
1. Topology

Suppose f : X → Y is a function. Then f induces functions

f : P (X) → P (Y ) by A 7→ f(A) := {f(a)|a ∈ A}
f−1 : P (Y ) → P (X) by B 7→ f−1(B) := {x ∈ X|f(x) ∈ B}

Exercise 1.0.1.

(1) Determine the relationship between f−1(f(A)) and A ⊂ X. When are they equal?
(2) Determine the relationship between f(f−1(B)) and B ⊂ X. When are they equal?
(3) Prove that A 7→ f(A) preserves unions, but not necessarily intersections or comple-

ments. Under what conditions on f does this preserve intersections? complements?
(4) Prove that B 7→ f−1(B) preserves unions, intersections, and complements.

1.1. Topology basics.

Definition 1.1.1. A topology on a set X is a collection T of subsets of X such that:

• ∅, X ∈ T ,
• T is closed under arbitrary unions, and
• T is closed under finite intersections.

The elements of T are called open sets. An open set containing x ∈ X is called a neighborhood
of x. Complements of elements of T are called closed sets.

Definition 1.1.2. Observe that if S, T are topologies on X, then so is S ∩T . This means if
E ⊂ P (X), there is a smallest topology T (E) which contains E called the topology generated
by E .

Definition 1.1.3. Suppose (X, T ) is a topological space. A neighborhood/local base for T
at x ∈ X is a subset B(x) ⊂ T consisting of neighborhoods of x such that

• for all U ∈ T such that x ∈ U , there is a V ∈ B(x) such that V ⊂ U .

A base for T is a subset B ⊂ T which contains a neighborhood base for T at every point of
X.

Example 1.1.4. Given a topological space (X, T ), the set T (x) of all open subsets which
contain x is a neighborhood base at x.

Exercise 1.1.5. Show that B ⊂ T is a base if and only if every U ∈ T is a union of members
of B.

Definition 1.1.6. Suppose (X, T ) is a topological space. We call (X, T ):

• first countable if there is a countable neighborhood base for T at every x ∈ X
• second countable if there is a countable base for T .

Exercise 1.1.7. Show that second countable implies separable, i.e., there is a countable
dense subset.

Exercise 1.1.8. Suppose X is first countable and A ⊂ X. Then x ∈ A (the smallest closed
subset of X containing A) if and only if there is a sequence (xn) ⊂ A such that xn → x (for
every open subset U containing x, (xn) is eventually in U).
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Definition 1.1.9. Suppose X, Y are topological spaces. A function f : X → Y is called
continuous at x ∈ X if for every neighborhood V of f(x), there is a neighborhood U of x
such that f(U) ⊂ V . We call f continuous if f is continuous at x for all x ∈ X.

Exercise 1.1.10. Show that f : X → Y is continuous if and only if the preimage of every
open set in Y is open in X, i.e., for every V ∈ TY ,

f−1(V ) := {x ∈ X|f(x) ∈ V } ∈ TX .
Exercise 1.1.11. Show that the composite of continuous functions is continuous.

Exercise 1.1.12. Prove the following assertions.

(1) Given f : X → Y and a topology T on Y , {f−1(U)|U ∈ T } is a topology on X.
Moreover it is the weakest topology on X such that f is continuous.

(2) Given f : X → Y and a topology S on X, {U ⊂ Y |f−1(U) ∈ S} is a topology on Y .
Moreover it is the strongest topology on Y such that f is continuous.

1.1.1. Metric spaces.

Definition 1.1.13. A metric space is a set X together with a distance function d : X×X →
[0,∞) satisfying

• (definite) d(x, y) = 0 if and only if x = y,
• (symmetric) d(x, y) = d(y, x) for all x, y ∈ X, and
• (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The topology Td induced by d is generated by the open balls of radius r

Br(x) := {y ∈ X|d(x, y) < r} r > 0.

That is, U is open with respect to d if and only if for every x ∈ U , there is an r > 0 such
that Br(x) ⊂ U . Observe that every metric space is first countable.

Exercise 1.1.14. Let (X, d) be a metric space. Show tha (X, Td) is second countable if and
only if (X, Td) is separable.
Exercise 1.1.15. Two metrics d1, d2 on X are called equivalent if there is a C > 0 such
that

C−1d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y) ∀x, y ∈ X.

Show that equivalent metrics induce the same topology on X. That is, show that U ⊂ X is
open with respect to d1 if and only if U is open with respect to d2.

Exercise 1.1.16 (Sarason). Let (X, d) be a metric space.

(1) Let α : [0,∞) → [0,∞) be a continuous non-decreasing function satisfying
• α(s) = 0 if and only if s = 0, and
• α(s+ t) ≤ α(s) + α(t) for all s, t ≥ 0.

Define σ(x, y) := α(d(x, y)). Show that σ is a metric, and σ induces the same topology
on X as d.

(2) Define d1, d2 : X ×X → [0,∞) by

d1(x, y) :=

{
d(x, y) if d(x, y) ≤ 1

1 otherwise.

d2(x, y) :=
d(x, y)

1 + d(x, y)
.
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Use part (1) to show that d1 and d2 are metrics on X which induce the same topology
on X as d.

Exercise 1.1.17. Suppose V is a F-vector space for F = R or C. A norm on V is a function
∥ · ∥ : V → [0,∞) such that

• (definite) ∥v∥ = 0 if and only if v = 0.
• (homogeneous) ∥λ · v∥ = |λ| · ∥v∥ for all λ ∈ F and v ∈ V .
• (subadditive) ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

(1) Prove that d(u, v) := ∥u, v∥ defines a metric on V .
(2) Prove that the following conditions are equivalent:

(a) (V, d) is a complete metric space, i.e., every Cauchy sequence converges.

(b) For every sequence (vn) ⊂ V with
∑

∥vn∥ <∞, the sequence (
∑k vn) converges.

1.1.2. Connectedness.

Definition 1.1.18 (Relative topology). Suppose X is a topological space and A ⊂ X is a
subset. The relative topology on A is given by U ⊂ A is open if and only if there is an open
set V ⊂ X such that U = V ∩ A.

Exercise 1.1.19. Suppose X is a topological space and A ⊂ X is a subset. Show that
F ⊂ A is closed if and only if there is a closed set G ⊂ X such that F = G ∩ A.

Definition 1.1.20 ((Dis)connected set). Let X be a topological space. We call a subset
X disconnected if there exist non-empty, disjoint open sets U, V such that X = U ⨿ V . A
subset A ⊂ X is disconnected if it is disconnected in its relative topology. If a subset is not
disconnected, it is called connected. That is, A ⊂ X is connected if and only if whenever
A ⊂ X can be written as the disjoint union A = U ⨿ V with U, V relatively open in A, then
U or V is empty.

Exercise 1.1.21. Prove that the unit interval [0, 1] ⊂ R is connected.

Exercise 1.1.22.

(1) Suppose f : X → Y is continuous and A ⊂ X is connected. Prove f(A) ⊂ Y is
connected.

(2) A subset A ⊂ X is called path connected if for every x, y ∈ A, there is a continuous
map γ : [0, 1] → A (called a path) such that γ(0) = x and γ(1) = y. Prove that a
path connected subset is connected.

Exercise 1.1.23. Recall that an interval I ⊂ R is a subset such that a < b < c and a, c ∈ I
implies b ∈ I.

(1) Show that all intervals in R are connected.
(2) Prove that if X ⊂ R is not an interval, then X is not connected.

Exercise 1.1.24.

(1) Show that every open subset of R is a countable disjoint union of open intervals.
(2) Show that every open subset of R is a countable union of open intervals where both

endpoints are rational.
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1.1.3. Separation axioms.

Definition 1.1.25. We have the following separation properties for a topological space
(X, T ).

(T0) For every x, y ∈ X distinct, there is an open set U ∈ T which contains exactly one
of x, y.

(T1) For every x, y ∈ X distinct, there is an open set U ∈ T which only contains x.
(Observe that by swapping x and y, there is also an open set V ∈ T which only
contains y.)

(T2) (a.k.a. Hausdorff) for every x, y ∈ X distinct, there are disjoint open sets U, V ∈ T
such that x ∈ U and y ∈ V .

(T3) (a.k.a. Regular) (T1) and for every closed F ⊂ X and x ∈ F c, there are disjoint open
sets U, V ∈ T such that F ⊂ U and x ∈ V .

(T4) (a.k.a. Normal) (T1) and for every disjoint closed sets F,G ⊂ X, there are disjoint
open sets U, V ∈ T such that F ⊂ U and G ⊂ V .

Exercise 1.1.26. Let X be a set. The finite complement topology T has its opens those
sets U such that U c is finite and the empty set. Show T is (T1). When is T Hausdorff?

Exercise 1.1.27. Suppose X is a normal topological space and F ⊂ G ⊂ X with F closed
and G open. Show there is an open U such that F ⊂ U ⊂ U ⊂ G.

Lemma 1.1.28. Suppose X is a normal topological space and A,B ⊂ X are disjoint non-
empty closed sets. Consider the dyadic rationals:

D :=

{
k

2n

∣∣∣∣n ∈ N, k = 1, . . . , 2n − 1

}
⊂ (0, 1) (1.1.29)

There are open sets (Ud)d∈D such that

• A ⊂ Ud ⊂ Ud ⊂ Bc for all d ∈ D, and
• Ud ⊂ Ud′ whenever d < d′.

Proof. For n ∈ N, set

Dn :=

{
k

2n

∣∣∣∣k = 1, . . . , 2n − 1

}
.

We construct Ud for d ∈ Dn inductively. Here is a cartoon of the main idea:

1
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Base case: Let U1/2 be any open set A ⊂ U1/2 ⊂ U1/2 ⊂ Bc.
Inductive Step: Suppose that Ud have been defined for all d ∈ D1 ∪ . . . ,∪Dn. Then, using
the convention U0 := A and U1 := Bc, we define U 2k+1

2n+1
for k = 0, 1, . . . , 2n − 1 to be any

open set such that
Uk/2n ⊂ U 2k+1

2n+1
⊂ U 2k+1

2n+1
⊂ U k+1

2n
. □
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Lemma 1.1.30 (Urysohn). Let X be a normal topological space. If A,B ⊂ X are disjoint
nonempty closed subsets, there is a continuous function f : X → [0, 1] such that f |A = 0 and
f |B = 1.

Proof. For the dyadic rationals D ⊂ (0, 1) as in (1.1.29), we have open sets (Ud)d∈D satisfying
the conditions in Lemma 1.1.28. Define f : X → [0, 1] by f(x) := sup {d|x /∈ Ud}. It is clear
by construction that f |A = 0 and f |B = 1. Also observe that

(D1) f(x) > d implies that x /∈ Ud, and f(x) < d′, then x ∈ Ud′ .
(D2) If x /∈ Ud, then f(x) ≥ d, and if x ∈ Ud′ , then f(x) ≤ d′.

It remains to prove that f is continuous. Fix x0 ∈ X and ε > 0.
Case 1: Suppose 0 < f(x) < 1. Choose d, d′ ∈ D such that d < f(x0) < d′ and d′ − d < ε.
By (D1) above, x0 ∈ Ud′ \ Ud. By (D2) above, |f(x)− f(x0)| < ε for all x ∈ Ud′ \ Ud.
Case 2: f(x) = 0 or 1. Similar to above and omitted. □

Theorem 1.1.31 (Tietze Extension). Suppose X is normal, A ⊂ X is closed, and f : A→
[a, b] is continuous. Then there is a continuous function F : X → [a, b] such that F |A = f .

Proof. Without loss of generality, [a, b] = [0, 1]. (Otherwise, replace f with (f − a)/(b− a).)
We inductively construct a sequence of continuous functions (gn) on X such that

• 0 ≤ gn ≤ 2n−1/3n for all n ∈ N, and
• 0 ≤ f −

∑n
k=1 gk ≤

(
2
3

)n
on A for all n ∈ N.

Then by (a),
∑
gn converges uniformly to a continuous limit function F on X, and by (b),

F |A = f .
Base case: Set B := f−1([0, 1/3]) ⊂ A and C := f−1([2/3, 1]) ⊂ A. Since f is continuous
on A, B,C ⊂ A ⊂ X are closed. By Urysohn’s Lemma, there is a continuous function
g1 : X → [0, 1/3] such that g1|B = 0 and g1|C = 1/3. Then

f − g1 ≤



1

3
− 0 =

1

3
on B ⊂ A

2

3
− 0 =

2

3
on A \ (B ∪ C)

1− 1

3
=

2

3
on C ⊂ A


≤ 2

3
on A.

Inductive Step: Suppose we have constructed g1, . . . , gn−1. Then there is a continuous func-

tion gn : X → [0, 2n−1/3n] such that gn = 0 on {f −
∑n−1

k=1 gk ≤ 2n−1/3n} and gn = 2n−1/3n

on {f −
∑n−1

k=1 gk ≥ 2n/3n}. This implies that f −
∑n

k=1 gk ≤ 2n/3n on A as in the base
case. □

1.2. Locally compact Hausdorff spaces.

Definition 1.2.1. A topological space X is called compact if every open cover has a finite
subcover.

Exercise 1.2.2. A collection of subsets of (Ai)i∈I of X has the finite intersection property
if for any finite J ⊂ I, we have

⋂
j∈J Aj ̸= ∅. Prove that the following are equivalent.

(1) Every open cover of X has a finite subcover.
(2) For every collection of closed subsets (Fi)i∈I with the finite intersection property,⋂

i∈I Fi ̸= ∅.
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Fact 1.2.3. An interval in R is compact if and only if it is closed and bounded.

Exercise 1.2.4. In this exercise, you will prove that the half-open interval topology on (0, 1]
is Lindelöf, i.e., every open cover has a countable sub-cover.

(1) Suppose U ⊂ R is open and suppose ((aj, bj))j∈J is a collection of open intervals
which cover U :

U ⊂
⋃
j∈J

(aj, bj).

Show there is a countable sub-cover, i.e., show that there is a countable subset I ⊂ J
such that

U ⊂
⋃
i∈I

(ai, bi).

Hint: Use Exercise 1.1.24.
(2) Suppose ((aj, bj])j∈J is a collection of half-open intervals which cover (0, 1]:

(0, 1] ⊂
⋃
j∈J

(aj, bj].

Show there is a countable sub-cover, i.e., show that there is a countable subset I ⊂ J
such that

(0, 1] ⊂
⋃
i∈I

(ai, bi].

Exercises 1.2.5. Suppose X is a topological space. Verify the following assertions.

(1) If X is compact and F ⊂ X is closed, then F is compact.
(2) If X is Hausdorff, K ⊂ X is compact, and x /∈ K, then there are disjoint open U, V

such that x ∈ U and K ⊂ V . In particular, K is closed.
(3) If X is compact Hausdorff, then X is normal.
(4) If X is compact and f : X → Y is continuous, then f(X) is compact.
(5) If X is compact and Y is Hausdorff, and continuous bijection f : X → Y is auto-

matically a homeomorphism (i.e., f−1 is continuous).

Exercise 1.2.6 (Lebesgue Number Lemma). Suppose (X, d) is a compact metric space.
Prove that for every open cover (Ui)i∈I , there is a δ > 0 such that for every x0 ∈ X, there is
an i0 ∈ I such that Bδ(x0) ⊂ Ui0 .

Exercise 1.2.7. Consider the following conditions:

(1) For every x ∈ X, there is a neighborhood U of x such that U is compact.
(2) For every x ∈ X, there is a neighborhood base B(x) consisting of neighborhoods U

of x such that U is compact.
(3) For every x ∈ X and every neighborhood U of x, there is an open V with x ∈ V ⊂ U

with V compact.
(4) For every x ∈ X and every neighborhood U of x, there is an open V with x ∈ V ⊂

V ⊂ U with V compact.

Determine which conditions imply which other conditions. Then show all the above condi-
tions are equivalent when X is Hausdorff.

Definition 1.2.8. A Hausdorff space satisfying one (equivalently all) of the conditions in
Exercise 1.2.7 is called a locally compact Hausdorff (LCH) space.
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Exercise 1.2.9. SupposeX is a second countable LCH space. Prove the following assertions.

(1) X is σ-compact, i.e., there is a sequence (Kn) of compact subsets of X such that
X =

⋃
Kn.

(2) Every compact K ⊂ X is a Gδ-set, i.e., a countable intersection of open sets.

Exercise 1.2.10 (Baire Category). Suppose X is either:

(1) a complete metric space, or
(2) an LCH space.

Suppose (Un) is a sequence of open dense subsets of X. Prove that
⋂
Un is dense in X.

Hint: Let V0 be an arbitrary non-empty open set. Inductively construct a decreasing sequence
(Vn)n≥1 of non-empty open subsets with Vn+1 ⊂ Vn+1 ⊂ Un+1 ∩ Vn such that in the two cases
above,

(1) Vn is a ball of radius 1/n for all n ∈ N, or
(2) Vn is compact for all n ∈ N.

Exercise 1.2.11. Suppose X is LCH. Verify the following assertions.

(1) If K ⊂ U ⊂ X where K is compact and U is open, there is an open V with K ⊂
V ⊂ V ⊂ U with V compact.
Hint: Use Exercise 1.2.7(4).

(2) (Urysohn) If K ⊂ U ⊂ X as above, there is a continuous f : X → [0, 1] such that
f |K = 1 and f = 0 outside of a compact subset of U .

(3) (Tietze) Of K ⊂ X is compact and f ∈ C(K), there is an F ∈ Cc(X) such that
F |K = f .

Definition 1.2.12. Let X be an LCH space. We define the following function algebras:

• C(X) is the algebra of continuous (C-valued) functions on X.
• Cc(X) is the algebra of continuous functions of compact support, i.e., there is a

compact set K such that f |Kc = 0. We’ll write supp(f) := {x|f(x) ̸= 0}, so f has
compact support if and only if supp(f) is compact.

• C0(X) is the algebra of continuous functions which vanish at infinity, i.e., for all
ε > 0, {|f | ≥ ε} is compact.

• Cb(X) is the algebra of continuous bounded functions.

We write C(X,R), Cc(X,R), C0(X,R), Cb(X,R) for the real subalgebras of real-valued func-
tions. Observe that

Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ C(X).

The uniform/∞-norm on Cb(X) is given by

∥f∥∞ := sup
x∈X

|f(x)|.

Exercise 1.2.13. Show that C(X), Cc(X), C0(X), Cb(X) are all complex algebras. More-
over, show Cc(X), C0(X) are unital if and only if X is compact.

Exercise 1.2.14 (Dini’s Lemma). Suppose X is a compact topological space and (fn) ⊂
C(X, [0, 1]). Show that if fn(x) ↘ 0 pointwise, then fn ↘ 0 uniformly.

Theorem 1.2.15. Suppose X is LCH.

(1) ∥ · ∥∞ is a norm on Cb(X).
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(2) Cb(X) is complete with respect to ∥ · ∥∞.
(3) C0(X) ⊂ Cb(X) is closed (and thus complete).

(4) Cc(X)
∥·∥∞

= C0(X).

Proof.
(1) Exercise.
(2) Suppose (fn) is uniformly Cauchy. Then (fn(x)) is Cauchy in C for every x ∈ X. Define
f(x) := lim fn(x), which is continuous (use ε/3 argument). Then one shows ∥fn∥∞ ⊂ [0,∞)
is bounded. Finally, you can show fn → f uniformly, and sup |f(x)| ≤ sup ∥fn∥ <∞.
(3) Suppose (fn) ⊂ C0(X) such that fn → f in Cb(X). Let ε > 0. Pick N ∈ N such that
n ≥ N implies ∥f − fn∥∞ < ε/2. Since fN ∈ C0(X), {|fN | ≥ ε/2} is compact. Then
{|f | ≥ ε} ⊂ {|fN | ≥ ε/2} is compact as a closed subset of a compact set.
(4) It suffices to prove that we can uniformly approximate any function in C0(X) by a function
in Cc(X). Let f ∈ C0(X) and ε > 0 so thatK := {|f | ≥ ε} is compact. By the LCH Urysohn
Lemma (Exercise 1.2.11(2)), there is a continuous function g : X → [0, 1] such that g|K = 1
and g has compact support. Then fg ∈ Cc(X), and ∥f − fg∥∞ < ε. □

Exercise 1.2.16. Suppose (X, T ) is a locally compact topological space and (fn) is a se-
quence of continuous C-valued functions on X. Show that the following are equivalent:

(1) There is a continuous function f : X → C such that fn|K → f |K uniformly on every
compact K ⊂ C.

(2) For every compact K ⊂ X, (fn|K) is uniformly Cauchy.

Deduce that C(X) is complete in the topology of local uniform convergence.

Exercise 1.2.17. Suppose X is a locally compact Hausdorff space, K ⊂ X is compact, and
{U1, . . . , Un} is an open cover of K. Prove that there are gi ∈ Cc(X, [0, 1]) for i = 1, . . . , n
such that gi = 0 on U c

i and
∑n

i=1 gi = 1 everywhere on K.

1.3. Convergence in topological spaces. Let (X, T ) be a topological space. Recall that
a sequence (xn) converges to x, denoted xn → x if for every open U ∈ T with x ∈ U ,
there is an N ∈ N such that n > N implies xn ∈ U (xn is eventually in U for every open
neighborhood U of x). Not all spaces are first countable, so sequences do not suffice to
describe the topology!

1.3.1. Nets.

Definition 1.3.1. A directed set is a set I equipped with a preorder (reflexive and transitive
binary relation) ≤ satisfying

• for all i, j ∈ I, there is a k ∈ I such that i ≤ k and j ≤ k.

Examples 1.3.2.

(1) N,R, or any linearly ordered set.
(2) R \ {a} where x ≤ y if and only if |x− a| ≥ |y − a| (y is closer to a than x is).
(3) Any neighborhood base T (x) at x ∈ X, ordered by reverse inclusion (U ≤ V iff

V ⊆ U).
(4) If X is any infinite set, {F ⊂ X|F is finite} ordered by inclusion.

Definition 1.3.3. Let X be a nonempty set and I a directed set. A net in X based on I
(or an I-net in X) is a function x : I → X, where write xi := x(i) and x = (xi)i∈I .

Given an I-net (xi)i∈I and a subset S ⊂ X, we say
8



• (xi) is eventually in S if there is some j ∈ I such that for all i ≥ j, xi ∈ S.
• (xi) is frequently in S if for every j ∈ I, there is an i ≥ j such that xi ∈ S.

We say (xi) converges to x ∈ X if (xi) is eventually in every neighborhood of x. We say x
is a cluster point of (xi) if (xi) is frequently in every neighborhood of x.

Proposition 1.3.4. Suppose X is a topological space and A ⊂ X. The following are equiv-
alent for x ∈ X:

(1) x is an accumulation/limit point of A (for all open U such that x ∈ U , A∩ (U \ {x})
is not empty), and

(2) there is a net in A \ {x} that converges to x.

Proof.
(1) ⇒ (2): Let B(x) be any neighborhood base at x, ordered by reverse inclusion. (For ex-

ample, we can take T (x), the set of all open sets which contain x.) For every U ∈ B(x),
pick xU ∈ U ∩ (A \ {x}). (Observe this requires the Axiom of Choice!) Then observe that
(xU)U∈B(x) converges to x.
(2) ⇒ (1): Exercise. □

Corollary 1.3.5. A subset A ⊂ X is closed if and only if every convergent net in A only
converges to points in A.

Proposition 1.3.6. X is Hausdorff if and only if every convergent net has a unique limit.

Proof.
⇒: If there is a net without a unique limit, any 2 distinct limit points of the same net cannot
be separted by disjoint open sets.
⇐: We’ll prove the contrapositive. Suppose X is not Hausdorff, so there are x, y ∈ X such
that for every neighborhoods U, V of x, y respectively, U ∩ V is nonempty. Let B(x),B(y)
be a neighborhood base for T at x, y respectively, both ordered by reverse inclusion. Direct
B(x) × B(y) by (U1, V1) ≥ (U2, V2) if and only if U1 ⊂ U2 and V1 ⊂ V2. Then for all
(U, V ) ∈ B(x)×B(y), choose a point x(U,V ) ∈ U ∩V . (Again, this uses the Axiom of Choice!)
This net converges to both x and y. □

Proposition 1.3.7. A function f : X → Y is continuous if and only if for every convergent
net xi → x in X, f(xi) → f(x) in Y .

Proof.
⇒: Suppose f : X → Y is continuous. Let (xi) be a convergent net with xi → x in X.
We need to show that f(xi) → f(x) in Y . Let V be an open neighborhood of f(x) in Y .
Observe that f−1(V ) is open in X, and x ∈ f−1(V ). Since xi → x, (xi) is eventually in
f−1(V ). Hence f(xi) is eventually in V .
⇐: We’ll show that the preimage of every closed set is closed. Let F ⊂ Y be closed. We may
assume F is non-empty. By Corollary 1.3.5, it suffices to prove that every convergent net
(xi) in f−1(F ) only converges to points of f−1(F ). So suppose (xi) is a convergent net in
f−1(F ), and say xi → x. Then f(xi) ∈ F for all i, and f(xi) → f(x) by assumption. Since
F is closed, by Corollary 1.3.5, f(x) ∈ F , and thus x ∈ f−1(F ). □

Definition 1.3.8. A subnet of an I-net (xi) consists of a J-net (yj) together with a function
f : J → I which need not be injective such that

9



• yj = xf(j) for all j ∈ J , i.e., y = x ◦ f : J → X.
• for all i ∈ I, there is a j0 ∈ J such that f(j) ≥ i for all j ≥ j0, i.e., for every i ∈ I,
(f(j)) is eventually greater than i.

Observe that if xi → x, then yj → x for any subnet (yj) of (xi).

Proposition 1.3.9. Suppose (xi) is a net in X and x ∈ X. The following are equivalent:

(1) x is a cluster point of (xi).
(2) there is a subnet (yj) of (xi) such that yj → x.

Proof.
(1) ⇒ (2): Choose a neighborhood base B(x) at x. Define J := I × B(x) where (i1, U1) ≤
(i2, U2) iff i1 ≤ i2 and U1 ⊃ U2. For each (i, U) ∈ J , define f(i, U) := i′ to be any i′ with
i′ ≥ i and xi′ ∈ U . Then if (i1, U1) ≤ (i2, U2), i1 ≤ i2 ≤ f(i2, U2), and xf(i2,U2) ∈ U2 ⊂ U1.
This means (xf(i,U)) is a subnet of (xi) converging to x.
(2) ⇒ (1): Exercise. □

Exercise 1.3.10. When (X, T ) is first countable, then Propositions 1.3.4, 1.3.6, 1.3.7, and
1.3.9 and Corollary 1.3.5 all hold with sequences instead of nets.

Exercise 1.3.11. Suppose (X, d) is a metric space. Prove that the following are equivalent:

(1) X is compact.
(2) X is sequentially compact (every sequence has a convergent subsequence).
(3) X is complete and totally bounded.

Deduce that if in addition X is complete and A ⊂ X, then A is compact if and only if A is
totally bounded.

Theorem 1.3.12. Suppose X is a topological space. The following are equivalent:

(1) X is compact.
(2) For every family of closed sets (Fi) with the finite intersection property,

⋂
Fi is

nonempty.
(3) Every net in X has a cluster point.
(4) Every net in X has a convergent subnet.

Proof.
(1) ⇔ (2): This is Exercise 1.2.2.

(3) ⇔ (4): This follows by Proposition 1.3.9.

(2) ⇒ (3): Let (xi) be a net in X. For i ∈ I, define Ai := {xj|j ≥ i}. Observe
⋂
Ai is the set

of cluster points of (xi). Moreover, (Ai) has the finite intersection property, so (Ai) also has
the finite intersection property. We conclude by (2) that

⋂
Ai is nonempty, and thus (xi)

has a cluster point.
(3) ⇒ (2): We’ll prove the contrapositive. If (2) fails, then there is a family of closed sets (Fi)

with the finite intersection property such that
⋂
Fi = ∅. Define J to be the set of non-empty

finite intersections of (Fi) ordered by reverse inclusion. Since (Fi) has the finite intersection
property, for every F ∈ J , F is nonempty. Use the Axiom of Choice to pick xF ∈ F for
every F ∈ J . Then any cluster point of (xF ) lies in

⋂
F∈J F =

⋂
Fi = ∅. □

10



1.3.2. Filters.

Exercise 1.3.13 (Pedersen Analysis Now, E1.3.4 and E1.3.6). A filter on a set X is a
collection F of non-empty subsets of X satisfying

• A,B ∈ F implies A ∩B ∈ F , and
• A ∈ F and A ⊂ B implies B ∈ F .

Suppose T is a topology on X. We say a filter F converges to x ∈ X if every open
neighborhood U of x lies in F .

(1) Show that A ⊂ X is open if and only if A ∈ F for every filter F that converges to a
point in A.

(2) Show that if F and G are filters and F ⊂ G (G is a subfilter of F), then G converges
to x whenever F converges to x.

(3) Suppose (xλ) is a net in X. Let F be the collection of sets A such that (xλ) is
eventually in A. Show that F is a filter. Then show that xλ → x if and only if F
converges to x.

(4) Show that (X, T ) is Hausdorff if and only if every convergent filter has a unique limit.

Exercise 1.3.14 (Pedersen Analysis Now, E1.3.5). A filter F on a set X is called an ultra-
filter if it is not properly contained in any other filter.

(1) Show that a filter F is an ultrafilter if and only if for every A ⊂ X, we have either
A ∈ F or Ac ∈ F .

(2) Use Zorn’s Lemma to prove that every filter is contained in an ultrafilter.

Exercise 1.3.15. Let X and Y be sets and f : X → Y a function. Let F be an ultrafilter
on X. Prove that f ∗(F) := {A ⊂ Y |f−1(A) ∈ F} is an ultrafilter on Y .

Exercise 1.3.16. Given a filter F on X, show that F is an ultrafilter if and only if
⋃n
i=1Ai ∈

F implies that Ai ∈ F for some i ∈ {1, . . . , n}.

Exercise 1.3.17. Let X be a nonempty set and let U be a collection of subsets of X.
Note: It is not assumed that U is a filter!
Show that the following two statements are equivalent.

(1) U is an ultrafilter on X.
(2) Whenever X can be partitioned into three disjoint sets X = A1 ⨿ A2 ⨿ A3, there is

a unique i ∈ {1, 2, 3} such that Ai ∈ U .
Hint: The Ai’s need not be distinct nor non-empty.

Exercise 1.3.18. Let (X, T ) be a topological space. A net (xλ)λ∈Λ is called universal if for
every subset Y ⊂ X, (xλ) is either eventually in Y or eventually in Y c. Show that every net
has a universal subnet.
Hint: Let (xλ) be a net in X. We say a filter F on X is associated to (xλ) if (xλ) is
frequently in every F ∈ F .

(1) Show that the set of filters associated to (xλ) is non-empty.
(2) Order the set of filters associated to (xλ) by inclusion. Show that if (Fj) is a totally

ordered set of filters for (xλ), then ∪Fj is also a filter for (xλ).
(3) Use Zorn’s Lemma to assert there is a maximal filter F associated to (xλ).
(4) Show that F is an ultrafilter.
(5) Find a subnet of (xλ) that is universal.

11



Exercise 1.3.19. Let (X, T ) be a topological space. Prove that the following are equivalent:

(1) (X, T ) is compact
(2) every ultrafilter converges
(3) every universal net converges.

1.4. Categories, universal properties, and product topology.

Definition 1.4.1. A category C is a collection of objects together with a set of morphisms
C(a → b) for every ordered pair of objects a, b ∈ C and a composition operation − ◦C − :
C(b→ c)× C(a→ b) → C(a→ c), i.e., f : a→ b and g : b→ c, then g ◦ f : a→ c such that

• composition is associative, i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : a → b, g : b → c,
and h : c→ d.

• every object has an identity morphism, i.e., for every b ∈ C, there is a idb : b → b
such that idb ◦f = f for all f : a→ b and g ◦ idb = g for all g : b→ c

Definition 1.4.2. Suppose (Xi)i∈I is a family of sets. The (categorical) product is the
Cartesian product ∏

i∈I

Xi :=

{
x : I →

⋃
i∈I

Xi

∣∣∣∣∣xi := x(i) ∈ Xi

}
together with the canonical projection maps πj :

∏
Xi → Xj given by πj(x) = xj. It satisfies

the following universal property :

• (product) for any set Z and functions fi : Z → Xi for i ∈ I, there is a unique function∏
fi : Z →

∏
Xi such that πj ◦

∏
fi = fj for all j ∈ I.

Z

∏
i∈I Xi Xj

fj∃!
∏
fi

πj

Exercise 1.4.3. Suppose Y is another set together with functions θi : Y → Xi for all i ∈ I
satisfying the universal property of the product. Show there is a unique bijection between
Y and

∏
Xi which is compatible with the projection maps. In this sense, we say that the

product is unique up to unique isomorphism.

Exercise 1.4.4. A set
∐
Xi together with maps ιj : Xj →

∐
Xi for each j ∈ I is called the

coproduct of (Xi)i∈I if it satisfies the following universal property:

• (coproduct) for any set Z and functions fi : Xi → Z for i ∈ I, there is a unique
function

∐
fi :

∐
Xi → Z such that (

∐
fi) ◦ ιj = fj.

Xj

∐
i∈I Xi

Z

fj

ιj

∃!
∐
fi

(1) Show that the coproduct, if it exists, is unique up to unique isomorphism.
(2) What is the coproduct in the category of sets?

12



Definition 1.4.5. Suppose (Xi)i∈I is a family of topological spaces. The (categorical) prod-
uct is the Cartesian product

∏
i∈I Xi equipped with the weakest topology such that the

canonical projection maps πj :
∏
Xi → Xj are continuous for every j ∈ I. We call this

topology the product topology.

