S−1
1 S2J2S

−1
2 S1, we must have

that S = S−1
1 S2 is a generalized permutation matrix. It is easy to see that f(J2) = Sf(J1)S

−1

as the Jordan blocks do not interact under multiplication by the generalized permutation
matrix. Thus S1f(J1)S

−1
1 = S2f(J2)S

−1
2 , and we are finished.

Operators: Suppose T ∈ L(V ). By 7.4.4, there is a Jordan canonical basis B for T , so [T ]B
is in Jordan canonical form. Thus, we define

f(T ) = [f([T ]B)]−1
B .

We must check that if B′ is another Jordan canonical basis for T , then [f([T ]B)]−1
B =

[f([T ]B′)]
−1
B′ . This follows directly from the above discussion and 3.4.13.

Examples 7.6.6.
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(1) If p ∈ F[z], we have that the p(T ) defined in 4.6.2 agrees with the p(T ) defined in 7.6.5.
Hence the holomorphic functional calculus is a generalization of the polynomial functional
calculus when V is a complex vector space.

(2) We will compute cos(A) for

A =

(
0 −1
1 0

)
.

We have that

U =

(
1 1
−i i

)
∈M2(C)

is a unitary matrix that maps the standard orthonormal basis to the orthonormal basis
consisting of eigenvectors of

A =

(
0 −1
1 0

)
.

We then see that

D =

(
i 0
0 −i

)
=

(
1 1
−i i

)∗(
0 −1
1 0

)(
1 1
−i i

)
= U∗AU.

Since A = UDU∗, by the entire functional calculus, we have that

cos(A) = cos(UDU∗) = U cos(D)U∗ = U cos

(
i 0
0 −i

)
U∗

= U

(
cos(i) 0

0 cos(−i)

)
U∗ = U cosh(1)IU∗ = cosh(1)I.

Theorem 7.6.7 (Spectral Mapping). Suppose T ∈ L(V ) and U ⊂ C is open such that
sp(T ) ⊂ U . Then sp(f(T )) = f(sp(T )).

Proof. Exercise.

Proposition 7.6.8. Let T ∈ L(V ), let f, g : U → C be holomorphic such that sp(T ) ⊂ U ,
and let h : V → C be holomorphic such that sp(f(T )) ⊂ V . The holomorphic functional
calculus satisfies

(1) (f + g)(T ) = f(T ) + g(T ),

(2) (fg)(T ) = f(T )g(T ),

(3) (λf)(T ) = λf(T ) for all λ ∈ C, and

(4) (h ◦ f)(T ) = h(f(T )).

Proof. Exercise.
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Exercises

V will denote a finite dimensional vector space over C.

Exercise 7.6.9. Compute

sin

(
0 −1
1 0

)
and exp

(
0 −π
π 0

)
.

Exercise 7.6.10. Suppose V is a finite dimensional vector space over C and T ∈ L(V ) with
sp(T ) ⊂ B1(1) ⊂ C. Use the holomorphic functional calculus to show T is invertible.

Hint: Look at f(z) =
1

z
=

1

1− (1− z)
. When is f holomorphic?

Exercise 7.6.11 (Square Roots). Determine which matrices in Mn(C) have square roots,
i.e. all A ∈Mn(C) such that there is a B ∈Mn(C) with B2 = A.

Hint: The function g : C\{0} → C given by g(z) =
√
z is holomorphic. First look at the case

where A is a single Jordan block associated to λ ∈ C. In particular, when does a Jordan
block associated to λ = 0 have a square root?
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Chapter 8

Sesquilinear Forms and Inner Product
Spaces

For this chapter, F will denote either R or C, and V will denote a vector space over F.

8.1 Sesquilinear Forms

Definition 8.1.1. A sesquilinear form on V is a function 〈·, ·〉 : V × V → F such that

(i) 〈·, ·〉 is linear in the first variable, i.e. for each v ∈ V , the function 〈·, v〉 : V → F given
by u 7→ 〈u, v〉 is a linear transformation, and

(ii) 〈·, ·〉 is conjugate linear in the second variable, i.e. for each v ∈ V , the function
〈v, ·〉 : V → F given by u 7→ 〈v, u〉 is a linear transformation.

The sesquilinear form 〈·, ·〉 is called

(1) self adjoint if 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ,

(2) positive if 〈v, v〉 ≥ 0 for all v ∈ V , and

(3) definite if 〈v, v〉 = 0 implies v = 0.

(4) an inner product it is a positive definite self-adjoint sesquilinear form.
An inner product space over F is a vector space V over F together with an inner product on
V .

Remarks 8.1.2.

(1) Note that linearity in the first variable and self adjointness of a sesquilinear form 〈·, ·〉
implies that 〈·, ·〉 is conjugate linear in the second variable.

(2) If V is a vector space over R, then a sesquilinear form on V is usually called a bilinear
form, and the adjective “self adjoint” is replaced by “symmetric.” Note that in this case,
conjugate linear in the second variable means linear in the second variable. Note further
that if 〈·, ·〉 is linear in the first variable and symmetric, then it is also linear in the second
variable.
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Examples 8.1.3.

(1) The function

〈u, v〉 =
n∑
i=1

e∗i (u)e∗i (v)

is the standard inner product on Fn.

(2) Let x0, x1, . . . , xn be n+ 1 points in F. Then

〈p, q〉 =
n∑
i=0

p(xi)q(xi)

is an inner product on Pm if m ≤ n, but it is not definite if m > n (including m =∞).

(3) The function

〈f, g〉 =

b∫
a

f(x)g(x) dx

is the standard inner product on C([a, b],F)

(4) trace : Mn(F)→ F given by

trace(A) =
n∑
i=1

Aii

induces an inner product on Mm×n(F) by 〈A,B〉 = tr(B∗A).

(5) Let a, b ∈ R. Then the function

〈p, q〉 =

b∫
a

p(x)q(x) dx

is an inner product on F[x].

(6) Suppose V is a real inner product space. Then the complexification VC defined in 2.1.12
is a complex inner product space with inner product given by

〈u1 + iv1, u2 + iv2〉C = 〈u1, v1〉+ 〈v1, v2〉+ i(〈u2, v1〉 − 〈u1, v2〉).

In particular, note that 〈·, ·〉C is definite.

Proposition 8.1.4 (Polarization Identity).

(1) If V is a vector space space over R and 〈·, ·〉 is a symmetric bilinear form, then

4〈u, v〉 = 〈u+ v, u+ v〉 − 〈u− v, u− v〉.
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(2) If V is a vector space space over C and 〈·, ·〉 is a self adjoint sesquilinear form, then

4〈u, v〉 =
3∑

k=0

ik〈u+ ikv, u+ ikv〉.

Proof. This is immediate from the definition of a symmetric bilinear form or self adjoint
sesquilinear form respectively.

Proposition 8.1.5 (Cauchy-Schwartz Inequality). Let 〈·, ·〉 be a positive, self adjoint sesquilin-
ear form on V . Then

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 for all u, v ∈ V.

Proof. Let u, v ∈ V . Since 〈·, ·〉 is positive, we know that for all λ ∈ F ,

0 ≤ 〈u− λv, u− λv〉 = 〈u, u〉 − 2 Reλ〈u, v〉+ |λ|2〈v, v〉. (∗)

Case 1: If 〈v, v〉 = 0, then 2 Reλ〈u, v〉 ≤ 〈u, u〉. Since this holds for all λ, we must have
〈u, v〉 = 0.

Case 2: If 〈v, v〉 6= 0, then in particular, equation (∗) holds for

λ =
〈v, u〉
〈v, v〉

Hence,

0 ≤ 〈u, u〉−2 Re
〈v, u〉
〈v, v〉

〈u, v〉+
∣∣∣∣〈v, u〉〈v, v〉

∣∣∣∣2 〈v, v〉 = 〈u, u〉−2
|〈u, v〉|2

〈v, v〉
+
|〈u, v〉|2

〈v, v〉
= 〈u, u〉−|〈u, v〉|

2

〈v, v〉
.

Thus,
|〈u, v〉|2

〈v, v〉
≤ 〈u, u〉 =⇒ |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉.

Exercises

Exercise 8.1.6. Show that the sesquilinear form

〈f, g〉 =

b∫
a

f(x)g(x) dx

on C([a, b],F) is an inner product.

Hint: Show that if |f(x)| > 0 for some x ∈ [a, b], then by the continuity of f , there is some
δ > 0 such that |f(y)| > 0 for all y ∈ (x− δ, x+ δ) ∩ (a, b).

Exercise 8.1.7. Show that the function 〈·, ·〉2 : Mn(F) ×Mn(F) → F given by 〈A,B〉2 =
trace(B∗A) is an inner product on Mn(F).

113



8.2 Inner Products and Norms

From this point on, (V, 〈·, ·〉) will denote an inner product space over F.
We illustrate an important proof technique called “true for all, then true for a specific

one.”

Proposition 8.2.1.

(1) Suppose u, v ∈ V such that 〈u,w〉 = 〈v, w〉 for all w ∈ W . Then u = v.

(2) Suppose S, T ∈ L(V ) such that 〈Sx, y〉 = 〈Tx, y〉 for all x, y ∈ V . Then S = T .

(3) Suppose S, T ∈ L(V ) such that 〈x, Sy〉 = 〈x, Ty〉 for all x, y ∈ V . Then S = T .

Proof.

(1) We have that 〈u− v, w〉 = 0 for all w ∈ V . In particular, this holds for w = u− v. Hence
〈u− v, u− v〉 = 0, so u− v − 0 by definiteness. Hence u = v.

(2) Let x ∈ V , and set u = Sx and v = Tx. Applying (1), we see Sx = Tx. Since this is true
for all x ∈ V , we have S = T .

(3) This follows immediately from self-adjointness of an inner product and (2).

