
Math 2568 Homework 8
Math 2568 Due: Monday, October 21, 2019

Problem 1

Determine whether or not each of the given functions x1(t) and x2(t) is a solution
to the given differential equation.

§4.1, Exercise 2. ODE: dx
dt

= x+ et.

Functions: x1(t) = tet and x2(t) = 2et.

Answer: The function x1(t) is a solution to the differential equation; the
function x2(t) is not a solution.

Solution: Compute

d

dt
(x1) =

d

dt
(tet) = tet + et, and

dx1
dt

= x1 + et = tet + et.

Thus, x1(t) is a solution to the differential equation. Then compute

d

dt
(x2) =

d

dt
(2et) = 2et, and

dx2
dt

= x2 + et = 2et + et = 3et.

Thus, d
dt (x2) 6= dx2

dt , so x2(t) is not a solution to the differential equation.

Problem 2

§4.1, Exercise 6. Solve the differential equation

dx

dt
= −3x.

At what time t1 will x(t1) be half of x(0)?

Answer: Using the initial value problem, we find that dx
dt = −3x implies x(t) =

x0e
−3t. Given this equation, x(t1) will be half of x(0) at time t1 = − 1

3 ln(0.5).

Solution: Find this value of t1 by substituting into the formula for x. That is,
use:

x0e
−3t1 = x(t1) =

1

2
x0

which implies

e−3t1 =
1

2
.

Then solve for t1.
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Problem 3

Consider the uncoupled system of differential equations (4.3.2). For each choice
of a and d, determine whether the origin is a saddle, source, or sink.

§4.3, Exercise 3. a = 1 and d = −1.

Answer: The origin is a saddle.

Solution: This uncoupled system is of the form

dx
dt (t) = Ax(t)
dy
dt (t) = Dy(t)

If AD < 0, then the origin is a saddle. If A < 0 and D < 0, then the origin
is a sink. If A > 0 and D > 0, then the origin is a source. In this case,
AD = −1 < 0.

Problem 4

§4.3, Exercise 6. Let (x(t), y(t)) be the solution (4.3.3) of (4.3.2) with initial
condition (x(0), y(0)) = (x0, y0), where x0 6= 0 6= y0.

(a) Show that the points (x(t), y(t)) lie on the curve whose equation is:

ya0x
d − xd0ya = 0.

(b) Verify that if a = 1 and d = 2, then the solution lies on a parabola tangent
to the x-axis.

The solutions x(t) and y(t) are:

x(t) = x0e
At

y(t) = y0e
Dt .

We show that the point (x(t), y(t)) lies on the curve yA0 x
D−xD0 yA = 0 as follows.

Substitute the formulas for x(t) and y(t) into the equation to obtain

yA0
(
x0e

At
)D − xD0 (

y0e
Dt

)A
= xD0 y

A
0 e

ADt − xDo yA0 eADt = 0.

If A = 1 and D = 2, then the solutions lie on the curve 0 = y0x
2 − x20y, which

can be rewritten as y =
y0
x20
x2. Since x0 and y0 are constants, this curve is a

parabola tangent to the x-axis.
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Problem 5 (MATLAB)

§4.3, Exercise 10.(matlab) Suppose that a = d < 0. Verify experimentally
using pplane9 that all trajectories approach the origin along straight lines. Try
to prove this conjecture?

If A = D < 0, the equations for the system will be

dx
dt (t) = Ax(t)
dy
dt (t) = Ay(t)

.

Therefore,
x(t) = x0e

At and y(t) = y0e
At.

Solve the first equation for eAt and substitute into the second, obtaining

y(t) =
y0
x0
x(t).

Since y0
x0

is a constant, all trajectories are straight lines. Since A < 0, all
trajectories go toward the origin as t increases.

Problem 6 (MATLAB)

§4.4, Exercise 1.(matlab) Choose the linear system in pplane9 and set a = 0,
b = 1, and c = −1. Then find values d such that except for the origin itself all
solutions appear to

(a) spiral into the origin;

(b) spiral away from the origin;

(c) form circles around the origin;

Solution:

(a) All trajectories converge on the origin when D < 0, as shown in Figure 1a,
which graphs the system with D = −1;

(b) All trajectories move away from the origin when D > 0, as shown in
Figure 1b, which graphs the system with D = 1

(c) Trajectories form circles around the origin when D = 0, as shown in
Figure 1c.
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Problem 7

Determine which of the function pairs (x1(t), y1(t)) and (x2(t), y2(t)) are solu-
tions to the given system of ordinary differential equations.

§4.4, Exercise 6. The ODE is:

ẋ = 2x− 3y

ẏ = x− 2y.

The pairs of functions are:

(x1(t), y1(t)) = et(3, 1) and (x2(t), y2(t)) = (e−t, e−t).

Answer: Both function pairs are solutions to the given system.

Solution: To determine whether (x1(t), y1(t)) = (3et, et) is a solution to the
system, compute the left hand sides of the equations:

dx1
dt

(t) =
d

dt
(3et) = 3et and

dy1
dt

(t) =
d

dt
(et) = et.

Then compute the right hand sides of the equations:

2x1(t)− 3y1(t) = 2(3et)− 3et = 3et and x1(t)− 2y1(t) = 3et − 2et = et.

Since the left hand side of each equation equals the right hand side, the equations
are consistent, and the pair of functions is a solution.

Similarly, to determine whether (x2(t), y2(t)) = (e−t, e−t) is a solution to
the system, compute the left hand sides of the equations:

dx2
dt

(t) =
d

dt
(e−t) = −e−t and

dy2
dt

(t) =
d

dt
(e−t) = −e−t.
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Then compute the right hand sides of the equations:

2x2(t)−3y2(t) = 2e−t−3e−t = −e−t and x2(t)−2y2(t) = e−t−2e−t = −e−t.