Exercise 1.4.6. Prove that the open sets
∏
Ui with Ui ⊂ X open where only finitely many

of the Ui are not equal to Xi form a base for the product topology.

Exercise 1.4.7. Prove that
∏
Xi with the product topology together with the canonical

projection maps πj :
∏
Xi → Xj is the categorical product in the category of topological

spaces with continuous maps. That is, prove the product satisfies the universal property in
Definition 1.4.2 subject to the additional condition that all functions are continuous.

Exercise 1.4.8. What is the categorical coproduct of topological spaces?

Theorem 1.4.9 (Tychonoff). Suppose (Xi)i∈I is a family of compact topological spaces.
Then the product

∏
Xi is compact in the product topology.

Proof. Discussion section. □

Definition 1.4.10. Suppose C,D are categories. A (covariant) functor F : C → D assigns
to each object c ∈ C an object F (c) ∈ D and to each morphism f ∈ C(a → b) a morphism
F (f) ∈ D(F (a) → F (b)) such that

• F (idc) = idF (c) for all objects c ∈ C, and
• F (g ◦ f) = F (g) ◦ F (f) for all f ∈ C(a→ b) and g ∈ C(b→ c).

A contravariant functor F : C → D is similar to a functor, but instead of the second bullet
point above, we have F (g ◦ f) = F (f) ◦ F (g) for composable f, g.

Exercise 1.4.11. Let Set denote the category of sets and functions.

(1) For a function f : X → Y , define P (f) : P (X) → P (Y ) by P (f)(A) = f(A) =
{f(a)|a ∈ A}. Show that PSet → Set is a functor.

(2) For a set X, define P−1(X) := P (X) = {A ⊂ X}. For a function f : X → Y and
B ⊂ Y , define P−1(f)(B) := f−1(B) = {x ∈ X|f(x) ∈ B}. Show that P−1 : Set →
Set is a contravariant functor.

Exercise 1.4.12. Let Top denote the category topological spaces and continuous maps.

(1) There is a forgetful functor Forget : Top → Set which forgets the topology.
(2) Given a set X, we can endow it with the discrete topology Tdisc := P (X). This gives

a functor L : Set → Top. Show that if Y is any topological space, then every function
X → Y is continuous with respect to the discrete topology on X. In other words,

Top(L(X) → Y ) = Set(X → Forget(Y )).

(3) Given a set Y , we can endow it with the trivial topology Ttriv := {∅, Y }. This gives
a functor R : Set → Top. Show that if X is any topological space and Y is a set,
then every function X → Y is continuous with respect to the trivial topology on Y .
In other words,

Set(Forget(X) → Y ) = Top(X → R(Y )).
13



Exercise 1.4.13. Let CptHsd denote the category of compact Hausdorff topological spaces
and continuous maps. Let Algu denote the category of unital complex algebras and unital
algebra homomorphisms. Show that X 7→ C(X) and f : X → Y maps to − ◦ f : C(Y ) →
C(X) gives a contravariant functor CptHsd → Algu.

Exercise 1.4.14.

(1) Given LCH spaces X, Y and a continuous function f : X → Y , when does the image
of the map − ◦ f : C0(Y ) → C(X) lie in C0(X)?

(2) Show that on the correct category LCH of locally compact Hausdorff topological
spaces, the assignments X 7→ C0(X) and f 7→ − ◦ f define a contravariant functor
to Alg, the category of non-unital complex algebras and algebra homomorphisms

1.5. The Stone-Weierstrass Theorem. Weierstrass’ original theorem from 1885:

(1) The polynomials are dense in C[a, b] where −∞ < a < b <∞.
(2) A continuous function on R with period 2π can be uniformly approximated by a

finite linear combination of functions of the form sin(nx), cos(nx) for n ∈ N, i.e., a
trigonometric polynomial.

Theorem 1.5.1 (R-Stone-Weierstrass). Suppose X is compact Hausdorff and A ⊂ C(X,R)
is a closed R-subalgebra which separates points (for all distinct x, y ∈ X, there is an f ∈ A
such that f(x) and f(y) are distinct).

• If A contains a non-vanishing function, then A = C(X,R).
• If every f ∈ A has a zero, then there exists a unique x0 ∈ X such that

A = {f ∈ C(X,R)|f(x0) = 0} .

Exercise 1.5.2. Suppose X is compact Hausdorff and A ⊂ C(X,F) is a subalgebra where
F is R or C. Prove that A is also a subalgebra. Deduce that if A separates points, then so
does A.

Lemma 1.5.3. On any compact K ⊂ R, the function x 7→ |x| on R can be uniformly
approximated on K by a polynomial which vanishes at zero.

Proof. We give a proof of Sarason. We’ll show for R > 0, there is a sequence of polynomials
(pn) which converges uniformly to | · | on [−R,R] such that pn(0) = 0 for all n. Without
loss of generality, R = 1. It suffices to find a sequence (qn) of polynomials converging to
q(t) := 1− |t| on [−1, 1] such that qn(0) = 1 for all n. Observe that

q takes values in [0, 1] and (1− q(t))2 = t2 for all |t| ≤ 1. (∗)

For a given t ∈ [−1, 1], consider the equation (1 − s)2 = t2. It has 2 solutions, namely
s = 1 ± |t|, and exactly one of these values of s lies in [0, 1]. Hence q(t) is unique function
on [−1, 1] satisfying (∗). We can rewrite (∗) as

q takes values in [0, 1] and q(t) =
1

2
(1− t2 + q(t)2). (∗∗)

We define (qn) inductively by

• q0(t) = 1, and
• qn+1(t) =

1
2
(1− t2 + qn(t)

2).
14



By induction, for all n ≥ 0, we have qn takes values in [0, 1], qn(0) = 1, and

qn − qn+1 =
1

2
(q2n−1 − q2n) =

1

2
(qn−1 − qn)(qn−1 + qn) ≥ 0.

(Indeed, observe that q1(t) = 1− 1
2
t2, so q0−q1 = 1

2
t2 ≥ 0.) This means that (qn) is monotone

decreasing by construction. Let q̃ be the pointwise limit. Observe that q̃ satisfies (∗∗) by
construction, so q̃ = q by uniqueness! Now as qn ↘ q on [−1, 1] pointwise, qn → q uniformly
by Dini’s Lemma (Exercise 1.2.14). □

Lemma 1.5.4. If A ⊂ C(X,R) is a closed R-subalgebra, then A is a lattice (for all f, g ∈ A,
the functions f ∨ g := max{f, g} and f ∨ g := min{f, g} belong to A).

Proof. Suppose a ∈ A and a ̸= 0. Then a
∥a∥∞ : X → [−1, 1]. By Lemma 1.5.3, for all ε > 0,

there is a polynomial p on [−1, 1] with p(0) = 0 and | |t| − p(t)| < ε for all t ∈ [−1, 1]. Hence∣∣∣∣ |a(x)|∥a∥∞
− p

(
a(x)

∥a∥∞

)∣∣∣∣ < ε ∀ x ∈ X.

In other words, ∥∥∥∥∥∥∥∥
|a|

∥a∥∞
− p

(
a

∥a∥∞

)
︸ ︷︷ ︸

∈A

∥∥∥∥∥∥∥∥
∞

< ε.

Since p(0) = 0, p(a/∥a∥∞) ∈ span {an|n ∈ N} ⊂ A. Since the algebra A is closed and ε > 0
was arbitrary, |a|/∥a∥∞ ∈ A, and thus |a| ∈ A. Hence for all a, b ∈ A,

max{a, b} =
1

2
(a+ b+ |a− b|)

min{a, b} =
1

2
(a+ b− |a− b|)

are both elements of A. □

Lemma 1.5.5. Suppose A ⊂ C(X,R) is a R-vector space which is also a lattice. Suppose
f ∈ C(X,R) satisfies

• for all ε > 0 and all distinct x, y ∈ X, there is an ax,y ∈ A such that

|f(x)− ax,y(x)| < ε and |f(y)− ax,y(y)| < ε.

Then f ∈ A.

Proof. For every ε > 0 and x, y ∈ X, pick ax.y ∈ A such that |f(x) − ax,y(x)| < ε and
|f(y)− ax,y(y)| < ε. Then x, y are both in:

Ux,y = {z ∈ X|f(z) < ax,y(z) + ε}
Vx,y = {z ∈ X|ax,y(z) < f(z) + ε} .

Fix x ∈ X. Then sets (Ux,y)y∈X are an open cover of X. Since X is compact, X ⊂
⋃n
i=1 Ux,yi

for some y1, . . . , yn ∈ X. Then ax :=
∨n
i=1 ax,yi ∈ A, and f(z) < ax(z) + ε for all z ∈ X

in construction. Also, ax(z) < f(z) + ε for all z ∈ Wx :=
⋂n
i=1 Vx,yi , which is some open

neighborhood of x. Varying over x ∈ X, (Wx)x∈X are an open cover, so there are finitely

many x1, . . . , xk ∈ X such that X ⊂
⋃k
i=1Wxi by compactness. Setting aε :=

∧k
i=1 axi

satisfies ∥f − aε∥∞ < ε. Since ε was arbitrary, we conclude that f ∈ A. □
15



Proof of the R-Stone-Weierstrass Theorem 1.5.1. Suppose x ̸= y in X. Since point evalua-
tion is an R-algebra homomorphism A→ R, then

Ax,y := {(f(x), f(y))|f ∈ A} ⊂ R2

is a R-subalgebra. The only R-subalgebras of R2 are:

(0, 0) R× {0} {0} × R ∆ = {(x, x)|x ∈ R} R2.

Since A separates points, Ax,y ̸= (0, 0) or ∆ for all x ̸= y.

Claim. Ax,y = R2 for all x ̸= y except for when x, y are equal to one possible x0 ∈ R.

Proof. If there are x ̸= y such that Ax,y ̸= R2, then without loss of generality, Ax,y =
{0} × R. Thus f(x) = 0 for all f ∈ A. Since A separates points, f(x′) = 0 for all
f ∈ A implies x′ = x. So Ay,z = R2 for all y ̸= x ̸= z. □

Claim. Ax,y = R2 for all x ̸= y if and only if A contains a non-vanishing function.

Proof of Claim. If A contains a non-vanishing function, then Ax,y = R2 for all x ̸= y.
Conversely, suppose Ax,y = R2 for all x ̸= y. Then for all x ∈ X, choose a continuous
function ax ∈ A such that ax(x) ̸= 0. Observe that the sets (Ux := {ax ̸= 0})x∈X form
an open cover of X, so by compactness, there are x1, . . . , xn such that X ⊂

⋃n
i=1 Uxi .

By Lemma 1.5.4, A is a lattice, so

a := max{ax1 , . . . , axn ,−ax1 , . . . ,−axn} = max{|ax1|, . . . , |axn|} ∈ A.

Since |axi | > 0 on Uxi for all i = 1, . . . , n, we have a(x) > 0 for all x ∈ X by
construction. □

From these claims, we see that either A contains a non-vanishing function, in which case
Ax,y = R2 for all x ̸= y, or every function in A vanishes at some point of X, in which case
there is a unique x0 ∈ X such that a(x0) = 0 for all a ∈ A.
Case 1: For all x ̸= y in X and f ∈ C(X,R), there is an ax,y ∈ A such that f(x) = ax,y(x)
and f(y) = ax,y(y). By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f ∈ A.
Case 2: For all x0 ̸= x ̸= y ̸= x0 and f ∈ {g ∈ C(X,R)|g(x0) = 0} (which is a closed sub-
algebra/ideal of C(X,R)), there is an ax,y ∈ A such that f(x) = ax,y(x) and f(y) = ax,y(y).
By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f ∈ A. □

Theorem 1.5.6 (C-Stone-Weierstrass). Suppose X is a compact Hausdorff space. Let
A ⊂ C(X) be a closed subalgebra that separates points of X and is closed under complex
conjugation.

• If A contains a non-vanishing function, then A = C(X).
• If every f ∈ A has a zero, then there exists a unique x0 ∈ X such that

A = {f ∈ C(X)|f(x0) = 0} .

Proof. Note that Asa :=
{
f ∈ A

∣∣f = f
}
is an R-subalgebra of A. (Here, ‘sa’ stands for self-

adjoint.) Since A is closed under complex conjugation, for all f ∈ A, Re(f), Im(f) ∈ A, and
thus A = Asa ⊕ iAsa. Moreover, C(X) = C(X,R) ⊕ iC(X,R) by similar reasoning. Hence
the strategy is to apply the R-Stone-Weierstrass Theorem 1.5.1 to Asa ⊂ C(X,R).
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First, observe Asa separates points, since if f ∈ A separates x, y, then one of Re(f), Im(f) ∈
Asa separates x, y. Second, observe that Asa is closed, since if (fn) ⊂ Asa converges uniformly,
then its limit lies in A as A is closed, and since (fn) must converge pointwise, its limit only
takes real values and thus lies in Asa.

We now check the two cases in the statement of the theorem.
Case 1: If A contains a non-vanishing function f , then |f |2 = ff ∈ Asa does not vanish. By
the R-Stone-Weierstrass Theorem 1.5.1, Asa = C(X,R), and thus

A = Asa ⊕ iAsa = C(X,R)⊕ iC(X,R) = C(X).

Case 2: If every element of A vanishes somewhere, then so does every element of Asa ⊂ A.
By the R-Stone-Weierstrass Theorem 1.5.1, Asa = {f ∈ C(X,R)|f(x0) = 0}, and thus

A = Asa ⊕ iAsa

= {f ∈ C(X,R)|f(x0) = 0} ⊕ i {f ∈ C(X,R)|f(x0) = 0}
= {f ∈ C(X)|f(x0) = 0} . □

Exercise 1.5.7. Suppose X is LCH and A ⊂ C0(X) is a closed subalgebra that sepa-
rates points and is closed under complex conjugation. Then either A = C0(X) or A =
{f ∈ C0(X)|f(x0) = 0} for some x0 ∈ X.
Hint: Use the one point (Alexandroff) compactification discussed in §1.6 below.

Exercise 1.5.8. Show the following collections of functions are uniformly dense in the ap-
propriate algebras:

(1) For a < b in R, the polynomials R[t] ⊂ C([a, b],R).
(2) For a < b in R, the piece-wise linear functions PWL ⊂ C([a, b],R).
(3) For K ⊂ C compact, the polynomials C[z, z] ⊂ C(K).
(4) For R/Z, the trigonometric polynomials span {sin(2πnx), cos(2πnx)|n ∈ N ∪ {0}} ⊂

C(R/Z,R).

Exercise 1.5.9.

(1) Use the difference quotient to show that complex cojugation · : C → C given by
z 7→ z is nowhere complex differentiable.

(2) Let D ⊂ C be the open unit disk {|z| < 1}. Describe the uniform closure of C[z], the
polynomials in z, in C(D).
Hint: You may use without proof Morera’s Theorem from Complex Analysis which
states on any open domain U ⊂ C, the local uniform limit of complex differentiable
functions is complex differentiable.

(3) Discuss your answer in the context of the Stone-Weierstrass Theorem.

Exercise 1.5.10. Let X, Y be compact Hausdorff spaces. For f ∈ C(X) and g ∈ C(Y ), de-
fine (f⊗g)(x, y) := f(x)g(y). Prove that span {f ⊗ g|f ∈ C(X) and g ∈ C(Y )} is uniformly
dense in C(X × Y ).

Exercise 1.5.11 (Sarason). Suppose f ∈ C([0, 1],R) such that
∫ 1

0
xnf(x) dx = 0 for all

n ≥ 2020. Prove that f = 0.
Hint: Consider A := span {xn|n ≥ 2020} ⊂ C([0, 1],R).
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Exercise 1.5.12 (Sarason). Find a sequence of polynomials in R[t] ⊂ C(R,R) that simulta-
neously converges to 1 uniformly on every compact subinterval of (0,∞) and to −1 uniformly
on every compact subinterval of (−∞, 0).

1.6. One point (Alexandroff) and Stone-Čech compactification.

Definition 1.6.1. Suppose X is a topological space. An embedding φ : X → Y is a
continuous injection which is a homeomorphism onto its image, i.e., φ−1 : φ(X) → X is
continuous with respect to the relative topology.

A compactification of a topological space X consists of a compact space K and an embed-
ding φ : X → K such that φ(X) is dense in K.

Example 1.6.2. Consider the map [0, 1) → S1 := {z ∈ C| |z| = 1} by r 7→ exp(2πir). This
map is a continuous bijection, but not a homeomorphism onto its image.

Examples 1.6.3. Compactifications of R include:

(1) the extended real numbers R = [−∞,∞]
(2) the ‘one point’ compactification R ∪ {∞} ∼= S1

(3) You can add (0, 0) and S1 in R2 to an embedding R ↪→ R2 as a spiral.
(4) You can add a circle S1 embedded in a 2-toruse T2 ⊂ R3 to an embedding R ↪→ T2

which coils R around the torus from either side.

Definition 1.6.4. Suppose X is an LCH space, and choose any object ∞ /∈ X. Define
X• := X⨿{∞}, where ⨿ denotes disjoint union (coproduct in Set). We say U ⊂ X• is open
if and only if either

• U ⊂ X is open in X, or
• ∞ ∈ U , and U c is compact.

Due to the next theorem, we call X• the (Alexandroff) one point compactification of X.

Theorem 1.6.5. If X is LCH, then the space X• is compact Hausdorff, and the inclusion
X ↪→ X• is an embedding.

Proof. The inclusion X ↪→ X• is obviously an embedding.
Compact: Suppose (Ui) is an open cover of X•. Then there is some U0 such that ∞ ∈ U0

and U c
0 is compact. Then (Ui∩X) is an open cover of U c

0 , which is compact. So pick a finite
subcover.
Hausdorff: Since X is Hausdorff, it suffices to separate x ∈ X from ∞ ∈ X•. Since X is LCH,
there is an open neighborhood U ⊂ X of x such that U ⊂ X is compact. Set V := U

c
in

X•, which is an open neighborhood of ∞ disjoint from U . □

Definition 1.6.6. A topological space X is completely regular if for every closed F ⊂ X
and x ∈ F c, there is a continuous function f : X → [0, 1] such that f(x) = 1 and f |F = 0.

We call X Tychonoff if X is completely regular and T1.

Exercises 1.6.7.

(1) X Tychonoff implies X is Hausdorff.
(2) Every normal space is Tychonoff by Urysohn’s Lemma.
(3) Any subspace of a Tychonoff space is Tychonoff.
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Lemma 1.6.8 (Embedding). Suppose X is a topological space Φ ⊂ C(X, [0, 1]) is a family
of continuous functions. Define e : X → [0, 1]Φ := {f : Φ → [0, 1]} =

∏
f∈Φ[0, 1] (which is

compact in the product topology!) by x 7→ (f(x))f∈Φ.

(1) e is continuous.
(2) e is injective if and only if Φ separates points, i.e., for all x ̸= y in X, there is an

f ∈ Φ such that f(x) ̸= f(y).
(3) If Φ separates points from closed sets (for all F ⊂ X closed and x ∈ F c, there is an

f ∈ Φ such that f(x) /∈ f(F )), then e is an open map of X onto e(X).
(4) If Φ separates points and Φ separates points from closed sets, then e is an embedding.

Proof.

(1) Observe that πf ◦ e = f is continuous for all f ∈ Φ. Thus e is continuous by the
universal property defining the product in Top.

(2) e(x) ̸= e(y) if and only if there is an f ∈ Φ such that

f(x) = (πf ◦ e)(x) ̸= (πf ◦ e)(y) = f(y).

(3) Suppose Φ separates points from closed sets. Let U ⊂ X be open. Suppose x ∈ U .
We want to find an open set V ⊂ [0, 1]Φ such that e(x) ∈ V ∩ e(X) ⊂ e(U). There is

an f ∈ Φ such that f(x) /∈ f(U c). Then W := [0, 1] \ f(U c) is an open set containing
f(x), so e(x) ∈ π−1

f (W ), which is open in [0, 1]Φ. Observe that

e(y) ∈ π−1
f (W ) ∩ e(X) ⇐⇒ f(y) /∈ f(U c) =⇒ y ∈ U.

Setting V := π−1
f (W ), we have e(x) ∈ V ∩ e(X) ⊂ e(U) as desired.

(4) By (1) and (2), e : X → [0, 1]Φ is a continuous injection. By (3), e−1 on e(X) is
continuous. So e is a homeomorphism onto its image. □

Corollary 1.6.9. X is Tychonoff if and only if there exists an embedding X ↪→ [0, 1]I for
some set I.

Definition 1.6.10. Suppose X is Tychonoff and set Φ := C(X, [0, 1]). Consider the embed-

ding e : X ↪→ [0, 1]Φ by e(x)f := f(x). The Stone-Čech compactification of X is βX := e(X),
with X → βX being the corestriction of e, still denoted e.

Suppose f : X → Y is any continuous map between Tychonoff spaces. Define F :
[0, 1]ΦX → [0, 1]ΦY componentwise for g ∈ ΦY = C(Y, [0, 1]) by πg(F (p)) := πg◦f (p). Then F
is continuous, since πg ◦ F = πg◦f : [0, 1]ΦX → [0, 1] is continuous for all g ∈ ΦY . Moreover,
for all x ∈ X,

πg(F (eX(x))) = πg◦f (eX(x)) = g(f(x)) = πg(eY (f(x)).

This means that F ◦ eX = eY ◦ f : X → [0, 1]ΦY . Hence im(F |βX) ⊂ eY (Y ) = βY . Define
βf := F |βX : βX → βY . Observe we have the following commutative diagram:

X βX [0, 1]ΦX

Y βY [0, 1]ΦY .

f

eX

βf F

eY

(1.6.11)
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Remark 1.6.12. Suppose X, Y are Tychonoff and f : X → Y is continuous. We note for
future use that if every h ∈ ΦX factorizes as h = g ◦ f for some g ∈ ΦY , then F from
Definition 1.6.10 is injective. Indeed, if p, p′ ∈ [0, 1]ΦX , we have

F (p) = F (p′) ⇐⇒ πg(F (p)) = πg(F (p
′)) ∀ g ∈ ΦY

⇐⇒ πg◦f (p) = πg◦f (p
′) ∀ g ∈ ΦY

⇐⇒ πh(p) = πh(p
′) ∀h ∈ Φ(X)

⇐⇒ p = p′.

Theorem 1.6.13. The Stone-Čech compactification (βX, e) satisfies the universal property

• For every compact Hausdorff space Z and continuous function f : X → Z, there

exists a unique continuous function βf : βX → Z such that f̃ ◦ e = f .

βX

X Z.

∃!f̃

f

e

Proof. First, given any compactification φ : X → K, compact Hausdorff Z, and continuous
map f : X → Z, there exists at most one continuous function g : K → Z such that g◦φ = f .

So it suffices to prove existence of f̃ . Just observe that since Z is compact, eZ(Z) ⊂ βZ is
dense and compact, so eZ(Z) = βZ. Hence eZ : Z → βZ is a continuous bijection from a

compact space to a Hausdorff space, and is thus a homeomorphism. So the map f̃ : βX → Z
given by

βX
βf−→ βZ

e−1
Z−−→ Z

satisfies f̃ ◦ eX = f by the commutative diagram (1.6.11). □

Exercise 1.6.14. If φ : X ↪→ Y is any compactification of X satisfying the universal
property in Theorem 1.6.13, then φ̃ : βX → Y is a homeomorphism.

Corollary 1.6.15. Let X be Tychonoff and φ : X → K a compactification.

(1) The unique lift φ̃ : βX → K is surjective.
(2) Suppose for all f ∈ Cb(X) there is a g ∈ C(K) such that f = g◦φ. Then φ̃ : βX → K

is a homeomorphism.

Proof.

(1) Since φ̃ ◦ eX = φ and φ(X) is dense in K, φ̃(βX) is dense in K. But βX is compact
and φ̃ is continuous, so φ̃(βX) is compact. Since K is compact Hausdorff, compact
subsets are closed, and thus φ̃(βX) = K.

(2) By (1), it suffices to prove that φ̃ : βX → K is injective. Then since βX is compact
and K is Hausdorff, the continuous bijection φ̃ is automatically a homeomorphism.
Injectivity follows by Remark 1.6.12. Indeed, every f ∈ ΦX ⊂ Cb(X) factorizes as
f = g ◦ φ for some g ∈ ΦK . □

Proposition 1.6.16. Stone-Čech compactification is a functor β : Tych → CptHsd.

Proof.
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id: Since
β idX ◦eX =

(1.6.11)
eX ◦ idX = eX = idβX ◦eX

we must have β idX = idβX as they agree on the dense subset X ⊂ βX.
− ◦ −: Suppose f : X → Y and g : Y → Z are continuous with all spaces Tychonoff. Since

β(g ◦ f) ◦ eX =
(1.6.11)

eZ ◦ g ◦ f =
(1.6.11)

βg ◦ eY ◦ f =
(1.6.11)

βg ◦ βf ◦ eX ,

β(g ◦ f) = βg ◦ βf as the agree on the dense subset X ⊂ βX. □

Exercise 1.6.17 (Adapted from Folland §4.8, #74). Consider N(with the discrete topology)
as a subset of its Stone-Čech compactification βN.

(1) Prove that if A,B are non-empty disjoint subsets of N, then their closures in βN are
disjoint.

(2) Suppose (xn) ⊂ N is a sequence which is not eventually constant. Show there exist
non-empty disjoint subsets A,B ⊂ N such that (xn) is frequently in A and frequently
in B.

(3) Deduce that no sequence in N converges in βN unless it is eventually constant.

Exercise 1.6.18 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Let UN be the set of ultrafilters on N. For a subset S ⊂ N, define [S] := {F ∈ UN|S ∈ F}.
Show that the function S 7→ [S] satisfies the following properties:

(1) [∅] = ∅ and [N] = UN.
(2) For all S, T ⊂ N,

(a) [S] ⊂ [T ] if and only if S ⊂ T .
(b) [S] = [T ] if and only if S = T .
(c) [S] ∪ [T ] = [S ∪ T ].
(d) [S] ∩ [T ] = [S ∩ T ].
(e) [Sc] = [S]c.

(3) Find a sequence of subsets (Sn) of N such that [
⋃
Sn] ̸=

⋃
[Sn].

(4) Find a sequence of subsets (Sn) of N such that [
⋂
Sn] ̸=

⋂
[Sn].

Exercise 1.6.19 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Assume the notation of Exercise 1.6.18.

(1) Show that {[S]|S ⊂ N} is a base for a topology on UN.
(2) Show that all the sets [S] are both closed and open in UN.
(3) Show that UN is compact.
(4) For n ∈ N, let Fn = {S ⊂ N|n ∈ S}. Show Fn is an ultrafilter on N.

Note: Each Fn is called a principal ultrafilter on N.
(5) Show that {Fn|n ∈ N} is dense in UN.
(6) Show that for every compact Hausdorff space K and every function f : N → K,

there is a continuous function f̃ : UN → K such that f̃(Fn) = f(n) for every n ∈ N.
Deduce that UN is homeomorphic to the Stone-Čech compactification βN.
Hint: Given f : N → K, use Exercise 1.3.15 to get an ultrafilter on K from an

ultrafilter on N. Then use Exercises 1.3.13(4) and 1.3.19(2) to define f̃(F) for F ∈
UN.
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2. Measures

We begin with an informal discussion.

Definition 2.0.1. Let X be a set. A measure on X is a function µ : M → [0,∞] where
M ⊂ P (X) is some collection of subsets (whose properties are to be determined) satisfying:

(1) µ(∅) = 0
(2) µ(

∐
En) =

∑
µ(En) when (En) is a collection of mutually disjoint subsets in M,

where
∐

means disjoint union.

We now would like to discuss what kind of properties the subsetM ⊂ P (X) should satisfy.

• ∅, X ∈ M (M is nonempty)
• closed under disjoint unions (finite? countable?)

Example 2.0.2 (Counting measure). Let M = P (X) and µ(E) := |E|.

Example 2.0.3 (Lebesgue measure). There is a measure λ on some M ⊂ P (R) such that

• (normalized) λ([0, 1)) = 1, and
• (translation invariant) λ(E + r) = λ(E) for all E ∈ M and r ∈ R.

For this λ, we cannot have M = P (R)! Indeed, define an equivalence relation on [0, 1) by

x ∼ y ⇐⇒ x− y ∈ Q.

Using the Axiom of Choice, pick one representative from each equivalence class, and call this
set E. For q ∈ Q ∩ [0, 1), define

Eq := {x+ q|x ∈ E ∩ [0, 1− q)} ∪ {x+ q − 1|x ∈ E ∩ [1− q, 1)} .
Here is a cartoon of the basic idea:

F

+q7−→
F

∼
FF

Observe that there is some countable subset Q ⊂ Q such that [0, 1) =
∐

q∈QEq.

Now if M = P (X), then we’d have

1 = λ([0, 1)) = λ

(∐
q∈Q

Eq

)
=
∑
q∈Q

λ(Eq) =
∑
q∈Q

λ(E) = λ(E)
∑

1 ∈ {0,∞},

a contradiction.

Exercise 2.0.4. Let X be a nonempty set and E ⊂ P (X) any collection of subsets which
is closed under finite unions and intersections. Suppose ν : P (X) → [0,∞] be a function
which satisfies

• (finite additivity) for any disjoint sets E1, . . . , En ∈ P (X), ν

(
n∐
i=1

Ei

)
=

n∑
i=1

ν(Ei).

Prove that ν also has the following properties.

(1) (monotonicity) Show that if A,B ∈ E with A ⊂ B, then ν(A) ≤ ν(B).
(2) (finite subadditivity) Show that for any (not necessarily disjoint) sets E1, . . . , En ∈ E ,

ν (
⋃n
i=1Ei) ≤

∑n
i=1 ν(Ei).

(3) Show that for all A,B ∈ E , ν(A) + ν(B) = ν(A ∪B) + ν(A ∩B).
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Exercise 2.0.5. Suppose E ⊂ P (R) is any collection of subsets which contains the bounded
open intervals and is closed under countable unions. Let ν : E → [0,∞] be a function which
satisfies

• (monotonicity) If E,F ∈ E with E ⊂ F , then ν(E) ≤ ν(F ).
• (subadditivty) for any sequence of sets (En)

∞
n=1 ⊂ E , ν(

⋃∞
n=1En) ≤

∑∞
n=1 ν(En).

• (extends length of open intervals) for all a < b in R, we have ν((a, b)) = b− a.

Show that if E ∈ E is countable, then ν(E) = 0.

2.1. σ-algebras.

Definition 2.1.1. A non-empty subset M ⊂ P (X) is called an algebra if

(1) M is closed under finite unions, and
(2) M is closed under complements.

Observe that every algebra

• contains X = E ⨿ Ec for some E ∈ M, and thus ∅ = Xc.
• is closed under finite intersections

k⋂
1

En =

(
k⋂
1

En

)cc

=

(
k⋃
1

Ec
n

)c

If in addition an algebra M is closed under countable unions, then we call M a σ-algebra.
Here, the ‘σ’ signifies ‘countable’. We call the elements of a σ-algebra measurable sets.

Examples 2.1.2. Lex X be a set.

(1) {∅, X} is the trivial σ-algebra.
(2) P (X) is the discrete σ-algebra.

Exercise 2.1.3. Define M := {E ⊂ X|E or Ec is countable}. Show that M is a σ-algebra.

Exercise 2.1.4. Let X be a set. A ring R ⊂ P (X) is a collection of subsets of X which is
closed under unions and set differences. That is, E,F ∈ R implies E∪F ∈ R and E\F ∈ R.

(1) Let R ⊂ P (X) be a ring.
(a) Prove that ∅ ∈ R.
(b) Show that E,F ∈ R implies the symmetric difference E△F ∈ R.
(c) Show that E,F ∈ R implies E ∩ F ∈ R.

(2) Show that any ring R ⊂ P (X) is an algebraic ring where the addition is symmetric
difference and multiplication is intersection.
(a) What is 0R?
(b) Show that this algebraic ring has characteristic 2, i.e., E+E = 0R for all E ∈ R.
(c) When is the algebraic ring R unital? In this case, what is 1R?
(d) Determine the relationship (if any) between an algebra of sets in the sense of

measure theory and an algebra in the algebraic sense.
(e) Sometimes an algebra in measure theory is called a field. Why?
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Trick. Suppose (En) is a sequence of subsets of X. Define

F1 := E1 Fk := Ek \
k−1⋃
1

En = Ek ∩

(
k−1⋃
1

En

)c

. (⨿)

Inductively, one proves (Fn) is a sequence of pairwise disjoint subsets of X such that⋃
En =

∐
Fn. Moreover, observe that if (En) ⊂ M for some algebra M, then

(Fn) ⊂ M.

Definition 2.1.5. Observe that if M,N are σ-algebras, then so is M ∩ N . This means
if E ⊂ P (X), there is a smallest σ-algebra M(E) which contains E called the σ-algebra
generated by E .

Exercise 2.1.6. Let A ⊂ P (X) be an algebra. Show that the following are equivalent:

(1) A is a σ-algebra,
(2) A is closed under countable disjoint unions, and
(3) A is closed under countable increasing unions.

Fact 2.1.7. Suppose E ,F ⊂ P (X) with E ⊂ M(F). Then M(E) ⊂ M(F).

Example 2.1.8. Suppose (X, T ) is a topological space. We call BT := M(T ) the Borel
σ-algebra.

Remark 2.1.9.

• A countable intersection of open sets is called a Gδ set.
• A countable union of closed sets is called an Fσ set.
• A countable union of Gδ sets is called a Gδσ set.
• A countable intersection of Fσ sets is called an Fσδ set.