Definition 8.2.2. A norm on V is a function ‖ · ‖ : V → R≥0 such that

(i) (definiteness) ‖v‖ = 0 implies v = 0,

(ii) (homogeneity) ‖λv‖ = |λ| · ‖v‖ for all λ ∈ F and v ∈ V , and

(iii) (triangle inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V .

Examples 8.2.3.

(1) The Euclidean norm on Fn is given by

‖v‖ =

√√√√ n∑
i=1

e∗i (v).

We will see in 8.2.4 that it is the norm induced by the standard inner product on Fn.

(2) The 1-norm on C([a, b],F) is given by

‖f‖1 =

b∫
a

|f | dx,

and the 2-norm is given by

‖f‖2 =

 b∫
a

|f |2 dx

1/2

.
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We will see in 8.2.4 that the 2-norm is the norm induced from the standard inner product
on C([a, b],F). The ∞-norm is given by

‖f‖∞ = max
{
|f(x)|

∣∣x ∈ [a, b]
}
.

It exists by the Extreme Value Theorem, which says that a continuous, real-valued function,
namely |f |, achieves its maximum on a closed, bounded interval, namely [a, b]. These norms
are all different. For example, if [a, b] = [0, 2π] and f : [0, 2π]→ R is given by f(x) = sin(x),
then ‖f‖1 = 4, ‖f‖2 = π, and ‖f‖∞ = 1.

(3) The norms defined in (2) can all be defined for F[x] as well.

Proposition 8.2.4. The function ‖ · ‖ : V → R≥0 given by ‖v‖ =
√
〈v, v〉 is a norm. It is

usually called the induced norm on V .

Proof. Clearly ‖ · ‖ is definite by definition. It is homogeneous since

‖λv‖ =
√
〈λv, λv〉 =

√
|λ|2〈v, v〉 = |λ| · ‖v‖.

Now the Cauchy-Schwartz inequality can be written as |〈u, v〉| ≤ ‖u‖‖v‖ after taking square
roots, so we have

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2 Re〈u, v〉+ 〈v, v〉
≤ 〈u, u〉+ 2|〈u, v〉|+ 〈v, v〉 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

Taking square roots now gives the desired result.

Remark 8.2.5. In many books, the Cauchy-Scwartz inequality is proved for inner products
(not positive, self adjoint sesquilinear forms as was done in 8.1.5), and it is usually in the
form used in the proof of 8.2.4:

|〈u, v〉| ≤ ‖u‖‖v‖.

Proposition 8.2.6 (Parallelogram Identity). The induced norm ‖ · ‖ on V satisfies

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 for all u, v ∈ V.

Proof. This is immediate from the definition of ‖ · ‖.

Definition 8.2.7.

(1) If u, v ∈ V and 〈u, v〉 = 0, then we say u is perpendicular to v. Sometimes this is denoted
as u ⊥ v.

(2) Let S ⊂ V be a subset. Then S⊥ =
{
v ∈ V

∣∣v ⊥ s for all s ∈ S
}

is a subspace of V .

(3) We say the set S1 is orthogonal to the set S2, denoted S1 ⊥ S2 if v ∈ S1 and w ∈ S2

implies v ⊥ w.

Examples 8.2.8.
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(1) The standard basis vectors in Fn are all pairwise orthogonal. If we pick v ∈ Fn, then
{v}⊥ ∼= Fn−1.

(2) Suppose we have the inner product on R[x] given by

〈p, q〉 =

1∫
0

p(x)q(x) dx.

Then 1 ⊥ x − 1/2. Moreover, {1}⊥ is infinite dimensional as xn − 1/(n + 1) ∈ {1}⊥ for all
n ∈ N.

Proposition 8.2.9 (Pythagorean Theorem). Suppose u, v ∈ V such that u ⊥ v. Then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. ‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2 Re〈u, v〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2.

Exercises

Exercise 8.2.10.

8.3 Orthonormality

Definition 8.3.1.

(1) A subset S ⊂ V is called an orthogonal set if u, v ∈ S with u 6= v implies that u ⊥ v.

(2) A subset S ⊂ V is called an orthonormal set if S is an orthogonal set and v ∈ S implies
‖v‖ = 1.

Examples 8.3.2.

(1) Zero is never in an orthonromal set, but can be in an orthogonal set.

Proposition 8.3.3. Let S be an orthogonal set such that 0 /∈ S. Then S is linearly inde-
pendent. Hence all orthonormal sets are linearly independent.

Proof. Let {v1, . . . , vn} be a finite subset of S, and suppose there are scalars λ1, . . . , λn ∈ F
such that

n∑
i=1

λivi = 0.

Then we have a linear functional v∗j = 〈·, vj〉 ∈ V ∗ given by v∗j (u) = 〈u, vj〉 for all u ∈ V . We
apply ϕj to the above expression (“hit is with v∗j”) to get

0 = vj

(
n∑
i=1

λivi

)
=

n∑
i=1

λiv
∗
j (vi) =

n∑
i=1

λi〈vi, vj〉 = λj〈vj, vj〉 = λj‖vj‖2.

as 〈vi, vj〉 = 0 if i 6= j. Since vj 6= 0, we have ‖vj‖2 6= 0, so λj = 0.
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Theorem 8.3.4 (Gram-Schmidt Orthonormalization). Let S = {v1, . . . , vn} be a linearly
independent subset of V . Then there is an orthonormal set {u1, . . . , un} such that for each
k ∈ {1, . . . , n}, span{u1, . . . , uk} = span{v1, . . . , vk}.

Proof. The proof is by induction on n.

n = 1: Setting u1 = v1/‖v1‖ works.

n− 1⇒ n: Suppose we have a linearly independent set S = {v1, . . . , vn}. By the induc-
tion hypothesis, there is an orthonormal set {u1, . . . , un−1} such that span{u1, . . . , uk} =
span{v1, . . . , vk} for each k ∈ {1, . . . , n− 1}. Set

wn = vn −
n−1∑
i=1

〈vn+1, ui〉ui and un =
wn
‖wn‖

.

It is clear that wn+1 ⊥ ui for all j = 1, . . . , n− 1 by applying the linear functional 〈·, uj〉:

〈wn+1, uj〉 = 〈vn+1, uj〉 −
n−1∑
i=1

〈vn+1, ui〉〈ui, uj〉 = 〈vn+1, uj〉 − 〈vn+1, uj〉〈uj, uj〉 = 0.

Hence un ⊥ uj for all j = 1, . . . , n − 1, and R = {u1, . . . , un+1} is an orthonormal set. It
remains to show that span(S) = span(R). Recall that span(S \ {un}) = span(R \ {vn}). It
is clear that span(R) ⊆ span(S) since v1, . . . , vn−1 ∈ span(S) and vn is a linear combination
of u1, . . . , un. But we immediately see span(S) ⊆ span(R) as u1, . . . , un−1 ∈ span(R) and un
is a linear combination of u1, . . . , un−1 and vn.

Definition 8.3.5. If V is a finite dimensional inner product space over F, a subset B ⊂ V
is called an orthonormal basis of V if B is an orthonormal set and B is a basis of V .

Examples 8.3.6.

(1) The standard basis of Fn is an orthonormal basis.

(2) The set {1, x, x2, . . . , xn} is a basis, but not an orthonormal basis of Pn with the inner
product given by

〈p, q〉 =

1∫
0

p(x)q(x) dx.

Theorem 8.3.7 (Existence of Orthonormal Bases). Let V be a finite dimensional inner
product space over F. Then V has an orthonormal basis.

Proof. Let B be a basis of V . By 8.3.4, there is an orthonormal set C such that span(B) =
span(C). Moreover, C is linearly independent by 8.3.3. Hence C is an orthonormal basis for
V .
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Proposition 8.3.8. Let B = {v1, . . . , vn} ⊂ V be an orthogonal set that is also basis of V .
Then if w ∈ V ,

w =
n∑
i=1

〈w, vi〉
〈vi, vi〉

vi.

If B is an orthonormal basis for V , then this expression simplifies to

w =
n∑
i=1

〈w, vi〉vi,

and the 〈w, vi〉 are called Fourier coefficients of w with respect to B.

Proof. Since B spans V , there are scalars λ1, . . . , λn ∈ F such that

w =
n∑
i=1

λivi.

Now we apply 〈·, vj〉 to see that

〈w, vj〉 =
n∑
i=1

λi〈vi, vj〉 = λj〈vj, vj〉

as 〈vi, vj〉 = 0 if i 6= j. Dividing by 〈vj, vj〉 gives the desired formula.

Proposition 8.3.9 (Parseval’s Identity). Suppose B = {v1, . . . , vn} be an orthonormal basis
of V . Then

‖v‖2 =
n∑
i=1

|〈v, vi〉|2 for all v ∈ V.

Proof. The reader may check that this identity follows immediately from 8.3.8 using induc-
tion and the Pythagorean Theorem (8.2.9).

Fact 8.3.10. Suppose B = (v1, . . . , vn) is an ordered basis of the vector space V . We may
impose an inner product on V by setting

〈u, v〉B = 〈[u]B, [v]B〉Fn ,
and we check that

〈vi, vj〉B = 〈[vi]B, [vj]B〉Fn = 〈ei, ej〉Fn =

{
1 if i=j

0 else,

so B is an orthonormal basis of V with inner product 〈·, ·〉B. Moreover, we see that the linear
functional v∗j = 〈·, vj〉 for all j ∈ [n]. If

v =
n∑
i=1

λivi,

then we have that

〈v, vj〉B =

〈
n∑
i=1

λivi, vj

〉
B

=
n∑
i=1

λi〈vi, vj〉B = λj = v∗j (v).
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Exercises

Exercise 8.3.11. Use Gram-Schmidt orthonormalization on {1, z, z2, z3} to find an or-
thonormal basis for P3(F) with inner product

〈p, q〉 =

1∫
0

p(z)q(z) dz.

