THE SQUARE MATRIX THEOREM, EIGENVECTORS, EIGENVALUES, AND DIAGONALIZATION

Throughout this note, A denotes an n x n matrix. We begin by recalling the Square Matrix
Theorem without proof.

Theorem 1 (Square Matrix). For an n x n matriz A, the following are equivalent.

(1) A is invertible.

(2) A is a product of elementary matrices.

(3) A is row-equivalent to I,.

(4) AT = b has a unique solution for every b € R™.
(5) AZ =0 implies & = 0.

(6) The columns of A are linearly independent.
(7) The columns of A form a basis of R™.

(8) nullity(A) = 0.

(9) rank(A) = n.

Note that conditions (5) and (6) are basically the same information, since
I
AZ= (A |- [A) | 1 | =mAi 4+ + 2.4,
Tn
Exercise 2. Write out a proof of the Square Matrix Theorem. Then find more equivalent statements
and add them to the list above.

Definition 3. Recall that an eigenvector for A corresponding to the eigenvalue X is a @ # 0
satisfying the eigenvalue equation:

AU = M.
If we have k eigenvectors v7,..., U, corresponding to eigenvalues Aq, ..., A\, respectively, we can
consider the k eigenvalue equations as a single equation called the multiple eigenvalue equation:
A(B | |5 ) = (AB |- | AG)
5
= (M| | Mt )
A1
=(a|- |0 )
Q ~ | M )
D
That is, AS = SD where
A1
Si= (0| |0) and D=

Ak

Often, we will add the stipulation that the columns of S should be linearly independent to avoid
including redundant eigenvectors.

We now state the important theorem that follows immediately by analyzing the multiple eigen-

value equation.
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Theorem 4. For an n x n matrix A, the following are equivalent:

(1) A is similar to a diagonal matriz D via the invertible matriz S.
(2) There is a basis of R™ consisting of eigenvectors for A.

Proof. Suppose {01,...,7} is a maximal set of linearly independent eigenvectors for A, and let
A1, ..., A be the corresponding eigenvalues. Form the n X k and k£ x k£ matrices

A1
. ‘ Uk ) and D=
Ak
so that AS = SD. By the Square Matrix Theorem 1, the following are equivalent:
e k=n,
e the eigenvectors {vy,..., v} for A form a basis of R™, and
e S is invertible.

Hence there is a basis of R” consisting of eigenvectors for A if and only if S~'AS = D with S and
D defined as above. ]

Let us now give one easy example of a matrix that is diagonalizable. We will use the following
lemma.

Lemma 5. Suppose U7, ...,0; are eigenvectors for A corresponding to eigenvalues Ai,..., Ak, SO
that Av; = \u; foralli =1,... k. If the \; are all distinct, then U7, ...,y are linearly independent.

Proof. We proceed by induction on k. If £ = 1, the statement is trivial, since a single eigenvector
¥ # 0. Suppose the statement holds true for any collection of k — 1 € N distinct eigenvalues and
eigenvectors. Suppose ¢y, ..., € R such that
k
(1) 0=">aii.
i=1
Apply A to both sides to see that

k k k
=1 i=1 =1

We now multiply Equation (1) by Ax and subtract it from Equation (2) to get

k k k k—1
0 = )\k E CiU; — E CiAiUZ' = E (>\k — )\i)CiUZ‘ = E ()\k — )\i)CiUZ'.
i=1 i=1 i=1 i=1
Notice we now have a linear combination of £ — 1 eigenvectors v7, ..., U)s_1 corresponding to distinct

eigenvalues Ay, ..., A\p_1 which is equal to 0. By the induction hypothesis, we have that (A, —\;)¢; =
Oforalll <i < k—1. Now since Ay, ..., \; are distinct, we have that \,—\; Z Oforall 1 <i < k—1.
This means we can divide by A\ — A; to get ¢; =0 for all 1 <i <k —1. We now see that Equation
(1) is the equation c¢,7} = 0, and since U} # 0, we must also have ¢, = 0. Hence @, ..., 0, are
linearly independent. By the Principle of Mathematical Induction, we have proved the lemma. [

Corollary 6. Suppose A has n distinct eigenvalues. Then A is diagonalizable.

Proof. By Lemma 5, any set of eigenvectors vy, ..., v, corresponding to the n distinct eigenvalues

of A will be linearly independent, and thus a basis of R”. By Theorem 4, A is diagonalizable. [
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Definition 7. Let A be an n X n matrix, and recall the characteristic polynomial

pa(A) i=det(\ — A) = J[(A = x)
i=1
splits into linear factors by the Fundamental Theorem of Algebra. The A; are exactly the eigenvalues
of A, counted with algebraic multiplicity. That is, if the distinct eigenvalues of A are A, ..., g, we
define the algebraic multiplicity of \; to be the m; > 1 such that
k
i=1
For 1 < i <k, the eigenspace associated to \; is
and we define the geometric multiplicity to be
g; = dim(E;) = dim(NS(A — \1)).

01
4= (i o)
Then pa(\) = A2, so A has one eigenvalue, namely zero. Its algebraic multiplicity is 2, while its

geometric multiplicity is 1.
In more generality, consider the n X n matrix

0 1

Example 8. Consider the matrix

A= N
0 1
0

The matrix A has characteristic polynimial p4(A) = A", so A has only zero as an eigenvalue. Its
algebraic multiplicity is n, but its geometric multiplicity is 1.

We state the following theorem without proof.

Theorem 9. Let A be an n X n matrixz with characteristic polynomial
k
i=1

The following are equivalent.

(1) The algebraic multiplicity m; equals the geometric multiplicity g; for all 1 < i < k.
(2) A is diagonalizable.

Example 10. The matrices in Example 8 above are not diagonalizable.
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