And so on and so forth. Observe that BT contains all these types of sets, so BT is much
larger than T .

Proposition 2.1.10. The Borel σ-algebra BR on R generated by the usual topology (which
is induced by the metric ρ(x, y) = |x − y|) is also generated by the following collections of
sets:

(BR1) open intervals (a, b)
(BR2) closed intervals [a, b]
(BR3) half-open intervals (a, b]
(BR4) half-open intervals [a, b)
(BR5) open rays (a,∞) or (−∞, a)
(BR6) closed rays [a,∞) or (−∞, a]

Proof. First, observe that each of (BR1), (BR2), (BR5), (BR6) are all open or closed, so they
lie in BR. Also, (a, b] = (a,∞) ∩ (b,∞)c, so each of the sets (BR3) are contained in BR.
Similarly for (BR4). Hence each of (BR1)–(BR6) lie in BR, so their generated σ-algebras are
contained in BR by Fact 2.1.7.

For the other directions, observe all open sets in R are countable unions of open intervals.
(You proved this on HW1.) Hence BR ⊂ M((BR1)) by Fact 2.1.7. For (j) = (BR2)–(BR6),
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one shows that (BR1) is contained in M((j)):

(a, b) =
⋃[

a+
1

n
, b− 1

n

]
(BR2)

=
⋃(

a, b− 1

n

]
(BR3)

=
⋃[

a+
1

n
, b

)
(BR4)

= (a,∞) ∩ (−∞, b) (BR5)

= ((−∞, a] ∪ [b,∞))c . (BR6)

Again by Fact 2.1.7, we have BR ⊂ M((BR1)) ⊂ M((j)) ⊂ BR. □

Exercise 2.1.11. Define the h-intervals

H := {∅} ∪ {(a, b]|−∞ ≤ a < b <∞} ∪ {(a,∞)|a ∈ R} .

Let A be the collection of finite disjoint unions of elements of H. Show directly from the
definitions that A is an algebra. Deduce that the σ-algebra M(A) generated by A is equal
to the Borel σ-algebra BR.

Exercise 2.1.12. Denote by R the extended real numbers [−∞,∞] with its usual topology.
Prove the following assertions.

(1) The Borel σ-algebra on R is generated by the open rays (a,∞] for a ∈ R.
(2) If E ⊂ P (R) generates the Borel σ-algebra on R, then E ∪{{∞}} generates the Borel

σ-algebra on R.

Exercise 2.1.13. LetX be a set. A π-system onX is a collection of subsets Π ⊂ P (X) which
is closed under finite intersections. A λ-system on X is a collection of subsets Λ ⊂ P (X)
such that

• X ∈ Λ
• Λ is closed under taking complements, and
• for every sequence of disjoint subsets (Ei) in Λ,

⋃
Ei ∈ Λ.

(1) Show that M is a σ-algebra if and only if M is both a π-system and a λ-system.
(2) Suppose Λ is a λ-system. Show that for every E ∈ Λ, the set

Λ(E) := {F ⊂ X|F ∩ E ∈ Λ}

is also a λ-system.

Exercise 2.1.14 (π − λ Theorem). Let Π be a π-system, let Λ be the smallest λ-system
containing Π, and let M be the smallest σ-algebra containing Π.

(1) Show that Λ ⊆ M.
(2) Show that for every E ∈ Π, Π ⊂ Λ(E) where Λ(E) was defined in Exercise 2.1.13

above. Deduce that Λ ⊂ Λ(E) for every E ∈ Π.
(3) Show that Π ⊂ Λ(F ) for every F ∈ Λ. Deduce that Λ ⊂ Λ(F ) for every F ∈ Λ.
(4) Deduce that Λ is a σ-algebra, and thus M = Λ.
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2.2. Measures.

Definition 2.2.1. A set X together with a σ-algebra M is called a measurable space. A
measure on (X,M) is a function µ : M → [0,∞] such that

• (vacuum) µ(∅) = 0, and
• (countable additivity) for every sequence of disjoint sets (En) ⊂ M, µ(

∐
En) =∑

µ(En).

Observe that countable additivity implies finite additivity by taking all but finitely many of
the En to be ∅.

We call the triple (X,M, µ) a measure space. A measure space is called:

• finite if µ(X) <∞.
• σ-finite if X =

⋃
En with (En) ⊂ M a sequence of measurable sets with µ(En) <∞.

By disjointification (⨿), we may take such (En) to be disjoint.
• semifinite if for every E ∈ M, µ(E) = ∞, there is an F ⊂ E with F ∈ M such that
0 < µ(F ) <∞.

• complete if E ∈ M with µ(E) = 0 (E is µ-null) and F ⊂ E implies F ∈ M.
Note:We will see that µ(F ) = 0 by monotonicity below in (µ1) of Facts 2.2.4.

Remark 2.2.2. In probability theory, a measure space is typically denoted (Ω,F , P ), and
P (Ω) = 1.

Examples 2.2.3.

(1) Counting measure on P (X)
(2) Pick x0 ∈ X, and define µx0 on P (X) by

µx0(E) = δx0∈E :=

{
0 if x0 /∈ E

1 if x0 ∈ E.

We call µx0 the point mass or Dirac measure at x0.
(3) Pick any f : X → [0,∞]. On P (X), define

µf (E) :=
∑
x∈E

f(x) := sup
∑
x∈F

F finite

f(x) = lim
finite F

ordered by inclusion

∑
x∈F

f(x)

When f = 1, µf is counting measure. When f = δx=x0 , we get the Dirac measure.
(4) On the σ-algebra of countable or co-countable sets, define

µ(E) =

{
0 if E is countable

1 if E is co-countable.

Facts 2.2.4 (Basic properties of measures). Let (X,M, µ) be a measure space.

(µ1) (Monotonicity) If E,F ∈ M, then F ⊂ E implies µ(F ) ≤ µ(E). In particular, if
µ(E) = 0, then µ(F ) = 0.

Proof. µ(E) = µ(F ⨿ (E \ F )) = µ(F ) + µ(E \ F ), and µ(E \ F ) ≥ 0. □
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(µ2) (Subadditivity) If (En) ⊂ M, then µ (
⋃
En) ≤

∑
µ(En).

Proof. Use disjointification (⨿). That is, setting F1 := E1 and Fk := Ek \⋃k−1
1 En, we have Fk ⊂ Ek for all k, and

µ
(⋃

En

)
= µ

(∐
Fn

)
=
∑

µ(Fn) ≤
∑

µ(En). □

(µ3) (Continuity from below) If E1 ⊂ E2 ⊂ E3 ⊂ · · · is an increasing sequence of elements
of M, then

µ
(⋃

En

)
= lim

n→∞
µ(En).

Proof. Set E0 = ∅. In this setting, disjointification (⨿) is easy; just set Fn :=
En \ En−1 for all n ≥ 1. Then

µ
(⋃

En

)
= µ

(∐
Fn

)
=
∑

µ(Fn) =
∑

µ(En \ En−1)

= lim
k→∞

k∑
µ(En \ En−1) = lim

k→∞
µ(Ek). □

(µ4) (Continuity from above) If E1 ⊃ E2 ⊃ E3 ⊃ · · · is a decreasing sequence of elements
of M with µ(Ek) <∞ for some k ∈ N, then

µ
(⋂

En

)
= lim

n→∞
µ(En).

Proof. We may assume µ(E1) < ∞. Set F1 := E1 and Fn := E1 \ En, so that
µ(E1) = µ(En) + µ(Fn) for all n ≥ 1. Observe that⋃

Fn =
⋃

E1 ∩ Ec
n = E1 ∩

(⋃
Ec
n

)
= E1 ∩

(⋂
En

)c
= E1 \

(⋂
En

)
.

Hence

µ
(⋂

En

)
= µ(E1)− µ

(⋃
Fn

)
=
(3)
µ(E1)− lim

n→∞
µ(Fn)

= µ(E1)− lim
n→∞

(µ(E1)− µ(En)) = lim
n→∞

µ(En). □

Exercise 2.2.5. Suppose (X,M, µ) is a measure space and (En) ⊂ M. Recall that

lim inf En =
⋃
k

⋂
n≥k

En and lim supEn =
⋂
k

⋃
n≥k

En

(1) Prove that µ(lim inf En) ≤ lim inf µ(En).
(2) Suppose µ is finite. Prove that µ(lim supEn) ≥ lim supµ(En).
(3) Does (2) above hold if µ is not finite? Give a proof or counterexample.

Theorem 2.2.6. Suppose (X,M, µ) is a measure space. Define

M := {E ∪ F |E ∈ M and F ⊂ N for some N ∈ M with µ(N) = 0} .
(1) M is a σ-algebra containing M.
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(2) There is a unique complete measure µ on M such that µ|M = µ. We call µ the
completion of µ.

Proof.
M a σ-algebra:

(0) Observe that ∅ ∈ M ⊂ M, so M ̸= ∅.
(1) If (En ∪ Fn) ⊂ M, then⋃

En ∪ Fn =
(⋃

En

)
︸ ︷︷ ︸

∈M

∪
(⋃

Fn

)
︸ ︷︷ ︸
⊂
⋃
Nn

.

Observe that each Fn ⊂ Nn ∈ M with µ(Nn) = 0, so by countable subadditivity, we
have µ (

⋃
Nn) ≤

∑
µ(Nn) = 0. Hence M is closed under countable unions.

(2) Suppose E,N ∈ M with F ⊂ N µ-null. Observe that

(E ∪ F )c = (Ec ∩ F c) = (Ec ∩ F c) ∩X = (Ec ∩ F c) ∩ (N c ⨿N)

= (Ec ∩ F c ∩N c︸ ︷︷ ︸
=Nc∈M

)⨿ (Ec ∩ F c ∩N) = (Ec ∩N c)︸ ︷︷ ︸
∈M

⨿ (Ec ∩ F c ∩N)︸ ︷︷ ︸
⊂N

.

Hence M is closed under taking complements.

µ unique: If µ|M = µ, then for all E ∪ F ∈ M with F ⊂ N µ-null, we have

µ(E) = µ(E) ≤ µ(E ∪ F ) ≤ µ(E) + µ(F ) ≤ µ(E) + µ(N) = µ(E) + µ(N) = µ(E).

Hence µ(E ∪ F ) = µ(E).
µ exists: First, we show that µ(E ∪ F ) := µ(E) is a well-defined function on M. Suppose
E1 ∪ F1 = E2 ∪ F2 with Fi ⊂ Ni µ-null for i = 1, 2. Observe that

E1 ⊂ E1∪F1 = E2∪F2 ⊂ E2∪N2 =⇒ µ(E1) ≤ µ(E2∪N2) ≤ µ(E2)+µ(N2) = µ(E2).

Swapping the roles of E1, E2, F1, F2, and N1, N2, we have µ(E2) ≤ µ(E1).
Next, we will show µ is a measure on M:

(0) (Vacuum) Observe that µ(∅) = µ(∅) = 0.
(1) (σ-additivity) Suppose (En ∪ Fn) ⊂ M is a sequence of disjoint sets with Fn ⊂ Nn

µ-null for each n ∈ N. Then (En) and (Fn) are disjoint, and
∐
Fn ⊂

⋃
Nn is µ-null.

Hence

µ
(∐

En ∪ Fn
)
= µ

(∐
En ∪

∐
Fn

)
= µ

(∐
En

)
=
∑

µ(En) =
∑

µ(En ∪ Fn).

µ complete: First, note that if F ⊂ N with N µ-null, then F = ∅ ∪ F ∈ M. Suppose
G ⊂ E ∪ F where F ⊂ N is µ-null, and µ(E) = 0. Then observe G ⊂ E ∪ N ∈ M, and
µ(E ∪N) ≤ µ(E) + µ(N) = 0. Hence G ∈ M. □

Exercise 2.2.7. Let Π be a π-system, and let M be the smallest σ-algebra containing Π.
Suppose µ, ν are two measures on M whose restrictions to Π agree.

(1) Suppose that µ, ν are finite and µ(X) = ν(X). Show µ = ν.
Hint: Consider Λ := {E ∈ M|ν(E) = µ(E)}.

(2) Suppose that X =
∐∞

j=1Xj with (Xj) ⊂ Π and µ(Xj) = ν(Xj) < ∞ for all j ∈ N.
(Observe that µ and ν are σ-finite.) Show µ = ν.
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Exercise 2.2.8 (Folland §1.3, #14 and #15). Given a measure µ on (X,M), define ν on
M by

ν(E) := sup {µ(F )|F ⊂ E and µ(F ) <∞} .
(1) Show that ν is a semifinite measure. We call it the semifinite part of µ.
(2) Suppose E ∈ M with ν(E) = ∞. Show that for any n > 0, there is an F ⊂ E such

that n < ν(F ) <∞.
This is exactly Folland §1.3, #14 applied to ν.

(3) Show that if µ is semifinite, then µ = ν.
(4) Show there is a measure ρ on M (which is generally not unique) which assumes only

the values 0 and ∞ such that µ = ν + ρ.

Exercise 2.2.9. Suppose µ, ν are two measures on a measurable space (X,M). We say µ
is absolutely continuous with respect to ν if ν(E) = 0 implies µ(E) = 0. Prove that when µ
is finite, the following are equivalent:

(1) µ is absolutely continuous with respect to ν.
(2) For every ε > 0, there is a δ > 0 such that E ∈ M with ν(E) < δ implies µ(E) < ε.

Which direction(s) still hold if µ is infinite?

Exercise 2.2.10. A measure space (X,M, µ) is called non-atomic if for every E ∈ M with
µ(E) > 0, there is an F ⊂ E with F ∈ M and 0 < µ(F ) < µ(E). Show that if µ(X) = 1,
then {µ(E)|E ∈ M} = [0, 1].
Hint: Apply Zorn’s Lemma to the set of partially defined monotone sections of µ : M → [0, 1],
i.e., the set of pairs (A,E) such that:

• A ⊂ [0, 1] is a non-empty subset, and
• E : A → M is a function such that whenever a, b ∈ A with a ≤ b, Ea ⊂ Eb, and for
all a ∈ A, µ(Ea) = a.

This set is ordered by (A,E) ≤ (B,F ) if A ⊂ B and F |A = E.

2.3. Outer measures.

Definition 2.3.1. Let X be a set. A function µ∗ : P (X) → [0,∞] is called an outer measure
if

(0) (vacuum) µ∗(∅) = 0.
(1) (monotonicity) E ⊂ F implies µ∗(E) ≤ µ∗(F ).
(2) (countable subadditivity) µ∗ (

⋃
En) ≤

∑
µ∗(En) for every sequence (En).

Exercise 2.3.2. Suppose (µ∗
i )i∈I is a family of outer measures on X. Show that

µ∗(E) := sup
i∈I

µ∗
i (E)

is an outer measure on X.

Proposition 2.3.3. Let E ⊂ P (X) be any collection of subsets of X satisfying

• ∅ ∈ E, and
• for all E ⊂ X, there is a sequence (En) ⊂ E such that E ⊂

⋃
En. (Observe that if

X ∈ E, this condition is automatic.)
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Suppose ρ : E → [0,∞] is any function such that ρ(∅) = 0. Then

µ∗(E) := inf
{∑

ρ(En)
∣∣∣(En) ⊂ E with E ⊂

⋃
En

}
(2.3.4)

is an outer measure, called the outer measure induced by (E , ρ).

Proof.

(0) Setting En = ∅ for all n gives µ∗(∅) = 0.
(1) Observe that whenever F ⊂

⋃
Fn with Fn ∈ E for all n, then E ⊂ F ⊂

⋃
Fn. Hence

the inf for E is less than or equal to the inf for F .
(2) We’ll use the following two tricks:

Trick.
∑∞

1
ε
2n

= ε

Trick. r ≤ s if and only if for all ε > 0, r ≤ s+ ε.

Suppose (En) is a sequence of sets and let ε > 0. For each n, there is a cover (F n
k )k

such that En ⊂
⋃
k F

n
k such that∑

k

ρ(F n
k ) ≤ µ∗(En) +

ε

2n
.

Then
⋃
En ⊂

⋃
n

⋃
k F

n
k , so

µ∗
(⋃

En

)
≤
∑
n

∑
k

ρ(F n
k ) ≤

∑
n

µ∗(En) +
ε

2n
=
∑

µ∗(En) +
∑ ε

2n
=
∑

µ∗(En) + ε.

Since ε > 0 was arbitrary, µ∗ (
⋃
En) ≤

∑
µ∗(En). □

Exercise 2.3.5. Show that the second bullet point in Proposition 2.3.3 can be removed if
we add the convention that inf ∅ = ∞.

Example 2.3.6. One can get an outer measure on P (X) by taking any measure µ on a
σ-algebra M and defining its induced outer measure µ∗ as in (2.3.4).

We get a measure µ from an outer measure µ∗ by restricting to the σ-algebra M∗ of
µ∗-measurable sets.

Definition 2.3.7. Given an outer measure µ∗ on P (X), we define the collection of µ∗-
measurable sets

M∗ := {E ⊂ X|µ∗(E ∩ F ) + µ∗(Ec ∩ F ) = µ∗(F ) for all F ⊂ X} .
That is, E is µ∗-measurable if it ‘splits’ every other set nicely with respect to µ∗.

Remarks 2.3.8.

(1) Clearly µ∗(F ) ≤ µ∗(E ∩ F ) + µ∗(Ec ∩ F ). So
E ∈ M∗ ⇐⇒ µ∗(F ) ≥ µ∗(E ∩ F ) + µ∗(Ec ∩ F ) ∀F ⊂ X. (2.3.9)

(2) All µ∗-null sets are in M∗. That is, if N ⊂ X with µ∗(N) = 0, then for all F ⊂ X

µ∗(F ∩N︸ ︷︷ ︸
⊂N

) + µ∗(F \N) = µ∗(F \N) ≤ µ∗(F ).
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Lemma 2.3.10. For G ⊂ X and E,F ∈ M∗, define

G00 := G \ (E ∪ F )
G10 := G ∩ (E \ F )
G01 := G ∩ (F \ E)
G11 := G ∩ E ∩ F

E

F

G11

G10

G01

G00

.

Then we have
µ∗(G) = µ∗(G00) + µ∗(G01) + µ∗(G10) + µ∗(G11). (2.3.11)

Proof. Since E ∈ M∗,

µ∗(G) = µ∗(G ∩ E) + µ∗(G \ E) = µ∗(G11 ∪G10) + µ∗(G01 ∪G00).

Since F ∈ M∗,

µ∗(G11 ∪G10) = µ∗(G11 ∪G10 ∩ F ) + µ∗(G11 ∪G10 \ F ) = µ∗(G11) + µ∗(G10).

Similarly, µ∗(G01 ∪G00) = µ∗(G01) + µ∗(G00). The result follows. □

Theorem 2.3.12 (Carathéodory). Let µ∗ be an outer measure on X. The collection of
µ∗-measurable sets M∗ is a σ-algebra, and µ := µ∗|M∗ is a (complete) measure.

Proof.
Step 1: M∗ is an algebra.

(0) Clearly ∅ ∈ M∗ since it is µ∗-null by Remarks 2.3.8(2).
(1) If E,F ∈ M∗, then for all G ⊂ X, (2.3.11) holds above. By applying (2.3.11) to

G10 ∪G11 ∪G01, we have

µ∗((E ∪ F ) ∩G) = µ∗(G10 ∪G11 ∪G01) =
(2.3.11)

µ∗(G10) + µ∗(G11) + µ∗(G01).

Moreover, µ∗((E ∪ F )c ∩G) = µ∗(G00). Again by (2.3.11), we have

µ∗((E∪F )∩G)+µ∗((E∪F )c∩G) = (µ∗(G10) + µ∗(G11) + µ∗(G01))+µ
∗(G00) =

(2.3.11)
µ∗(G).

(2) Observe that the Carathéodory Criterion (2.3.9) is preserved under taking comple-
ments.

Step 2: M∗ is a σ-algebra.
Suppose (En) ⊂ M∗ is a sequence of disjoint sets, and set E :=

∐
En. By Step 1, for all

N ∈ N,
∐N En ∈ M∗. Let F ⊂ X, and define G := F ∩

∐N En. Then since EN ∈ M∗, we
have

µ∗

(
F ∩

N∐
En

)
= µ∗(G) = µ∗(Ec

N ∩G) + µ∗(EN ∩G) = µ∗

(
F ∩

N−1∐
En

)
+ µ∗(F ∩ EN).

By iterating as En ∈ M∗ for all n ∈ N, we have

µ∗

(
F ∩

N∐
En

)
=

N∑
µ∗(F ∩ En) ∀N ∈ N.
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It follows that for all N ∈ N,

µ∗(F ) = µ∗

(
F ∩

N∐
En

)
+ µ∗

F \
N∐
En︸ ︷︷ ︸

⊃F\E

 ≥
N∑
µ∗(F ∩ En) + µ∗(F \ E).

Taking limits in [0,∞] as N → ∞, we have

µ∗(F ) ≥
∞∑
µ∗(F ∩ En) + µ∗(F \ E)

≥ µ∗
(∐

F ∩ En
)
+ µ∗(F \ E)

= µ∗(F ∩ E) + µ∗(F \ E).

(2.3.13)

Thus E =
∐
En ∈ M∗.

Step 3: µ = µ∗|M∗ is a measure.
It remains to show µ is σ-additive on M∗. Suppose (En) ⊂ M∗ is a sequence of disjoint

sets as in Step 2. Taking F = E in (2.3.13) above shows us

µ∗(E) ≥
∑

µ∗(En) ≥ µ∗(E),

so equality holds. □

2.4. Pre-measures. In the last section, we gave a prescription for constructing a complete
measure on X. Start with any collection of subsets E ⊂ P (X) with ∅ ∈ E such that
for every E ⊂ X, there is some sequence (En) ⊂ E with E ⊂

⋃
En. Take any function

ρ : E → [0,∞] such that ρ(∅) = 0. We get an induced outer measure µ∗ by (2.3.4). Taking
the µ∗-measurable sets M∗, we get a σ-algebra, and µ := µ∗|M∗ is a complete measure.
However, we get little control overM∗ and µ. Consider the following two crucial questions:

(1) When is E ⊂ M∗?
(2) In this case, when does µ|E = ρ?

Note: we always have µ∗ ≤ ρ, since every E ∈ E is covered by itself. But there might
be some cover E ⊂

⋃
En from E such that

∑
ρ(En) < ρ(E).

A sufficient condition to ensure a positive answer to both of these questions is that E is an
algebra, and ρ is a premeasure.

Definition 2.4.1. Let A ⊂ P (X) be an algebra. A function µ0 : A → [0,∞] is called a
premeasure if

(0) (vacuum) µ0(∅) = 0, and
(1) (countable additivity) for every sequence (En) ⊂ A of disjoint sets such that

∐
En ∈

A, we have µ0 (
∐
En) =

∑
µ0(En).

The adjectives finite, σ-finite, and semi-finite for premeasures are defined analogously to
those for measures.

Facts 2.4.2. The following are basic properties of a premeasure µ0 on an algebra A ⊂ P (X).

(pre-µ1) (finite additivity) If E1, . . . , En ∈ A are disjoint, then µ0 (
∐
En) =

∑
µ0(En).
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Proof. If E1, . . . , En ∈ A are disjoint sets, then observe that
∐n

i=1Ei ∈ A. So
by setting Ei = ∅ for all i > n, we have

µ0

(
n∐
i=1

Ei

)
= µ0

(∐
Ei

)
=
∑

µ0(Ei) =
n∑
i=1

µ0(Ei). □

(pre-µ2) (monotonicity) If E,F ∈ A with F ⊂ E, then µ0(F ) ≤ µ0(E).

Proof. Immediate by (pre-µ1) since E = F ⨿ (E \ F ). □

(pre-µ3) (countable subadditivity) If (En) ⊂ A such that
⋃
En ∈ A, then µ0 (

⋃
En) ≤∑

µ0(En).

Proof. We use disjointification (⨿). Set F1 := E1 and inductively define Fn :=
En \

⋃n−1
i=1 Ei. Then Fn ∈ A for all n, and

∐
Fn =

⋃
En. Thus

µ0

(⋃
En

)
= µ0

(∐
Fn

)
=
∑

µ0(Fn) ≤
(pre-µ2)

∑
µ0(En). □

(pre-µ4) (monotone countable subadditivity) Suppose E ∈ A and (En) ⊂ A such that
E ⊂

⋃
En. Then µ0(E) ≤

∑
µ0(En).

Warning: This does not follow immediately by monotonicity and countable subaddi-
tivity, since we are not assured that

⋃
En ∈ A!

Proof. Let F1 := E ∩ E1 and inductively set Fn := E ∩
(
En \

⋃n−1
i=1 Ei

)
. Then

Fn ∈ A for all n, and
∐
Fn = E ∈ A. Hence

µ0(E) = µ0

(∐
Fn

)
=
∑

µ0(Fn) ≤
(pre-µ2)

∑
µ0(En). □

Remark 2.4.3. Recall that if µ0 is only known to be finitely additive and not necessarily
countably additive, then µ0 still satisfies monotonicity and finite subadditivity (cf. Exercise
2.0.4).

Lemma 2.4.4. Suppose µ0 is a premeasure on A. Let µ∗ be the induced outer measure given
by (2.3.4).

(1) µ∗|A = µ0, and
(2) A ⊂ M∗.

Proof.
(1) Suppose E ∈ A.

µ∗ ≤ µ0: Setting E1 := E and En := ∅ for all n > 1, µ∗(E) ≤
∑
µ0(En) = µ0(E).

µ∗ ≥ µ0: Let ε > 0. By definition of µ∗ as an infimum, there is a sequence (En) ⊂ A such that
E ⊂

⋃
En and

∑
µ0(En) ≤ µ∗(E) + ε. But by monotone countable subadditivity,

µ0(E) ≤
∑
µ0(En), and thus µ0(E) ≤ µ∗(E) + ε. Since ε > 0 was arbitrary, µ0 ≤ µ∗

on A.
33



(2) Suppose E ∈ A and F ⊂ X and ε > 0. Pick (Fn) ⊂ A such that F ⊂
⋃
Fn and∑

µ0(Fn) ≤ µ∗(F ) + ε. Since µ0 is σ-additive on A,

µ∗(F ) + ε ≥
∑

µ0(Fn) =
∑

µ0(Fn ∩ E) + µ0(Fn ∩ Ec)

=
∑

µ0(Fn ∩ E) +
∑

µ0(Fn ∩ Ec)

≥ µ∗(F ∩ E) + µ∗(F ∩ Ec).

Since ε > 0 was arbitrary, we conclude that µ∗(F ) ≥ µ∗(F ∩ E) + µ∗(F ∩ Ec), and thus
E ∈ M∗. □

Construction 2.4.5. Starting with a premeasure µ0 on an algebra A, we get a σ-algebra
M∗ which contains A, and a complete measure µ := µ∗|M∗ such that µ|A = µ0.

Remark 2.4.6. Observe that by Fact 2.1.7, M∗ contains M := M(A), the σ-algebra
generated by A, and µ|M is a (possibly non-complete) measure.

Theorem 2.4.7. Suppose µ0 is a premeasure on an algebra A, and µ is the measure on
M∗ from Construction 2.4.5. If ν is a measure on M = M(A) such that ν|A = µ0, then
ν(E) ≤ µ(E) for all E ∈ M, with equality when µ(E) <∞.

Proof. Suppose E ∈ M.
Step 1: ν(E) ≤ µ(E).

Since E ∈ M, for all sequences (En) ⊂ A such that E ⊂
⋃
En,

ν(E) ≤
∑

ν(En) =
∑

µ0(En).

Hence ν(E) ≤ inf {
∑
µ0(En)|E ⊂

⋃
En} = µ∗(E) = µ(E).

Step 2: When µ(E) <∞, we show µ(E) ≤ ν(E), and thus µ(E) = ν(E).
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Let ε > 0. Then there exists a sequence (En) ⊂ A such that E ⊂
⋃
En and

µ
(⋃

En

)
≤
∑

µ0(En) ≤ µ(E) + ε <∞.

Since E ⊂
⋃
En and µ(E) <∞, we have

µ
((⋃

En

)
\ E
)
= µ

(⋃
En

)
− µ(E) ≤ ε. (2.4.8)

Now by continuity from below (µ3) for both µ and ν, we have

µ
(⋃

En

)
= lim

N→∞
µ

(
N⋃
En

)
= lim

N→∞
µ0

(
N⋃
En

)

= lim
N→∞

ν

(
N⋃
En

)
= ν

(⋃
En

)
.

(2.4.9)

Putting these two equations together, we have

µ(E) ≤ µ
(⋃

En

)
=

(2.4.9)
ν
(⋃

En

)
= ν(E) + ν

((⋃
En

)
\ E
)

≤ ν(E) + µ
((⋃

En

)
\ E
)

≤
(2.4.8)

ν(E) + ε

Since ε > 0 was arbitrary, µ(E) ≤ ν(E).

This concludes the proof. □

Corollary 2.4.10. Suppose µ0 is a premeasure on an algebra A, and µ is the measure
on M∗ from Construction 2.4.5. If µ0 is σ-finite, then µ is the unique extension of µ0 to
M = M(A).

Proof. Recall that µ0 is σ-finite if there exists a sequence (En) ⊂ A such that
⋃
En = X

and µ0(En) < ∞ for all n. Observe that by disjointification (⨿), we may assume that the
En are disjoint.

Now for any other ν extending µ0 and E ∈ M, we have

µ(E) = µ
(∐

E ∩ En
)
=
∑

µ(E ∩ En)︸ ︷︷ ︸
<∞

=
∑

ν(E ∩ En) = ν
(∐

E ∩ En
)
= ν(E). □

Exercise 2.4.11. Suppose A is an algebra on X, µ0 a premeasure on A, and µ∗ the induced
outer measure on P (X) given by (2.3.4). Show that for every E ⊂ X, there is a µ∗-
measurable set F ⊃ E such that µ∗(F ) = µ∗(E).

Exercise 2.4.12 (Adapted from Folland §1.4, #18 and #22). Suppose A is an algebra,
and let M be the σ-algebra generated by A. Let µ0 be a σ-finite premeasure on A, µ∗ the
induced outer measure given by (2.3.4), and M∗ the σ-algebra of µ∗-measurable sets. Show
that the following are equivalent.

(1) E ∈ M∗

(2) E = F \N where F ∈ M and µ∗(N) = 0.
(3) E = F ∪N where F ∈ M and µ∗(N) = 0.
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Deduce that if µ is a σ-finite measure on M, then µ∗|M∗ on M∗ is the completion of µ on
M.

Exercise 2.4.13 (Folland §1.4, #20). Let µ∗ be an outer measure on P (X), M∗ the σ-
algebra of µ∗-measurable sets, and µ := µ∗|M∗ . Let µ+ be the outer measure on P (X)
induced by the (pre)measure µ on the (σ-)algebra M∗.

(1) Show that µ∗(E) ≤ µ+(E) for all E ⊂ X with equality if and only if there is an
F ∈ M∗ with E ⊂ F and µ∗(E) = µ∗(F ).

(2) Show that if µ∗ was induced from a premeasure µ0 on an algebra A, then µ∗ = µ+.
(3) Construct an outer measure µ∗ on the two point set X = {0, 1} such that µ∗ ̸= µ+.

Exercise 2.4.14. Let X be a set, A an algebra on X, µ0 a premeasure on A, and µ∗

the induced outer measure on P (X) given by (2.3.4). Suppose that (En) is an increasing
sequence of subsets of X, i.e., E1 ⊂ E2 ⊂ E3 ⊂ · · · . Prove that

µ∗

(
∞⋃
n=1

En

)
= lim

n→∞
µ∗(En).

Exercise 2.4.15 (Sarason). Suppose µ0 is a finite premeasure on the algebra A ⊂ P (X),
and let µ∗ : P (X) → [0,∞] be the outer measure induced by µ0. Prove that the following
are equivalent for E ⊂ X.

(1) E ∈ M∗, the µ∗-measurable sets.
(2) µ∗(E) + µ∗(X \ E) = µ(X).

Hint: Use Exercise 2.4.12.

2.5. Lebesgue-Stieltjes measures on R.

2.5.1. Construction of Lebesgue-Stieltjes measures. Recall from Exercise 2.1.11 that we de-
fine the collection of h-intervals by

H := {∅} ∪ {(a, b]|−∞ ≤ a < b <∞} ∪ {(a,∞)|a ∈ R} .

Let A = A(H) be the collection of finite disjoint unions of elements of H. By Exercise 2.1.11,
A is an algebra, and the σ-algebra generated by A is M(A) = BR, the Borel σ-algebra. Our
goal is to construct a nice class of premeasures on A.

Construction 2.5.1. Let F : R → R be any function which is

• (non-decreasing) r ≤ s implies F (r) ≤ F (s), and
• (right continuous) if rn ↘ a, then F (rn) ↘ F (a)

Extend F to a function R = [−∞,∞] → R by

F (−∞) := lim
a→−∞

F (a) and F (∞) := lim
b→∞

F (b).

Define µ0 : H → [0,∞] by

• µ0(∅) := 0,
• µ0((a, b]) := F (b)− F (a) for all a ≥ −∞, and
• µ0((a,∞)) := F (∞)− F (a) for all a ≥ −∞.
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In (LS4) below, we extend µ0 : H → [0,∞] to a well-defined function A = A(H) → [0,∞].
In Theorem 2.5.7 below, we prove this extension to A is a premeasure. By Carathéodory’s
outer measure construction, we get an outer measure µ∗

F on (R, P (R)) by (2.3.4). By taking
the σ-algebra of µ∗

F -measurable sets MF := M∗, we get a complete measure µF := µ∗
F |MF

.

Definition 2.5.2. We call µF the Lebesgue-Stieltjes measure associated to F .