Exercise 8.3.12. Suppose {v1, . . . , vn} is an orthonormal basis for V . Show that the linear
functionals 〈·vi, vj〉 : L(V )→ F given by T 7→ 〈Tvi, vj〉 are a basis for L(V )∗.

8.4 Finite Dimensional Inner Product Subspaces

Lemma 8.4.1. Let W be a finite dimensional subspace of V , and let {w1, . . . , wn} be an
orthonormal basis for W . Then x ∈ W⊥ if x ⊥ wi for all i = 1, . . . , n.

Proof. Let w ∈ W . Then by 8.3.8,

w =
n∑
i=1

〈w,wi〉wi.

Then we have

〈x,w〉 =
n∑
i=1

〈w,wi〉〈x,wi〉 = 0,

so x ∈ W⊥.

Proposition 8.4.2. Let W ⊂ V be a finite dimensional subspace, and let v ∈ V . Then there
is a unique w ∈ W minimizing ‖v − w‖, i.e. ‖v − w‖ ≤ ‖v − w′‖ for all w′ ∈ W .

Proof. Let {w1, . . . , wn} be an orthonormal basis for W . Set

w =
n∑
i=1

〈v, wi〉wi ∈ W

and u = v − w. We have u ∈ W⊥ by 8.4.1 as 〈u,wj〉 = 0 for all j = 1, . . . , n:

〈u,wj〉 = 〈v, wj〉 −
n∑
i=1

〈v, wi〉〈wi, wj〉 = 〈v, wj〉 − 〈v, wj〉〈wj, wj〉 = 0.

We show w ∈ W is the unique vector minimizing the distance to v. Suppose w′ ∈ W
such that ‖v − w′‖ ≤ ‖v − w‖. Since v = u+ w and u ⊥ (w − w′), by 8.2.9,

‖u‖2 + ‖w − w′‖2 = ‖u+ (w − w′)‖2 = ‖v − w′‖2 ≤ ‖v − w‖2 = ‖u‖2.

Hence ‖w − w′‖2 = 0 and w = w′.
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Definition 8.4.3. Let W ⊂ V be a finite dimensional subspace. Then PW , the projection
onto W , is the operator in L(V ) defined by PW (v) = w where w is the unique vector in W
closest to v which exists by 8.4.2.

Examples 8.4.4.

(1) Let v ∈ V . The projection onto span{v} denoted by Pv, is is the operator in L(V ) given
by

u 7−→ 〈u, v〉
‖v‖2

v.

The corresponding component operator is the linear functional Cv ∈ V ∗ given by

u 7−→ 〈u, v〉
‖v‖2

.

Note that if ‖v‖ = 1, the formulas simplify to Pv(u) = 〈u, v〉v and Cv(u) = 〈u, v〉.
(2) Suppose u, v ∈ V with u, v 6= 0 and u = λv for some λ ∈ F. Then Pu = Pv.

(3) Let W be a finite dimensional subspace of V , and let {w1, . . . , wn} be an orthonormal
basis of W . Then the projection onto W is the operator in L(V ) given by

u 7−→
n∑
i=1

〈u,wi〉wi.

In particular, this definition is independent of the choice of orthonormal basis for W .

Lemma 8.4.5. Let W ⊂ V be a finite dimensional subspace. Then

(1) P 2
W = PW ,

(2) im(PW ) =
{
v ∈ V

∣∣PW (v) = v
}

= W ,

(3) ker(PW ) = W⊥, and

(4) V = W ⊕W⊥.

Proof. We have that (2)-(4) follow immediately from 6.1.6 if (1) holds.

(1) Let v ∈ V . Then there is a unique w ∈ W closest to v by 8.4.2. Then by the definition
of PW , we have PW (v) = w = PW (w). Hence P 2

W (v) = PW (w) = w = PW (v), and P 2
W =

PW .

Corollary 8.4.6. 〈PWu, v〉 = 〈u, PWv〉 for all u, v ∈ V .

Proof. Let u, v ∈ V . Then by 2.2.8, there are unique w1, w2 ∈ W and x1, x2 ∈ W⊥ such that
u = w1 + x1 and v = w2 + x2. Then

〈PWu, v〉 = 〈PW (w1 + x1), w2 + x2〉 = 〈w1, w2 + x2〉 = 〈w1, w2〉
= 〈w1 + x1, w2〉 = 〈w1 + x1, PW (w2 + x2)〉 = 〈u, PWv〉.
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Exercises

V will denote an inner product space over F.

Exercise 8.4.7 (Invariant Subspaces). Let T ∈ L(V ), and let W ⊂ V be a finite dimensional
subspace.

(1) Show W is T -invariant if and only if PWTPW = TPW .

(2) Show W and W⊥ are T -invariant if and only if TPW = PWT .
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Chapter 9

Operators on Hilbert Space

9.1 Hilbert Spaces

The preceding discussion brings up a few questions. What can we say about subspaces of
an inner product space V that are not finite dimensional? Is there a projection PW onto an
infinite dimensional subspace? Is it still true that V = W ⊕W⊥ if W is infinite dimensional?
As we are not assuming a knowledge of basic topology and analysis, there is not much we can
say about these questions. Hence, we will need to restrict our attention to finite dimensional
inner product spaces, which are particular examples of Hilbert spaces.

Definition 9.1.1. For these notes, a Hilbert space over F will mean a finite dimensional
inner product space over F.

Remark 9.1.2. The study of operators on infinite dimensional Hilbert spaces is a vast area
of research that is widely popular today. One of the biggest differences between an under-
graduate course on linear algebra and a graduate course in functional analysis is that in the
undergraduate course, one only studies finite dimensional Hilbert spaces.

For this section H will denote a Hilbert space over F. In this section, we discuss various
types of operators in L(H).

Proposition 9.1.3. Let K ⊂ H be a subspace. Then (K⊥)⊥ = K.

Proof. It is obvious that K ⊂ (K⊥)⊥. We know H = K ⊕ K⊥ by 8.4.5. By 8.3.7, choose
orthonormal bases B = {v1, . . . , vn} and C = {u1, . . . , um} for K and K⊥ respectively. Then
B ∪ C is an orthonormal basis for H by 2.4.13. Suppose w ∈ (K⊥)⊥. Then by 8.3.8,

w =
n∑
i=1

〈w, vi〉vi +
m∑
i=1

〈w, ui〉ui,

but w ⊥ ui for all i = 1, . . . ,m, so w ∈ span(B) = K. Hence K ⊂ (K⊥)⊥.

Lemma 9.1.4. Suppose T ∈ L(H, V ) where V is a vector space. Then T = TPker(T )⊥.
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Proof. We know that H = ker(T ) ⊕ ker(T )⊥ by 8.4.5. Let v ∈ ker(T ) and w ∈ ker(T )⊥.
Then T (v + w) = Tv + Tw = 0 + Tw = Tw = TPker(T )⊥(v + w). Thus, T = TPker(T )⊥ .

Theorem 9.1.5 (Reisz Representation). The map Φ: H → H∗ given by v 7→ 〈·, v〉 is a
conjugate-linear isomorphism, i.e. Φ(λu + v) = λΦ(u) + Φ(v) for all λ ∈ F and u, v ∈ H,
and Φ is bijective.

Proof. It is obvious that the map is conjugate linear. We show Φ is injective. Suppose
〈·, v〉 = 0, i.e. 〈u, v〉 = 0 for all u ∈ V . Then in particular, 〈v, v〉 = 0, so v = 0 by
definiteness. Note that the proof of 3.2.4 still works for conjugate-linear transformations, so
Φ is injective. We show Φ is surjective. It is clear that Φ(0) = 0. Suppose that ϕ ∈ H∗ with
ϕ 6= 0. Then ker(ϕ) 6= H, so ker(ϕ)⊥ 6= (0). Pick v ∈ ker(ϕ)⊥ such that ϕ(v) 6= 0. Now
consider the functional

ψ = ϕ(v)
〈·, v〉
‖v‖2

= Φ

(
ϕ(v)

‖v‖2
v

)
.

Since span{v} = ker(ϕ)⊥, by 9.1.4 and 3.3.2 we have

ψ(u) = ϕ(v)
〈u, v〉
‖v‖2

= ϕ

(
〈u, v〉
‖v‖2

v

)
= ϕ(Pv(u)) = ϕ(u).

Hence ψ = ϕ, and Φ is surjective.

Exercises

Exercise 9.1.6 (Sesquilinear Forms and Operators). Show that there is a bijective corre-
spondence Ψ: L(H)→ {sesquilinear forms on H}.

9.2 Adjoints

Definition 9.2.1. Let T ∈ L(H). Then if v ∈ H, u 7→ 〈Tu, v〉 = (Φ(v) ◦ T )(u) defines a
linear operator on H. By the Reisz Representation Theorem, 9.1.5, there is a vector in H,
which we will denote T ∗v, such that

〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ H.

We show the map T ∗ : H → H given by v 7→ T ∗v is linear. Suppose λ ∈ F and w ∈ H. Then

〈Tu, λv + w〉 = λ〈Tu, v〉+ 〈Tu,w〉 = λ〈u, T ∗v〉+ 〈u, T ∗w〉 = 〈u, λT ∗v + T ∗w〉

for all u ∈ H. Hence T ∗(λv + w) = λT ∗v + T ∗w by 8.2.1. The map T ∗ is called the adjoint
of T .

Examples 9.2.2.

(1) For λI ∈ L(H), (λI)∗ = λI.
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(2) For A ∈Mn(F), we have (LA)∗ = LA∗ , multiplication by the adjoint matrix.

