

THE SQUARE MATRIX THEOREM, EIGENVECTORS, EIGENVALUES, AND DIAGONALIZATION

Throughout this note, A denotes an $n \times n$ matrix. We begin by recalling the Square Matrix Theorem without proof.

Theorem 1 (Square Matrix). *For an $n \times n$ matrix A , the following are equivalent.*

- (1) A is invertible.
- (2) A is a product of elementary matrices.
- (3) A is row-equivalent to I_n .
- (4) $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^n$.
- (5) $A\vec{x} = \vec{0}$ implies $\vec{x} = \vec{0}$.
- (6) The columns of A are linearly independent.
- (7) The columns of A form a basis of \mathbb{R}^n .
- (8) $\text{nullity}(A) = 0$.
- (9) $\text{rank}(A) = n$.

Note that conditions (5) and (6) are basically the same information, since

$$A\vec{x} = \left(\begin{array}{c|c|c} A_1 & \cdots & A_n \end{array} \right) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A_1 + \cdots + x_n A_n.$$

Exercise 2. Write out a proof of the Square Matrix Theorem. Then find more equivalent statements and add them to the list above.

Definition 3. Recall that an *eigenvector* for A corresponding to the *eigenvalue* λ is a $\vec{v} \neq \vec{0}$ satisfying the *eigenvalue equation*:

$$A\vec{v} = \lambda\vec{v}.$$

If we have k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$ corresponding to eigenvalues $\lambda_1, \dots, \lambda_k$ respectively, we can consider the k eigenvalue equations as a single equation called the *multiple eigenvalue equation*:

$$\begin{aligned} A \underbrace{\left(\begin{array}{c|c|c} \vec{v}_1 & \cdots & \vec{v}_k \end{array} \right)}_S &= \left(\begin{array}{c|c|c} A\vec{v}_1 & \cdots & A\vec{v}_k \end{array} \right) \\ &= \left(\begin{array}{c|c|c} \lambda_1\vec{v}_1 & \cdots & \lambda_k\vec{v}_k \end{array} \right) \\ &= \underbrace{\left(\begin{array}{c|c|c} \vec{v}_1 & \cdots & \vec{v}_k \end{array} \right)}_S \underbrace{\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix}}_D. \end{aligned}$$

That is, $AS = SD$ where

$$S := \left(\begin{array}{c|c|c} \vec{v}_1 & \cdots & \vec{v}_k \end{array} \right) \quad \text{and} \quad D := \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix}.$$

Often, we will add the stipulation that the columns of S should be linearly independent to avoid including redundant eigenvectors.

We now state the important theorem that follows immediately by analyzing the multiple eigenvalue equation.

Theorem 4. For an $n \times n$ matrix A , the following are equivalent:

- (1) A is similar to a diagonal matrix D via the invertible matrix S .
- (2) There is a basis of \mathbb{R}^n consisting of eigenvectors for A .

Proof. Suppose $\{\vec{v}_1, \dots, \vec{v}_k\}$ is a maximal set of linearly independent eigenvectors for A , and let $\lambda_1, \dots, \lambda_k$ be the corresponding eigenvalues. Form the $n \times k$ and $k \times k$ matrices

$$S := \begin{pmatrix} \vec{v}_1 & \cdots & \vec{v}_k \end{pmatrix} \quad \text{and} \quad D := \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{pmatrix}$$

so that $AS = SD$. By the Square Matrix Theorem 1, the following are equivalent:

- $k = n$,
- the eigenvectors $\{\vec{v}_1, \dots, \vec{v}_k\}$ for A form a basis of \mathbb{R}^n , and
- S is invertible.

Hence there is a basis of \mathbb{R}^n consisting of eigenvectors for A if and only if $S^{-1}AS = D$ with S and D defined as above. \square

Let us now give one easy example of a matrix that is diagonalizable. We will use the following lemma.

Lemma 5. Suppose $\vec{v}_1, \dots, \vec{v}_k$ are eigenvectors for A corresponding to eigenvalues $\lambda_1, \dots, \lambda_k$, so that $A\vec{v}_i = \lambda_i\vec{v}_i$ for all $i = 1, \dots, k$. If the λ_i are all distinct, then $\vec{v}_1, \dots, \vec{v}_k$ are linearly independent.