Remark 2.5.3. Since µF is σ-finite by construction, it follows from Exercise 2.4.12 that
MF is the completion BR of the Borel σ-algebra for µF |BR . Thus, sets in MF are unions of
Borel sets and subsets of Borel sets which are µF -null.

In the remainder of this section, we prove that µ0 extends to a premeasure on A = A(H).

Facts 2.5.4. We have the following facts about the function µ0.

(LS1) Splitting (a,∞) = (a, b]⨿ (b,∞), we have µ0 ((a,∞)) = µ0((a, b]) + µ0((b,∞)).
(LS2) If (a, b] =

∐n
i=1(ai, bi], then µ0 ((a, b]) =

∑n
i=1 µ0((ai, bi]).

Proof. Re-indexing, we may assume a = a1 < b1 = a2 < b2 = a3 < · · · < bn.
Then

µ0 ((a, b]) = F (b)− F (a) =
n∑
i=1

F (bi)− F (ai) =
n∑
i=1

µ0((ai, bi]). □

(LS3) If E1, . . . , En ∈ H are disjoint and F ∈ H such that F ⊂
∐n

i=1Ei, then µ0(F ) =∑n
i=1 µ0(F ∩ Ei).

Proof. Removing elements of (Ei)
n
i=1 if necessary, we may assume that F ∩Ei ̸=

∅ for all i = 1, . . . , n. This means that F∩Ei ∈ H for all i, and F =
∐n

i=1 F∩Ei.
The result now follows by (LS1) and (LS2). □

(LS4) If (E1, . . . , Em) ⊂ H and (F1, . . . , Fn) ⊂ H are two collections of disjoint h-intervals
with

∐m
i=1Ei =

∐n
j=1 Fj, then

∑m
i=1 µ0(Ei) =

∑n
j=1 µ0(Fj).

Proof. By applying (LS3) twice, we have
m∑
i=1

µ0(Ei) =
(3)

m∑
i=1

n∑
j=1

µ0(Ei ∩ Fj) =
n∑
j=1

m∑
i=1

µ0(Ei ∩ Fj) =
(3)

n∑
j=1

µ0(Fj). □

Hence µ0 extends to a well-defined function still denoted µ0 : A = A(H) → [0,∞] by

µ0

(
n∐
i=1

Ei

)
:=

n∑
i=1

µ0(Ei) ∀ disjoint E1, . . . , En ∈ H.

Corollary 2.5.5. The extension µ0 : A → [0,∞] afforded by (LS4) is finitely additive and
thus monotone and finitely subadditive by Exercise 2.0.4.

Proof. Suppose E =
∐n

i=1Ei with E,E1, . . . , En ∈ A. Then we may write each Ei =
∐mi

j=1E
i
j

where Ei
j ∈ H for all j = 1, . . . ,mi, and thus E =

∐n
i=1

∐mi

j=1E
i
j. Then by countable
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additivity of µ0 on H from (LS4), we have

µ0(E) =
n∑
i=1

mi∑
j=1

µ0(E
i
j) =

n∑
i=1

µ0(Ei). □

Exercise 2.5.6. Describe to the best of your ability the set of accumulation points of
right endpoints (bj) for a disjoint collection of bounded h-intervals ((an, bn])

∞
n=1 such that∐

(an, bn] = (a, b] for some a < b in R.

Theorem 2.5.7. The extension µ0 : A → [0,∞] afforded by (LS4) is a premeasure on A.

Proof. It is clear that µ0(∅) = 0 by construction.
Suppose (En) ⊂ A is a disjoint sequence such that

∐
En ∈ A. Then there are disjoint

h-intervals F1, . . . , Fk ∈ H such that
∐
En =

∐k
j=1 Fj. We may assume that En ∩ Fj ̸= ∅

for at most one j. Thus we may partition the (En) into (Ej
n) such that

∐
Ej
n = Fj for

j = 1, . . . , k. We make the following claim.

Claim. Suppose H ∈ H is a single h-interval such that H =
∐
Hn where (Hn) ⊂ H

is a sequence of disjoint h-intervals. Then µ0(H) =
∑
µ0(Hn).

Then by applying (LS4), we have

µ0

(∐
En

)
= µ0

(
k∐
j=1

Fj

)
=

k∑
j=1

µ0(Fj) =
(Claim)

k∑
j=1

∑
µ0(E

j
n) =

∑
µ0(En).

Thus it remains to prove the claim.
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Proof of claim for H = (a, b], a, b ∈ R. Suppose (a, b] =
∐
(aj, bj]. Then for all n ∈ N,∐n

j=1(aj, bj] ⊂ (a, b]. By (LS4) and monotonicity, we have

n∑
j=1

µ0((aj, b]) = µ0

(
n∐
j=1

(aj, bj]

)
≤ µ0((a, b]).

Taking n→ ∞, we have
∑
µ0((aj, bj]) ≤ µ0((a, b]).

To show the reverse inequality, let ε > 0. Since F is right continuous,

• there is δ > 0 such that F (a+ δ)− F (a) < ε
2
, and

• for all j ≥ 1, there is δj > 0 such that F (bj + δj)− F (bj) <
ε

2j+1 .

Observe now that {(aj, bj + δj)}∞j=1 is an open cover of the compact interval [a +
δ, b]. Hence there is a finite subcover, i.e., there is an N ∈ N such that [a + δ, b] ⊂⋃N
j=1(aj, bj + δj). Then we calculate

µ0((a, b]) = F (b)− F (a)

< F (b)− F (a+ δ) +
ε

2

= µ0((a+ δ, b]) +
ε

2

≤ µ0

(
N⋃
j=1

(aj, bj + δj]

)
+
ε

2

≤
N∑
j=1

µ0((aj, bj + δj]) +
ε

2

=
N∑
j=1

(F (bj + δj)− F (aj)) +
ε

2

≤
N∑
j=1

(
F (bj) +

ε

2j+1
− F (aj)

)
+
ε

2

=
N∑
j=1

µ0((aj, bj]) +
N∑
j=1

ε

2j+1
+
ε

2

≤
∞∑
j=1

µ0((aj, bj]) +
∞∑
j=1

ε

2j+1
+
ε

2

=
∞∑
j=1

µ0((aj, bj]) + ε.

Since ε > 0 was arbitrary, µ0((a, b]) ≤
∑∞

j=1 µ0((aj, bj]). □

The cases H = (−∞, b] for some b < ∞ and H = (a,∞) for −∞ ≤ a are left as the
following exercise. □
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Exercise 2.5.8. Consider the extension µ0 : A → [0,∞] afforded by (LS4). Suppose H is
(−∞, b] for some b <∞ or (a,∞) for −∞ ≤ a. If H =

∐
Hn where (Hn) ⊂ H is a sequence

of disjoint h-intervals, then µ0(H) =
∑
µ0(Hn).

Exercise 2.5.9 (Folland, §1.5, #28). Let F : R → R be increasing and right continuous,
and let µF be the associated Lebesgue-Stieltjes Borel measure on BR. For a ∈ R, define

F (a−) := lim
r↗a

F (r).

Prove that:

(1) µF ({a}) = F (a)− F (a−),
(2) µF ([a, b)) = F (b−)− F (a−),
(3) µF ([a, b]) = F (b)− F (a−), and
(4) µF ((a, b)) = F (b−)− F (a).

2.5.2. Lebesgue measure.

Definition 2.5.10. Lebesgue measure λ is the Lebesgue-Stieltjes measure µid where id :
R → R is the identity function id(r) = r. The Lebesgue σ-algebra is L := M∗ = BR for λ|BR .

Definition 2.5.11. For E ⊂ R and r, s ∈ R, define rE := {rx|x ∈ E} and s + E :=
{s+ x|x ∈ E}.

Theorem 2.5.12. Suppose E ∈ L.
(1) (dilation homogeneity) If r ∈ R, then rE ∈ L and λ(rE) = |r| · λ(E).
(2) (translation invariance) If s ∈ R, then s+ E ∈ L and λ(s+ E) = λ(E).

Proof. We will prove dilation homogeneity and leave translation invariance to the reader.
Step 1: BR is closed under E 7→ rE. This is trivial if r = 0, so assume r ̸= 0. Then
multiplication by r is a bijection on P (R) mapping open intervals to open intervals. Thus
multiplication by r maps BR onto itself.
Step 2: It is a straightforward exercise to prove that |r| · λ is a measure on L and λr(E) :=
λ(rE) is a measure on BR.
Step 3: If E ∈ H, then λr(E) = |r| · λ(E), so λr = |r| · λ on A(H) and thus all of BR by
Corollary 2.4.10 (or Exercise 2.2.7) as λr and |r| · λ are both σ-finite.
Step 4: If E ∈ L is λ-null, then rE ∈ L is λ-null. Indeed, by Remark 2.5.3, E ∈ L is λ-null
if and only if there is an N ∈ BR such that E ⊂ N and λ(N) = 0. Now rE ⊂ rN , and
λ(rN) = |r| · λ(N) = 0 by Step 3.
Step 5: Finally, as L = BR for λ, we see λr and |r| · λ are both defined on L and agree. □

Exercise 2.5.13. Let BR be the Borel σ-algebra of R. Suppose µ is a translation invariant
measure on BR such that µ((0, 1]) = 1. Prove that µ = λ|BR , the restriction of Lebesgue
measure on L to BR.

Remark 2.5.14. By Exercise 2.5.9(1), λ({r}) = 0 for all r ∈ R, and thus λ(E) = 0 for all
countable E ⊂ R.
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Example 2.5.15. The Cantor set C is defined as
⋂
Cn where we define Cn inductively by

‘removing middle thirds’ of [0, 1].

C0 =
0 1

C1 =
0 1

3
2
3

1

C2 =
0 1

9
2
9

1
3

2
3

7
9

8
9

1

...
...

By continuity from above (µ4) for λ, we have λ(C) = limn→∞ λ(Cn). By Exercise 2.5.9,

λ(C0) = 1

λ(C1) = 1− 1

3

λ(C2) = 1− 1

3
− 2

9

λ(C3) = 1− 1

3
− 2

9
− 4

27
etc.

=⇒ λ(C) = 1−
∞∑
n=1

2n−1

3n
= 1− 1

3

∞∑
n=0

(
2

3

)n
= 1− 1

3

(
1

1− 2
3

)
= 0.

It is well known that C is uncountable; indeed it is in bijection with {0, 1}N via base 3
decimal expansions where only the digits 0 and 2 occur. (Recall that decimal expansion is
not unique; one must pick a particular convention here.)

Exercise 2.5.16. Show that the function f : {0, 1}N → C given by

f(x) :=
∞∑
n=1

2xn
3n

is a homeomorphism of {0, 1}N onto the Cantor set.

Exercise 2.5.17. Suppose E ∈ L with λ(E) > 0. Show there is an F ⊂ E such that F /∈ L.
That is, show any Lebesgue measurable set with positive measure contains a non-measurable
subset.

Exercise 2.5.18 (Sarason). Suppose E ∈ L is Lebesgue null, and φ : R → R is a C1

function (continuous with continuous derivative). Prove that φ(E) is also Lebesgue null.

Exercise 2.5.19. Let (X, ρ) be a metric (or simply a topological) space. A subset S ⊂ X
is called nowhere dense if S does not contain any open set in X. A subset T ⊂ X is called
meager if it is a countable union of nowhere dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Exercise 2.5.20. Suppose F : R → R is a bounded, non-decreasing, right continuous
function, and let µF be the corresponding Lebesgue-Stieltjes measure. (Observe µF is finite.)
Prove the following are equivalent:
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(1) µF is absolutely continuous (see Exercise 2.2.9) with respect to Lebesgue measure λ.
(2) F is absolutely continuous, i.e., for every ε > 0, there exists δ > 0 such that for any

disjoint set of open intervals (a1, b1), . . . , (aN , bN),

n∑
i=1

(bi − ai) < δ =⇒
N∑
i=1

(F (bi)− F (ai)) < ε.

2.5.3. Regularity properties of Lebesgue-Stieltjes measures.

Definition 2.5.21. Suppose (X, T ) is a Hausdorff topological space and M ⊂ P (X) is any
σ-algebra containing the Borel σ-algebra B(T ), i.e., T ⊂ M. A measure µ on M is called:

• outer regular if µ(E) = inf {µ(U)|E ⊂ U open}
• inner regular if µ(E) = sup {µ(K)|compact K ⊂ E}
• regular if µ is both outer and inner regular.

Proposition 2.5.22. Suppose (X, T ) is a Hausdorff topological space and µ is a measure on
any σ-algebra M containing BT . If (X, T ) is σ-compact and µ is outer regular and finite on
compact sets, then µ is inner regular and thus regular (and thus Radon; see Exercise 2.5.24
below).

Proof.
Step 1: Suppose X is compact and E ∈ BT . Then E is compact. Let ε > 0. By outer

regularity, there is an open U ⊃ E \ E such that µ(U) ≤ µ(E \ E) + ε. Observe that:

• E \ E ⊂ U \ E,
• K := E \ U is compact and contained in E, and
• since E = K⨿(U ∩E) and E ⊂ E, E = (K∩E)⨿(U ∩E), and thus U ∩E = Kc∩E.

Here is a cartoon of K,E,E, U :

K U∩E E\E U\E

U
E = ⨿

E = ⨿ ⨿

U = ⨿ ⨿

We now calculate

µ(K) = µ(E)− µ(Kc ∩ E) (E = K ⨿ (Kc ∩ E))
= µ(E)− µ(U ∩ E) (E ∩ U = E ∩Kc)

= µ(E)− (µ(U)− µ(U \ E)) (U = (E ∩ U)⨿ (U \ E))
≥ µ(E)−µ(U) + µ(E \ E)︸ ︷︷ ︸

≥−ε

(E \ E ⊂ U \ E)

≥ µ(E)− ε.

Since ε > 0 was arbitrary, µ is inner regular.
Step 2: SinceX is σ-compact, by disjointification, we may writeX =

∐
Xn where eachXn has

compact closure in X. In particular, µ(Xn) <∞ for all n. Let E ∈ BT , and write E =
∐
En
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where En := E ∩ Xn. By Step 1, for each n, there is a compact set Kn ⊂ En ⊂ Xn ⊂ Xn

such that µ(Kn) ≥ µ(En)− ε
2n+1 . Set Fn :=

∐n
i=1Ki, which is still compact. Observe that

µ(Fn) ≥ µ

(
n∐
i=1

Ei

)
− ε

2
.

There are two cases to consider now.
If µ(E) = ∞, since µ(

∐n
i=1Ei) ↗ ∞, eventually µ(Fn) > M for every M > 0. Hence

sup {µ(Fn)|n ∈ N} = ∞ = µ(E). Otherwise, µ(E) <∞, and there is an N ∈ N such that

µ(E) ≤ µ

(
N∐
i=1

Ei

)
+
ε

2
≤ µ(FN) +

ε

2
+
ε

2
= µ(FN) + ε.

Since ε > 0 was arbitrary, we conclude µ is inner regular. □

Exercise 2.5.23. Suppose (X, T ) is a topological space, µ is a σ-finite regular Borel measure,
and E ∈ BT is a Borel set. Prove the following assertions.

(1) For every ε > 0, there exist an open U and a closed F with F ⊂ E ⊂ U and
µ(U \ F ) < ε.

(2) There exist an Fσ-set A and a Gδ-set B such that A ⊂ E ⊂ B and µ(B \ A) = 0.

Exercise 2.5.24. Suppose (X, T ) is a topological space, µ is a Borel measure on BT . We
call µ a Radon measure if µ is outer regular, finite on compact sets, and inner regular on all
open sets.

(1) Show that if µ is a σ-finite Radon measure, then µ is inner regular and thus regular.
Deduce that the finite Radon measures are exactly the finite regular Borel measures.

(2) Suppose µ is a σ-finite regular Borel measure. Is µ Radon? That is, is µ finite on all
compact sets? Give a proof or a counterexample.

Exercise 2.5.25 (Folland, §7.2, #7). Suppose µ is a σ-finite Radon measure on (X, T ) and
E ∈ BT is a Borel set. Show that µE(F ) := µ(E ∩ F ) defines another (σ-finite) Radon
measure.

Remark 2.5.26. Once we have developed the theory of integration, we will be able to
upgrade Proposition 2.5.22 considerably. In Corollary 5.6.10, we will show that if X is LCH
such that every open set is σ-compact, then every Borel measure which is finite on compact
sets is regular and thus Radon.

Exercise 2.5.27. Suppose X is a metric space (not necessarily locally compact) and let µ
be a finite Borel measure. Show that the collection M ⊂ BX of sets such that

µ(E) = inf {µ(U)|E ⊆ U open}
= sup {µ(F )|E ⊇ F closed}

is a σ-algebra containing all closed (or open) sets and is thus equal to BX . Deduce that µ is
outer regular. Then deduce that every finite Borel measure on R is regular.

Exercise 2.5.28. Suppose X is a compact Hausdorff topological space, BX is the Borel
σ-algebra, and µ is a regular measure on BX such that µ(X) = 1. Prove there is a compact
K ⊂ X such that µ(K) = 1 and µ(F ) < 1 for every proper compact subset F ⊊ K.
Remark: One strategy uses Zorn’s Lemma, but it is not necessary.
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We now analyze the regularity of the Lebesgue-Stieltjes measure µF on MF where F :
R → R is any non-decreasing right continuous function.

Exercise 2.5.29. For every E ⊂ R, show that

µ∗
F (E) = inf

{
∞∑
n=1

µF ((an, bn])

∣∣∣∣∣E ⊂
∞⋃
n=1

(an, bn] with an, bn ∈ R, ∀n ∈ N

}
.

Lemma 2.5.30. For all E ⊂ R, µ∗
F (E) = inf {

∑∞
n=1 µF ((an, bn))|E ⊂

⋃∞
n=1(an, bn)}.

Proof. Denote the inf on the right hand side by ν(E).
Step 1: µ∗

F (E) ≤ ν(E).

Suppose E ⊂
⋃
(an, bn). We can write each (an, bn) =

∐∞
i=1(a

n
i , b

n
i ]. Then E ⊂⋃∞

n=1

∐∞
i=1(a

n
i , b

n
i ], and

µ∗
F (E) ≤

∑
n,i

µF ((a
n
i , b

n
i ]) =

∑
µF ((an, bn)).

Step 2: µ∗
F (E) ≥ ν(E).

Let ε > 0. There exists ((an, bn]) such that E ⊂
⋃
(an, bn] and

∑
µF ((an, bn]) ≤

µ∗
F (E) +

ε
2
. For each n, by right continuity of F , pick δn > 0 such that F (bn + δn) −

F (bn) <
ε

2n+1 . Then E ⊂
⋃
(an, bn + δn) and∑

µF ((an, bn + δn)) ≤
∑

F (bn + δn)− F (an)

<
∑

F (bn)− F (an) +
ε

2n+1

=
∑

µF ((an, bn]) +
∑ ε

2n+1

≤ µ∗
F (E) +

ε

2
+
ε

2
= µ∗

F (E) + ε.

Since ε > 0 was arbitrary, the result follows.

This concludes the proof. □

Theorem 2.5.31. The Lebesgue-Stieltjes measure µF on MF is regular.

Proof. Since R is σ-compact and µF is finite on all compact intervals by Exercise 2.5.9, by
Proposition 2.5.22, it remains to show µF is outer regular. Let E ∈ MF . By Lemma 2.5.30,
given ε > 0, there is a sequence ((an, bn)) of open intervals such that E ⊂

⋃
(an, bn) and∑

µF ((an, bn)) ≤ µ(E) + ε. Setting U =
⋃
(an, bn), we have E ⊂ U and

µF (E) ≤ µF (U) ≤
∑

µF ((an, bn)) ≤ µ(E) + ε.

Since ε > 0 was arbitrary, we have µF (E) = inf {µF (U)|E ⊂ U open}. □

Exercise 2.5.32. Show that µ∗
F (E) = inf {µF (U)|E ⊂ U open} for every E ⊂ R. Then find

the error in the following ‘proof’ that MF = P (R).
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‘Proof’. Suppose E ⊂ R. By Lemma 2.5.30, for every ε > 0, there is an open subset
U so that µ∗

F (E) ≤ µF (U) + ε. Inductively construct a decreasing sequence of open
sets E ⊂ Un+1 ⊂ Un such that µ∗

F (Un \ E) ≤ 1/n. Then F :=
⋂
Un ∈ BR ⊂ MF and

µ∗
F (F \ E) ≤ µ∗

F (Un \ E) ≤ 1/n for every n ∈ N. Then N := F \ E is µ∗-null, and
E = F \N , so by Exercise 2.4.12, E ∈ MF . □

Exercise 2.5.33 (Steinhaus Theorem, Folland §1.5, #30 and #31). Suppose E ∈ L and
λ(E) > 0.

(1) Show that for any 0 ≤ α < 1, there is an open interval I ⊂ R such that λ(E ∩ I) >
αλ(I).

(2) Apply (1) with α = 3/4 to show that the set

E − E := {x− y|x, y ∈ E}

contains the interval (−λ(I)/2, λ(I)/2).

2.6. Hausdorff measure. Let (X, d) be a metric space. For A,B ⊂ X nonempty, define

d(a,B) := inf {d(a, b)|b ∈ B} ∀ a ∈ A

d(A,B) := inf {d(a, b)|a ∈ A, b ∈ B} .

For a set Y ⊂ X, define

diam(Y ) := sup {d(x, y)|x, y ∈ Y } .

Definition 2.6.1. An outer measure µ∗ on P (X) is called a (Carathéodory) metric outer
measure if

• (metric finite additivity) d(A,B) > 0 (which implies A∩B = ∅) implies µ∗(A
∐
B) =

µ∗(A) + µ∗(B).

Proposition 2.6.2. If µ∗ is a metric outer measure on P (X), then the Borel σ-algebra Bd
is contained in M∗, the µ∗-measurable sets.

Proof. Since Bd is generated by the open sets, it suffices to show all open sets are in M∗.
Let U ⊂ X be open.
Step 1: We may assume d(U,U c) = 0. Otherwise, for all F ⊂ X, d(F ∩ U, F \ U) > 0, so
µ∗(F ) = µ∗(F ∩ U) + µ∗(F \ U), and thus U ∈ M∗.
Step 2: For n ∈ N, define An := {x ∈ U |d(x, U c) > 1/n}. Then (An) is increasing and

⋃
An =

U . Setting A0 = ∅, define Bn := An \ An−1 for all n ∈ N. Then
∐
Bn = U , and Bn ̸= ∅

frequently. Indeed, observe Bn = ∅ for all n > k if and only if Ak = U , which implies
d(U,U c) ≥ 1/k.
Step 3: If |m− n| > 1 and Bm ̸= ∅ ̸= Bn, then d(Bm, Bn) > 0.
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Proof. Suppose 1 ≤ m < n − 1. Let x ∈ Bm and y ∈ Bn. Then y /∈ An−1 ⊃ Am+1,
so there is a z ∈ U c such that d(y, z) ≤ 1

m+1
. But x ∈ Bm, so d(x, z) >

1
m
. By the

triangle inequality,

d(x, y) ≥ d(x, z)− d(y, z) >
1

m
− 1

m+ 1
=

1

m(m+ 1)
.

Taking sup over x, y, we have d(Bm, Bn) ≥ 1
m(m+1)

> 0. □

Step 4: Let F ⊂ X. If µ∗(F ) = ∞, then µ∗(F ) ≥ µ∗(F ∩U)+µ∗(F \U). Assume µ∗(F ) <∞.
Then

∑∞
n=k µ

∗(F ∩Bn) → 0 as k → ∞.

Proof. By Step 3, for all k ∈ N, we have
k∑
µ∗(F ∩B2n−1) = µ∗

(
k∐
F ∩B2n−1

)
≤ µ∗(F )

k∑
µ∗(F ∩B2n) = µ∗

(
k∐
F ∩B2n

)
≤ µ∗(F ).

Taking k → ∞, we have
∑
µ∗(F ∩ Bn) ≤ 2µ∗(F ) < ∞. Hence the tail of the sum

must converge to zero. □

Step 5: We now calculate for all n ∈ N and F ⊂ X:

µ∗(F ∩ U) + µ∗(F \ U) ≤ µ∗(F ∩ An) + µ∗(F ∩ ( U \ An︸ ︷︷ ︸∐∞
k=n+1Bk

)) + µ∗(F \ U)

= µ∗(F ∩ An) + µ∗(F \ U)︸ ︷︷ ︸
d(F∩An,F\U)≥d(An,Uc)≥ 1

n

+µ∗

(
∞∐

k=n+1

Bk

)

= µ∗(F ∩ (An ⨿ F \ U)) + µ∗

(
∞∐

k=n+1

Bk

)

≤ µ∗(F ) +
∞∑

k=n+1

µ∗(F ∩Bk).︸ ︷︷ ︸
→ 0 as n→ ∞ by Step 4.

We conclude that U ∈ M∗. □

Definition 2.6.3. Suppose (X, d) is a metric space, p ≥ 0, and ε > 0. For E ⊂ X, define

η∗p,ε(E) := inf

{
∞∑
1

(diam(Bn))
p

∣∣∣∣∣ (Bn) a ≤ ε-diameter cover, i.e., a sequence of open
balls with diam(Bn) ≤ ε for all n and E ⊂

⋃
Bn

}
,
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where we use the convention that inf ∅ = ∞. By Exercise 2.3.5, η∗p,ε is the outer measure
induced by

ρp,ε : {∅} ∪ {Br(x)|x ∈ X and r ≤ ε} −→ [0,∞]

∅ 7−→ 0

Br(x) 7−→ (diam(Br(x)))
p.

Moreover, if ε < ε′, then η∗p,ε(E) ≥ η∗p,ε′(E) as we are taking an infimum over a smaller set
(every ≤ ε-diameter cover is a ≤ ε′-diameter cover). Hence

η∗p(E) := lim
ε→0

η∗p,ε(E) = sup
ε>0

η∗p,ε(E)

gives an outer measure by Exercise 2.3.2.

Proposition 2.6.4. η∗p is a metric outer measure.

Proof. Suppose d(E,F ) > ε > 0. If there is no ε-diameter cover of E ⨿ F , then there is no
ε-diameter cover of one of E,F , and thus

η∗p(E) + η∗p(F ) = ∞ = η∗p(E ⨿ F ).

Now suppose there exists an ε-diameter cover (Bn) of E ⨿ F . Then for all n ∈ N, Bn

intersects at most one of E,F . So we may partition (Bn) into (BE
n ) and (BF

n ) such that

• E ⊂
⋃
BE
n and BE

n ∩ E ̸= ∅, and
• F ⊂

⋃
BF
n and BF

n ∩ F ̸= ∅.
Thus

η∗p,ε(E) + η∗p,ε(F ) ≤
∑

diam(BE
n )

p + diam(BF
n )

p ≤
∑

diam(Bn)
p

for any ε-diameter cover. Hence for all ε < d(E,F ),

η∗p,ε(E) + η∗p,ε(F ) ≤ η∗p,ε(E ⨿ F ).

Taking ε→ 0, we get

η∗p(E ⨿ F ) ≤ η∗p(E) + η∗p(F ) ≤ η∗p(E ⨿ F ),

and thus equality holds. □

Definition 2.6.5. Since the Borel σ-algebra Bd for (X, d) is contained in the η∗p-measurable
sets M∗

p by Propositions 2.6.2 and 2.6.4, we get a Borel measure ηp := η∗p|Bd
called p-

dimensional Hausdorff measure.

Facts 2.6.6. Here are some elementary properties about Hausdorff measures.

(Hµ1) If f : X → X is an isometry (d(f(x), f(y)) = d(x, y) for all x, y ∈ X), then for all
E ∈ Bd, ηp(E) = ηp(f(E)).

Proof. For all ε > 0, η∗p,ε(E) = η∗p,ε(f(E)) since E ⊂
⋃
Bn if and only if

f(E) ⊂
⋃
f(Bn) as isometries are injective. □
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(Hµ2) η1 = λ|BR on R with the usual metric.

Proof. Since η1((0, 1]) = 1 (observe diam(B) = λ(B) for any open ball B and
apply Lemma 2.5.30), this follows by uniqueness of the translation invariant
Borel measure on R from Exercise 2.5.13. □

(Hµ3) If ηp(E) <∞, then ηq(E) = 0 for all q > p.

Proof. Let ε > 0. Since ηp(E) <∞, there is a sequence (Bn) of open balls with
diam(Bn) ≤ ε such that

∑
diam(Bn)

p ≤ ηp(E) + 1. But if q > p, then

η∗q,ε(E) ≤
∑

diam(Bn)
q

=
∑

diam(Bn)
q−p︸ ︷︷ ︸

≤εq−p

diam(Bn)
p

≤ εq−p
∑

diam(Bn)
p

≤ εq−p(ηp(E) + 1).

Letting ε→ 0, we have

ηq(E) = η∗q (E) = lim
ε→0

η∗q,ε(E) ≤ lim
ε→0

εq−p(ηp(E) + 1) = 0. □

(Hµ4) If ηp(E) > 0, then ηq(E) = ∞ for all q < p.

Proof. This follows as the contrapositive of (Hµ3). □

Definition 2.6.7. The Hausdorff dimension of E ∈ Bd is
inf {p ≥ 0|ηp(E) = 0} = sup {p ≥ 0|ηp(E) = ∞} .

Remark 2.6.8. If E ∈ Bd and p ≥ 0 such that 0 < ηp(E) < ∞, then the Hausdorff
dimension of E is necessarily p by Lemma 2.6.6(3,4).

Exercise 2.6.9. Prove that the Cantor set from Example 2.5.15 has Hausdorff dimension
ln(2)/ ln(3).

Exercise 2.6.10. Find an uncountable subset of R with Hausdorff dimension zero.
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3. Integration

3.1. Measurable functions.

Definition 3.1.1. If (X,M) and (Y,N ) are measurable spaces, we say f : X → Y is
(M−N ) measurable if f−1(E) ∈ M for all E ∈ N .

Exercise 3.1.2. Prove the following assertions.

(1) Given f : X → Y and a σ-algebra N on Y , {f−1(E)|E ∈ N} is a σ-algebra on X.
Moreover it is the smallest σ-algebra on X such that f is measurable.

(2) Given f : X → Y and a σ-algebra M on X, {E ⊂ Y |f−1(E) ∈ M} is a σ-algebra
on Y . Moreover it is the largest σ-algebra on Y such that f is measurable.

Exercise 3.1.3. Prove that the composite of two measurable functions is measurable. More
precisely, if f : (X,M) → (Y,N ) is M−N measurable and g : (Y,N ) → (Z,P) is N − P
measurable, then g◦f is M−P measurable. Deduce that measurable spaces and measurable
functions form a category.

Proposition 3.1.4. Suppose (X,M) and (Y,N ) are measurable spaces, f : X → Y , and
N = ⟨E⟩ for some E ⊂ P (Y ). Then f is measurable if and only if f−1(E) ∈ M for all
E ∈ E.

Proof. The forward direction is trivial. Suppose f−1(E) ∈ M for all E ∈ E . Then E is
contained in the σ-algebra Nf on Y co-induced by M, f , i.e., the largest σ-algebra such that
f is measurable. Since Nf is a σ-algebra containing E , we see that Nf contains N . Since f
is M−Nf measurable, f is M−N measurable. □

Exercise 3.1.5. Show that every monotone increasing function f : R → R is Borel measur-
able.

Definition 3.1.6. SupposeX,Y are topological spaces. We call f : X → Y Borel measurable
if it is BX − BY measurable.

Corollary 3.1.7. Continuous functions are Borel measurable.

Proof. Observe f : X → Y is continuous if and only if for all U ∈ TY , f−1(U) ∈ TX ⊂ BX .
This implies f is Borel measurable by Proposition 3.1.4. □

Corollary 3.1.8. Suppose (X,M) is a measurable space and f : X → R (where R is
equipped with the Borel σ-algebra). The following are equivalent:

(1) f is M−BR measurable.
(2) f−1(a,∞) ∈ M for all a ∈ R.
(3) f−1[a,∞) ∈ M for all a ∈ R.
(4) f−1(−∞, a) ∈ M for all a ∈ R.
(5) f−1(−∞, a] ∈ M for all a ∈ R.

Observe that we can also use collections of intervals (a, b), [a, b), (a, b], [a, b] for all a, b ∈ R.

Corollary 3.1.9. If (X,M) is a measurable space and f : X → R = [−∞,∞], then
Corollary 3.1.8 holds replacing R with R and intervals excluding ±∞ with intervals including
±∞ respectively.

Proof. Use Exercise 2.1.12. □
49



Definition 3.1.10. Suppose (X,M) is a measurable space. We say a function f : X →
R,R,C is M-measurable if f is M−BR, M−BR, M−BC measurable respectively.

Warning 3.1.11. If f, g : R → R are Lebesgue measurable (i.e., L−BR measurable),
then f ◦ g need not be Lebesgue measurable!

Exercise 3.1.12. Find examples of f, g : R → R are Lebesgue measurable with f ◦ g
not Lebesgue measurable.
Note: First find an E ∈ L \ BR and an L-measurable function f : R → R such that
f−1(E) /∈ L. Then set g := χE.

Exercise 3.1.13. Suppose (X,M) is a measurable space and X, Y are topological spaces,
i : Y → Z is a continuous injection which maps open sets to open sets, and f : X → Y .
(For example, Y = R and Z = R.)

Z

X Y
f

i◦f
i

Show that f is M−BY measurable if and only if i ◦ f is M−BZ measurable. Deduce that
if f : (X,M) → R only takes values in R, then f is M−BR measurable if and only if f is
M−BR measurable. Hence we can say f is M-measurable without any confusion.