(3) Suppose H is a real Hilbert space and T ∈ L(H). Then (TC)∗ ∈ L(HC) is defined by the
following formula:

(TC)∗(u+ iv) = T ∗u+ iT ∗v.

In other words, (TC)∗ = (T ∗)C.

Proposition 9.2.3. Let S, T ∈ L(H) and λ ∈ F.

(1) The map ∗ : L(H)→ L(H) is conjugate-linear, i.e. (λT + S)∗ = λT ∗ + S,

(2) (ST )∗ = T ∗S∗, and

(3) T ∗∗ = (T ∗)∗ = T .
In short, ∗ is a conjugate-linear, anti-automorphism of period two.

Proof.

(1) For all u, v ∈ H, we have

〈u, (λT+S)∗v〉 = 〈(λT+S)u, v〉 = λ〈Tu, v〉+〈Su, v〉 = 〈u, λT ∗v〉+〈u, S∗v〉 = 〈u, (λT ∗+S∗)v〉.

By 8.2.1 we get the desired result.

(2) For all u, v ∈ H, we have

〈u, (ST )∗v〉 = 〈STu, v〉 = 〈u, T ∗S∗v〉.

By 8.2.1 we get the desired result.

(3) For all u, v ∈ H, we have

〈Tu, v〉 = 〈u, T ∗v〉 = 〈T ∗v, u〉 = 〈v, T ∗∗u〉 = 〈T ∗∗u, v〉.

Hence, by 8.2.1, we get T = T ∗∗.

Definition 9.2.4. An operator T ∈ L(H) is called

(1) normal if T ∗T = TT ∗,

(2) self adjoint if T = T ∗ (note that a self adjoint operator is normal),

(3) positive if T is self adjoint and 〈Tv, v〉 ≥ 0 for all v ∈ H, and

(4) positive definite if T is positive and 〈Tv, v〉 = 0 implies v = 0.

(5) A matrix A ∈Mn(F) is called positive (definite) if LA is positive (definite).

Examples 9.2.5.

(1) The following matrices in M2(F) are normal:(
0 −1
1 0

)
,
1

2

(
1 1
1 1

)
, and

(
0 −i
i 0

)
.
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(2)

Definition 9.2.6.

(1) An operator T ∈ L(H) is called an isometry if T ∗T = I.

(2) An operator U ∈ L(H) is called unitary if U∗U = UU∗ = I.

(3) An operator P ∈ L(H) is called a projection (or an orthogonal projection) if P = P ∗ = P 2.

(4) An operator V ∈ L(H) is called a partial isometry if V ∗V is a projection.

Examples 9.2.7.

(1) Suppose A ∈ Mn(F). Then LA is unitary if and only if A∗A = AA∗ = I. In fact, LA
is unitary if and only if the columns of A are orthonormal if and only if the rows of A are
orthonormal.

(2) The simplest example of a projection is LA where A ∈ Mn(F) is a diagonal matrix with
only zeroes and ones on the diagonal.

(3) If T ∈ L(H) is a projection or (partial) isometry, and if U ∈ L(H) is unitary, then U∗TU
is a projection or (partial) isometry respectively.

(4) Let H = Pn with the inner product

〈p, q〉 =

1∫
0

p(x)q(x) dx.

Then multiplication by p ∈ Pn is a unitary operator if and only if |p(x)| = 1 for all x ∈ [0, 1]
if and only if p(x) = λ where |λ| = 1 for all x ∈ [0, 1].

Exercises

Exercise 9.2.8. Let B be an orthonormal basis for H, and let T ∈ L(H). Show that
[T ∗]B = [T ]∗B.

Exercise 9.2.9 (Sesquilinear Forms and Operators 2). Let Ψ: L(H)→ {sesquilinear forms on H}
be the bijective correspondence found in 9.1.6. For T ∈ L(H), show that the map Ψ satisfies

(1) T is self adjoint if and only if Ψ(T ) is self adjoint,

(2) T is positive if and only if Ψ(T ) is positive, and

(2) T is positive definite if and only if Ψ(T ) is an inner product.

Exercise 9.2.10. Suppose T ∈ L(H). Show

(1) if T is self adjoint, then sp(T ) ⊂ R,

(2) if T is positive, then sp(T ) ⊂ [0,∞), and

(3) if T is positive definite, then sp(T ) ⊂ (0,∞).
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9.3 Unitaries

Lemma 9.3.1. Suppose B is an orthonormal basis of H. Then [·]B preserves inner products,
i.e.

〈u, v〉H = 〈[u]B, [v]B〉Fn for all u, v ∈ H.

Proof. Let B = {v1, . . . , vn}, and suppose

u =
n∑
i=1

µivi and v =
n∑
i=1

λivi.

Then we have

[u]B =
n∑
i=1

µiei and [v]B =
n∑
i=1

λiei,

so

〈[u]B, [v]B〉Fn =
n∑
i=1

µiλi = 〈u, v〉H .

Theorem 9.3.2 (Unitary). The following are equivalent for U ∈ L(H):

(1) U is unitary,

(2) U∗ is unitary,

(3) U is an isometry,

(4) 〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ H,

(5) ‖Uv‖ = ‖v‖ for all v ∈ H,

(6) If B is an orthonormal basis of H, then UB is an orthonormal basis of H, i.e. U maps
orthonormal bases to bases,

(7) If B is an orthonormal basis of H, then the columns of [U ]B form an orthonormal basis
of Fn, and

(8) If B is an orthonormal basis of H, then the rows of [U ]B form an orthonormal basis of
Fn.

Proof.

(1)⇔ (2): Obvious.

(1)⇒ (3): Obvious.

(3)⇒ (4): Suppose U∗U = I, and let v, w ∈ H. Then

〈Uv, Uw〉 = 〈U∗Uv,w〉 = 〈Iv, w〉 = 〈v, w〉.
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(4)⇒ (5): Suppose 〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ H. Then

‖Uv‖2 = 〈Uv, Uv〉 = 〈v, v〉 = 〈v, v〉 = ‖v‖2.

Now take square roots.

(5)⇒ (1): Suppose ‖Uv‖ = ‖v‖ for all v ∈ V , and let v ∈ ker(U). Then

0 = ‖0‖ = ‖Uv‖ = ‖v‖,

so v = 0 and U is injective. Hence U is bijective by 3.2.15, and U is invertible. Thus
UU∗ = I.

(4)⇒ (6): Let B = {v1, . . . , vn} be an orthonormal basis of H. Then

〈Uvi, Uvj〉 = 〈vi, vj〉 =

{
1 if i = j

0 else,

so UB = {Uv1, . . . , Uvn} is an orthonormal basis of H.

(6)⇒ (7): Suppose B = {v1, . . . , vn} is an orthonormal basis of H. Then

[U ]B =

[
[Uv1]B

∣∣∣∣ · · · ∣∣∣∣[Uvn]B

]
,

and we have that

〈[Uvi]B, [Uvj]B〉Fn = 〈[U ]∗B[U ]B[vi]B], [vj]b〉Fn = 〈ei, ej〉Fn =

{
1 if i = j

0 else,

so the columns [Uvi]B of [U ]B form an orthonormal basis of Fn.

(7)⇒ (8): Suppose B is an orthonormal basis of H and the columns of [U ]B form an or-
thonormal basis of Fn. Then we see that

[U ]∗B[U ]B = I = [U ]B[U ]∗B.

Hence if Ui ∈M1×n(F) is the ith row of [U ]B for i ∈ [n], then we have

UiU
∗
j = Ii,j =

{
1 if i = j

0 else,

so the rows of [U ]B form an orthonormal basis of Fn.

(8)⇒ (1): Suppose B is an orthonormal basis of H and the rows of [U ]B form an orthonormal
basis of Fn. Then by 9.2.8

[UU∗]B = [U ]B[U∗]B = [U ]B[U ]∗B = I,

so UU∗ = I. Thus U∗ is injective and invertible by 3.2.15, so U∗U = I, and U is unitary.

Remark 9.3.3. Note that only (5)⇒ (1) fails if we do not assume that H is finite dimensional.

128



Exercises

Exercise 9.3.4 (The Trace). Let {v1, . . . , vn} be an orthonormal basis ofH. Define tr : L(H)→
F by

tr(T ) =
n∑
i=1

〈Tvi, vi〉.

(1) Show that tr ∈ L(H)∗.

(2) Show that tr(TS) = tr(ST ) for all S, T ∈ L(H). Deduce that tr(UTU∗) = tr(T ) for all
unitary U ∈ L(H). Deduce further that tr is independent of the choice of orthonormal basis
of H.

(3) Let B be an orthonormal basis of H. Show that

tr(T ) = trace([T ]B)

for all T ∈ L(H) where trace ∈Mn(F)∗ is given by

trace(A) =
n∑
i=1

Aii.

9.4 Projections

Proposition 9.4.1. There is a bijective correspondence between the set of projections P (H) ⊂
L(H) and the set of subspaces of H.

Proof. We show the map K 7→ PK where PK is as in 8.4.3 is bijective. First, suppose
PL = PK for subspaces L,K. Suppose u ∈ L. Then PK(u) = PL(u) = u by 8.4.5, so u ∈ K.
Hence L ⊆ K. By symmetry, i.e. switching L and K in the preceding argument, we have
that K ⊆ L, so L = K.

We must show now that all projections are of the form PK for some subspace K. Let P
be a projection, and let K = im(P ). We claim that P = PK . First, note that P 2 = P , so if
w ∈ K, then Pw = w. Second, if u ∈ K⊥, then for all w ∈ K,

0 = 〈w, u〉 = 〈Pw, u〉 = 〈w,Pu〉.

Hence Pu ∈ K ∩K⊥, so Pu = 0 by 8.4.5. Now let v ∈ H = K ⊕K⊥. Then by 2.2.8 there
are unique y ∈ K and z ∈ K⊥ such that v = y + z. Then

Pv = Py + Pz = y = PKy + PKz = PKv,

so P = PK .