Proof. We proceed by induction on k . If $k = 1$, the statement is trivial, since a single eigenvector $\vec{v} \neq \vec{0}$. Suppose the statement holds true for any collection of $k - 1 \in \mathbb{N}$ distinct eigenvalues and eigenvectors. Suppose $c_1, \dots, c_k \in \mathbb{R}$ such that

$$(1) \quad \vec{0} = \sum_{i=1}^k c_i \vec{v}_i.$$

Apply A to both sides to see that

$$(2) \quad \vec{0} = A \sum_{i=1}^k c_i \vec{v}_i = \sum_{i=1}^k c_i A \vec{v}_i = \sum_{i=1}^k c_i \lambda_i \vec{v}_i.$$

We now multiply Equation (1) by λ_k and subtract it from Equation (2) to get

$$\vec{0} = \lambda_k \sum_{i=1}^k c_i \vec{v}_i - \sum_{i=1}^k c_i \lambda_i \vec{v}_i = \sum_{i=1}^k (\lambda_k - \lambda_i) c_i \vec{v}_i = \sum_{i=1}^{k-1} (\lambda_k - \lambda_i) c_i \vec{v}_i.$$

Notice we now have a linear combination of $k - 1$ eigenvectors $\vec{v}_1, \dots, \vec{v}_{k-1}$ corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_{k-1}$ which is equal to $\vec{0}$. By the induction hypothesis, we have that $(\lambda_k - \lambda_i)c_i = 0$ for all $1 \leq i \leq k - 1$. Now since $\lambda_1, \dots, \lambda_k$ are distinct, we have that $\lambda_k - \lambda_i \neq 0$ for all $1 \leq i \leq k - 1$. This means we can divide by $\lambda_k - \lambda_i$ to get $c_i = 0$ for all $1 \leq i \leq k - 1$. We now see that Equation (1) is the equation $c_k \vec{v}_k = 0$, and since $\vec{v}_k \neq \vec{0}$, we must also have $c_k = 0$. Hence $\vec{v}_1, \dots, \vec{v}_k$ are linearly independent. By the Principle of Mathematical Induction, we have proved the lemma. \square

Corollary 6. Suppose A has n distinct eigenvalues. Then A is diagonalizable.

Proof. By Lemma 5, any set of eigenvectors v_1, \dots, v_n corresponding to the n distinct eigenvalues of A will be linearly independent, and thus a basis of \mathbb{R}^n . By Theorem 4, A is diagonalizable. \square

Definition 7. Let A be an $n \times n$ matrix, and recall the characteristic polynomial

$$p_A(\lambda) := \det(\lambda I - A) = \prod_{i=1}^n (\lambda - \lambda_i)$$

splits into linear factors by the Fundamental Theorem of Algebra. The λ_i are exactly the eigenvalues of A , counted with *algebraic multiplicity*. That is, if the distinct eigenvalues of A are $\lambda_1, \dots, \lambda_k$, we define the *algebraic multiplicity* of λ_i to be the $m_i \geq 1$ such that

$$p_A(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{m_i}.$$

For $1 \leq i \leq k$, the *eigenspace* associated to λ_i is

$$E_i := NS(A - \lambda_i I),$$

and we define the *geometric multiplicity* to be

$$g_i := \dim(E_i) = \dim(NS(A - \lambda_i I)).$$

Example 8. Consider the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Then $p_A(\lambda) = \lambda^2$, so A has one eigenvalue, namely zero. Its algebraic multiplicity is 2, while its geometric multiplicity is 1.

In more generality, consider the $n \times n$ matrix

$$A = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$

The matrix A has characteristic polynomial $p_A(\lambda) = \lambda^n$, so A has only zero as an eigenvalue. Its algebraic multiplicity is n , but its geometric multiplicity is 1.

We state the following theorem without proof.

Theorem 9. Let A be an $n \times n$ matrix with characteristic polynomial

$$p_A(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{m_i}.$$

The following are equivalent.

- (1) The algebraic multiplicity m_i equals the geometric multiplicity g_i for all $1 \leq i \leq k$.
- (2) A is diagonalizable.

Example 10. The matrices in Example 8 above are not diagonalizable.