Exercise 3.1.14. Let (X,M) be a measurable space.

(1) Prove that the Borel σ-algebra BC on C is generated by the ‘open rectangles’

{z ∈ C|a < Re(z) < b and c < Im(z) < d} .

(2) Prove directly from the definitions that f : X → C is M−BC measurable if and only
if Re(f) and Im(f) are M−BR measurable.

Definition 3.1.15. Suppose (X,M, µ) is a measure space. We say that a property P of a
measurable function f from X into R, R, or C holds almost everywhere (a.e.) if there is a
µ-null set E ∈ M such that P holds on Ec. For example, f ≥ 0 a.e. if there is a µ-null set
E ∈ M such that f |Ec ≥ 0.

Exercise 3.1.16. Define a relation on the set of M-measurable functions (into R, R, or C)
by f ∼ g if and only if f = g a.e. Prove ∼ is an equivalence relation.

Exercise 3.1.17. Suppose f, g : R → R are right continuous. Prove that if f = g λ-
a.e. where λ is Lebesgue measure, then f = g everywhere.

Notation 3.1.18. Given f : X → R, we write {a < f} := f−1(a,∞]. We define {a ≤
f}, {f < b}, {f ≤ b}, {a < f < b}, etc. similarly.

Facts 3.1.19. Suppose (X,M) is a measurable space and f, g : X → R are M-measurable.
The following functions are all M-measurable:

(M-meas1) (f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)}
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Proof. If a ∈ R, then
{a < f ∨ g} = {a < f} ∪ {a < g} ∈ M
{a < f ∧ g} = {a < f} ∩ {a < g} ∈ M. □

(M-meas2) any well-defined linear combination of f, g, where by convention, 0 · ±∞ = 0 and
±∞±∞ = ±∞, but ±∞∓∞ is not defined.

Proof.
Step 1: For a, c ∈ R,

{cf > a} =



∅ if c = 0 ≤ a

X if c = 0 > a{a
c
< f

}
if c > 0{a

c
> f

}
if c < 0


which are all in M.

Step 2: If f + g is well-defined, then for a ∈ R,

{a < f + g} =
⋃
r,s∈Q
a<r+s

{r < f} ∩ {s < g} ∈ M. □

(M-meas3) fg

Proof.
Step 1: Suppose f, g are non-negative. Then for all a ≥ 0,

{a < fg} =
⋃

r,s∈Q>0
a<rs

{r < f} ∩ {s < g} ∈ M.

Also, for all a < 0, {a < fg} = X ∈ M.
Step 2: For f, g arbitrary, we use the following trick:

Trick. f = f+ − f− where f+ := f ∨ 0 and f− := −(f ∧ 0). Observe that
f± · f∓ = 0.

Similarly, we can write g = g+ − g−. Then

fg = f+g+ − f−g+ − f+g− + f−g−,

all of which have disjoint support. Hence each of the summands of fg is
measurable by Step 1, and the linear combination is measurable by (3) as it is
well-defined. □

Exercise 3.1.20. Suppose f : X → R. Show that f = f+ − f− is the unique decomposition
of f as g − h such that g, h ≥ 0 and gh = 0.

Exercise 3.1.21. Let (X,M) be a measurable space.
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(1) Prove that the M−BC measurable functions form a C-vector space.
(2) Show that if f : X → C is M− BC measurable, then |f | : X → [0,∞) is M− BR

measurable.
(3) Show that if (fn) is a sequence of M−BC measurable functions X → C and fn → f

pointwise, then f is M−BC measurable.

Facts 3.1.22. Suppose (fn) is a sequence of M-measurable functions X → R. The following
functions are M-measurable.

(M-meas4) sup fn and inf fn

Proof. For all a ∈ R,

{a < sup fn} =
⋃
n

{a < fn} ∈ M

{a < inf fn} =
⋂
n

{a < fn} ∈ M. □

(M-meas5) lim sup fn and lim inf fn

Proof. Observe that

lim sup fn = lim
n→∞

sup
k>n

fk = inf
n

sup
k>n

fk︸ ︷︷ ︸
measurable by (M-meas4)

lim inf fn = lim
n→∞

inf
k>n

fk = sup
n

inf
k>n

fk︸ ︷︷ ︸
measurable by (M-meas4)

Applying (M-meas4) again, we see that lim sup fn and lim inf fn are M-
measurable. □

3.2. Measurable simple functions. For this section, fix a measurable space (X,M).

Definition 3.2.1. An M-measurable function ψ : X → R is simple if it takes finitely many
values. Observe that if ψ is simple, we can write

ψ =
n∑
k=1

ckχEk
c1, . . . , cn ∈ R E1, . . . , En ∈ M.

Here, we write χE for the characteristic function of E:

χE(x) =

{
1 if x ∈ E

0 if x ∈ Ec.

Observe that there is exactly one such expression of a simple function, called its standard
form, such that

• c1, . . . , cn are distinct, and
• E1, . . . , En are disjoint and non-empty such that X =

∐n
k=1Ek.

Denote by SF the collection of simple (M-measurable) functions. Define SF+ := {ψ ∈ SF|ψ ≥ 0}.
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Exercise 3.2.2. Verify the uniqueness of standard form of an simple function.

Exercise 3.2.3.

(1) Prove that SF is an R-algebra and SF+ is closed under addition, multiplication, and
non-negative scalar multiplication.

(2) Prove SF is a lattice (closed under max and min) and SF+ ⊂ SF is a sublattice.

Proposition 3.2.4. Suppose f : X → [0,∞] is M-measurable. There is a sequence (ψn) ⊂
SF+ such that

• ψn(x) ↗ f(x) for all x ∈ X, and
• for all N ∈ N, ψn → f uniformly on {f ≤ N}.

Proof. For n ≥ 0 and 1 ≤ k ≤ 22n, set

Ek
n := f−1

(
k − 1

2n
,
k

2n

]
and Fn := f−1(2n,∞].

Observe that X = f−1(0)⨿ Fn ⨿
∐22n

k=1E
k
n. Define

ψn := 2nχFn +
22n∑
k=1

k − 1

2n
χEk

n
.

Here is a cartoon of ψ0, ψ1, ψ2:

1

2

3

ψ0

Cutoff at 1

1/2

1

3/2

2

5/2

3

ψ1

Cutoff at 2

1/4
1/2
3/4

1
5/4
3/2
7/4

2
9/4
5/2

11/4
3

ψ2

Cutoff at 4

Observe that ψn ≤ ψn+1 for all n ≥ 0, and 0 ≤ f − ψn ≤ 2−n on {f ≤ 2n}. The result
follows. □

Exercise 3.2.5. Let (X,M, µ) be the completion of the measure space (X,M, µ).

(1) Show that if f is M-measurable and g = f a.e., then g is M-measurable.
Optional: Does this hold with M replaced by M?

(2) Show that if f is M-measurable, there exists an M-measurable g such that f = g
a.e.
Hint: First do the case f is R-valued.

(3) Show that if (fn) is a sequence of M-measurable functions and fn → f a.e., then f
is M-measurable.
Optional: Does this hold with M replaced by M?

(4) Show that if (fn) is a sequence of M-measurable functions and fn → f a.e., then f
is M-measurable. Deduce that there is an M-measurable function g such that f = g
a.e., so fn → g a.e.

For all parts, consider the cases of R, R, and C-valued functions.
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3.3. Integration of non-negative functions. For this section, fix a measure space (X,M, µ).
Define

L+ := L+(X,M, µ) = {M-measurable f : X → [0,∞]}.

Definition 3.3.1. For ψ =
∑n

k=1 ckχEk
∈ SF+ ⊂ L+ in standard form, define∫

ψ :=

∫
X

ψ dµ :=

∫
X

ψ(x) dµ(x) :=
n∑
k=1

ckµ(Ek).

For E ∈ M, we define
∫
E
ψ :=

∫
ψ · χE. Observe that to calculate

∫
E
ψ, we must write the

simple function ψ · χE in standard form.
We say that ψ ∈ SF+ is integrable if

∫
ψ <∞. We write ISF+ :=

{
ψ ∈ SF+

∣∣ψ integrable
}
.

Exercise 3.3.2. Suppose f : (X,M, µ) → [0,∞] is M-measurable and {f > 0} is σ-finite.
Show that there exists a sequence of (ψn) ⊂ ISF+ such that ψn ↗ f pointwise.
Optional: In what sense can you say ψn ↗ f uniformly?

Theorem 3.3.3. The map
∫
: SF+ → [0,∞] satisfies

(1) (homogeneous) for all r ≥ 0,
∫
rψ = r

∫
ψ.

(2) (monotone) if ϕ ≤ ψ everywhere, then
∫
ϕ ≤

∫
ψ.

(3) (additive)
∫
ϕ+ ψ =

∫
ϕ+

∫
ψ.

Hence
∫
: SF+ → [0,∞] is an order-preserving R+-linear functional.

Proof.
(1) Observe if r = 0, then

∫
rψ = 0 = 0 ·

∫
ψ. If r > 0 and ψ =

∑n ckχEk
, then rψ =∑n rckχEk

is in standard form, and∫
rψ =

n∑
rckµ(Ek) = r

n∑
ckµ(Ek) = r

∫
ψ.

(2) Suppose that ϕ =
∑m ajχEj

and ψ =
∑n bkχFk

are in standard form. Here is the trick:

Trick. SinceX =
∐mEj =

∐n Fk, we have Ej =
∐n

k=1Ej∩Fk and Fk =
∐m

j=1Ej∩Fk.

Since ϕ ≤ ψ everywhere,

ϕ =
∑
j,k

ajχEj∩Fk
≤
∑
j,k

bkχEj∩Fk
= ψ,

and so aj ≤ bk whenever Ej ∩ Fk ̸= ∅. Thus∫
ϕ =

m∑
j=1

ajµ(Ej) =
m∑
j=1

n∑
k=1

ajµ(Ej ∩ Fk) ≤
n∑
k=1

m∑
j=1

bkµ(Ej ∩ Fk) =
n∑
k=1

bkµ(Fk) =

∫
ψ.
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(3) Suppose that ϕ =
∑m ajχEj

, ψ =
∑n bkχFk

, and ϕ + ψ =
∑p

ℓ=1 cℓχGℓ
are in standard

form. Similar to the argument in (2) above, aj + bk = cℓ whenever Ej ∩ Fk ∩Gℓ ̸= ∅. Then∫
ϕ+

∫
ψ =

∑
j

ajµ(Ej) +
∑
k

bkµ(Fk)

=
∑
j,k

(aj + bk)µ(Ej ∩ Fk)

=
∑
j,k,ℓ

(aj + bk)µ(Ej ∩ Fk ∩Gℓ)

=
∑
j,k,ℓ

cℓµ(Ej ∩ Fk ∩Gℓ)

=
∑
ℓ

cℓµ(Gℓ)

=

∫
ϕ+ ψ. □

Remark 3.3.4. Observe that the map M → [0,∞] by E 7→
∫
E
dµ equals µ.

Lemma 3.3.5. For ψ ∈ SF+, µψ : M → [0,∞] by E 7→
∫
E
ψ is a measure.

Proof.
(0) Observe that ψχ∅ = 0, so

µψ(∅) =
∫
∅
ψ =

∫
ψχ∅ =

∫
0 = 0.

(1) Write ψ =
∑m

j=1 ajχEj
in standard form. If (Fn) ⊂ M is a disjoint sequence, then observe

ψχ∐
Fn =

∑m
j=1 ajχEj∩

∐
Fn is also in standard form (up to a subset of {ψχ∐

Fn = 0}).

µψ

(∐
Fn

)
=

∫
∐
Fn

ψ

=

∫
ψχ∐

Fn

=
∑
j

ajµ(Ej ∩
∐

Fn)

=
∑
j,n

ajµ(Ej ∩ Fn)

=
∑
n

∫
Fn

ψ. □

Definition 3.3.6. For f ∈ L+, define∫
f :=

∫
X

f dµ :=

∫
X

f(x) dµ(x) := sup

{∫
ψ

∣∣∣∣ψ ∈ SF+ such that 0 ≤ ψ ≤ f

}
.

Remarks 3.3.7.
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(1) Observe that for ψ ∈ SF+, we have∫
ψ = sup

{∫
ϕ

∣∣∣∣ϕ ∈ SF+ such that 0 ≤ ϕ ≤ ψ

}
.

Hence the above definition extends
∫
ψ for ψ ∈ SF+ to f ∈ L+.

(2) If f, g ∈ L+ with f ≤ g, then
∫
f ≤

∫
g as we are taking sup over a larger set.

(3) If f ∈ L+ and r ∈ (0,∞), then
∫
rf = r

∫
f , since if S ⊂ [0,∞], sup rS = r · supS.

(Remember that 0 · ∞ = 0.)

Proposition 3.3.8. Suppose f ∈ L+. The following are equivalent.

(1)
∫
f = 0, and

(2) f = 0 a.e., i.e., there is a µ-null set E ∈ M such that f |Ec = 0.

Proof.
(1) ⇒ (2): We’ll prove the contrapositive. If f is not zero a.e., there is an n > 0 such that

µ({ 1
n
< f}) > 0. Then f > 1

n
χ{ 1

n
<f}, so

0 <
1

n
· µ
({

1

n
< f

})
=

∫
1

n
χ{ 1

n
<f} ≤

∫
f.

(2) ⇒ (1): First, if f =
∑n

k=1 ckχEk
∈ SF+ is in standard form, then

∫
f = 0 if and only if

µ(Ek) = 0 for all k such that ck ̸= 0 if and only if f = 0 a.e. Second, if f ∈ L+ with f = 0
a.e., then for all ψ ∈ SF+ with 0 ≤ ψ ≤ f , ψ = 0 a.e., so

∫
f = sup0≤ψ≤f

∫
ψ = 0. □

Theorem 3.3.9 (Monotone Convergence, a.k.a MCT). Suppose (fn) ⊂ L+ is an increasing
sequence and f = lim fn = sup fn. Then∫

f = lim
n→∞

∫
fn.

Proof.
≤: Observe (

∫
fn) is increasing in [0,∞], and thus it converges. Moreover,

∫
fn ≤

∫
f for all

n, so limn→∞
∫
fn ≤

∫
f .

≥: Pick a ψ ∈ SF+ with 0 ≤ ψ ≤ f and 0 < ε < 1. Set En := {εψ < fn}. Then observe
(En) ⊂ M is an increasing sequence such that

⋃
En = X, so by continuity from below (µ3),∫

En
ψ ↗

∫
ψ. Thus ∫

fn ≥
∫
En

fn ≥ ε

∫
En

ψ
n→∞−−−→ ε

∫
ψ.

Hence lim
∫
fn ≥ ε

∫
ψ for all 0 < ε < 1. Since ε was arbitrary, letting ε → 1, we have

lim
∫
fn ≥

∫
ψ. Taking sup over all 0 ≤ ψ ≤ f gives lim

∫
fn ≥

∫
f . □

Facts 3.3.10 (Corollaries of the MCT).

(MCT1) If f ∈ L+, then
∫
f = lim

∫
ψn for all sequences (ψn) ⊂ SF+ such that ψn ↗ f .

(MCT2) For all f, g ∈ L+,
∫
f + g =

∫
f +

∫
g.

Proof. If ϕn ↗ f and ψn ↗ g, then ϕn + ψn ↗ f + g, so∫
f + g =

(MCT)
lim

∫
ϕn + ψn = lim

∫
ϕn + lim

∫
ψn =

∫
f +

∫
g. □
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(MCT3) For f, g ∈ L+, if f = g a.e., then
∫
f =

∫
g.

Proof. Let E ∈ M such that fχE = gχE and Ec is µ-null. Then∫
f =

(MCT2)

∫
fχE+

∫
fχEc =

∫
fχE =

∫
gχE =

∫
gχE+

∫
gχEc =

(MCT2)

∫
g.

□

(MCT4) For all (fn) ⊂ L+,
∑∫

fn =
∫ ∑

fn, where
∑
fn is the sup of the sequence of partial

sums (which is a measurable function).

Proof. Observe∫ ∑
fn =

∫
lim
N→∞

N∑
fn =

(MCT)
lim
N→∞

∫ N∑
fn =

(MCT2)
lim
N→∞

N∑∫
fn =

∑∫
fn.

□

(MCT5) If (fn) ⊂ L+, fn ↗ f a.e., and f ∈ L+ (which is automatic if µ is complete), then∫
f = lim

∫
fn.

Proof. Suppose fn ↗ f on E ∈ M and Ec is µ-null. Then∫
f =

(MCT3)

∫
fχE =

(MCT)
lim

∫
fnχE =

(MCT3)
lim

∫
fn. □

(MCT6) (Fatou’s Lemma) If (fn) ⊂ L+, then
∫
lim inf fn ≤ lim inf

∫
fn.

Proof. For all j ≥ k ∈ N, infn≥k fn ≤ fj, so∫
inf
n≥k

fn ≤
∫
fj for all j ≥ k.

Thus
∫
infn≥k fn ≤ infj≥k

∫
fj. Letting k → ∞, we have∫

lim inf fn =
(MCT)

lim
k→∞

∫
inf
n≥k

fn ≤ lim
k→∞

inf
j≥k

∫
fj = lim inf

∫
fn. □

(MCT7) If (fn) ⊂ L+, fn → f a.e., and f ∈ L+ (which is automatic if µ is complete), then∫
f ≤ lim inf

∫
fn.

Proof. Let E ∈ M such that fn → f on E and Ec is µ-null. Then∫
f =

(3)

∫
fχE ≤

(MCT6)
lim inf

∫
fnχE =

(MCT3)
lim inf

∫
fn. □

Exercise 3.3.11. Assume Fatou’s Lemma (MCT6) and prove the Monotone Convergence
Theorem from it.

Exercise 3.3.12. If f ∈ L+ and
∫
f <∞, then {f = ∞} is µ-null and {0 < f} is σ-finite.

57



Exercise 3.3.13. Suppose (X,M, µ) is a finite measure space and f : X → C is measurable.
Prove that µ({n ≤ |f |}) → 0 as n→ ∞.

Exercise 3.3.14. Suppose (X,M, µ) is a measure space and f ∈ L+. For E ∈ M, define

ν(E) :=

∫
E

f dµ.

(1) Prove that ν is a measure on M.
(2) Prove that

∫
g dν =

∫
fg dµ for all g ∈ L+

Hint: First suppose g is simple.

3.4. Integration of R-valued functions. For this section, (X,M, µ) is a fixed measure
space.

Definition 3.4.1. An M-measurable function f : X → R is called integrable if
∫
f± < ∞

where f = f+ − f− with f+ = 0∨ f and f− = −(0∧ f). Since |f | = f+ + f−, observe that f
is integrable if and only if

∫
|f | <∞.

Define L1(µ,R) := {integrable f : X → R}.

Exercise 3.4.2. Show that a simple function ψ =
∑n

k=1 ckχEk
∈ SF with c1, . . . , cn distinct

and E1, . . . , En disjoint is integrable if and only if µ(Ek) <∞ for all k such that ck ̸= 0.

Proposition 3.4.3. The set L1(µ,R) is an R-vector space. Moreover,
∫

: L1(µ,R) → R
given by

∫
f :=

∫
f+ −

∫
f− is a linear functional.

Proof. If r ∈ R and f, g ∈ L1(µ,R), then |rf + g| ≤ |r| · |f |+ |g| which is integrable. Hence
L1(µ,R) is an R-vector space.

If r ∈ R and f ∈ L1(µ,R), then there are three cases:

(rf)± =


rf± if r > 0

0 if r = 0

−rf∓ if r < 0.

In all three cases, by Remarks 3.3.7(3), we have

∫
rf =

∫
(rf)+ −

∫
(rf)− =



∫
rf+ −

∫
rf− if r > 0

0 if r = 0∫
(−r)f− −

∫
(−r)f+ if r < 0

 = r

∫
f+ − r

∫
f−.

If f, g ∈ L1(µ,R), observe
(f + g)+ − (f + g)− = f + g = f+ + g+ − f− − g−

which implies
(f + g)+ + f− + g− = (f + g)− + f+ + g+.

By (MCT2), ∫
(f + g)+ +

∫
f− +

∫
g− =

∫
(f + g)− +

∫
f+ +

∫
g+,

and rearranging yields the result. □
58



3.5. Integration of C-valued functions. For this section, fix a measure space (X,M, µ).
Recall from Exercise 3.1.14(2) that f : X → C is measurable if and only if Re(f) and Im(f)
are measurable. By Exercise 3.1.21(2), |f | is measurable.

Definition 3.5.1. A measurable function f : X → C is integrable if
∫
|f | < ∞, i.e.,

|f | ∈ L1(µ,R). Since

|f | ≤ |Re(f)|+ | Im(f)| ≤ 2|f |
x

y

z

Re(z)

Im(z)
,

f is integrable if and only if Re(f) and Im(f) are integrable. In this case, we define∫
f :=

∫
Re(f) + i

∫
Im(f).

It follows from Proposition 3.4.3 that

L1(µ,C) := {integrable f : X → C}
is a C-vector space, and

∫
: L1(µ,C) → C is linear.

Proposition 3.5.2. For all f ∈ L1(µ,C),
∣∣∫ f ∣∣ ≤ ∫ |f |.

Proof.
Step 1: If f is R-valued, then

∣∣∫ f ∣∣ = ∣∣∫ f+ −
∫
f−
∣∣ ≤ ∫ f+ +

∫
f− =

∫
|f |.

Step 2: Suppose f is C-valued. We may assume
∫
f ̸= 0. We use the following trick:

Trick. Define sgn
(∫

f
)
:=

∫
f

|∫ f| ∈ T := {z ∈ C| |z| = 1}. Then since z−1 = z for all

z ∈ T, ∣∣∣∣∫ f

∣∣∣∣ = sgn

(∫
f

)∫
f =

∫
sgn

(∫
f

)
f︸ ︷︷ ︸

∈R

.

We then calculate∣∣∣∣∫ f

∣∣∣∣ = ∫ sgn

(∫
f

)
f = Re

∫
sgn

(∫
f

)
f =

∫
Re

(
sgn

(∫
f

)
f

)

≤
(Step 1)

∫ ∣∣∣∣∣Re
(
sgn

(∫
f

)
f

)∣∣∣∣∣ ≤
∫ ∣∣∣∣∣∣∣∣sgn

(∫
f

)
︸ ︷︷ ︸

∈T

f

∣∣∣∣∣∣∣∣ =
∫

|f |. □

Corollary 3.5.3. For all f, g ∈ L1(µ,C), the following are equivalent:

(1) f = g a.e.
(2)

∫
|f − g| = 0

(3) for all E ∈ M,
∫
E
f =

∫
E
g.
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Proof.
(1) ⇔ (2) Observe f = g a.e. if and only if |f − g| = 0 a.e. if and only if

∫
|f − g| = 0 by

Proposition 3.3.8.
(2) ⇒ (3) By Proposition 3.5.2, for all E ∈ M,∣∣∣∣∫

E

f −
∫
E

g

∣∣∣∣ = ∣∣∣∣∫ (f − g)χE

∣∣∣∣ ≤ ∫ |f − g|χE ≤
∫

|f − g| = 0.

(3) ⇒ (1) Recall that
∫
E
f − g =

∫
E
Re(f − g) + i

∫
E
Im(f − g). So by assumption,∫

E

Re(f − g) = 0 and

∫
E

Im(f − g) = 0 ∀E ∈ M.

We now look at the following particular E ∈ M:

E = {0 ≤ Re(f − g)} ⇒ Re(f − g)+ = 0 a.e.

E = {0 ≥ Re(f − g)} ⇒ Re(f − g)− = 0 a.e.

E = {0 ≤ Im(f − g)} ⇒ Im(f − g)+ = 0 a.e.

E = {0 ≥ Im(f − g)} ⇒ Im(f − g)− = 0 a.e.

Hence Re(f − g) = 0 and Im(f − g) = 0 a.e., which is equivalent to f = g a.e. □

Exercise 3.5.4. Suppose (X,M, µ) be a measure space and f ∈ L1(µ,C). Prove that
{f ̸= 0} is σ-finite.

Exercise 3.5.5. Suppose (X,M, µ) is a measure space and f ∈ L1(µ,C). Prove that for
every ε > 0, there exists a δ > 0 such that for every E ∈ M with µ(E) < δ,

∫
E
|f | < ε.

Definition 3.5.6. Define L1(µ,C) := L1(µ,C)/ ∼ where f ∼ g if and only if f = g a.e. We
write f ∈ L1(µ,C) to mean f ∈ L1(µ,C) representing its equivalence class in L1(µ,C).

Exercise 3.5.7. Let (X,M, µ) be a measure space.

(1) Prove that ∥ · ∥1 : L1(µ,C) → [0,∞) given by ∥f∥1 :=
∫
|f | is a norm.

(2) Let (X,M, µ) be the completion of (X,M, µ). Find a canonical C-vector space
isomorphism L1(µ,C) ∼= L1(µ,C) which preserves ∥ · ∥1.
Hint: Use Exercise 3.2.5.

Theorem 3.5.8 (Dominated Convergence, a.k.a. DCT). Suppose (fn) ⊂ L1(µ,C) such that
fn → f a.e. If there is a g ∈ L1(µ,C) ∩ L+ such that eventually |fn| ≤ g a.e., then
f ∈ L1(µ,C) and

∫
f = lim

∫
fn.

Proof. By redefining f on a µ-null set if necessary by Exercise 3.2.5, we may assume f is M-
measurable. Taking limits pointwise, |f | ≤ g, so f ∈ L1(µ,C). Taking real and imaginary
parts of f , we may assume (fn), f are all R-valued. Then −g ≤ fn ≤ g a.e., so

g + fn ≥ 0 and g − fn ≥ 0 a.e.

By Fatou’s Lemma (MCT6),∫
g +

∫
f =

∫
g + f ≤ lim inf

∫
g + fn =

∫
g + lim inf

∫
fn∫

g −
∫
f =

∫
g − f ≤ lim inf

∫
g − fn =

∫
g − lim sup

∫
fn.
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Combining these inequalities,

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn. □

Corollary 3.5.9. Suppose (fn) ⊂ L1(µ,C) such that
∑∫

|fn| < ∞. Then
∑
fn converges

a.e. to a function in L1(µ,C), and
∫ ∑

fn =
∑∫

fn.

Exercise 3.5.10. Suppose (X,M, µ) is a measure space, and (fn) ⊂ L+ is a decreasing
sequence of non-negative M-measurable functions, i.e., fn ≥ fn+1 for all n ∈ N.

(1) Find an example of such a sequence such that
∫
fn does not converge to

∫
f .

(2) Suppose
∫
f < ∞. Find a necessary and sufficient condition so that

∫
fn →

∫
f as

n→ ∞.

Exercise 3.5.11. Suppose (X,M, µ) is a finite measure space and f : X → [0,∞] is
measurable. Prove that f ∈ L1(µ) if and only if

∑∞
n=1 µ({n < f}) <∞.

Exercise 3.5.12. Prove that the metric d1 on L1(µ,C) induced by ∥ · ∥1 is complete. That
is, prove every Cauchy sequence converges in L1.
Note: This follows immediately from Corollary 3.5.9 if one shows that completeness of a
normed vector space V is equivalent to the property that every absolutely convergent series
converges in V .

Exercise 3.5.13. Let µ be a Lebesgue-Stieltjes Borel measure on R. Show that Cc(R), the
continuous functions of compact support ({f ̸= 0} compact) is dense in L1(µ,R). Does the
same hold for C-valued functions?
Hint: You could proceed in this way:

(1) Reduce to the case f ∈ L1 ∩ L+.
(2) Reduce to the case f ∈ L1 ∩ SF+.
(3) Reduce to the case f = χE with E ∈ BR and µ(E) <∞.
(4) Reduce to the case f = χU with U ⊂ R open and µ(U) <∞.
(5) Reduce to the case f = χ(a,b) with a < b in R.

3.6. Modes of convergence. Let (X,M, µ) be a measure space. For (fn), f all M−BC
measurable functions, fn → f could mean many things:

• (pointwise) fn(x) → f(x) for all x ∈ X.
• (a.e.) fn(x) → f(x) for a.e. x ∈ X.
• (uniformly) for all ε > 0, there is anN ∈ N such that n > N implies |fn(x)−f(x)| < ε
for all x ∈ X.

• (almost uniformly, a.k.a. a.u.) for all ε > 0, there is an E ∈ M with µ(E) < ε such
that fnχEc → fχEc uniformly.

• (in L1)
∫
|fn − f | → 0 as n→ ∞.

• (in measure) for all ε > 0, µ ({ε ≤ |f − fn|}) → 0.

Observe that obviously uniform implies a.u., uniform implies pointwise, and pointwise
implies a.e.

Proposition 3.6.1. Almost uniform convergence implies almost everywhere convergence.

Proof. Suppose fn → f a.u. For k ∈ N, let Ek ∈ M such that µ(Ek) < 1/k and fnχEc
k
→

fχEc
k
uniformly. Let E :=

⋂
Ek. Then µ(E) = 0 by continuity from above (µ4), and since

Ec =
⋃
Ec
k, we have fnχEc → fχEc pointwise. □
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Proposition 3.6.2. Almost uniform convergence implies convergence in measure.

Proof. Suppose fn → f a.u. Let ε > 0. Show for all δ > 0, there is an N ∈ N such that
n > N implies µ ({ε ≤ |f − fn|}) < δ. Pick E ∈ M such that µ(E) < δ and fnχEc → fχEc

uniformly. Then

µ ({ε ≤ |f − fn|}) = µ ({ε ≤ |f − fn|} ∩ E)︸ ︷︷ ︸
always < δ

+µ ({ε ≤ |f − fn|} ∩ Ec)︸ ︷︷ ︸
= ∅ for n large

< δ

for n sufficiently large. □

Proposition 3.6.3. Convergence in L1 implies convergence in measure.

Proof. Suppose fn → f in L1. Let ε > 0, and set E := {ε ≤ |f − fn|}. Then

µ(E) =

∫
E

1 =
1

ε

∫
E

ε ≤ 1

ε

∫
E

|f − fn|
n→∞−−−→ 0. □

Facts 3.6.4 (Counterexamples). We consider the following important counterexamples:

(1) fn = 1
n
χ(0,n) converges uniformly to zero, but not in L1.

(2) fn = χ(n,n+1) converges pointwise to zero, but not in measure.
(3) fn = nχ[0,1/n] converges a.e. to zero with µ(X) <∞, but not in L1.
(4) fn(x) := xn on [0, 1] almost uniformly to zero, but not pointwise.
(5) (shifting intervals) f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], f4 = χ[1,1/4], f5 = χ[1/4,1/2],

etc. converges in L1, but not a.e.

uniform

almost uniform

measure

pointwise

almost everywhere

L1

µ(X)<∞

µ(X)<∞

Egoroff

subsequence

χ(0,n)
n

xn on [0,1]
χ(n,n+1)

n·χ
[0, 1n ]

µ(X)<∞
shifting

intervals

implies

conditional

counterexample

subsequence

Lemma 3.6.5. If fn → f uniformly and µ(X) <∞, then fn → f in L1.

Proof. Observe that∫
|fn − f | ≤ (sup |fn − f |) ·

∫
1 = (sup |fn − f |)︸ ︷︷ ︸

→0 as n→∞

·µ(X). □

Theorem 3.6.6 (Egoroff). If fn → f a.e. and µ(X) <∞, then fn → f a.u.
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Proof. By replacing X with X \ N for some µ-null set N ∈ M, we may assume fn → f
pointwise. Now observe that for all k ∈ N,

En,k :=
∞⋃
j=n

{
1

k
≤ |f − fj|

}
↘ ∅ as n→ ∞.

Since µ(X) <∞, by continuity from above (µ4), µ(En,k) → 0 as n→ ∞. Let ε > 0. For all
k ∈ N, choose nk ∈ N such that µ(Enk,k) < ε/2k. Setting E :=

⋃∞
k=1Enk,k, we have

µ(E) ≤
∑
k

µ(Enk,k) < ε
∑

2−k = ε.

Finally, observe that for all n > nk, if x ∈ Ec =
⋂∞
k=1E

c
nk,k

, then |f(x)− fn(x)| < 1/k. Thus
fn → f uniformly on Ec. □

Definition 3.6.7. A sequence (fn) of M-measurable functions is Cauchy in measure if for
all ε > 0,

µ ({ε ≤ |fm − fn|})
n,m→∞−−−−→ 0.

Exercise 3.6.8. Prove that if fn → f in measure, then (fn) is Cauchy in measure.

Theorem 3.6.9. If (fn) is Cauchy in measure, then there exists a unique (up to µ-null set)
M-measurable function f such that fn → f in measure. Moreover, there is a subsequence
(fnk

) such that fnk
→ f a.e.

Proof.
Step 1: There is a subsequence (fnk

) such that µ
(
{2−k ≤ |fnk

− fnk+1
|}
)
< 2−k.

Proof. For all k ∈ N, µ
(
{2−k ≤ |fn − fm|}

)
→ 0 as m,n→ ∞. Pick nk inductively so

nk+1 > nk and m,n ≥ nk implies µ
(
{2−k ≤ |fn − fm|}

)
< 2−k. □

Step 2: (fnk
) is pointwise Cauchy off a µ-null set N .

Proof. For k ∈ N, set Ek := {2−k ≤ |fnk
− fnk+1

|}, and for ℓ ∈ N, set Nℓ :=
⋃
k=ℓEk.

Then µ(Nℓ) ≤
∑

k=ℓ 2
−k = 21−ℓ. Setting N =

⋂
Nℓ = lim supEk, we have µ(N) = 0

by continuity from above (µ4). If x ∈ N c, then x ∈ N c
ℓ for some ℓ, where

N c
ℓ =

⋂
k=ℓ

Ec
k =

{
x ∈ X

∣∣|fnk
(x)− fnk+1

(x)| < 2−k for all k ≥ ℓ
}
.