Corollary 9.4.2. Let P ∈ L(H) be a projection. Then

(1) H = ker(P )⊕ im(P ) and
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(2) im(P ) =
{
v ∈ H

∣∣Pv = v
}

= ker(P )⊥.

Remark 9.4.3. Let P be a minimal projection, i.e. a projection onto a one dimensional
subspace. In light of 9.4.1, we see that a P is minimal in the sense that im(P ) has no
nonzero proper subspaces. Hence, there are no nonzero projections that are “smaller” than
P .

Definition 9.4.4. Projections P,Q ∈ L(H) are called orthogonal, denoted P ⊥ Q if
im(P ) ⊥ im(Q).

Examples 9.4.5.

(1) Suppose u, v ∈ H with u ⊥ v. Then Pu ⊥ Pv.

(2) If L,K are two subspaces of H such that L ⊥ K, then PL ⊥ PK . In particular, PK ⊥ PK⊥
for all subspaces K ⊂ H.

Proposition 9.4.6. Let P,Q ∈ L(H) be projections. The following are equivalent:

(1) P ⊥ Q,

(2) PQ = 0, and

(3) QP = 0.

Proof.

(1)⇒ (2), (3): Suppose P ⊥ Q. For all u, v ∈ H, we have

〈PQu, v〉 = 〈Qu, Pv〉 = 〈u,QPv〉 = 0.

Hence PQ = 0 = QP by 8.2.1.

(2)⇔ (3): We have PQ = 0 if and only if QP = (PQ)∗ = 0.

(2)⇒ (1): Now suppose PQ = 0 and let u ∈ im(P ) and v ∈ im(Q). Then there are x, y ∈ H
such that u = Px and v = Qy, and

〈u, v〉 = 〈Px,Qy〉 = 〈PQu, v〉 = 〈0, v〉 = 0.

Definition 9.4.7.

(1) We say the projection P ∈ L(H) is larger than the projection Q ∈ L(H), denoted P ≥ Q
if im(Q) ⊂ im(P ).

(2) If P,Q ∈ L(H), then we define the sup of P and Q by P ∨Q = Pim(P )+im(Q) and the inf
of P and Q by P ∧Q = Pim(P )∩im(Q).

Proposition 9.4.8.

(1) P ∨Q is the smallest projection larger than both P and Q, i.e. if P,Q ≤ E and E ∈ L(H)
is a projection, then P ∨Q ≤ E.
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(2) P ∧Q is the largest projection smaller than both P and Q, i.e. if F ≤ P,Q, and F ∈ L(H)
is a projection, then F ≤ P ∧Q.

Proof.

(1) It is clear that im(P ), im(Q) ⊂ im(P ) + im(Q), so P,Q ≤ P ∨ Q. Suppose P,Q ≤ E.
Then im(P ) ⊂ im(E) and im(Q) ⊂ im(E), so we must have that im(P ) + im(Q) ⊂ im(E),
and im(P ∨Q) ⊂ im(E). Thus P ∨Q ≤ E.

(2) It is clear that im(P ) ∩ im(Q) ⊂ im(P ), im(Q), so P ∧ Q ≤ P,Q. Suppose F ≤ P,Q.
Then im(F ) ⊂ im(P ) and im(F ) ⊂ im(Q), so we must have that im(F ) ⊂ im(P ) ∩ im(Q),
and im(F ) ⊂ im(P ∧Q). Thus F ≤ P ∧Q.

Proposition 9.4.9. Let P,Q ∈ L(H) be projections. The following are equivalent:

(1) im(Q) ⊂ im(P ), i.e. Q ≤ P ,

(2) Q = PQ, and

(3) Q = QP .

Proof.

(1)⇒ (2): Suppose Q ≤ P . Then
{
v ∈ H

∣∣Qv = v
}
⊂
{
v ∈ H

∣∣Pv = v
}

. Let v ∈ H, and
note there are unique x ∈ im(Q) and y ∈ ker(Q) such that v = x+ y. Then

Qv = Qx+Qy = x = Px = PQx = PQv,

so Q = PQ.

(2)⇔ (3): We have Q = PQ if and only if Q = Q∗ = (PQ)∗ = QP .

(2)⇒ (1): SupposeQ = PQ, and suppose v ∈ im(Q). ThenQv = v, so v = Qv = PQv = Pv,
and v ∈ im(P ).

Corollary 9.4.10. Suppose P,Q ∈ L(H) are projections with Q ≤ P . Then P − Q is a
projection.

Proof. We know P −Q is self adjoint. By 9.4.9,

(P −Q)2 = P −QP − PQ+Q = P −Q−Q+Q = P −Q,

so P −Q is a projection.

Exercises

9.5 Partial Isometries

Proposition 9.5.1. Suppose V ∈ L(H) is a partial isometry. Set P = V ∗V and Q = V V ∗

(1) P is the projection onto ker(V )⊥.
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(2) Q is the projection onto im(V ). In particular, V ∗ is a partial isometry.

Proof.

(1) We show ker(P ) = ker(V ), so that im(P ) = ker(P )⊥ = ker(V )⊥. It is clear that ker(V ) ⊂
ker(P ) as V v = 0 implies Pv = V ∗V v = V ∗0 = 0.

Now suppose v ∈ ker(P ) so Pv = 0. Then

0 = 〈Pv, v〉 = 〈V ∗V v, v〉 = 〈V v, V v〉 = ‖V v‖2,

so v ∈ ker(V ).

(2) By 9.1.4 and (1), we see V = V P . Suppose v ∈ im(V ). Then v = V u for some u ∈ H.
Then Qv = QV u = V V ∗V u = V Pu = V u = v, so v ∈ im(Q).

Now suppose v ∈ im(Q). Then v = Qv = V V ∗v, so v ∈ im(V ).

Remark 9.5.2. If V is a partial isometry, then ker(V )⊥ is called the initial subspace of V and
im(V ) is called the final subspace of V .

Theorem 9.5.3. Let V ∈ L(H). The following are equivalent:

(1) V is a partial isometry,

(2) ‖V v‖ = ‖v‖ for all v ∈ ker(V )⊥,

(3) 〈V u, V v〉 = 〈u, v〉 for all u, v ∈ ker(V )⊥, and

(4) V |ker(V )⊥ ∈ L(ker(V )⊥, im(V )) is an isomorphism with inverse V ∗|im(V ) ∈ L(im(V ), ker(V )⊥).

Proof.

(1)⇒ (2): Suppose V is a partial isometry. Then if v ∈ ker(V )⊥,

‖V v‖2 = 〈V v, V v〉 = 〈V ∗V v, v〉 = 〈v, v〉 = ‖v‖2

by 9.5.1. Taking square roots gives ‖V v‖ = ‖v‖.
(2)⇒ (3): If u, v ∈ ker(V )⊥, then assuming H is a complex Hilbert space, by 8.1.4,

4〈V u, V v〉 =
3∑

k=0

ik〈V u+ ikV v, V u+ ikV v〉 =
3∑

k=0

ik‖V (u+ ikv)‖2 =
3∑

k=0

ik‖u+ ikv‖2

=
3∑

k=0

ik〈u+ ikv, u+ ikv〉 = 4〈u, v〉.

Now divide by 4. The proof is similar using 8.1.4 if H is a real Hilbert space.

(3)⇒ (1): We show V ∗V is a projection. Let w, x ∈ H. Then there are unique y1, y2 ∈ ker(V )

and z1, z2 ∈ ker(V )⊥ such that w = y1 + z1 and x = y2 + z2. Then

〈V ∗V w, x〉 = 〈V ∗V (y1 + z1), y2 + z2〉 = 〈V y1 + V z1, V y2 + V z2〉 = 〈V z1, V z2〉 = 〈z1, z2〉
= 〈z1, y2 + z2〉 = 〈Pker(V )⊥w, x〉.

Since this holds for all w, x ∈ H, by 8.2.1, V ∗V = Pker(V )⊥ .
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(1)⇒ (4): We know by 9.5.1 that V ∗V is the projection onto ker(V )⊥ and V V ∗ is the pro-

jection onto im(V ). Hence if S = V |ker(V )⊥ ∈ L(ker(V )⊥, im(V )) and T = V ∗|im(V ) ∈
L(im(V ), ker(V )⊥), then ST = Iim(V ) and TS = Iker(V )⊥ .

(4)⇒ (1): Suppose v ∈ H. Then there are unique x ∈ ker(V ) and y ∈ ker(V )⊥ such that
v = x + y. Then V ∗V v = V ∗V (x + y) = V ∗V y = y = Pker(V )⊥v, so V ∗V = Pker(V )⊥ , a
projection, and V is a partial isometry.

Exercises

Exercise 9.5.4 (Equivalence of Projections). Projections P,Q ∈ L(H) are said to be equiv-
alent if there is a partial isometry V ∈ L(H) such that V V ∗ = P and V ∗V = Q.

(1) Show that tr(P ) = dim(im(P )) for all projections P ∈ L(H).

(2) Show that projections P,Q ∈ L(H) are equivalent if and only if tr(P ) = tr(Q).

9.6 Dirac Notation and Rank One Operators

Notation 9.6.1 (Dirac). Given the inner product space (H〈, ·, ·〉), we can define a function
〈·|·〉 : H ×H → F by

〈u|v〉 = 〈u, v〉 for all u, v ∈ H.
In some treatments of linear algebra, the inner products are linear in the second variable
and conjugate linear in the first. We can go back and forth between these two notations by
using the above convention.

