
The square matrix theorem, eigenvectors, eigenvalues, and diagonalization

Throughout this note, A denotes an n × n matrix. We begin by recalling the Square Matrix
Theorem without proof.

Theorem 1 (Square Matrix). For an n× n matrix A, the following are equivalent.

(1) A is invertible.
(2) A is a product of elementary matrices.
(3) A is row-equivalent to In.

(4) A~x = ~b has a unique solution for every ~b ∈ Rn.

(5) A~x = ~0 implies ~x = ~0.
(6) The columns of A are linearly independent.
(7) The columns of A form a basis of Rn.
(8) nullity(A) = 0.
(9) rank(A) = n.

Note that conditions (5) and (6) are basically the same information, since

A~x =
(
A1 · · · An

)x1...
xn

 = x1A1 + · · ·+ xnAn.

Exercise 2. Write out a proof of the Square Matrix Theorem. Then find more equivalent statements
and add them to the list above.

Definition 3. Recall that an eigenvector for A corresponding to the eigenvalue λ is a ~v 6= ~0
satisfying the eigenvalue equation:

A~v = λ~v.

If we have k eigenvectors ~v1, . . . , ~vk corresponding to eigenvalues λ1, . . . , λk respectively, we can
consider the k eigenvalue equations as a single equation called the multiple eigenvalue equation:

A
(
~v1 · · · ~vk

)︸ ︷︷ ︸
S

=
(
A~v1 · · · A~vk

)
=
(
λ1~v1 · · · λk~vk

)
=
(
~v1 · · · ~vk

)︸ ︷︷ ︸
S

λ1 . . .
λk

 .

︸ ︷︷ ︸
D

That is, AS = SD where

S :=
(
~v1 · · · ~vk

)
and D :=

λ1 . . .
λk

 .

Often, we will add the stipulation that the columns of S should be linearly independent to avoid
including redundant eigenvectors.

We now state the important theorem that follows immediately by analyzing the multiple eigen-
value equation.
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Theorem 4. For an n× n matrix A, the following are equivalent:

(1) A is similar to a diagonal matrix D via the invertible matrix S.
(2) There is a basis of Rn consisting of eigenvectors for A.

Proof. Suppose {~v1, . . . , ~vk} is a maximal set of linearly independent eigenvectors for A, and let
λ1, . . . , λk be the corresponding eigenvalues. Form the n× k and k × k matrices

S :=
(
~v1 · · · ~vk

)
and D :=

λ1 . . .
λk


so that AS = SD. By the Square Matrix Theorem 1, the following are equivalent:

• k = n,
• the eigenvectors {~v1, . . . , ~vk} for A form a basis of Rn, and
• S is invertible.

Hence there is a basis of Rn consisting of eigenvectors for A if and only if S−1AS = D with S and
D defined as above. �

Let us now give one easy example of a matrix that is diagonalizable. We will use the following
lemma.

Lemma 5. Suppose ~v1, . . . , ~vk are eigenvectors for A corresponding to eigenvalues λ1, . . . , λk, so
that A~vi = λi~vi for all i = 1, . . . , k. If the λi are all distinct, then ~v1, . . . , ~vk are linearly independent.

Proof. We proceed by induction on k. If k = 1, the statement is trivial, since a single eigenvector
~v 6= ~0. Suppose the statement holds true for any collection of k − 1 ∈ N distinct eigenvalues and
eigenvectors. Suppose c1, . . . , ck ∈ R such that

(1) ~0 =
k∑

i=1

ci~vi.

Apply A to both sides to see that

(2) ~0 = A
k∑

i=1

ci~vi =
k∑

i=1

ciA~vi =
k∑

i=1

ciλi~vi.

We now multiply Equation (1) by λk and subtract it from Equation (2) to get

~0 = λk

k∑
i=1

ci~vi −
k∑

i=1

ciλi~vi =
k∑

i=1

(λk − λi)ci~vi =
k−1∑
i=1

(λk − λi)ci~vi.

Notice we now have a linear combination of k−1 eigenvectors ~v1, . . . , ~vk−1 corresponding to distinct
eigenvalues λ1, . . . , λk−1 which is equal to ~0. By the induction hypothesis, we have that (λk−λi)ci =
0 for all 1 ≤ i ≤ k−1. Now since λ1, . . . , λk are distinct, we have that λk−λi 6= 0 for all 1 ≤ i ≤ k−1.
This means we can divide by λk − λi to get ci = 0 for all 1 ≤ i ≤ k− 1. We now see that Equation
(1) is the equation ck~vk = 0, and since ~vk 6= ~0, we must also have ck = 0. Hence ~v1, . . . , ~vk are
linearly independent. By the Principle of Mathematical Induction, we have proved the lemma. �

Corollary 6. Suppose A has n distinct eigenvalues. Then A is diagonalizable.

Proof. By Lemma 5, any set of eigenvectors v1, . . . , vn corresponding to the n distinct eigenvalues
of A will be linearly independent, and thus a basis of Rn. By Theorem 4, A is diagonalizable. �
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Definition 7. Let A be an n× n matrix, and recall the characteristic polynomial

pA(λ) := det(λI − A) =
n∏

i=1

(λ− λi)

splits into linear factors by the Fundamental Theorem of Algebra. The λi are exactly the eigenvalues
of A, counted with algebraic multiplicity. That is, if the distinct eigenvalues of A are λ1, . . . , λk, we
define the algebraic multiplicity of λi to be the mi ≥ 1 such that

pA(λ) =
k∏

i=1

(λ− λi)mi .

For 1 ≤ i ≤ k, the eigenspace associated to λi is

Ei := NS(A− λiI),

and we define the geometric multiplicity to be

gi := dim(Ei) = dim(NS(A− λiI)).

Example 8. Consider the matrix

A =

(
0 1
0 0

)
Then pA(λ) = λ2, so A has one eigenvalue, namely zero. Its algebraic multiplicity is 2, while its
geometric multiplicity is 1.

In more generality, consider the n× n matrix

A =


0 1

. . . . . .
0 1

0


The matrix A has characteristic polynimial pA(λ) = λn, so A has only zero as an eigenvalue. Its
algebraic multiplicity is n, but its geometric multiplicity is 1.

We state the following theorem without proof.

Theorem 9. Let A be an n× n matrix with characteristic polynomial

pA(λ) =
k∏

i=1

(λ− λi)mi .

The following are equivalent.

(1) The algebraic multiplicity mi equals the geometric multiplicity gi for all 1 ≤ i ≤ k.
(2) A is diagonalizable.

Example 10. The matrices in Example 8 above are not diagonalizable.
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