Thus for all ℓ ≤ i ≤ j,

|fni
(x)− fnj

(x)| ≤
j−1∑
k=i

|fnk
(x)− fnk+1

(x)| <
j−1∑
k=i

2−k ≤ 21−i. (3.6.10)

We conclude that (fnk
) is pointwise Cauchy on N c. □

Step 3: Define

f(x) :=

{
0 if x ∈ N (which is µ-null)

limk fnk
(x) if x ∈ N c.
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Then f is M-measurable and fnk
→ f a.e.

Proof. It remains to show f is measurable. Observe fnk
· χNc is M-measurable for all

k, and thus so is f = lim fnk
· χNc by Exercise 3.2.5. □

Step 4: fnk
→ f in measure.

Proof. Fix ℓ ∈ N. For all x ∈ N c
ℓ and k ≥ ℓ, we have

|fnk
(x)− f(x)| = lim

j→∞
|fnk

(x)− fnj
(x)| ≤

(3.6.10)
21−k

k→∞−−−→ 0.

It follows that for any ε > 0, eventually

{ε ≤ |fnk
− f |} ⊂ Nℓ =⇒ µ ({ε ≤ |fnk

− f |}) ≤ µ(Nℓ) = 21−ℓ.

Since ℓ ∈ N was arbitrary, we conclude that for any ε > 0,

µ ({ε ≤ |fnk
− f |}) k→∞−−−→ 0. □

Step 5: fn → f in measure.

Proof. We use the following trick:

Trick. For non-negativeM-measurable f, g, {a+b ≤ f+g} ⊂ {a ≤ f}∪{b ≤ g}.

Now observe that

{ε ≤ |fn − f |} ⊆
{ε
2
≤ |fn − fnk

|
}

︸ ︷︷ ︸
µ→ 0 as (fn)

Cauchy in measure

∪
{ε
2
≤ |fnk

− f |
}

︸ ︷︷ ︸
µ→ 0 by Step 4

.

Hence µ({ε ≤ |fn − f |}) → 0 as n→ ∞. □

Step 6: f is unique (up to a µ-null set) such that fn → f in measure.

Proof. Suppose g is another such candidate. Then using the same trick as in Step 5,

{ε ≤ |f − g|} ⊆
{ε
2
≤ |f − fn|

}
︸ ︷︷ ︸
µ→ 0 as n→ ∞

∪
{ε
2
≤ |g − fn|

}
︸ ︷︷ ︸
µ→ 0 as n→ ∞

.

Hence µ({ε ≤ |f − g|}) = 0 for all ε > 0, and thus f = g a.e. □

This concludes the proof. □

Exercise 3.6.11 (Lusin’s Theorem). Suppose f : [a, b] → C is Lebesgue measurable and
ε > 0. There is a compact set E ⊂ [a, b] such that λ(Ec) < ε and f |E is continuous.
Hint: Use Exercise 3.3.13 and Egoroff’s Theorem 3.6.6.

Exercise 3.6.12. Suppose f ∈ L1([0, 1], λ) is an integrable non-negative function.
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(1) Show that for every n ∈ N, n
√
f ∈ L1([0, 1], λ).

(2) Show that ( n
√
f) converges in L1 and compute its limit.

Hint for both parts: Consider {f ≥ 1} and {f < 1} separately.

Exercise 3.6.13. Suppose (X,M, µ) is a measure space and fn → f in measure and gn → g
in measure (these functions are assumed to be measurable). Show that

(1) |fn| → |f | in measure.
(2) fn + gn → f + g in measure.
(3) fngn → fg if µ(X) <∞, but not necessarily if µ(X) = ∞.

Hint: First show fng → fg in measure. To do so, one could follow the following
steps.
(a) Show that for any ε > 0, by Exercise 3.3.13, X = E ⨿ Ec where |g|E| < M and

µ(Ec) < ε/2.
(b) For δ > 0 and carefully chosen M > 0 and E,

{|fng − fg| > δ} = ({|fng − fg| > δ} ∩ E)⨿ ({|fng − fg| > δ} ∩ Ec)

⊆
{
|fn − f | > δ

M

}
∪ Ec.

Exercise 3.6.14 (Folland §2.4, #33 and 34). Suppose (X,M, µ) is a measure space and
fn → f in measure (these functions are assumed to be measurable).

(1) Show that if fn ≥ 0 everywhere, then
∫
f ≤ lim inf

∫
fn.

(2) Suppose |fn| ≤ g ∈ L1. Prove that
∫
f = lim

∫
fn and fn → f in L1.

Exercise 3.6.15. Let (X,M, µ) be a measure space. Suppose (En) ⊂ M is a sequence of
measurable sets with µ(En) < ∞ for all n. Show that if χEn → f in L1 (this assumes f is
M-measurable), then there is an E ∈ M such that f = χE a.e.

3.7. Comparison of the Lebesgue and Riemann integrals. We now review the Rie-
mann integral for a Reimann integrable function f : [a, b] → R.

Definition 3.7.1. A partition of [a, b] is a set of points P = {a = s0 < s1 < · · · < sm = b}.
We say an interval J ∈ P if J = [si−1, si] for some i = 1, . . . ,m. We write

mJ := inf {f(x)|x ∈ J} MJ := sup {f(x)|x ∈ J} .
We define the:

• Lower sum: L(f, P ) :=
∑

J∈P mJλ(J)
• Upper sum: U(f, P ) :=

∑
J∈P MJλ(J)

Here, λ(J) is the length (Lebesgue measure) of the interval. Observe L(f, P ) ≤ U(f, P ).
A refinement of P is a partition Q = {a = t0 < t1 < · · · < tn = b} ⊃ P . Observe that if

Q refines P , then
L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Thus if P1, P2 are two partitions of [a, b] and Q is a common refinement, then

sup
i=1,2

L(f, Pi) ≤ L(f,Q) ≤ U(f,Q) ≤ inf
i=1,2

U(f, Pi).

We define the:

• Upper integral:
∫

[a,b]
f := infP U(f, P )

65



• Lower integral:
∫

[a,b]
f := supP L(f, P )

We say f is Riemann integrable on [a, b] if
∫

[a,b]
f =

∫
[a,b]

f , and we denote this common value

by
∫ b
a
f(x) dx.

Exercise 3.7.2. Suppose f : [a, b] → R. Prove the following are equivalent:

(1) f is Riemann integrable
(2) for all ε > 0, there is a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

Theorem 3.7.3. If f is Riemann integrable on [a, b], then f is Lebesgue integrable and∫
[a,b]

f dλ =
∫ b
a
f(x) dx.

Proof. Let (Pn) be a sequence of partitions of [a, b] such that Pn+1 refines Pn and U(f, Pn)−
L(f, Pn) < 1/n for all n ∈ N. Here’s the trick:

Trick. Define the simple functions ψn :=
∑

J∈Pn
mJχJ and Ψn :=

∑
J∈Pn

MJχJ .

Observe that L(f, Pn) =
∫
ψn dλ and U(f, Pn) =

∫
Ψn dλ and

ψn ≤ ψn+1 ≤ f ≤ Ψn+1 ≤ Ψn ∀n ∈ N.

Define ψ := limψn and Ψ := limΨn, which exists as (ψn) and (Ψn) are pointwise bounded
and monotone. Then by (a slight modification of) the MCT 3.3.9, ψ,Ψ are integrable, and∫

ψ = lim

∫
ψn =

∫ b

a

f(x) dx = lim

∫
Ψn =

∫
Ψ.

But since Ψ − ψ ≥ 0 everywhere,
∫
Ψ − ψ = 0 implies Ψ = f = ψ a.e. So f ∈ L1 and∫

f =
∫ b
a
f(x) dx. □

Lemma 3.7.4. Suppose f : [a, b] → R is Riemann integrable and bounded. Then for all ε >
0, there are continuous functions g, h : [a, b] → R such that h ≤ f ≤ g and

∫
[a,b]

(g−h) dλ ≤ ε.

Proof.
Step 1: If f = χJ for some interval J , then we can find piecewise linear functions g, h such
that h ≤ f ≤ g such as in the following cartoon:

J

1
h

g

ε
2

ε
2

Then
∫
[a,b]

g = λ(J) + ε/2 and
∫
[a,b]

h = λ(J)− ε/2, so
∫
g − h = ε.

Step 2: Without loss of generality, we may assume f ≥ 0. (Otherwise, treat f± separately.)
Take a partition P of [a, b] such that U(f, P )−L(f, P ) < ε/2. As in the trick in the previous
theorem, define the simple functions

ψn :=
∑
J∈P

mJχJ ≤ f ≤ Ψn :=
∑
J∈P

MJχJ
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so that
∫
ψ = L(f, P ) and

∫
Ψ = U(f, P ). Apply Step 1 to each χJ to get continuous gJ , hJ

with hJ ≤ χJ ≤ gJ such that
∫
gJ − hJ <

ε
2|P |M where |P | is the number of intervals of P

and M := sup {f(x)|a ≤ x ≤ b}. Setting g :=
∑

J∈P MJgJ and h :=
∑

J∈P mJhJ , we have

h =
∑
J∈P

mJhJ ≤
∑
J∈P

mJχJ = ψ ≤ f ≤ ψ =
∑
J∈P

MJχJ ≤
∑
J∈P

MJgJ = g,

and thus∫
g − h =

∑
J∈P

MJ

∫
gJ −mJ

∫
hJ

= U(f, P )−
∑
J∈P

MJλ(J)︸ ︷︷ ︸
=0

−L(f, P ) +
∑
J∈P

MJλ(J)︸ ︷︷ ︸
=0

+
∑
J∈P

MJ

∫
gJ −mJ

∫
hJ

= U(f, P )− L(f, P ) +
∑
J∈P

MJ︸︷︷︸
<M

∫
gJ − χJ︸ ︷︷ ︸

≥0

+ mJ︸︷︷︸
<M

∫
χJ − hJ︸ ︷︷ ︸

≥0

< U(f, P )− L(f, P )︸ ︷︷ ︸
< ε

2

+M
∑
J∈P

∫
gJ − hJ︸ ︷︷ ︸
< ε

2|P |M

< ε. □

Exercise 3.7.5. Let X be a topological space and let g : X → R. We say that g is upper
semicontinuous at x0 ∈ X if for every ε > 0, there is an open neighborhood U of x0 such
that x ∈ U implies f(x) < f(x0) + ε. We say g is upper semicontinuous if g is upper
semicontinuous at every x ∈ X.

(1) Show that g is upper semicontinuous if and only if {g < r} is open in for all r ∈ R.
(2) Define lower semicontinuity (both at x0 ∈ X and everywhere) and prove the analo-

gous statement to (1).

Theorem 3.7.6 (Lebesgue). A bounded function f : [a, b] → R is Riemann integrable if and
only if it is continuous a.e.

Proof.
⇒: Suppose f is Riemann integrable. By Lemma 3.7.4, there are sequence of continuous
functions (hn) and (gn) on [a, b] with hn ≤ f ≤ gn such that

∫
gn − hn < 1/n for all n ∈ N.

Since

gn+1 ∧ gn − hn+1 ∨ hn ≤ gn+1 − hn+1 ∀n ∈ N,

we may assume that

hn ≤ hn+1 ≤ f ≤ gn+1 ≤ gn ∀n ∈ N.

Setting h := limhn and g := lim gn, we have h ≤ f ≤ g and
∫
h =

∫
f =

∫
g by MCT 3.3.9.

Since g − h ≥ 0, we know g = f = h a.e. on [a, b].
67



Claim. Since gn ↘ g, g is upper semicontinuous. Similarly, h is lower semicontinuous

Proof. Let x0 ∈ [a, b] and ε > 0. Pick N ∈ N such that n ≥ N implies gn(x0)−g(x0) <
ε/2. Pick δ > 0 such that x ∈ (x0 − δ, x0 + δ) ∩ [a, b] implies |gN(x)− gN(x0)| < ε/2.
Then for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b],

g(x0) > gN(x0)−
ε

2
> gN(x)− ε ≥ g(x)− ε. □

Whenever h(x0) = f(x0) = g(x0), f is both upper semicontinuous and lower semicontinu-
ous at x0, i.e., f is continuous at x0. This happens on [a, b] a.e.
⇐: Suppose f is continuous on [a, b] a.e. Let E be the λ-null set of discontinuities, and
let ε > 0. We’ll construct a partition P such that U(f, P ) − L(f, P ) < ε. By outer
regularity of λ, there is an open U ⊃ E such that λ(U) < ε′ to be determined later. Let
K := [a, b] \ U , which is compact, and observe that f is continuous at all points of K (not
f |K !). For each x ∈ K, pick δx > 0 such that y ∈ [a, b] (not K!) and |x − y| < δx implies
|f(x) − f(y)| < ε′. Then {Bδx/2(x)}x∈K is an open cover of K, so there are x1, . . . , xn ∈ K
such that K ⊂

⋃n
i=1Bδxi/2

(xi). Set δ := min {δxi/2|i = 1, . . . , n}.

Claim. If x ∈ K and y ∈ [a, b] and |x− y| < δ/2, then |f(x)− f(y)| < 2ε′.

Proof. Without loss of generality, x ∈ Bδ1/2(x1). Then y ∈ Bδ1(x1), and thus

|f(x)− f(y)| ≤ |f(x)− f(x1)|+ |f(x1)− f(y)| < 2ε′. □

Let P be any partition of [a, b] whose intervals have length at most δ. Let P ′ consist of
the intervals that intersect K and let P ′′ be the intervals that do not intersect K. By the
claim, if J ∈ P ′, then MJ −mj ≤ 4ε′. Thus

U(f, P )− L(f, P ) =
∑
J∈P

(MJ −mJ)λ(J)

=
∑
J∈P ′

(MJ −mJ)λ(J) +
∑
J∈P ′′

(MJ −mJ)λ(J)

≤
∑
J∈P ′

4ε′λ(J) +
∑
J∈P ′′

(M −m)λ(J)

≤ 4ε′(b− a) + (M −m)λ(U)

( ⋃
J∈P ′′

J ⊆ U

)
< ε′(4(b− a) + (M −m))

where M = supx∈[a,b] f(x) and m := infx∈[a,b] f(x). Taking ε′ = ε/(4(b − a) + (M − m))
works. □

3.8. Product measures.

Definition 3.8.1. Given measurable spaces (X,M) and (Y,N ), a measurable rectangle is
a set of the form E × F ⊂ X × Y where E ∈ M and F ∈ N . The product σ-algebra
M×N ⊂ P (X × Y ) is the σ-algebra generated by the measurable rectangles.
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Exercise 3.8.2. Prove that M×N is the smallest σ-algebra such that the canonical pro-
jection maps πX : X × Y → X and πY : X × Y → Y are measurable. Deduce that M×N
is generated by π−1

X (EX) ∪ π−1
Y (EY ) for any generating sets EX of M and EY of N .

Warning 3.8.3. Recall that given topological spaces X, Y , the canonical projections πX :
X × Y → X and πY : X × Y → Y are open maps. When (X,M), (Y,N ) are measurable,
however, πX , πY need not map measurable sets to measurable sets. (Unfortunately, actually
constructing a set in M×N whose projection to X is not measurable is quite difficult.)

Exercise 3.8.4. Show that the subset of P (X × Y ) consisting of finite disjoint unions of
measurable rectangles is an algebra which generates M×N .
Hint: For E,E1, E2 ∈ M and F, F1, F2 ∈ N ,

• (E1 × F1) ∩ (E2 × F2) = (E1 ∩ E2)× (F1 ∩ F2), and
• (E × F )c = (E × F c)⨿ (Ec × F )⨿ (Ec × F c).

Proposition 3.8.5. Suppose (X, dX) and (Y, dY ) are metric spaces.

(1) BX × BY is generated by (TX × Y ) ∪ (X × TY ).
(2) BX × BY ⊂ BX×Y .
(3) If X, Y are separable, then BX × BY = BX×Y .

Proof.
(1) This is an immediate consequence of Exercise 3.8.2.
(2) Since TX × Y,X × TY ⊂ TX × TY ⊂ TX×Y , we have BX × BY ⊂ BX×Y .
(3) Suppose C ⊂ X and D ⊂ Y are countable dense subsets. Let EX , EY be the collections of
open balls centered at C,D respectively with rational radii. Note that C ×D is a countable
dense subset of X × Y , and thus TX×Y is generated by EX × EY ⊂ BX × BY . Hence
BX×Y ⊂ BX × BY . □

Exercise 3.8.6.

(1) Find an example of (non-separable) metric spaces X, Y such that BX ×BY ⊊ BX×Y .
(2) If one of X or Y is separable, is BX×BY = BX×Y ? Find a proof or a counterexample.

Exercise 3.8.7. Suppose (X,M), (Y,N ), (Z,P) are measurable spaces and f : Z → X and
g : Z → Y . Show that f × g : Z → X × Y (the unique map from the universal property of
the product) is measurable if and only if f and g are measurable. Deduce that the category
of measurable spaces and measurable functions has finite categorical products.

Exercise 3.8.8. Prove that + : R × R → R and · : R × R → R are continuous and thus
(Borel) measurable.

Corollary 3.8.9. If f : (X,M) → R and g : (Y,N ) → R are measurable, then so are f + g
and fg. (This also holds for other codomains such as C and R if the sum is well-defined.)

Proof. Observe that fg and f + g are composites:

X × Y R× R R
(x, y) (f(x), g(y)) f(x) + g(y) or f(x)g(y).

f×g · or +

The map f × g is measurable as the preimage of every (Borel) measurable rectangle is
a measurable rectangle. Thus the composite of these measurable functions is M × N -
measurable. □
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Exercise 3.8.10. Adapt the proof of Corollary 3.8.9 to give another proof that f : (X,M) →
C is measurable if and only if Re(f), Im(f) are measurable.

For the rest of this section, suppose (X,M, µ) and (Y,N , ν) are measure spaces, and let
A be the algebra of finite disjoint unions of measurable rectangles from Exercise 3.8.4.

Proposition 3.8.11. For G =
∐n

k=1Ek × Fk ∈ A, define

(µ× ν)0(G) :=
n∑
k=1

µ(Ek)ν(Fk)

with the convention that 0 · ∞ = 0. Then (µ× ν)0 is a premeasure on A.

Proof. It suffices to show that if E ∈ M and F ∈ N such that E×F =
∐
En×Fn for some

(non-disjoint!) sequences (En) ⊂ M and (Fn) ⊂ N , then µ(E)ν(E) =
∑
µ(En)ν(En).

Trick. For all x ∈ E and y ∈ F , there is a unique k such that (x, y) ∈ Ek×Fk. Hence,
for any fixed y ∈ F , (x, y) ∈ E × F for all x ∈ E, and thus

E =
∐

k s.t. y∈Fk

Ek.

This is a disjoint union, since if x ∈ Ej ∩Ek and y ∈ Fj ∩Fk, then (x, y) ∈ (Ej ×Fj)∩
(Ek × Fk), so j = k. Here is a cartoon of this trick:

E

F

E1×F1 E2×F2

E3×F3 E4×F4

E=E1⨿E2=E3⨿E4

E1=E3 and E2=E4

F=F1⨿F3=F2⨿F4

F1=F2 and F3=F4

Hence for y ∈ F ,

µ(E) =
∑

k s.t. y∈Fk

µ(Ek) =
∑

µ(Ek)χFk
(y),

and thus µ(E)χF (y) =
∑
µ(Ek)χFk

(y). Integrating over y yields

µ(E)ν(F ) =

∫
Y

µ(E)χF (y) dν(y) =

∫
Y

∑
µ(Ek)χFk

(y) dν(y)

=
(MCT)

∑∫
Y

µ(Ek)χFk
(y) dν(y) =

∑
µ(Ek)ν(Fk). □

Now use Carathéodory’s outer measure construction, we get an outer measure (µ × ν)∗

on P (X × Y ), which restricts to a measure µ × ν on the (µ × ν)∗-measurable sets, which
is a σ-algebra containing M × N (as sets in A are (µ × ν)∗-measurable, and A generates
M×N ).

Exercise 3.8.12. Suppose X, Y are topological spaces and µ, ν are σ-finite Borel measures
on X,Y respectively.

(1) Prove that µ× ν is σ-finite.
(2) Show that if µ, ν are both outer regular, then so is µ× ν.
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(3) Show that (2) fails when the σ-finite condition is dropped.
Hint: Consider a Dirac mass δ at x0 such that δ({x0}) = ∞.

3.9. The Fubini and Tonelli Theorems. For this section, fix measure spaces (X,M, µ)
and (Y,N , ν).

Definition 3.9.1. For E ⊂ X × Y , we define

• (x-section) Ex := {y ∈ Y |(x, y) ∈ E} = πY (E ∩ ({x} × Y ))
• (y-section) Ey := {x ∈ X|(x, y) ∈ E} = πX(E ∩ (X × {y}))

Here is a cartoon of x- and y-sections:

Ex

Ex

Ey x

y

Exercise 3.9.2. Suppose (En) ⊂ P (X × Y ). Prove the following assertions.

(1) (
⋃
En)x =

⋃
(En)x

(2) (
⋂
En)x =

⋂
(En)x

(3) (En \ Ek)x = (En)x \ (Ek)x
(4) χEn(x, y) = χ(En)x(y).

Deduce similar statements also hold for y-sections.

Proposition 3.9.3. Let E ∈ M×N . For all x ∈ X, Ex ∈ N and for all y ∈ Y , Ey ∈ M.

Proof. We prove the first statement, and the second is similar.

Trick. We’ll show that the following set is a σ-algebra on X × Y :

S := {E ⊂ X × Y |Ex ∈ N} .

This implies the result, since S contains the measurable rectangles in M × N , which
generates M×N . Thus M×N ⊂ S.
(0) Observe ∅ ∈ N implies ∅ ∈ S.
(1) If (En) ⊂ S, then (En)x ∈ N for all n ∈ N. By Exercise 3.9.2, (

⋃
En)x =

⋃
(En)x ∈ N .

Thus
⋃
En ∈ S.

(2) If E ∈ S, then Ex ∈ N . Observe (Ec)x = (Ex)
c ∈ N , and thus Ec ∈ S. □

Exercise 3.9.4. Use Proposition 3.9.3 to show that L × L is not equal to L2, where L is
the Lebesgue σ-algebra and L2 denotes the σ-algebra of (λ× λ)∗-measurable sets in R2.

Definition 3.9.5. For f : X × Y → R, R, or C, we define

• (x-section) fx : Y → R, R, or C by fx(y) := f(x, y), and
• (y-section) f y : X → R, R, or C by f y(x) := f(x, y).

Corollary 3.9.6. If f : X × Y → R, R, or C is M×N -measurable, then

• for all x ∈ X, fx is N -measurable, and
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• for all y ∈ Y , f y is M-measurable.

Proof. We’ll prove the first statement, and the second is similar. Observe that for all x ∈ X
and measurable G contained in the codomain, f−1

x (G) = f−1(G)x ∈ N . □

Exercise 3.9.7. Suppose f : R2 → R is such that each x-section fx is Borel measurable and
each y-section f y is continuous. Show f is Borel measurable.

Theorem 3.9.8 (Tonelli for characteristic functions). Suppose (X,M, µ) and (Y,N , ν) are
σ-finite measure spaces. Then for all E ∈ M×N ,

(1) The functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable, and
(2) (µ× ν)(E) =

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y).

Proof.
Step 1: First, we’ll assume µ, ν are finite measures. Let Λ ⊂ M×N be the subset for which
(1) and (2) above hold. Observe that Π := {measurable rectangles in M×N} is contained
in Λ.
Step 1a: Π is a π-system.

Proof. The intersection of 2 measurable rectangles is a measurable rectangle. □

Step 1b: Λ is a λ-system. Thus by the π − λ Theorem,

M×N = Λ(Π) ⊂ Λ ⊂ M×N ,

and thus equality holds.

Proof.
(0) First, note X × Y ∈ Π ⊂ Λ.
(1) If E ∈ Λ so that (1) and (2) hold for E, then as we assumed ν is finite,

x 7−→ ν((Ec)x) = ν((Ex)
c) = ν(Y )− ν(Ex)

is measurable (as a constant function minus a measurable function), as is y 7→ µ((Ec)y),
so (1) holds for Ec. Moreover, µ× ν is finite, so

(µ× ν)(Ec) = (µ× ν)(X × Y )− (µ× ν)(E)

=

∫
X

ν(Y ) dµ(x)−
∫
ν(Ex) dµ(x)

=

∫
X

(ν(Y )− ν(Ex)) dµ(x)

=

∫
X

ν((Ex)
c) dµ(x)

=

∫
X

ν((Ec)x) dµ(x) proving part of (2) for Ec

=

∫
Y

µ((Ec)y) dν(y) similarly.

Thus Λ is closed under taking complements.
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(2) Suppose (En) ⊂ Λ is a sequence of disjoint subsets. Observe for all x ∈ X, ((En)x) ⊂
N is disjoint. Then for all n, x 7→ ν((En)x) is measurable, and thus so is

x 7−→
∑

ν((En)x) = ν
(∐

(En)x

)
= ν

((∐
En

)
x

)
.

Similarly, y 7→ µ ((
∐
En)

y) is measurable, proving (1) for
∐
En. We calculate

(µ× ν)
(∐

En

)
=
∑

(µ× ν)(En)

=
∑∫

X

ν((En)x) dµ(x)

=

∫
X

∑
ν((En)x) dµ(x) (by the MCT 3.3.9)

=

∫
X

ν
(∐

(En)x

)
dµ(x)

=

∫
X

ν
((∐

En

)
x

)
dµ(x) proving part of (2) for

∐
En

=

∫
Y

µ
((∐

En

)y)
dν(y) similarly.

Thus Λ is closed under taking countable disjoint unions. □

Step 2: When µ, ν are σ-finite, write X ×Y as an increasing union X ×Y =
⋃
Xn×Yn with

Xn× Yn measurable rectangles such that µ(Xn), ν(Yn) <∞ for all n ∈ N. For E ∈ M×N ,
write En := E ∩ (Xn × Yn), and observe En ↗ E, so (En)x ↗ Ex. Thus the function

x 7−→ ν(Ex) = lim ν((En)x)

is measurable (as a pointwise limit of measurable functions), as is y 7−→ µ(Ey). We then
calculate

(µ× ν)(E) = lim(µ× ν)(En)

= lim

∫
X

ν((En)x) dµ(x) (by Step 1)

=

∫
X

lim ν((En)x) dµ(x) (by the MCT 3.3.9)

=

∫
X

ν(Ex) dµ(x)

=

∫
Y

µ(Ey) dν(y) similarly. □

Theorem 3.9.9 (Tonelli). Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces.
For f ∈ L+(X × Y,M×N ),

(1) x 7→
∫
Y

fx dν is M-measurable (an element of L+(X,M)),

(2) y 7→
∫
X

f y dµ is N -measurable (an element of L+(Y,N )), and
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(3)

∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

fx dν

)
dµ =

∫
Y

(∫
X

f y dµ

)
dν.

Proof. If f = χE for some E ∈ M×N , this is exactly the previous theorem. Since (cf+g)x =
c(fx)+gx (this is an exercise), we get the result for non-negative simple functions by linearity.
Suppose now f ∈ L+ is arbitrary and (ψn) ⊂ SF+ such that ψn ↗ f everywhere. Then
(ψn)x ↗ fx and (ψn)

y ↗ f y, so by the MCT 3.3.9,∫
Y

(ψn)x dν ↗
∫
Y

fx dν and

∫
X

(ψn)
y dµ↗

∫
X

f y dµ,

which implies (1) and (2) (countable supremums of measurable functions are measurable).
Again by the MCT 3.3.9,∫

X

(∫
Y

fx dν

)
dµ =

∫
X

(
lim

∫
Y

(ψn)x dν

)
dµ

= lim

∫
X

(∫
Y

(ψn)x dν

)
dµ

= lim

∫
X×Y

ψn d(µ× ν) by previous theorem

=

∫
X×Y

f d(µ× ν)

=

∫
Y

(∫
X

f y dµ

)
dν similarly. □

Exercise 3.9.10 (Counterexample: Folland §2.5, #46). Let X = Y = [0, 1], M = N =
B[0,1], µ = λ Lebesgue measure, and ν counting measure. Let ∆ = {(x, x)|x ∈ [0, 1]} be the
diagonal. Prove that

∫ ∫
χ∆ dµ dν,

∫ ∫
χ∆ dν dµ, and

∫
χ∆ d(µ× ν) are all distinct.

Exercise 3.9.11. Suppose f : R → [0,∞) is Borel measurable.

(1) Show that E := {(x, y) ∈ R2|0 ≤ y ≤ f(x)} is Borel measurable.
(2) Show that

∫
f(x) dλ(x) = (λ× λ)(E).

Remark 3.9.12. Under the hypotheses of Tonelli’s Theorem 3.9.9, if in addition f ∈ L+(X×
Y,M×N ) ∩ L1(µ× ν), then

•
∫
Y

fx dν <∞ (fx ∈ L1(ν)) a.e. x ∈ X, and

•
∫
X

f y dµ <∞ (f y ∈ L1(µ)) a.e. y ∈ Y .

Corollary 3.9.13 (Fubini). Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces.
If f ∈ L1(µ× ν), then

(1) fx ∈ L1(ν) a.e. x ∈ X and f y ∈ L1(µ) a.e. y ∈ Y ,

(2)

(
x 7→

∫
Y

fx dν

)
∈ L1(µ) and

(
y 7→

∫
X

f y dµ

)
∈ L1(ν), and

(3)

∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

fx dν

)
dµ =

∫
Y

(∫
X

f y dµ

)
dν.
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Proof. Recall that

f = Re(f)+ − Re(f)− + i Im(f)+ − i Im(f)−,

where Re(f)±, Im(f)± ∈ L+(X × Y,M × N ) ∩ L1(µ × ν). Hence Tonelli’s Theorem 3.9.9
applies to the 4 functions, as does Remark 3.9.12. The result follows. □

Exercise 3.9.14 (Counterexample: Folland §2.5, #48). Let X = Y = N, M = N = P (N),
and µ = ν counting measure. Define

f(m,n) :=


1 if m = n

−1 if m = n+ 1

0 else.

Prove that
∫
|f |d(µ× ν) = ∞, and

∫ ∫
f dµ dν and

∫ ∫
f dν dµ both exist and are unequal.

Exercise 3.9.15. Let f, g ∈ L1([0, 1], λ) where λ is Lebesgue measure. For 0 ≤ x ≤ 1,
define

F (x) :=

∫
[x,1]

f dλ and G(x) :=

∫
[x,1]

g dλ.

(1) Prove that F and G are continuous on [0, 1].
(2) Compute ∫

[0, 1]2 =︸ ︷︷ ︸
Hint!

f(x)g(y) d(λ× λ)

to prove the integration by parts formula:∫
[0,1]

Fg dλ = F (0)G(0)−
∫
[0,1]

Gf dλ.

Exercise 3.9.16. Prove the Fubini Theorem (Corollary 3.9.13) also holds replacing (M×
N , µ× ν) with its completion (M×N , µ× ν)

Exercise 3.9.17. Show that the conclusions of the Fubini and Tonelli Theorems hold when
(X,M, µ) is an arbitrary measure space (not necessarily σ-finite) and Y is a countable set,
N = P (Y ), and ν is counting measure.

Exercise 3.9.18. Suppose (X,M, µ) and (Y,N , ν) are measure spaces which are not as-
sumed to be σ-finite. Let f ∈ L1(µ,R) and g ∈ L1(ν,R), and define h(x, y) := f(x)g(y).

(1) Prove that h is M×N -measurable.
(2) Prove that h ∈ L1(µ× ν).

(3) Prove that

∫
X×Y

h d(µ× ν) =

∫
X

f dµ

∫
Y

g dν.

Remark: Since (X,M, µ) and (Y,N , ν) are not assumed to be σ-finite, you cannot directly
apply the Fubini or Tonelli Theorems!

As an application, we give the following exercise on convolution multiplication on L1(R, λ).

Exercise 3.9.19. Suppose f, g ∈ L1(R, λ).
(1) Show that y 7→ f(x−y)g(y) is measurable for all x ∈ R and in L1(R, λ) for a.e. x ∈ R.
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(2) Define the convolution of f and g by

(f ∗ g)(x) :=
∫
R
f(x− y)g(y) dλ(y).

Show that f ∗ g ∈ L1(R, λ).
(3) Show that L1(R, λ) is a commutative C-algebra under ·,+, ∗.
(4) Show that

∫
R |f ∗ g| ≤

∫
R |f |

∫
R |g|, i.e., ∥ · ∥1 is submultiplicative.

Since we already know that L1(R, λ) is complete, this shows that the C-algebra L1(R, λ) is
a Banach algebra.

3.10. Then n-dimensional Lebesgue integral. Recall that L is the Lebesgue σ-algebra
on R and λ is Lebesgue measure.

Definition 3.10.1. We define (Rn,Ln, λn) as the completion of (Rn,L × · · · × L︸ ︷︷ ︸
n factors

, λ× · · · × λ︸ ︷︷ ︸
n factors

).

Facts 3.10.2. Here are some properties of Lebesgue measure. Verification is left as an
exercise.

(1) λn is σ-finite.
(2) λn is regular.
(3) For all E ∈ Ln with λn(E) <∞, for all ε > 0, there are disjoint rectangles R1, . . . , Rn

whose sides (projections) are intervals such that λn(E △
∐nRk) < ε, where △ denotes

symmetric difference.
(4) ISF = SF ∩ L1(λn) is dense in L1(λn).
(5) Cc(Rn) is dense in L1(λn).
(6) Suppose E ∈ Ln.