In his work on quantum mechanics, Dirac found a beautiful and powerful notation that
is now referred to as “Dirac notation” or “bras and kets.” A vector in H is sometimes called
a “ket” and is sometiems denoted using the right half of the alternate inner product defined
above:

v ∈ H or |v〉 ∈ H.
A linear functional in L(H,F) is sometimes called a “bra” and is sometimes denoted using
the left half of the alternate inner product:

v∗ = 〈·, v〉 ∈ H∗ or 〈v| ∈ H∗.

Now the (alternate) inner product of u, v ∈ H is nothing more than the “bra” 〈u| applied to
the “ket” |v〉 to get the “braket” 〈u|v〉.

The power of this notation is that it allows for the opposite composition to get “rank one
operators” or “ket-bras.” If u, v ∈ H, we define a linear transformation |u〉〈v| ∈ L(H) by

w = |w〉 7−→ 〈v|w〉|u〉 = 〈w, v〉u.

If we write out the equation naively, we see (|u〉〈v|)|w〉 = |u〉〈v|w〉. The term “rank one”
refers to the fact that the dimension of the image of a rank one operator is less than or equal
to one. The dimension is one if and only if u, v 6= 0.
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For example, recall that Pv for v ∈ H was defined to be the projection onto span{v}
given by

u 7−→ 〈u, v〉
‖v‖2

v.

Thus, we see that Pv = ‖v‖−2|v〉〈v|. This makes it clear that if u = λv and u, v 6= 0 ∈ V
and λ ∈ S1, then Pu = Pv:

Pu =
|u〉〈u|
‖u‖2

=
|λv〉〈λv|
‖λv‖2

=
|λ|2|v〉〈v|
|λ|2‖v‖2

=
|v〉〈v|
‖v‖2

= Pv.

In particular, we have that P is a minimal projection if and only if P = |v〉〈v| for some
v ∈ H with ‖v‖ = 1. Sometimes these projections are called “rank one” projections.

One can easily show that composition of rank one operators |u〉〈v| and |w〉〈x| is exactly
the naive composition:

(|u〉〈v|)(|w〉〈x|) = |u〉〈v|w〉〈x| = 〈v|w〉|u〉〈x| for all u, v, w, x ∈ H,

and taking adjoints is also easy:

(|u〉〈v|)∗ = |v〉〈u| for all u, v ∈ H.

Furthermore, if T ∈ L(H), then composition is also naive:

T |u〉〈v| = |Tu〉〈v| and |u〉〈v|T = |u〉〈T ∗v|.

Exercises

Exercise 9.6.2. Let u, v ∈ H and T ∈ L(H).

(1) Show that (|u〉〈v|)∗ = |v〉〈u|.
(2) Show that T |u〉〈v| = |Tu〉〈v| and |u〉〈v|T = |u〉〈T ∗v|.
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Chapter 10

The Spectral Theorems and the
Functional Calculus

For this section H will denote a Hilbert space over F. The main result of this section is the
spectral theorem which says we can decompose H into invariant subspaces for T under a few
conditions.

10.1 Spectra of Normal Operators

This section provides some of the main lemmas for the proofs of the spectral theorems.

Proposition 10.1.1. Let T ∈ L(H) be a normal operator.

(1) ‖Tv‖ = ‖T ∗v‖ for all v ∈ H.

(2) Suppose v ∈ H is an eigenvector of T ∈ L(H) with corresponding eigenvalue λ. Then v
is an eigenvector of T ∗ with corresponding eigenvalue λ.

Proof.

(1) Ke have that

‖Tv‖2 = 〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈TT ∗v, v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2.

Now take square roots.

(2) Since T is normal, so is TλI. By 9.2.3, we know (T − λI)∗ = T ∗ − λI. Now we apply (1)
to get

0 = ‖(T − λI)v‖ = (T − λI)∗v‖ = ‖(T ∗ − λI)v‖.

Hence T ∗v = λv.

Proposition 10.1.2. Let T ∈ L(H) be normal.

(1) If v1, v2 are eigenvectors of T corresponding to distinct eigenvalues λ1, λ2 respectively,
then v1 ⊥ v2. Hence Eλ1 ⊥ Eλ2.
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(3) If S = {v1, . . . , vn} is a set of eigenvectors of T corresponding to distinct eigenvalues,
then S is linearly independent.

Proof.

(1) By 10.1.1 we have

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈Tv1v2〉 = 〈v1, T
∗v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉.

The only way these two can be equal is if v1 ⊥ v2.

(2) By 8.3.3, it suffices to show S is orthogonal, but this follows by (1).

Exercises

H will denote a Hilbert space over F.

10.2 Unitary Diagonalization

Let V be a finite dimensional vector space over F. In Chapter 4, we proved that T ∈ L(V )
is diagonalizable if and only if

V =
m⊕
i=1

Eλi where sp(T ) = {λ1, . . . , λm}

. Recall that this theorem was independent of an inner product structure of V and merely
relies on the finite dimensionality of V . In this section, we will characterize when an operator
T ∈ L(H) is unitarily diagonalizable, which is inherently connected to the inner product
structure of H as we need an inner product structure to define a unitary operator.

Definition 10.2.1. Let T ∈ L(H). T is unitarily diagonalizable if there is an orthonor-
mal basis of H consisting of eigenvectors of T . A matrix A ∈ Mn(F) is called unitarily
diagonalizable if LA is (unitarily) diagonalizable.

Examples 10.2.2.

(1) Every diagonal matrix is unitarily diagonalizable.

(2) Not every diagonalizable matrix is unitarily diagonalizable. An example is

A =

(
1 1
0 0

)
.

The basis {(
1
0

)
,

(
1
−1

)}
is a basis of R2 consisting of eigenvectors of LA, but there is no orthonormal basis of R2

consisting of eigenvectors of LA.
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Proposition 10.2.3. T ∈ L(H) is unitarily diagonalizble if and only if

H =
n⊕
i=1

Eλi and Eλi ⊥ Eλj for all i 6= j

where sp(T ) = {λ1, . . . , λn}.

Proof. Suppose T is unitarily diagonalizable, and let B = {v1, . . . , vm} be an orthonormal
basis of H consisting of eigenvectors of T . Let λ1, . . . , λn be the eigenvalues of T , and let
Bi = B ∩ Eλi for i ∈ [n]. Then Eλi = span(Bi) for all i ∈ [n] and

H =
n⊕
i=1

Eλi as B =
n∐
i=1

Bi.

Now Eλi ⊥ Eλj for i 6= j as Bi ⊥ Bj for i 6= j.
Suppose now that

H =
n⊕
i=1

Eλi and Eλi ⊥ Eλj for all i 6= j

where sp(T ) = {λ1, . . . , λn}. For i ∈ [n], let Bi be an orthonormal basis for Eλi , and note
that Bi ⊥ Bj as Eλi ⊥ Eλj for all i 6= j. Then

B =
n∐
i=1

Bi

is an orthonormal basis for H consisting of eigenvectors of T as Bi is an orthonormal basis
for Eλi for all i ∈ [n] and B is orthogonal.

Corollary 10.2.4. Let T ∈ L(H). T is unitarily diagonalizable if and only if there are
mutually orthogonal projections P1, . . . , Pn ∈ L(H) and distinct scalars λ1, . . . , λn ∈ F such
that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

Proof. We know by 10.2.3 that T is unitarily diagonalizable if and only if

H =
n⊕
i=1

Eλi and Eλi ⊥ Eλj for all i 6= j

where sp(T ) = {λ1, . . . , λn}.
Suppose that H is the orthogonal direct sum of the eigenspaces of T . By 6.1.7, setting

Pi = PEλi for all i ∈ [n], we have that

I =
n∑
i=1

Pi and PiPj = 0 if i 6= j.
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Hence by 9.4.6, the Pi’s are mutually orthogonal. Now if v ∈ H, we have v can be written
uniquely as a sum of elements of the Eλi ’s by 2.2.8:

v =
n∑
i=1

vi where vi ∈ Eλi .

Now it is immediate that

Tv =
n∑
i=1

Tvi =
n∑
i=1

λivi =
n∑
i=1

λiPivi =
n∑
j=1

λjPj

n∑
i=1

vi =

(
n∑
j=1

λjPj

)
v,

so we have

T =
n∑
i=1

λiPi.

Now suppose there are mutually orthogonal projections P1, . . . , Pn ∈ L(H) and distinct
scalars λ1, . . . , λn ∈ F such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

The reader should check that sp(T ) = {λ1, . . . , λn} and Eλi = im(Pi). Note that Eλi ⊥ Eλj
for i 6= j as Pi ⊥ Pj for i 6= j. Finally, by 6.1.7, we know that

H =
n⊕
i=1

im(Pi) =
n⊕
i=1

Eλi ,

and we are finished.

Remark 10.2.5. Note that if ∈ L(H) with

T =
n∑
i=1

λiPi,

where λi ∈ F are distinct and the Pi’s are mutually orthogonal projections in L(H) that sum
to I, we can immediately see that sp(T ) = {λ1, . . . , λn}, and the corresponding eigenspaces
are {im(P1), . . . , im(Pn)}.

Exercises

10.3 The Spectral Theorems

The complex, respectively real, spectral theorem is a classification of unitarily diagonalizable
operators on complex, respectively real, Hilbert space. The key result for this section is 5.4.5.
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Theorem 10.3.1 (Complex Spectral). Suppose H is a finite dimensional inner product space
over C, and let T ∈ L(H). Then T is unitarily diagonalizable if and only if T is normal.

Proof. Suppose T is unitarily diagonalizable. Then by 10.2.4, there are λ1, . . . , λn ∈ C and
mutually orthogonal projections P1, . . . , Pn such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

Then

TT ∗ =
n∑
i=1

λiPi

n∑
j=1

λjPj =
n∑
i=1

λiλiPi =
n∑
i=1

λiλiPi =
n∑
j=1

λjPj

n∑
i=1

λiPi = T ∗T.