Since the left hand side of each equation equals the right hand side, the equations
are consistent, and the pair of functions is a solution.

Problem 8

§4.5, Exercise 2. Show that all solutions to the system of linear differential
equations

dx

dt
= 3x

dy

dt
= −2y

are linear combinations of the two solutions

U(t) = e3t
(

1
0

)
and V (t) = e−2t

(
0
1

)
.

The system is uncoupled, so we can solve each equation independently, using
the initial value problem to obtain:

x(t) = x0e
3t

y(t) = y0e
−2t.

All solutions are of the form(
x(t)
y(t)

)
=

(
x0e

3t

y0e
−2t

)
= x0

(
e3t

(
1
0

))
+ y0

(
e−2t

(
0
1

))
.

So all solutions are linear combinations of

U(t) = e3t
(

1
0

)
and V (t) = e−2t

(
0
1

)
.

Problem 9

§4.5, Exercise 3. Consider

dX

dt
(t) = CX(t) (1)
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where

C =

(
2 3
0 −1

)
.

Let

v1 =

(
1
0

)
and v2 =

(
1
−1

)
,

and let
Y (t) = e2tv1 and Z(t) = e−tv2.

(a) Show that Y (t) and Z(t) are solutions to (1).

(b) Show that X(t) = 2Y (t)− 14Z(t) is a solution to (1).

(c) Use the principle of superposition to verify that X(t) = αY (t) + βZ(t) is
a solution to (1).

(d) Using the general solution found in part (c), find a solution X(t) to (1)
such that

X(0) =

(
3
−1

)
.

Solution:

(a) In order to determine that Y (t) is a solution to (1), substitute Y (t) into
both sides of the equation dX

dt = CX:

dY

dt
=

d

dt

(
e2t

(
1
0

))
=

d

dt

(
e2t

0

)
=

(
2e2t

0

)
;

CY (t) =

(
2 3
0 −1

)(
e2t

0

)
=

(
2e2t

0

)
.

Similarly, show that Z(t) is a solution:

dZ

dt
=

d

dt

(
e−t

(
1
−1

))
=

d

dt

(
e−t

−e−t
)

=

(
−e−t
e−t

)
;

CZ(t) =

(
2 3
0 −1

)(
e−t

−e−t
)

=

(
−e−t
e−t

)
.

(b) Again, verify thatX(t) = 2Y (t)−14Z(t) is a solution to (1) by substituting
into both sides of the equation and noting that the values are equal:

dX

dt
=

d

dt

(
2e2t

(
1
0

)
− 14e−t

(
1
−1

))
=

d

dt

(
2e2t − 14e−t

14e−t

)
=

(
4e2t + 14e−t

−14e−t

)
;

CX(t) = C (2Y (t)− 14Z(t)) = C

((
2e2t

0

)
−
(

14e−t

−14e−t

))
=

(
4e2t + 14e−t

−14e−t

)
.
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(c) As demonstrated in Section 3.4, if Y (t) and Z(t) are both solutions to (1),
then X(t) = αY (t) + βZ(t) is also a solution to (1).

(d) Answer:

X(t) = 2e2t
(

1
0

)
+ e−t

(
1
−1

)
.

Solution: Note that

X(t) = αY (t) + βZ(t) = αe2t
(

1
0

)
+ βe−t

(
1
−1

)
is a solution to (1). Substitute the value X(0) = (3,−1)t into the equation
to find a solution with that initial condition:(

3
−1

)
= X(0) = α

(
1
0

)
+ β

(
1
−1

)
.

We now have the linear system:

3 = α + β
−1 = −β

which we can solve to find α = 2 and β = 1.

Problem 10

§4.5, Exercise 5. Let

C =

(
a b
b a

)
.

Show that (
1
1

)
and

(
1
−1

)
are eigenvectors of C. What are the corresponding eigenvalues?

Answer: Let

v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

The vector v1 is an eigenvector of C with corresponding eigenvalue a + b, and
v2 is an eigenvector with eigenvalue a− b.
Solution: Calculate

Cv1 =

(
a b
b a

)(
1
1

)
=

(
a+ b
a+ b

)
= (a+ b)

(
1
1

)
.

Cv2 =

(
a b
b a

)(
1
−1

)
=

(
a− b
b− a

)
= (a− b)

(
1
−1

)
.
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Problem 11

§4.5, Exercise 6. Let

C =

(
1 2
−3 −1

)
.

Show that C has no real eigenvectors.

A vector (x, y) is an eigenvector of C if

C

(
x
y

)
= λ

(
x
y

)
that is, if

(C − λI2)

(
x
y

)
= 0.

In this case, (
1− λ 2
−3 −1− λ

)(
x
y

)
= 0.

This equation will have a nonzero solution (x, y) only if(
1− λ 2
−3 −1− λ

)(
x
y

)
is not row equivalent to the identity matrix. Row reducing the matrix yields(

1 2
1−λ

0 −1− λ+ 6
1−λ

)
so C has an eigenvector when

−1− λ+
6

1− λ
= 0,

that is, when λ2 = −5. Therefore, C has no real eigenvectors.

Problem 12

§4.6, Exercise 1. For which values of λ is the matrix(
1− λ 4

2 3− λ

)
not invertible? Note: These values of λ are just the eigenvalues of the matrix(

1 4
2 3

)
.
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Answer: The matrix is not invertible when λ = 5 or λ = −1.

Solution: Corollary 3.8.3 states that a matrix is not invertible if and only if
the determinant is zero; in this case, if

(1− λ)(3− λ)− (2)(4) = λ2 − 4λ− 5 = 0.

9