• For all r ∈ Rn, r + E ∈ Ln, and λn(r + E) = λn(E).
• For all T ∈ GL(n,R), TE ∈ Ln and λn(TE) = | det(T )| · λn(E).

(7) For all Ln-measurable f : Rn → C, the following functions are also Ln-measurable:

x 7−→ f(x+ r) for r ∈ Rn, and

x 7−→ f(Tx) for T ∈ GL(n,R).

If moreover f ∈ L+ or L1(λn), then∫
f(x+ r) dλn(x) =

∫
f(x) dλn(x) and∫

f(x) dλn(x) = | det(T )| ·
∫
f(Tx) dλn(x).

Exercise 3.10.3. Suppose µ is a translation-invariant measure on BRn such that µ([0, 1]n) =
1. Show that µ = λn|BRn .

Exercise 3.10.4. Prove some assertions from Facts 3.10.2.

Exercise 3.10.5. Suppose T ∈ GLn(C) and f ∈ L+ or L1(λn).

(1) Prove that f ◦ T ∈ L+ or L1(λn) respectively.
(2) Show that ∫

f(x) dλn(x) = | det(T )| ·
∫
f(Tx) dλn(x).
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4. Signed measures and differentiation

4.1. Signed measures. For this section, let (X,M) be a measurable space.

Definition 4.1.1. A function ν : M → R is called a signed measure if

• ν takes on at most one of the values ±∞,
• (vacuum) ν(∅) = 0, and
• (σ-additivity) for every disjoint sequence (En) ⊂ M, ν (

∐
En) =

∑
ν(En).

We call ν finite if ν does not take on the values ±∞.

Remark 4.1.2. If ν is a signed measure and (En) ⊂ M are disjoint, then σ-additivity of ν
implies that the sum

∑
ν(En) must converge absolutely if |ν (

∐
En)| <∞. Indeed, reindex-

ing the sets (En) does not change
∐
En, and thus it must not change the sum

∑
ν(En).

Exercise 4.1.3.

(1) If µ1, µ2 are measures on (X,M) with at least one of µ1, µ2 finite, then ν := µ1 − µ2

is a signed measure.
(2) Suppose µ is a measure on (X,M). If f : X → R is measurable and extended

µ-integrable, i.e., at least one of
∫
f± <∞, then ν(E) :=

∫
E
f dµ is a signed measure.

It is now our goal to prove these are really the only ways to construct signed measures!

Definition 4.1.4. Suppose ν is a signed measure on (X,M). We call E ∈ M:

• positive if for all measurable F ⊆ E, µ(F ) ≥ 0,
• negative if for all measurable F ⊆ E, µ(F ) ≤ 0, and
• null if for all measurable F ⊆ E, µ(F ) = 0.

Observe that N ∈ M is null if and only if N is both positive and negative.

Facts 4.1.5. For ν a signed measure on (X,M), we have the following facts about positive
measurable sets. Similar statements hold for negative and null measurable sets.

(1) E positive implies ν(E) ≥ 0.
(2) E positive and F ⊆ E measurable implies F is positive.
(3) (En) ⊂ M positive implies

⋃
En positive.

Proof. Disjointify the En so that
⋃
En =

∐
Fn where F1 := E1 and Fn :=

En \
⋃n−1Ek is positive for all n ∈ N. If G ⊂

⋃
En =

∐
Fn, then

ν(G) = ν
(
G ∩

∐
Fn

)
=
∑

ν(G ∩ Fn) ≥ 0. □

(4) If 0 < ν(E) <∞, there is a positive F ⊆ E such that ν(F ) > 0.
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Proof. If E is positive, we win. Otherwise, let n1 ∈ N be minimal such that that
there is a measurable E1 ⊂ E and ν(E1) < − 1

n1
. Observe that ν(E \ E1) > 0,

so if E \E1 is positive, we win. Otherwise, let n2 ∈ N minimal such that there
is a measurable E2 ⊂ E \ E1 with ν(E2) < − 1

n2
. We can inductively iterate

this procedure. Either E \
∐nEk is positive for some n, or we have constructed

a disjoint sequence (Ek) with ν(Ek) < − 1
nk

for all k. Set F := E \
∐
Ek. Since

ν(E) < ∞ and E = F ⨿
∐
Ek, by countable additivity,

∑
|ν(Ek)| < ∞, so∑

k−
1
nk

converges. Hence nk → ∞ as k → ∞. Since ν(E) > 0 and ν(Ek) < 0

for all k, ν(F ) > 0. Suppose G ⊂ F is measurable. Then ν(G) ≥ − 1
nk−1

for all

k with nk > 1, and thus ν(G) ≥ 0. So F is positive. □

Theorem 4.1.6 (Hahn Decomposition). Let ν be a signed measure on (X,M). There is a
positive set P ∈ M such that P c is negative. Moreover, if Q ∈ M is another positive set
such that Qc is negative, then P △ Q and P c △ Qc are null.

A positive P ∈ M such that P c is negative is called a Hahn decomposition of X with
respect to ν.

Proof.
Existence: We may assume ∞ /∈ im(ν) ⊂ R (otherwise, replace ν with −ν). Define

r := sup {ν(E)|E is positive} .

Then there is a sequence (En) of positive sets such that ν(En) → r. Take P :=
⋃
En,

which is positive. Since a signed measure restricted to a positive set is a positive measure,
ν(P ) = lim ν(En) = r by continuity from below (µ3). We claim that P c is negative. If
F ⊂ P c such that ν(F ) > 0, by Facts 4.1.5(4), there is a positive G ⊂ F such that ν(G) > 0.
Then P ⨿G is positive with ν(P ⨿G) = ν(P ) + ν(G) > r, a contradiction.
Uniqueness: Suppose P,Q ⊂ X are positive such that P c, Qc are negative. Then

P △ Q = (P \Q) ∪ (Q \ P ) = (P ∩Qc)︸ ︷︷ ︸
pos. and neg.

∪ (Q ∩ P c)︸ ︷︷ ︸
pos. and neg.

is ν-null. Similarly, P c △ Qc is ν-null. □

Definition 4.1.7. We say positive measures µ1, µ2 on (X,M) aremutually singular, denoted
µ1 ⊥ µ2, if there exist disjoint E,F ∈ M such that X = E ⨿ F and µ1(F ) = 0 = µ2(E).

Theorem 4.1.8 (Jordan decomposition). Let ν be a signed measure on (X,M). There exist
unique mutually singular measures ν± on (X,M) such that ν = ν+ − ν−, which we call the
Jordan decomposition of ν.

Proof.
Existence: Given a Hahn decomposition X = P ⨿ P c, ν+(E) := ν(E ∩ P ) and ν−(E) :=
−ν(E ∩ P c) are positive measures on M, such that ν+(P

c) = 0 = ν−(P ) and ν = ν+ − ν−.
(Observe ν± are independent of the Hahn decomposition.)
Uniqueness: Suppose that ν = µ+ −µ− = ν+ − ν− where µ± and ν± are all positive measures
with µ+ ⊥ µ− and ν+ ⊥ ν−. Then by definition of mutual singularity, there exist two Hahn
decompositions for ν: X = P ⨿ P c such that µ+(P

c) = 0 = µ−(P ) and X = Q ⨿ Qc such
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that ν+(Q
c) = 0 = ν−(Q). Thus P △ Q and P c △ Qc are ν-null, and for all E ∈ M,

µ+(E) = µ+(E ∩ P ) = ν(E ∩ P ) = ν(E ∩ P ∩Q) + ν(E ∩ P ∩Qc︸ ︷︷ ︸
ν-null

)

= ν(E ∩ P ∩Q) = ν(E ∩ P ∩Q) + ν(E ∩ P c ∩Q︸ ︷︷ ︸
ν-null

) = ν(E ∩Q)

= ν+(E ∩Q) = ν+(E).

Hence µ+ = ν+, and similarly, µ− = ν−. □

Definition 4.1.9. For a signed measure ν on (X,M), define L1(ν) := L1(ν+)∩L1(ν−). For
f ∈ L1(ν), define ∫

f dν :=

∫
f dν+ −

∫
f dν−.

Clearly L1(ν) is a C-vector space and
∫

is a linear functional. We define L1(ν) to be the
quotient of L1(ν) by the equivalence relation f = g ν+-a.e. and ν−-a.e.

Exercise 4.1.10. Suppose ν is a signed measure on (X,M). Prove that E ∈ M is ν-null
if and only if E is ν+-null and ν−-null. Deduce that f = g ν+-a.e. and ν−-a.e if and only if
f = g up to a ν-null set.

Definition 4.1.11. For a signed measure ν on (X,M), define the total variation of ν =
ν+ − ν− by |ν| := ν+ + ν−, which is a positive measure. Observe that

|ν(E)| = |ν+(E)− ν−(E)| ≤ ν+(E) + ν−(E) = |ν|(E) ∀E ∈ M.

Hence ν is finite if and only if |ν| is finite.

Exercise 4.1.12. Suppose ν is a signed measure on (X,M), let ν = ν+ − ν− be its Jordan
decomposition, and let |ν| be its total variation.

(1) Prove that for E ∈ M, ν+(E) = sup {ν(F )|F ∈ M with F ⊂ E}.
(2) Prove that for E ∈ M, ν−(E) = − inf {ν(F )|F ∈ M with F ⊂ E}.
(3) Prove that for E ∈ M,

|ν|(E) = sup

{
n∑
i=1

|ν(Ei)|

∣∣∣∣∣E1, . . . , En ∈ M disjoint with E =
n∐
i=1

Ei

}
.

Exercise 4.1.13. Suppose (X,M) is a measurable space, ν is a signed measure on (X,M),
and λ, µ are positive measures on (X,M) such that ν = λ − µ. Show that ν+ ≤ λ and
ν− ≤ µ where ν = ν+ − ν− is the Jordan decomposition of ν.

Lemma 4.1.14. Suppose µ1, µ2 are measures on X with at least one of µ1, µ2 finite, and set
ν = µ1 − µ2. Then |ν|(X) ≤ µ1(X) + µ2(X).

Proof. Let ν = ν+ − ν− be the Jordan decomposition of ν, and let X = P ⨿ P c be a Hahn
decomposition such that ν+(P

c) = 0 = ν−(P ). Then

0 ≤ ν+(X) = ν(X ∩ P ) = ν(P ) = µ1(P )− µ2(P ) ≤ µ1(P ) ≤ µ1(X)

0 ≤ ν−(X) = −ν(X ∩ P c) = −ν(P c) = µ2(P
c)− µ1(P

c) ≤ µ2(P
c) ≤ µ2(X)

Hence |ν|(X) = ν+(X) + ν−(X) ≤ µ1(X) + µ2(X). □
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Exercise 4.1.15 (Folland §3.1, #3). Suppose µ is a positive measure on (X,M) and ν is a
signed measure on (X,M). Prove that the following are equivalent.

(1) ν ⊥ µ
(2) |ν| ⊥ µ
(3) ν+ ⊥ µ and ν− ⊥ µ.

Exercise 4.1.16 (Folland §3.1, #3). Let ν be a signed measure on (X,M). Prove the
following assertions:

(1) L1(ν) = L1(|ν|).
(2) If f ∈ L1(ν),

∣∣∫ f dν∣∣ ≤ ∫ |f |d|ν|.
(3) If E ∈ M, |ν|(E) = sup

{∣∣∫
E
f dν

∣∣∣∣−1 ≤ f ≤ 1
}
.

Exercise 4.1.17. Suppose µ, ν are finite signed measures on the measurable space (X,M).

(1) Prove that the signed measure µ ∧ ν := 1
2
(µ + ν − |µ − ν|) satisfies (µ ∧ ν)(E) ≤

min{µ(E), ν(E)} for all E ∈ M.
(2) Suppose in addition that µ, ν are positive. Prove that µ ⊥ ν if and only if µ∧ ν = 0.

Exercise 4.1.18 (Folland §3.1, #6). Suppose

ν(E) :=

∫
E

f dµ E ∈ M

where µ is a positive measure on (X,M) and and f is an extended µ-integrable function.
Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν
in terms of f and µ.

Exercise 4.1.19. In this exercise, we will show that

M :=M(X,M,R) := {finite signed measures on (X,M)}

is a Banach space with ∥ν∥ := |ν|(X).

(1) Prove ∥ν∥ := |ν|(X) is a norm on M .
(2) Show that (νn) ⊂M Cauchy implies (νn(E)) ⊂ R is uniformly Cauchy for all E ∈ M.

That is, show that for all ε > 0, there is an N ∈ N such that for all n ≥ N and
E ∈ M, |νm(E)− νn(E)| < ε.

(3) Use part (2) to define a candidate limit signed measure µ on M. Prove that ν is
σ-additive.
Hint: first prove ν is finitely additive.

(4) Prove that
∑
ν(En) converges absolutely when (En) ⊂ M is disjoint, and thus ν is

a finite signed measure.
(5) Show that νn → ν in M .

4.2. Absolute continuity and the Lebesgue-Radon-Nikodym Theorem. For this
section, we fix a measurable space (X,M).

Definition 4.2.1. Let ν be a signed measure and µ a positive measure on (X,M). We say
ν is absolutely continuous with respect to µ, denoted ν ≪ µ, if µ(E) = 0 implies ν(E) = 0.

Example 4.2.2. Let f ∈ L1(µ,R) and set ν(E) :=
∫
E
f dµ. (This is sometimes denoted by

dν := fdµ.) Then ν ≪ µ.
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Exercise 4.2.3 (Folland §3.2, #8). Suppose µ is a positive measure on (X,M) and ν is a
signed measure on (X,M). Prove that the following are equivalent.

(1) ν ≪ µ
(2) |ν| ≪ µ
(3) ν+ ≪ µ and ν− ≪ µ.

Exercise 4.2.4. Suppose (X,M) is a measurable space and ν is a signed measure and λ, µ
are positive measures on (X,M) such that ν = λ− µ. Show that ν+ ≤ λ and ν− ≤ µ where
ν = ν+ − ν− is the Jordan decomposition of ν.

Exercise 4.2.5 (Adapted from Folland §3.2, #9). Suppose {νj} is a sequence of positive
measures on (X,M) and µ is a positive measure on (X,M). Prove the following assertions.

(1) If {νj} is a sequence of positive measures on (X,M) with νj ⊥ µ for all j, then∑∞
j=1 νj ⊥ µ.

(2) If ν1, ν2 are positive measures on (X,M) with at least one of ν1, ν2 is finite and νj ⊥ µ
for j = 1, 2, then (ν1 − ν2) ⊥ µ.

(3) If {νj} is a sequence of positive measures on (X,M) with νj ≪ µ for all j, then∑∞
j=1 νj ≪ µ.

(4) If ν1, ν2 are positive measures on (X,M) with at least one of ν1, ν2 is finite and
νj ≪ µ for j = 1, 2, then (ν1 − ν2) ≪ µ.

Proposition 4.2.6. Suppose ν is a finite signed measure and µ is a positive measure on
(X,M). The following are equivalent:

(1) ν ≪ µ, and
(2) For all ε > 0, there is a δ > 0 such that for all E ∈ M, |ν(E)| < ε whenever

µ(E) < δ.

Proof. Since ν ≪ µ if and only if |ν| ≪ µ and |ν(E)| ≤ |ν|(E), we may assume ν is positive.
The result now follows from a previous exercise. For completeness, we’ll provide the proof
below.

First, it is clear that (2) implies (1). Suppose (2) fails. Then there is an ε > 0 such that for
all n ∈ N, there is an En ∈ M with µ(En) < 2−n, but ν(En) ≥ ε. Set F :=

⋂∞
k=1

⋃∞
k=nEn.

Since

µ

(
∞⋃
k=n

En

)
<

∞∑
n=k

2−k = 21−k ∀ k ∈ N,

µ(F ) = 0. But since ν is finite, ν(F ) = limk (
⋃∞
k=nEn) ≥ ε. Hence (1) fails. □

Example 4.2.7. On (N, P (N)), define µ(E) :=
∑

n∈E 2−n and ν(E) :=
∑

n∈E 2n. Then
ν ≪ µ and µ≪ ν, but (2) above fails as ν is not finite.

Lemma 4.2.8. Suppose µ, ν are finite measures on (X,M). Either ν ⊥ µ or there is an
ε > 0 and E ∈ M such that µ(E) > 0 and ν ≥ εµ on E, i.e., E is positive for ν − εµ.

Proof. Let X = Pn⨿P c
n be a Hahn decomposition for ν−n−1µ for all n ∈ N. Set P :=

⋃
Pn

so P c =
⋂
P c
n. Then P

c is negative for all ν − n−1µ. Observe

0 ≤ ν(P c) ≤ 1

n
µ(P c)︸ ︷︷ ︸
<∞

∀n ∈ N,
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so ν(P c) = 0. If µ(P ) = 0, then ν ⊥ µ. If µ(P ) > 0, then µ(Pn) > 0 for some n, and Pn is
positive for ν − n−1µ. □

Theorem 4.2.9 (Lebesgue-Radon-Nikodym). Let ν be a σ-finite signed measure and µ a σ-
finite positive measure on (X,M). There are unique σ-finite signed measures λ, ρ on (X,M)
called the Lebesgue decomposition of ν such that

λ ⊥ µ, ρ≪ µ, and ν = λ+ ρ.

Moreover, there exists a unique extended µ-integrable function f called the Radon-Nikodym
derivative of ρ with respect to µ such that dρ = fdµ. If ν is positive or finite, then so are λ
and ρ respectively, and f ∈ L+ or L1(µ) respectively.

Proof.
Case 1: Suppose µ, ν are finite positive measures.
Uniqueness: Suppose λ, λ′ are finite signed measures such that λ, λ′ ⊥ µ and f, f ′ ∈ L1 such
that dν = dλ + fdµ = dλ′ + f ′dµ. Then as signed measures, d(λ − λ′) = (f ′ − f)dµ. But
(λ− λ′) ⊥ µ and (f ′ − f)dµ≪ dµ, so as signed measures by Exercise 4.2.5, d(λ− λ′) = 0 =
(f ′ − f)dµ. We conclude that λ = λ′ and f = f ′ in L1.
Existence: Set

A :=

{
f ∈ L1(X,µ, [0,∞])

∣∣∣∣∫
E

f dµ ≤ ν(E) for all E ∈ M
}
.

Observe that 0 ∈ A.

Claim. f, g ∈ A implies f ∨ g ∈ A.

Proof. For all E ∈ M,∫
E

f ∨g dµ =

∫
E∩{g<f}

f dµ+

∫
E\{g<f}

g dµ ≤ ν(E∩{g < f})+ν(E \{g < f}) = ν(E).

□

Set M := sup
{∫

f dµ
∣∣f ∈ A

}
, and note that M ≤ ν(X) < ∞. Choose (fn) ⊂ A such

that
∫
fn dµ ↗ M . Set gn := max{f1, . . . , fn} ∈ A and f := sup gn. Then by the Squeeze

Theorem, ∫
fn dµ ≤

∫
gn dµ↗M.

Since gn ↗ f pointwise,∫
E

f dµ =
(MCT)

lim
n

∫
E

gn dµ ≤ ν(E) ∀E ∈ M.

So f ∈ A and
∫
f dµ =M .
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Claim. λ(E) := ν(E)−
∫
E
f dµ ≥ 0 is mutually singular with respect to µ. So setting

dρ := fdµ, we have λ ⊥ µ, ρ≪ µ, ν = λ+ ρ, and dρ = fdµ.

Proof. Suppose λ is not mutually singular with respect to µ. Then by Lemma 4.2.8,
there is a E ∈ M and ε > 0 such that µ(E) > 0 and λ ≥ εµ on E. But then for all
F ∈ M, ∫

F

f + εχE dµ =

∫
F

f dµ+ εµ(E ∩ F )

≤
∫
F

f dµ+ λ(E ∩ F )

=

∫
F

f dµ+ ν(E ∩ F )−
∫
E∩F

f dµ

=

∫
F\E

f dµ+ ν(E ∩ F )

≤ ν(F \ E) + ν(E ∩ F )
= ν(F ).

Hence f + εχE ∈ A, but
∫
f + εχE dµ =M + εµ(E) > M , a contradiction. □

Case 2: Suppose µ, ν are σ-finite positive measures.
Existence: Write X =

∐
Xn such that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Set µn(E) :=

µ(E ∩ Xn) and νn(E) := ν(E ∩ Xn) for all n. By Case 1, there exist positive measures
λn ⊥ µn and fn ∈ L1

+(Xn, µn) such that dνn = dλn + fndµn. Since µn(X
c
n) = νn(X

c
n) = 0,

we have

λn(X
c
n) = νn(X

c
n)−

∫
Xc

n

fn dµn = 0.

Hence we may assume fn|Xc
n
= 0. Set λ :=

∑
λn and f :=

∑
fn ∈ L+. Then λ ⊥ µ by

Exercise 4.2.5, λ and fdµ are σ-finite, and dν = dλ+ fdµ.
Uniqueness: If λ′ is another positive measure such that λ′ ⊥ µ and f ′ ∈ L+ such that
dν = dλ′ + f ′dµ. Setting λ′n(E) := λ′(E ∩Xn) for E ∈ M and f ′

n := f ′χXn , by Uniqueness
from Case 1, we have λ′n = λn and f ′

n = fn in L1(µn). Then

λ′ =
∑

λ′n =
∑

λn = λ on X, and

f ′ =
∑

f ′
n =

∑
fn = f in L1(µ).

Case 3: Suppose µ is σ-finite positive and ν is σ-finite signed. In this case, we use the Jordan
Decomposition Theorem 4.1.8 to get ν = ν+ − ν− with ν+ ⊥ ν−. We apply Case 2 to ν±
separately and subtract the results. This shows existence and uniqueness. □

Remark 4.2.10. If µ is σ-finite positive and ν is σ-finite signed with ν ≪ µ, there is a
unique extended µ-integrable function dν

dµ
called the Radon-Nikodym derivative of ν with

respect to µ such that dν = dν
dµ
dµ.

Exercise 4.2.11. Suppose ν is a σ-finite signed measure.
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(1) Show that
∣∣∣ dνd|ν| ∣∣∣ = 1, |ν|-a.e.

(2) Suppose further that ν ≪ µ for some σ-finite positive measure µ on (X,M). Show
that for all f ∈ L1(ν), f dν

dµ
∈ L1(µ) and

∫
f dν =

∫
f dν
dµ
dµ.

(3) Suppose even further that µ ≪ λ for some σ-finite positive measure λ. Show ν ≪ λ
and dν

dλ
= dν

dµ
dµ
dλ
.

Definition 4.2.12. A signed measure ν on a topological space (X, T ) is called regular if |ν|
is regular.

Exercise 4.2.13. Suppose ν is a finite signed Borel measure on the LCH spaceX. Determine
which of the conditions below are equivalent.

(1) ν is regular.
(2) ν± is regular.
(3) For every E ∈ BX and ε > 0, there is a compact K ⊂ X with K ⊂ E such that

|ν(E)− ν(K)| < ε.
(4) For every E ∈ BX and ε > 0, there is an open U ⊂ X with E ⊂ U such that

|ν(U)− ν(E)| < ε.

Which of the above conditions are equivalent if

• X is σ-compact?
• ν is not finite?

4.3. Complex measures. For this section, fix a measurable space (X,M).

Definition 4.3.1. A function ν : M → C is called a complex measure if

• (vacuum) ν(∅) = 0, and
• (σ-additivity) For every disjoint sequence (En) ⊂ M, ν (

∐
En) =

∑
ν(En).

Observe that if ν is a complex measure on (X,M), then Re(ν) and Im(ν) are finite signed
measures on (X,M).

Remark 4.3.2. As in Remark 4.1.2, if ν is a complex measure and (En) ⊂ M are disjoint,
then σ-additivity of ν implies that the sum

∑
ν(En) converges absolutely.

Exercise 4.3.3. Prove the following assertions.

(1) If µ0, µ1, µ2, µ3 are finite measures on (X,M), then
∑3

k=0 i
kµk is a complex measure.

(2) For µ a measure on (X,M) and f ∈ L1(µ), ν(E) :=
∫
E
f dµ is a complex measure

on (X,M).

By the Jordan Decomposition Theorem 4.1.8, we get the following corollary:

Corollary 4.3.4. If ν is a complex measure on (X,M), there exist unique pairs of mutually
singular finite measures Re(ν)± and Im(ν)± such that

ν = Re(ν)+︸ ︷︷ ︸
=:ν0

−Re(ν)−︸ ︷︷ ︸
=:ν2

+i(Im(ν)+︸ ︷︷ ︸
=:ν1

− Im(ν)−︸ ︷︷ ︸
=:ν3

) =:
3∑

k=0

ikνk.

Definition 4.3.5. For a complex measure ν on (X,M), we define L1(ν) :=
⋂3
k=0 L

1(νk). We
define L1(ν) to be the quotient under the equivalence relation f = g νk-a.e. for k = 0, 1, 2, 3.
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For f ∈ L1(νk), we define ∫
f dν :=

3∑
k=0

ik
∫
f dνk.

Warning 4.3.6. The total variation of a complex measure ν =
∑3

k=0 i
kνk is not

∑3
k=0 νk.

We must use the complex Radon-Nikodym Theorem 4.3.9 below.

Definition 4.3.7. Suppose ν is a complex measure and µ is a positive measure on (X,M).
We say:

• ν ⊥ µ if Re(ν) ⊥ µ and Im(ν) ⊥ µ, and
• ν ≪ µ if Re(ν) ≪ µ and Im(ν) ≪ µ.

Exercise 4.3.8. Suppose ν is a complex measure and µ is a positive measure on (X,M).
Show that ν ≪ µ if and only if for all E ∈ M, µ(E) = 0 implies |ν(E)| = 0.

Theorem 4.3.9 (Complex Lebesgue-Radon-Nikodym). If ν is a complex measure on (X,M)
and µ is a σ-finite positive measure on (X,M), there exists a unique complex measure λ on
(X,M) and a unique f ∈ L1(µ) such that λ ⊥ µ and dν = dλ+ fdµ.

Proof. Apply the Lebesgue-Radon-Nikodym Theorem 4.2.9 to Re(ν) and Im(ν) separately
and then recombine. □

Lemma 4.3.10. Suppose ν is a complex measure on (X,M). There is a unique positive
measure |ν| on (X,M) satisfying the following property:

• For all σ-finite positive measures µ on (X,M) and f ∈ L1(µ) such that dν = fdµ,
d|ν| = |f |dµ.

We call |ν| the total variation of ν.

Proof. First consider µ := |Re(ν)|+ | Im(ν)|. Since |Re(ν)| ≪ µ and | Im(ν)| ≪ µ, we have
Re(ν) ≪ µ and Im(ν) ≪ µ, and thus ν ≪ µ. By the complex Lebesgue-Radon-Nikodym
Theorem 4.3.9, there is an f ∈ L1(µ) such that dν = fdµ. Define d|ν| := |f |dµ. Observe
this uniquely determines |ν| if it satisfies the uniqueness property in the bullet point above.
So suppose that dν = gdρ for another σ-finite positive measure ρ on (X,M) and g ∈ L1(ρ).
Consider µ+ ρ on (X,M) and observe that ν ≪ µ, µ≪ µ+ ρ, and ρ≪ µ+ ρ. Hence

dµ =
dµ

d(µ+ ρ)
d(µ+ ρ) and dρ =

dρ

d(µ+ ρ)
d(µ+ ρ).

Since

f
dµ

d(µ+ ρ)
d(µ+ ρ) = fdµ = dν = gdρ = g

dρ

d(µ+ ρ)
d(µ+ ρ),

by Exercise 4.2.11(2) we have

f
dµ

d(µ+ ρ)
=

dν

d(µ+ ρ)
= g

dρ

d(µ+ ρ)
(µ+ ρ)-a.e.

This implies

|f | dµ

d(µ+ ρ)
=

∣∣∣∣f dµ

d(µ+ ρ)

∣∣∣∣ = ∣∣∣∣g dρ

d(µ+ ρ)

∣∣∣∣ = |g| dρ

d(µ+ ρ)
(µ+ ρ)-a.e.

Again by Exercise 4.2.11(2), |f |dµ = d|ν| = |g|dρ, and thus ν satisfies the uniqueness
condition in the bullet point. □
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Exercise 4.3.11. Repeat Exercise 4.2.11 for ν a complex measure on (X,M).

Facts 4.3.12. Suppose ν is a complex measure on (X,M).

(1) ν ≪ |ν|, as

|ν(E)| =
∣∣∣∣∫
E

f dµ

∣∣∣∣ ≤ ∫
E

|f | dµ = |ν|(E) ∀, E ∈ M.

(2) If ν is a finite signed measure (Im(ν) = 0), then dν = (χP − χP c)d|ν|, and so
d|ν|′ = (χP + χP c)d|ν| = d|ν| for any Hahn decomposition X = P ⨿ P c for ν. This
means this new definition |ν|′ for a complex measure agrees with the old definition
|ν| for a finite signed measure.

(3) Observe that if dν = fdµ, then

dRe(ν) = Re(f)dµ

d Im(ν) = Im(f)dµ
=⇒

d|Re(ν)| = |Re(f)|dµ
d| Im(ν)| = | Im(f)|dµ

Since |f |2 = |Re(f)|2 + | Im(f)|2, we have

d|ν|
dµ

= |f | =
(
|Re(f)|2 + | Im(f)|2

)1/2
=

((
d|Re(ν)|

dµ

)2

+

(
d| Im(ν)|

dµ

)2
)1/2

.

Exercise 4.3.13. Suppose ν is a complex measure on (X,M). Prove that |Re(ν)| ≤ |ν| ,
| Im(ν)| ≤ |ν| , and |ν| ≤ |Re(ν)|+ | Im(ν)| as [0,∞)-valued functions on M.

Exercise 4.3.14. Suppose ν is a complex measure on (X,M).

(1) Prove that L1(ν) = L1(|ν|).
(2) Show that for f ∈ L1(ν), ∣∣∣∣∫ fdν

∣∣∣∣ ≤ ∫ |f |d|ν|.

Exercise 4.3.15. In this exercise, we will show that

M :=M(X,M,C) := {complex measures on (X,M)}
is a Banach space with ∥ν∥ := |ν|(X).

(1) Prove that max{∥Re(ν)∥, ∥ Im(ν)∥} ≤ ∥ν∥ ≤ 2max{∥Re(ν)∥, ∥ Im(ν)∥}.
(2) Show that if (V, ∥ · ∥V ), (W, ∥ · ∥W ) are normed vector spaces, then ∥(v, w)∥∞ :=

max{∥v∥, ∥w∥} is a norm on V ⊕W . Moreover, show that if (V, ∥·∥V ) and (W, ∥·∥W )
are complete, then so is (V ⊕W, ∥ · ∥∞).

(3) Show that M(X,M,C) = M(X,M,R) ⊕ iM(X,M,R), where M(X,M,R) was
defined in Exercise 4.1.19.

(4) Show that ∥·∥ onM(X,M,C) is equivalent to ∥·∥∞ onM(X,M,R)⊕iM(X,M,R).
Deduce that M(X,M,C) is complete.

Definition 4.3.16. A complex Borel measure ν on a topological space (X, T ) is called
regular if |ν| is regular.

Exercise 4.3.17. Repeat Exercise 4.2.13 for a complex Borel measure ν, where (2) is re-
placed by

(2’) Re(ν) and Im(ν) are regular signed measures.
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4.4. Lebesgue differentiation. Here, I will be following notes from a graduate course I
took in Fall 2005 at UC Berkeley from Sarason. We will treat differentiation of f ∈ L1(λn),
and we’ll then explain how to extend these results to

L1
loc := L1

loc(λ
n) := {f : Rn → C|f is integrable on bounded measurable sets} .

Definition 4.4.1. A cube in Rn is a set Q ⊂ Rn of the form Q =
∏n

k=1 Ik where each Ik is
a closed interval of the same length, which we denote by ℓ(Q).

• For x ∈ Rn, define C(x) := {cubes Q|x ∈ Q and 0 < ℓ(Q) <∞}.
• For Q a cube and r > 0, rQ is the cube with the same center as Q, but with
ℓ(rQ) = rℓ(Q).

Our goal is to prove the following theorem.

Theorem 4.4.2 (Lebesgue Differentiation). For all f ∈ L1
loc,

lim
ℓ(Q)→0
x∈Q

1

λn(Q)

∫
Q

f dλn = f(x) a.e. (LDT)

As a direct corollary, we get (for n = 1):

Theorem 4.4.3 (Fundamental Theorem of Calculus). Suppose f ∈ L1(λ). Define F (x) :=∫
(−∞,x)

f dλ. Then F ′(x) = f(x) a.e.

Proof. Observe

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
x∈Qh:=[x,x+h]

1

λ(Qh)

∫
Qh

f dλ =
(LDT)

f(x) a.e. □

Definition 4.4.4 (Hardy-Littlewood Maximal Function). For f ∈ L1
loc, defineMf := Rn →

[0,∞] by

(Mf)(x) := sup

{
1

λn(Q)

∫
Q

|f | dλn
∣∣∣∣Q ∈ C(x)

}
.

The functionM : L1
loc → {f : Rn → [0,∞]} is called the Hardy-Littlewood maximal function.

Facts 4.4.5. The Hardy-Littlewood maximal function satisfies the following properties:

(1) M(rf) = |r| ·Mf for all r ∈ R.
(2) M(f + g) ≤Mf +Mg for all f, g ∈ L1

loc.
(3) Mf > 0 everywhere unless f = 0 a.e.
(4) Mf is lower semicontinuous ({Mf > r} is open for all r ∈ R), and thus measurable.