Suppose now that T is normal. By 5.4.5, we know T has an eigenvector. Let S =
{v1, . . . , vk} be a maximal orthonormal set of eigenvectors of T corresponding to eigenvalues
λ1, . . . , λk. Let K = span(S). We need to show K = H, or K⊥ = (0). First, we show
TPK = PKT . By the Extension Theorem, we may extend S to an orthonormal basis B =
{v1, . . . , vn} of H. By 10.1.1, for v ∈ H, we have

PK(Tv) = PK

n∑
i=1

〈Tv, vi〉vi =
n∑
i=1

〈Tv, vi〉PKvi =
k∑
i=1

〈Tv, vi〉vi =
k∑
i=1

〈v, T ∗vi〉vi

=
k∑
i=1

〈v, λivi〉vi =
k∑
i=1

〈v, vi〉λivi =
k∑
i=1

〈v, vi〉Tvi = T

(
k∑
i=1

〈v, vi〉vi

)

= T

(
n∑
i=1

〈v, vi〉PKvi

)
= T (PKv).

By 8.4.7, we know that K and K⊥ are invariant subspaces for T , so T |K⊥ = (I−PK)T (I−PK)
is a well defined normal operator in L(K⊥). Suppose K⊥ 6= (0), by 5.4.5 T |K⊥ has an
eigenvector w ∈ K⊥. We may assume ‖w‖ = 1. But then S ∪ {w} is an orthonormal set
of eigenvectors of T which is strictly larger than S, a contradiction. Hence K⊥ = (0), and
K = H.

Lemma 10.3.2. If T ∈ L(H) is self adjoint, then all eigenvalues of T are real.

Proof. Suppose λ is an eigenvalue of T corresponding to the eigenvector v ∈ H. Then

λ〈v, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = λ〈v, v〉.

The only way this is possible is if λ ∈ R.

Lemma 10.3.3. Suppose H is a finite dimensional inner product space over R, and let
T ∈ L(H) be self adjoint. Then T has a real eigenvalue.
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Proof. Recall by 2.1.12 and 3.1.3 that the complexifcation HC of H is a complex Hilbert
space and that the complexification of T is given by TC(u+ iv) = Tu+ iTv. Note that (TC)∗

is given by
(TC)∗(u+ iv) = T ∗u+ iT ∗v,

so TC is self adjoint, hence unitarily diagonalizable by 10.3.1:

(TC)∗(u+ iv) = T ∗u+ iT ∗v = Tu+ iTv = TC(u+ iv).

Hence, there is an orthonormal basis {w1, . . . , wn} of HC consisting of eigenvectors of TC. For
j = 1, . . . , n, let wj = uj + ivj, and let λj ∈ R (by 10.3.2) be the eigenvalue corresponding
to wj. First note that Tuj = λjuj and Tvj = λjvj by 2.1.12:

Tuj + iTvj = TC(uj + ivj) = λj(uj + ivj) = λjuj + iλjvj.

Hence one of uj, vj must be nonzero as wj 6= 0, and is thus an eigenvector of T with
corresponding real eigenvalue λj.

Theorem 10.3.4 (Real Spectral). Suppose H is a finite dimensional inner product space
over R, and let T ∈ L(H). Then T is unitarily diagonalizable if and only if T is self adjoint.

Proof. Suppose T is unitarily diagonalizable. Then by 10.2.4, there are distinct λ1, . . . , λn ∈
R and mutually orthogonal projections P1, . . . , Pn such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

This immediately implies

T =
n∑
i=1

λiPi =
n∑
i=1

λiPi = T ∗.

Now suppose T is self adjoint. Then by 10.3.3, T has an eigenvector. Let S = {v1, . . . , vm}
be a maximal orthonormal set of eigenvectors, and let K = span(S). Then as in the proof
of 10.3.1, we have PKT = TPK . Note that T |K⊥ = (I − PK)T (I − PK) is a well defined self
adjoint operator in L(K⊥). The rest of the argument is exactly the same as in 10.3.1.

Exercises

Exercise 10.3.5. Let S, T ∈ L(H) be normal operators. Show that S, T ∈ L(H) commute
if and only if S, T are simultaneously unitarily diagonalizable, i.e. there is an orthonormal
basis of H consisting of eigenvectors of both S and T .

Exercise 10.3.6 (Rayleigh’s Principle). Suppose T ∈ L(H) with T = T ∗, and let

sp(T ) = {λmin = λ1 < λ2 < · · · < λn = λmax}
(see 9.2.10). Show that

λmin ≤
〈Tv, v〉
‖v‖2

≤ λmax

for all v ∈ H \ {0} with equality at each side if and only if v is an eigenvector with the
corresponding eigenvalue.

140



10.4 The Functional Calculus

Lemma 10.4.1. Suppose P1, . . . , Pn ∈ L(H) are mutually orthogonal projections. Then

n∑
i=1

λiPi =
n∑
i=1

µiPi

if and only if λi = µi for all i ∈ [n].

Proof. For i ∈ [n], let vi ∈ im(Pi) \ {0}. Then

λivi =

(
n∑
j=1

λjPj

)
vi =

(
n∑
j=1

µjPj

)
vi = µivi,

so (λi − µi)vi = 0 and λi − µi = 0 for all i ∈ [n].

Proposition 10.4.2. Let T ∈ L(H) be normal if F = C or self adjoint if F = R. Then T is

(1) self adjoint if and only if sp(T ) ⊂ R,

(2) positive if and only if sp(T ) ⊂ [0,∞),

(3) a projection if and only if sp(T ) = {0, 1},
(4) a unitary if and only if sp(T ) ⊂ S1 =

{
λ ∈ C

∣∣|λ = 1
}

,

(5) a partial isometry if and only if sp(T ) ⊂ S1 ∪ {0}.

Proof. We write

T =
n∑
i=1

λiPi

as in 10.2.4 as T is unitarily diagonalizable by 10.3.1.

(1) Clearly λi = λi for all i implies that

T =
n∑
i=1

λiPi =
n∑
i=1

λiPi = T ∗.

Now if T = T ∗, then we have by 9.4.6 that λjPj = TPj = T ∗Pj = λjPj for all j = 1 . . . , n,
which implies λj = λj for all j.

(2) Suppose T ≥ 0. Then 〈Tv, v〉 ≥ 0 for all v ∈ H, and in particular, for all eigenvectors.
Hence λi‖v‖2 ≥ 0 for all i = 1, . . . , n, and sp(T ) ⊂ [0,∞). Now suppose T is positive
and v ∈ H. For i = 1, . . . , n, Let vi ∈ im(Pi) be a unit vector. Then {v1, . . . , vn} is an
orthonormal basis for H consisting of eigenvectors of T , and there are scalars µ1, . . . , µn ∈ F
such that

v =
n∑
i=1

µivi.
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Now this means

〈Tv, v〉 =

〈
T

n∑
i=1

µivi,

n∑
i=1

µivi

〉
=

n∑
i=1

〈Tµivi, µivi〉 =
n∑
i=1

〈λiµivi, µivi〉 =
n∑
i=1

λi‖µivi‖2 ≥ 0.

(3) We have

T = T ∗ = T 2 ⇐⇒
n∑
i=1

λiPi =
n∑
i=1

λiPi =
n∑
i=1

λ2
iPi

⇐⇒ λi = λi = λ2
i for al i = 1, . . . , n

⇐⇒ λi ∈ {0, 1} for al i = 1, . . . , n.

The second ⇐⇒ follows by arguments similar to those in (1).

(4) We have

U∗U =
n∑
i=1

λiPi

n∑
j=1

λjPj =
n∑
i=1

|λi|2Pi =
n∑
i=1

Pi = I

if and only if |λi|2 = 1 for all i = 1, . . . , n if and only if λi ∈ S1 for all i = 1, . . . , n. The
result now follows by 9.3.2.

(5) We have T ∗T is a projection if and only if sp(T ∗T ) ∈ {0, 1} by (3). By the proof of
(4), we see that sp(T ∗T ) =

{
|λi|2

∣∣λi ∈ sp(T )
}

. It is clear that |λi|2 ∈ {0, 1} if and only if
λi ∈ S1 ∪ {0}.

Definition 10.4.3. Let T ∈ L(H) be normal if F = C or self adjoint if F = R. Then by 10.2.4
and the Spectral Theorem, there are mutually orthogonal projections P1, . . . , Pn ∈ L(H) and
scalars λ1, . . . , λn ∈ F such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

The spectral projections of T are of the form

P =
m∑
j=1

Pij

where ij are distinct elements of {1, . . . , n} and 0 ≤ m ≤ n (if m = 0, then P = 0). Note
that the spectral projections of T are projections by 9.4.6.

Examples 10.4.4.

(1) If

A =
1

2

(
1 1
1 1

)
∈M2(R),
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then A is self adjoint. We see that the eigenvalues of A are 0, 1 corresponding to eigenvectors

1√
2

(
1
1

)
and

1√
2

(
1
−1

)
∈ R2.

We see then that our rank one projections are

P1 =
1

2

(
1
1

)(
1 1

)
=

1

2

(
1 1
1 1

)
and P2 =

1

2

(
1
−1

)(
1 −1

)
=

1

2

(
1 −1
−1 1

)
∈ L(R2),

and it is clear P1P2 = P2P1 = 0. Hence the spectral projections of A are(
0 0
0 0

)
,
1

2

(
1 1
1 1

)
,
1

2

(
1 −1
−1 1

)
, and

(
1 0
0 1

)
.

(2) If

A =

(
0 −1
1 0

)
∈M2(C),

then A is normal. We see that the eigenvalues of A are ±i corresponding to eigenvectors(
1
−i

)
and

(
1
i

)
∈ C2.

We see then that our rank one projections are

P1 =

(
1
−i

)(
1 i

)
=

(
1 i
−i 1

)
and P2 =

(
1
i

)(
1 −i

)
=

(
1 −i
i 1

)
∈ L(C2),

and we see that P1P2 = P2P1 = 0. Hence the spectral projections of A are(
0 0
0 0

)
,

(
1 i
−i 1

)
,

(
1 −i
i 1

)
, and

(
1 0
0 1

)
.

Definition 10.4.5 (Functional Calculus). Let T ∈ L(H) be normal if F = C or self adjoint
if F = R. Then T is unitarily diagonalizable by the Spectral Theorem. By 10.2.4, there are
mutually orthogonal minimal projections P1, . . . , Pn ∈ L(H) such that

T =
n∑
i=1

λiPi.

For f : sp(T )→ F, define the operator f(T ) ∈ L(H) by

f(T ) =
n∑
i=1

f(λi)Pi.

Examples 10.4.6.
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(1) For p ∈ F[z], we have that p(T ) as defined in 4.6.2 agrees with the p(T ) defined in 10.4.5
for normal T . This is shown by proving that

p

(
n∑
i=1

λiPi

)
=

n∑
i=1

p(λi)Pi,

which follows easily from the mutual orthogonality of the Pi’s using 9.4.6. Hence the func-
tional calculus is a generalization of the polynomial functional calculus for a normal operator.

(2) Suppose U ⊂ C is an open set containing sp(T ) and f : U → C is holomorphic. Then the
f(T ) defined in 7.6.5 agrees with the f(T ) defined in 10.4.5. Hence the functional calculus
is a generalization of the holomorphic functional calculus for a normal operator.

(3) Suppose we want to find cos(A) where

A =

(
0 −1
1 0

)
∈M2(C).

We saw in 10.4.4 that the minimal nonzero spectral projections of A are(
1 i
−i 1

)
and

(
1 −i
i 1

)
,

so we see that

A =

(
0 −1
1 0

)
= i

(
1 i
−i 1

)
+ (−i)

(
1 −i
i 1

)
.

Now, we will apply 10.4.5 and use the fact that cos(z) is even to get

cos(A) = cos(i)

(
1 i
−i 1

)
+ cos(−i)

(
1 −i
i 1

)
= cos(i)

(
1 i
−i 1

)
+ cos(i)

(
1 −i
i 1

)
= cos(i)

(
1 0
0 1

)
= cosh(1)I.

Proposition 10.4.7. Let T ∈ L(H) be normal if F = C or self adjoint if F = R. The
functional calculus states that there is a well defined function evT : F (sp(T ),F) → L(H).
This map has the following properties:

(1) evT is a linear transformation,

(2) evT is injective,

(3) evT (f) = (evT (f))∗ for all f ∈ F (sp(T ),F),

(4) im(evT ) is contained in the normal operators if F = C or the self adjoint operators if
F = R, and

(5) evT (f ◦ g) = evg(T )(f) for all f ∈ F (sp(T ),F) and all g ∈ F (sp(g(T )),F).
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Proof. By 10.2.4 and the Spectral Theorem, there are mutually orthogonal projections
P1, . . . , Pn and distinct scalars λ1, . . . , λn such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi.

(1) Suppose λ ∈ F and f, g ∈ F (sp(T ),F). Then

(λf+g)(T ) =
n∑
i=1

(λf+g)(λi)Pi =
n∑
i=1

(
λf(λi)+g(λi)

)
Pi = λ

n∑
i=1

f(λi)Pi+
n∑
i=1

g(λi)Pi = λf(T )+g(T ).

(2) This is immediate from 10.4.1.

(3) We have

f(T ) =
n∑
i=1

f(λi)Pi =

(
n∑
i=1

f(λi)Pi

)∗
= f(T )∗

(4) We have

f(T ) =
n∑
i=1

f(λi)Pi,

so f(T ) is unitarily diagonalizable by 10.2.4,and is thus normal if F = C or self adjoint if
F = R.

(5) Note that f(g(T )) is well defined by (4). We have

(f ◦ g)(T ) =
n∑
i=1

(f ◦ g)(λi)Pi =
n∑
i=1

f(g(λi))Pi = f

(
n∑
i=1

g(λi)Pi

)
= f(g(T )).

Remark 10.4.8. We see that the spectral projections of a normal or self adjoint T ∈ L(H)
are precisely of the form f(T ) where f : sp(T )→ F such that im(f) ⊂ {0, 1}.

Proposition 10.4.9. Suppose T ∈ L(H). Define |T | =
√
T ∗T .

(1) |T |2 = T ∗T , and |T | is the unique positive square root of T ∗T .

(2) ‖Tv‖ = ‖|T |v‖ for all v ∈ H.

(3) ker(T ) = ker(|T |).

Proof.

(1) That |T |2 = T ∗T follows immediately from 10.4.7 part (5). We know |T | is positive by
10.4.2 and 10.4.5 as T ∗T is positive:

〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ‖Tv‖2 ≥ 0 for all v ∈ H.
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Suppose now that S ∈ L(H) is positive and S2 = T ∗T . Then there are mutually orthogonal
projections P1, . . . , Pn and distinct scalars λ1, . . . , λn ∈ [0,∞) such that

S =
n∑
i=1

λiPi =⇒ T ∗T = S2 =
n∑
i=1

λ2
iPi.

As the λi’s are distinct, the λ2
i ’s are distinct, so applying the functional calculus, we see

|T | =
√
T ∗T =

n∑
i=1

√
λ2
iPi =

n∑
i=1

λiPi = S.

(2) If v ∈ H,

‖Tv‖2 = 〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈|T |2v, v〉 = 〈|T |v, |T |v〉 = ‖|T |v‖2.

Now take square roots.

(3) This is immediate from (2).

Exercises

Exercise 10.4.10 (Hahn-Jordan Decomposition of an Operator).

(1) Show that every operator can be written uniquely as the sum of two self adjoint operators.

(2) Show that every self adjoint operator can be written uniquely as the difference of two
positive operators.

10.5 The Polar and Singular Value Decompositions

Theorem 10.5.1 (Polar Decomposition). For T ∈ L(H), there is a unique partial isometry
V ∈ L(H) such that ker(V ) = ker(T ) = ker(|T |) and T = V |T | where |T | =

√
T ∗T as in

10.4.9.

Proof. As |T | is positive, |T is unitarily diagonalizable, so there is an orthonormal basis
{v1, . . . , vn} of H consisting of eigenvectors of |T |. Let λi be the eigenvalue corresponding to
vi for i ∈ [n], and note that λi ∈ [0,∞) by 10.4.2. After relabeling, we may assume λi ≥ λi+1

for all i ∈ [n − 1]. Let k ∈ {0} ∪ [n] be minimal such that λi = 0 for all i > n. Define an
operator V ∈ L(H) by

V vi =


1

λi
Tvi if i ∈ [k]

0 else.

and extending by linearity. Note that ker(T ) = span{vk+1, . . . , vn} = ker(V ).
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We show V is a partial isometry. If v ∈ ker(V )⊥, then there are scalars µ1, . . . , µn such
that

v =
k∑
i=1

µivi.

Then by 10.4.9, we have

‖V v‖ =

∥∥∥∥∥
k∑
i=1

µiV vi

∥∥∥∥∥ =

∥∥∥∥∥
k∑
i=1

µi
λi
Tvi

∥∥∥∥∥ =

∥∥∥∥∥T
k∑
i=1

µi
λi
vi

∥∥∥∥∥ =

∥∥∥∥∥|T |
k∑
i=1

µi
λi
vi

∥∥∥∥∥ =

∥∥∥∥∥
k∑
i=1

µi
λi
|T |vi

∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=1

µi
λi
λivi

∥∥∥∥∥ =

∥∥∥∥∥
k∑
i=1

µivi

∥∥∥∥∥ = ‖v‖.

Hence V is a partial isometry by 9.5.3.
We show V |T | = T . If v ∈ H, then there are scalars µ1, . . . , µn such that

v =
n∑
i=1

µivi.

Then

V |T |v = V |T |
n∑
i=1

µivi =
n∑
i=1

µiV |T |vi =
n∑
i=1

µiλiV vi =
k∑
i=1

µiλi
1

λi
Tvi =

n∑
i=1

µiTvi = Tv.

as λi = 0 implies Tvi = 0 since ker(T ) = ker(|T |).
Suppose now that T = U |T | for a partial isometry U with ker(U) = ker(T ). Then we

would have that Uvi = 0 if i > k, and

Uvi = U

(
1

λi
(λivi)

)
= U

(
1

λi
(|T |vi)

)
= U |T |

(
1

λi
vi

)
= T

(
1

λi
vi

)
=

1

λi
Tvi

if i ∈ [k]. Hence U and V agree on a basis of H, so U = V .

Definition 10.5.2. The eigenvalues of |T | are called the singular values of T .

Notation 10.5.3 (Singular Value Decomposition). Let T ∈ L(H). By 10.5.1, there is a
unique partial isometry V with ker(V ) = ker(T ) and T = V |T |. As |T | is positive, |T is
unitarily diagonalizable, there is an orthonormal basis {v1, . . . , vn} ofH and scalars λ1, . . . , λn
such that

|T | =
n∑
i=1

λi|vi〉〈vi|.

Setting ui = V vi for i = 1, . . . , n, we have that

T = U |T | = U

n∑
i=1

λi|vi〉〈vi| =
n∑
i=1

λiU |vi〉〈vi| =
n∑
i=1

λi|ui〉〈vi|.

This last line is called a singular value decomposition, or Schmidt decomposition, of T .
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Exercises

H will denote a Hilbert space over F.

Exercise 10.5.4. Compute the polar decomposition of

A =

(
0 −1
1 0

)
and B =

(
1 −1
1 1

)
∈M2(C).
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