Example 4.4.6. For χ[−1,1] : R → C,

Mχ[−1,1](x) =

1 x ∈ [−1, 1]
2

1 + |x|
x /∈ [−1, 1]

and thus Mχ[−1,1] /∈ L1. Here is a cartoon:

−1 1 x

Q

χ[−1,1]
1

1

λ(Q)

∫
Q

χ[−1,1] dλ =
2

1 + x
.
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Exercise 4.4.7 (Sarason). Prove that for the f defined below, f ∈ L1(λ), but Mf /∈ L1
loc:

f(x) :=


1

|x|(ln |x|)2
if |x| ≤ 1

2

0 if |x| > 1
2
.

Theorem 4.4.8 (Hardy-Littlewood Maximal, a.k.a. HLMT). There is a c > 0, only depend-
ing on n, such that for all f ∈ L1(λn) and a > 0,

λn({Mf > a}) ≤ c · ∥f∥1
a

.

Remark 4.4.9. The HLMT 4.4.8 is a generalization of Chebyshev’s Inequality for a measure
space (X,M, µ): for all a ≥ 0,

∫
{a≤|f |} |f | dµ ≥ aµ({a ≤ |f |}). Hence for all f ∈ L1(µ) and

a ≥ 0,

µ({a ≤ |f |}) ≤ ∥f∥1
a

. (4.4.10)

To prove the HLMT 4.4.8, we’ll use a variation of the Vitali Covering Lemma. We’ll prove
the more general Vitali Covering Lemma, and I’ll leave the exact variation that we’ll use to
prove the HLMT as an exercise.

Lemma 4.4.11 (Vitali Covering). Let B be some collection of open balls in Rn, and let

U =
⋃
B∈B B. If c < λn(U), then there exist disjoint B1, . . . , Bk ∈ B such that

∑k
j=1 λ

n(Bj) >

3−nc.

Proof. Since λn is regular, there is a compact K ⊂ U such that c < λn(K). Then there
exist finitely many balls in B which cover K, say A1, . . . , Am. Define B1 to be the largest
(in terms of radius) of the Ai, and inductively for j ≥ 2, define Bj to be the larges of the
the Ai disjoint from B1, . . . , Bj−1. Since there are finitely many Ai, this process terminates,
giving B1, . . . , Bk.

Trick. If Ai is not one of B1, . . . , Bk, there is a smallest 1 ≤ j ≤ k such that Ai∩Bj ̸=
∅. Then rad(Ai) ≤ rad(Bj), so Ai ⊂ 3Bj, where 3Bj has the same center as Bj, but
three times the radius.

Then K ⊂
⋃k 3Bj, so

c < λn(K) ≤
k∑
λn(3Bj) = 3n

k∑
λn(Bj). □

Exercise 4.4.12 (Sarason, variation of Vitali Covering Lemma 4.4.11). Suppose E ⊂ Rn

(not assumed to be Borel measurable) and let C be a family of cubes covering E such that

sup {ℓ(Q)|Q ∈ C} <∞.

Show there exists a sequence (Qk) ⊂ C of disjoint cubes such that
∞∑
k=1

λn(Qk) ≥ 5−n(λn)∗(E).

Hint: Inductively choose Qk such that 2ℓ(Qk) is larger than the sup of the lengths of all cubes
which do not intersect Q1, . . . , Qk−1, with Q0 = ∅ by convention.
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Proof of HLMT 4.4.8. Suppose f ∈ L1(λn) and a > 0. Let E = {a < Mf} and

C =

{
cubes Q

∣∣∣∣a < 1

λn(Q)

∫
Q

|f | dλn
}
.

By definition, the cubes in C cover E. Observe that a < ℓ(Q)−n∥f∥1 implies ℓ(Q) <(
∥f∥1
a

)1/n
. By Exercise 4.4.12, there is a sequence (Qi) ⊂ C of disjoint cubes such that∑

λn(Qi) ≥ 5−nλn(E). Then

λn(E) ≤ 5n
∑

λn(Qi) ≤ 5n
∑ 1

a

∫
Qi

|f | dλn ≤ 5n · ∥f∥1
a

. □

Proof of the Lebesgue Differentiation Theorem 4.4.2.
Step 1: (LDT) for all f ∈ L1 implies (LDT) for all f ∈ L1

loc.

Proof. Suppose f ∈ L1
loc. It suffices to show that for all R > 0, (LDT) holds a.e. x ∈

QR(0) :=
∏n[−R,R]. For x ∈ QR(0) and Q ∈ C(x) with ℓ(Q) ≤ 1, the value

of 1
ℓ(Q)n

∫
Q
f dλn only depends on f(y) for y ∈ QR+1(0). So we can replace f with

fχQR+1(0) ∈ L1. □

Step 2: (LDT) for all f ∈ Cc(Rn) implies (LDT) for all f ∈ L1.

Proof. For Q ∈ C(0) and f ∈ L1, define (IQf)(x) :=
1

λn(Q)

∫
Q+x

f dλn. Observe IQ is

linear, and |IQf | ≤Mf everywhere. Now fix f ∈ L1 and ε > 0. Let

Eε :=

x ∈ Rn

∣∣∣∣∣∣∣lim sup
ℓ(Q)→0
Q∈C(0)

|IQf(x)− f(x)| > ε

 .

We’ll show (λn)∗(Eε) = 0, which implies Eε ∈ Ln and λn(Eε) = 0. If ε′ < ε, then
Eε ⊂ Eε′ . Hence

⋃
E1/n has measure zero, which implies the result.

In order to show (λn)∗(Eε) = 0, let δ > 0. Since Cc(Rn) ⊂ L1 is dense, there is a
continuous g ∈ Cc(Rn) such that ∥f − g∥1 < δ. Then

|IQf − f | = |IQ(f − g) + (IQg − g) + (g − f)|
≤ |IQ(f − g)|+ |(IQg − g)|+ |(g − f)|
≤M(f − g) + |(IQg − g)|︸ ︷︷ ︸

→0

+|g − f |

By assumption, as ℓ(Q) → 0 for Q ∈ C(0), |(IQg − g)| → 0. Hence

Eε ⊂
{ε
2
< M(f − g)

}
∪
{ε
2
< |f − g|

}
.
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By the HLMT 4.4.8 and Chebyshev’s Inequality (4.4.10),

(λn)∗(Eε) ≤ λn
({ε

2
< M(f − g)

})
+ λn

({ε
2
< |f − g|

})
≤ c∥f − g∥1

ε/2
+

∥f − g∥1
ε/2

=
2(c+ 1)

ε
· ∥f − g∥1

<
2(c+ 1)

ε
· δ.

But δ > 0 was arbitrary, so (λn)∗(Eε) = 0. □

Step 3: (LDT) holds for all g ∈ Cc(Rn).

Proof. Observe that g is uniformly continuous. Let ε > 0, and pick δ > 0 such that
x, y ∈ Q with ℓ(Q) < δ implies |g(x)− g(y)| < ε. Then for all such Q,∣∣∣∣g(x)− 1

λn(Q)

∫
Q

g(y) dλn(y)

∣∣∣∣ ≤ 1

λn(Q)

∫
Q

|g(x)− g(y)| dλn(y) < ε.

Since ε > 0 was arbitrary, the result follows. □

Combining Steps 1-3 yields the result. □

Definition 4.4.13. Suppose E ∈ Ln. A point x ∈ E is called a Lebesgue point of density of
E if

lim
ℓ(Q)→0
Q∈C(x)

λn(Q ∩ E)
λn(Q)

= 1.

Corollary 4.4.14. For E ∈ Ln, almost all points of E are Lebesgue points of density.

Proof. Apply the Lebesgue Differentiation Theorem 4.4.2 to χE. □

Exercise 4.4.15 (Steinhaus Theorem, version 2). Suppose that A,B ⊂ R are sets with
positive Lebesgue measure. Prove that there is an interval I with λ(I) > 0 such that

I ⊆ A+B = {a+ b|a ∈ A and b ∈ B} .
Definition 4.4.16. For f ∈ L1(λn), x ∈ Rn is called a Lebesgue point of f if

lim
ℓ(Q)→0
Q∈C(x)

1

λn(Q)

∫
Q

|f − f(x)| dλn = 0.

Corollary 4.4.17. For f ∈ L1
loc, almost all points of Rn are Lebesgue points of f .

Proof. As in the proof of the Lebesgue Differentiation Theorem 4.4.2, we may assume f ∈ L1.
Let D ⊂ C be a countable dense subset (Q+ iQ will suffice). For d ∈ D, set

Ed :=

x ∈ Rn

∣∣∣∣∣∣ lim
ℓ(Q)→0
Q∈C(x)

1

λn(Q)

∫
Q

|f − d| − |f(x)− d| dλn = 0

 .
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By the Lebesgue Differentiation Theorem 4.4.2, Ec
d is λn-null, which implies Ed ∈ Ln. Set

E :=
⋂
d∈D Ed ∈ Ln, and observe Ec =

⋃
d∈D E

c
d is still λn-null. We claim that every x ∈ E

is a Lebesgue point of f . Indeed, if x ∈ E, then for all d ∈ D,

|f − f(x)| ≤ |f − d|+ |f(x)− d| = (|f − d| − |f(x)− d|) + 2|f(x)− d|.

This implies for all d ∈ D,

lim sup
ℓ(Q)→0
Q∈C(x)

1

λn(Q)

∫
Q

|f − f(x)| dλn ≤ 2|f(x)− d|+ lim sup
ℓ(Q)→0
Q∈C(x)

1

λn(Q)

∫
Q

|f − d| − |f(x)− d| dλn

︸ ︷︷ ︸
=0

= 2|f(x)− d|.

But since D is dense in C, we can approximate f(x) by d ∈ D up to any ε > 0. We conclude
that x is a Lebesgue point of f . □

4.5. Functions of bounded variation. Recall that the Lebesgue-Stieltjes measures on R
were constructed from non-decreasing right continuous functions F : R → R. They enjoyed
the properties of being a complete measure which is equal to the completion of the restriction
to BR, which is a regular Borel measure.

We can adapt this construction to get a complex measure from a function F : R → C with
bounded variation.

Definition 4.5.1. For a function F : R → C, define its total variation TF : R → [0,∞] by

TF (x) := sup

{
n∑
i=1

|F (xi)− F (xi−1)|

∣∣∣∣∣n ∈ N and −∞ < x0 < x1 < · · · < xn = x

}
.

Observe that TF is a non-decreasing function. We say F has bounded variation if TF is
bounded, which is equivalent to limx→∞ TF (x) <∞. We define

BV := {F : R → C|F has bounded variation} .

Exercise 4.5.2. Prove that for all a, b ∈ R with a < b and F : R → C,

TF (b) = TF (a) + sup

{
n∑
i=1

|F (xi)− F (xi−1)|

∣∣∣∣∣n ∈ N and a = x0 < x1 < · · · < xn = b

}
.

The sup on the right hand side is called the total variation of F on [a, b]. We say F has
bounded variation on [a, b] if this number is bounded.

Exercise 4.5.3. Show that if F is differentiable and F ′ is bounded, then F ∈ BV[a, b] for
all a < b in R.

Facts 4.5.4. Here are some facts about functions with bounded variation.

(BV1) If F : R → R is increasing, then F ∈ BV if and only if F is bounded.
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Proof. For any −∞ < x0 < x1 < · · · < xn = x,
n∑
i=1

|F (xi)− F (xi−1)| = F (x)− F (x0).

Hence TF is bounded if and only if F is bounded. □

(BV2) F ∈ BV if and only if TF ∈ BV.

Proof. If F ∈ BV, then TF : R → [0,∞] is increasing and bounded, and thus
in BV by (BV1). Conversely, if TF ∈ BV, then TF is bounded by (BV1), and
thus F ∈ BV. □

(BV3) BV is a complex vector space which is closed under complex conjugation.

Proof. The triangle inequality implies TF+G ≤ TF + TG, homogeneity (|wz| =
|w| · |z|) implies TzF ≤ |z| · TF , and |z| = |z| for z ∈ C implies TF = TF . □

(BV4) F ∈ BV if and only if Re(F ), Im(F ) ∈ BV.

Proof. Just observe that Re(F ) = 1
2
(F + F ) and Im(F ) = 1

2i
(F − F ), so the

result follows from (BV3). □

(BV5) If F : R → R and F ∈ BV, then TF ± F are increasing (and in BV).

Proof. Suppose a < b in R. Let ε > 0, and choose x0 < x1 < · · · < xn = a such
that

n∑
i=1

|F (xi)− F (xi−1)| ≥ TF (a)− ε.

Then since F (b) = (F (b)− F (a)) + F (a),

TF (b)± F (b) ≥
n∑
i=1

|F (xi)− F (xi−1)|+ |F (b)− F (a)|︸ ︷︷ ︸
≤TF (b)

±F (b)

=
n∑
i=1

|F (xi)− F (xi−1)|+ |F (b)− F (a)| ± (F (b)− F (a))︸ ︷︷ ︸
≥0

±F (a)

≥ TF (a)− ε± F (a)

Since ε > 0 was arbitrary, we have TF ± F is increasing. (The parenthetical
follows from (BV3).) □

(BV6) If F : R → C, then F ∈ BV if and only if F =
∑3

k=0 i
kFk where Fk : R → R is

bounded and increasing for k = 0, 1, 2, 3.
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Proof. By (BV4), F ∈ BV if and only if Re(F ), Im(F ) ∈ BV, so we may assume
F : R → R. If F ∈ BV, just observe

F =
1

2
(TF + F )− 1

2
(TF − F ).

The converse follows from (BV1) and (BV3). □

(BV7) If F ∈ BV, then F (x+) := limy↘x F (y) and F (x−) := limy↗x F (y) exist for all x ∈ R,
as do F (±∞) := limy→±∞ F (y).

Proof. This follows from (BV6). □

Remark 4.5.5. For an R-valued F ∈ BV, we call

F =
1

2
(TF + F )− 1

2
(TF − F )

the Jordan decomposition of F . We call 1
2
(TF ± F ) the positive/negative variations of F

respectively.

Definition 4.5.6. The space of normalized functions of bounded variation is

NBV := {F ∈ BV|F is right continuous and F (−∞) = 0} .

Observe that NBV is a complex vector subspace of BV closed under complex conjugation.

Exercise 4.5.7. Suppose f ∈ L1(λ) where λ is Lebesgue measure on R. Consider the
function F : R → C by F (x) =

∫ x
−∞ f(t) dt.

(1) Prove directly from the definitions that F ∈ NBV.
(2) Describe TF to the best of your ability. Justify your answer.

Lemma 4.5.8. Suppose F : R → C.
(1) If F ∈ BV, then TF (−∞) = 0.
(2) If moreover F is right-continuous, then so is TF .

Hence F ∈ NBV implies TF ∈ NBV.

Proof.
(1) Let ε > 0. For x ∈ R, choose x0 < x1 < · · · < xn = x such that

n∑
i=1

|F (xi)− F (xi−1)| ≥ TF (x)− ε.

By Exercise 4.5.2

TF (x)− TF (x0) ≥ TF (x)− ε,

and thus TF (y) ≤ ε for all y ≤ x0. Since ε > 0 was arbitrary, TF (−∞) = 0.
(2) Now suppose F is right continuous. Fix x ∈ R, and define

α := lim
y↘x

TF (y)− TF (x).
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To show α = 0, fix ε > 0, and let δ > 0 such that 0 < h < δ implies both |F (x+h)−F (x)| < ε
and

TF (x+ h)− TF (x)− α = TF (x+ h)− lim
y↘x

TF (y) < ε. (4.5.9)

Now fixing 0 < h < δ, by Exercise 4.5.2, there are x = x0 < x1 < · · · < xn = x+h such that

3

4
α ≤ 3

4
(TF (x+h)−TF (x)) ≤

n∑
j=1

|F (xj)−F (xj−1)| = |F (x0)− F (x1)|︸ ︷︷ ︸
<ε

+
n∑
j=2

|F (xj)−F (xj−1)|

which implies that
3

4
α− ε ≤

n∑
j=2

|F (xj)− F (xj−1)|. (4.5.10)

Again using Exercise 4.5.2, there are x = x0 = t0 < t1 < · · · tk = x1 such that

3

4
α ≤

(TF ↗)

3

4
(TF (x1)− TF (x)) ≤

(Ex. 4.5.2)

k∑
i=1

|F (ti)− F (ti−1)|. (4.5.11)

Combining these inequalities, we have

α + ε > TF (x+ h)− TF (x) by (4.5.9)

≥
k∑
i=1

|F (ti)− F (ti−1)|+
n∑
j=2

|F (xj)− F (xj−1)| by Exercise 4.5.2

≥ 3

4
α +

3

4
α− ε by (4.5.10) and (4.5.11)

=
3

2
α− ε.

This implies α ≤ 4ε, but since ε > 0 was arbitrary, α = 0. □

Theorem 4.5.12.

(1) If ν is a complex Borel measure on R, then Fν(x) := ν((−∞, x]) defines a function
in NBV.

(2) If F ∈ NBV, there is a unique complex Borel measure νF such that F (x) = νF ((−∞, x]).

Proof. For a complex Borel measure ν, we have ν =
∑3

k=0 i
kνk where each νk is a finite

positive measure. If we set Fk := νk((−∞, x]), then Fk is increasing and right continuous,
Fk(−∞) = 0, and Fk(∞) = νk(R) <∞. Thus each Fk ∈ NBV, and thus Fν :=

∑3
k=0 i

kFk is
in NBV.

Conversely, by (BV6) and Lemma 4.5.8, any F ∈ NBV can be written as F =
∑3

k=0 i
kFk

where each Fk : R → [0,∞) is increasing and in NBV. By the Lebesgue-Stieltjes construction,
for each Fk, there is a finite regular Borel measure νk on R with νk((−∞, x]) = Fk(x). Setting
ν :=

∑3
k=0 i

kνk gives a complex Borel measure such that F (x) = ν((−∞, x]). Uniqueness
follows by being determined on h-intervals together with the π − λ Theorem. □

Exercise 4.5.13. Suppose F ∈ NBV, and let νF be the corresponding complex Borel mea-
sure from Theorem 4.5.12.

(1) Prove that νF is regular.
(2) Deduce that every complex Borel measure on R is regular (cf. Exercise 2.5.27).
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(3) Prove that |νF | = νTF .
One could proceed as follows.
(a) Define G(x) := |νF |((−∞, x]). Show that |νF | = νTF if and only if G = TF .
(b) Show TF ≤ G.
(c) Show that |νF (E)| ≤ νTF (E) whenever E is an interval.
(d) Show that |νF | ≤ νTF .

Exercise 4.5.14. Show that if F ∈ NBV, then (νF )± = ν 1
2
(TF±F ), i.e., the positive/negative

variations of F exactly correspond to the positive/negative parts of the Jordan decomposition
of νF .
Hint: Use Exercise 4.5.13.

Exercise 4.5.15. Show that Theorem 4.5.12 gives an isomorphism of Banach spaces

{Complex Borel measures on R} ν 7→νF−−−→ NBV

where the norm on the left hand side is ∥ν∥ = |ν|(R) and the norm on the right hand side
is ∥F∥BV := ∥TF∥∞ = limx→∞ TF (x).

4.6. Bounded variation, differentiation, and absolute continuity. We now want to
connect functions of bounded variation and ordinary differentiation on R.

Definition 4.6.1. Recall that F : R → C is called absolutely continuous if for every ε > 0,
there exists δ > 0 such that for any finite set of disjoint open intervals (a1, b1), . . . , (an, bn),

n∑
i=1

(bi − ai) < δ =⇒
n∑
i=1

|F (bi)− F (ai)| < ε.

Exercise 4.6.2 (https://math.stackexchange.com/q/348448). Define

fn(x) :=

{
x sin

(
1
x

)
if |x| > 1

n

x sin(n) if |x| ≤ 1
n

and f(x) :=

{
x sin

(
1
x

)
if x ̸= 0

0 if x = 0.

Prove that each fn is absolutely continuous, f is not absolutely continuous, and fn → f
uniformly.

Exercise 4.6.3. Suppose F ∈ NBV. Show F is absolutely continuous if and only if TF is
absolutely continuous.
Hint: Use Exercise 4.5.2.

Proposition 4.6.4. If F ∈ NBV, then F is absolutely continuous if and only if νF ≪ λ.

Proof.

Claim. We may assume F is [0,∞)-valued and increasing. Thus νF = µF is an
honest Lebesgue-Stieltjes measure.

Proof. By Exercises 4.3.13 and 4.5.13(2), νF ≪ λ if and only if |νF | = νTF ≪ λ. By
Exercise 4.6.3, F is absolutely continuous if and only if TF is absolutely continuous.
Hence we may replace F with TF ∈ NBV which is [0,∞)-valued and increasing. □
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That µF ≪ λ for a Lebesgue-Stieltjes measure is equivalent to absolute continuity of a
bounded, right-continuous F : R → [0,∞) with F (−∞) = 0 now follows Exercise 2.5.20. We
provide a proof here for completeness and convenience using Proposition 4.2.6 which states:

• µF ≪ λ if and only if for all ε > 0, there is a δ > 0 such that for all E ∈ M,
µF (E) < ε whenever λ(E) < δ.

First, suppose µF ≪ λ. For any finite set of disjoint h-intervals ((ai, bi])
n
i=1, we have∑

i=1

(bi − ai) = λ
(∐

(ai, bi]
)
< δ =⇒ µF

(∐
(ai, bi]

)
=

n∑
i=1

µF ((ai, bi]) < ε.

This immediately implies F is absolutely continuous.
Conversely, suppose F is absolutely continuous, and ε > 0. Pick δ > 0 for F as in the

definition of absolute continuity for any 0 < ε′ < ε. Suppose E ∈ L such that λ(E) < δ. By
outer regularity of λ and µF (by Exercise 4.5.13(1)), there is an open set U with E ⊂ U such
that λ(U) < δ. Then U is a countable disjoint union of open intervals by Exercise 1.1.24,
say U =

∐
(ai, bi). For each n ∈ N,

n∑
i=1

(bi − ai) ≤ λ(U) < δ =⇒
n∑
i=1

µF ((ai, bi]) =
n∑
i=1

F (bi)− F (ai) < ε′.

Taking the limit as n→ ∞, we have

µF (E) ≤ µF (U) = µ

(
∞∐
i=1

(ai, bi]

)
=

∞∑
i=1

µF ((ai, bi]) =
∞∑
i=1

F (bi)− F (ai) ≤ ε′ < ε.

Hence µF ≪ λ. □

Exercise 4.6.5. Prove that if F : [a, b] → C with a, b ∈ R is absolutely continuous, then
F ∈ BV[a, b].

Exercise 4.6.6 (cf. Folland Thm. 3.22). Denote by λn Lebesgue measure on Rn. Suppose ν
is a regular signed or complex Borel measure on Rn which is finite on compact sets (and thus
Radon and σ-finite). Let dν = dρ + fdλn be its Lebesgue-Radon-Nikodym representation
from Theorem 4.3.9. Then for λn-a.e. x ∈ Rn,

lim
ℓ(Q)→0
Q∈C(x)

ν(Q)

λn(Q)
= f(x).

Hint: One could proceed as follows.

(1) Show that d|ν| = d|ρ|+ |f |dλn. Deduce that ρ and fdλn are regular, and f ∈ L1
loc.

(2) Use the Lebesgue Differentiation Theorem to reduce the problem to showing

lim
ℓ(Q)→0
Q∈C(x)

|ρ|(Q)
λn(Q)

= 0 λn-a.e. x ∈ Rn.

Thus we may assume ρ is positive.
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(3) Since ρ ⊥ λn, pick P ⊂ Rn Borel measurable such that ρ(P ) = λn(P c) = 0. For
a > 0, define

Ea :=

x ∈ P

∣∣∣∣∣∣ lim
ℓ(Q)→0
Q∈C(x)

|ρ|(Q)
λn(Q)

> a

 .

Let ε > 0. Since ρ is regular, there is an open Uε ⊃ P such that ρ(Uε) < ε. Adapt
the proof of the HLMT to show there is a constant c > 0, depending only on n, such
that for all a > 0,

λn(Ea) ≤ c · ρ(Uε)
a

= c · ε
a

(Choose your family of cubes to be contained in Uε.) Deduce that λn(Ea) = 0.

Lemma 4.6.7. Suppose that F : R → R is increasing or F ∈ BV.

(1) The set of points at which F is discontinuous is countable.
(2) Suppose in addition F is right continuous. Let µF be the corresponding (regular,

σ-finite) Lebesgue-Stieltjes measure, and let dλ = dρ + fdλ be its Lebesgue-Radon-
Nikodym representation from Theorem 4.3.9. Then F is differentiable λ-a.e. with
F ′(x) = f(x) λ-a.e.

(3) Setting G(x) := limy↘x F (y), F and G are differentiable a.e., with F ′ = G′ a.e.

Proof. Since every F ∈ BV is a linear combination of four increasing, bounded functions
R → R by (BV6), we may assume F : R → R is an arbitrary increasing function.
(1) Observe that at every discontinuity x ∈ R, the open interval(

lim
y↗x

F (y), lim
y↘x

F (y)

)
̸= ∅

and thus contains a rational point. Since F is increasing, these open intervals at distinct
discontinuities will be disjoint, and we can construct an injective mapping from the set of
discontinuities to Q.
(2) Suppose in addition that F is right-continuous. Let D ⊂ R be the countable set of
discontinuities of F , and observe that λ(D) = 0. By Exercise 4.6.6,

lim
ℓ(Q)→0
Q∈C(x)

µF (Q)

λ(Q)
= f(x) λ-a.e. x ∈ R.

Now observe that for x /∈ D and h > 0, by Exercise 2.5.9,

µF ([x, x+ h]) = lim
y↗x

µF ((y, x+ h]) = lim
y↗x

F (x+ h)− F (y) = F (x+ h)− F (x)

If in addition x− h /∈ D, then we also have

µF ([x− h, x]) = F (x)− F (x− h).

Since D is countable and F is increasing, we may take the following limit for x ∈ Dc along
h→ 0 such that x− |h| /∈ D to conclude that

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
x−|h|/∈D

µF ([min{x, x+ h},max{x, x+ h}])
λ([min{x, x+ h},max{x, x+ h}])

= f(x) λ-a.e. x ∈ Dc by Exercise 4.6.6.
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(3), Step 1: G is increasing and right-continuous, and thus G is differentiable a.e. by (2).

If a < b in R, then since F is increasing,

G(a) = lim
x↘a

F (x) = lim
x↘a
a<x<b

F (x) ≤ F (b) ≤ G(b),

and thus G is increasing. To show G is right continuous at x ∈ R, let ε > 0. Since
G(x) = limy↘x F (y), we can pick δ′ > 0 such that 0 < h′ < δ′ implies F (x+h′)−G(x) <
ε. Then for any 0 ≤ h < δ < h′ < δ′,

G(x+ h)−G(x) ≤ F (x+ h′)−G(x) < ε.

(2), Step 2: Setting H := G− F ≥ 0, H ′ exists and is zero a.e.

First, note H(d) > 0 for all d ∈ D, and∑
d∈D
|d|<N

H(d) =
∑
d∈D
|d|<N

G(d)− F (d) ≤ G(N)− F (N) <∞. (4.6.8)

Claim. Setting η :=
∑

d∈DH(d)δd where δd is the Dirac point mass at d, η is a
regular Borel measure such that η ⊥ λ.

Proof. Observe η is finite on compact sets by (4.6.8). We define h : R → R by
picking an arbitrary r0 ∈ Dc, setting h(r0) = 0, and setting

h(r) :=


∑

d∈D
r0<d≤r

H(d) if r > r0

−
∑

d∈D
r<d<r0

H(d) if r < r0.

Observe that h is increasing and right-continuous, and by construction, the
Lebesgue-Stieltjes measure µh = η, which is thus regular. Since η is supported
on D and λ(D) = 0, we have η ⊥ λ. □

Now for |h| ̸= 0, again by Exercise 4.6.6,∣∣∣∣H(x+ h)−H(x)

h

∣∣∣∣ ≤ H(x+ h) +H(x)

|h|
≤ 2

η([x− |h|, x+ |h|])
λ([x− |h|, x+ |h|])

h→0−−→ 0 a.e. x ∈ R.

We conclude that H ′ = 0 a.e.

This concludes the proof. □

Facts 4.6.9. Suppose F ∈ NBV, and let νF = ρF + fdλ where f ∈ L1(λ) be the Lebesgue-
Radon-Nikodym Representation of νF from Theorem 4.3.9.

(NBV′1) F ′ exists λ-a.e. with F ′ = f ∈ L1(λ).
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Proof. By (BV6), F =
∑3

k=0 i
kFk where each Fk : R → R is an increasing

right-continuous function in NBV. Let µFk
= ρFk

+ fkdλ where fk ∈ L1(λ) for
k = 0, 1, 2, 3 be the Lebesgue-Radon-Nikodym representation of the Lebesgue-
Stieltjes measure µFk

from Theorem 4.2.9. By Lemma 4.6.7(2), F ′
k exists λ-a.e.,

and F ′
k = fk λ-a.e. By the proof of the Complex Lebesgue-Radon-Nikodym

Theorem 4.3.9, we have f =
∑3

k=0 i
kfk. Hence

F ′ =
3∑

k=0

ikF ′
k =

3∑
k=0

ikfk = f λ-a.e. □

(NBV′2) νF ⊥ λ if and only if F ′ = 0 a.e.

Proof. This follows immediately from (NBV′1) and the Lebesgue-Radon-
Nikodym Representation of νF . □

(NBV′3) νF ≪ λ if and only if F (x) =
∫ x
−∞ F ′(t) dt.

Proof. Observe νF ≪ λ if and only if ρF = 0 if and only if dνF = F ′dλ by
(NBV′1). This last condition is equivalent to

F (x) = νF ((−∞, x]) =

∫ x

−∞
F ′(t) dt. □

Proposition 4.6.10. The following are equivalent for F : R → C.
(1) F ∈ NBV is absolutely continuous.
(2) F is differentiable a.e., F ′ ∈ L1(λ), and F (x) =

∫ x
−∞ F ′(t) dt.

(3) There is an f ∈ L1(λ) such that F (x) =
∫ x
−∞ f(t) dt.

Proof.
(1) ⇒ (2): If F ∈ NBV is absolutely continuous, then νF ≪ λ by Proposition 4.6.4. By

(NBV′1), F is differentiable a.e. with F ′ ∈ L1(λ), and by (NBV′3), F (x) =
∫ x
−∞ F (t) dt.

(2) ⇒ (3): Trivial.

(3) ⇒ (1): Since f ∈ L1(λ), dν := fdλ is a complex Borel measure. Thus

F (x) =

∫ x

−∞
f(t) dt = ν((−∞, x])

defines a function in NBV by Theorem 4.5.12(1). Since ν ≪ λ by construction, F is absolutely
continuous by Proposition 4.6.4. □

We leave the proof of the following corollary to the reader.

Corollary 4.6.11 (Fundamental Theorem of Calculus for Lebesgue Integrals). Let a, b ∈ R
with a < b, and suppose F : [a, b] → C. The following are equivalent.

(1) F is absolutely continuous on [a, b].
(2) F is differentiable a.e. on [a, b], F ′ ∈ L1([a, b], λ), and F (x)− F (a) =

∫ x
a
F ′(t) dt.
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(3) F (x)− F (a) =
∫ x
a
f(t) dt for some f ∈ L1([a, b], λ).

Exercise 4.6.12 (Folland §3.5, #37). Show that F : R → R is Lipschitz continuous (there
is anM > 0 such that |F (x)−F (y)| ≤M |x−y| for all x, y ∈ R) if and only if F is absolutely
continuous and |F ′| ≤M a.e.
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5. Functional analysis

5.1. Normed spaces and linear maps. For this section, X will denote a vector space
over F = R or C. (We will assume F = C unless stated otherwise.)

Definition 5.1.1. A seminorm on X is a function ∥ · ∥ : X → [0,∞) which is

• (homogeneous) ∥λx∥ = |λ| · ∥x∥
• (subadditive) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

We call ∥ · ∥ a norm if in addition it is

• (definite) ∥x∥ = 0 implies x = 0.

Recall that given a norm ∥ · ∥ on a vector space X, d(x, y) := ∥x − y∥ is a metric which
induces the norm topology on X. Two norms ∥ · ∥1, ∥ · ∥2 are called equivalent if there is a
c > 0 such that

c−1∥x∥1 ≤ ∥x∥2 ≤ c∥x∥1 ∀ x ∈ X.

Exercise 5.1.2. Show that all norms on Fn are equivalent. Deduce that a finite dimensional
subspace of a normed space is closed.
Note: You may assume that the unit ball of Fn is compact in the Euclidean topology.

Exercise 5.1.3. Show that two norms ∥ · ∥1, ∥ · ∥2 on X are equivalent if and only if they
induce the same topology.

Definition 5.1.4. A Banach space is a normed vector space which is complete in the induced
metric topology.

Examples 5.1.5.

(1) If X is an LCH topological space, then C0(X) and Cb(X) are Banach spaces.
(2) If (X,M, µ) is a measure space, L1(X,M, µ) is a Banach space.
(3) ℓ1 := {(xn) ⊂ F∞|

∑
|xn| <∞}

Definition 5.1.6. Suppose (X, ∥ · ∥) is a normed space and (xn) ⊂ (X, ∥ · ∥) is a sequence.

We say
∑
xn converges to x ∈ X if

∑N xn → x as N → ∞. We say
∑
xn converges

absolutely if
∑

∥xn∥ <∞.

Proposition 5.1.7. The following are equivalent for a normed space (X, ∥ · ∥).
(1) X is Banach, and
(2) Every absolutely convergent sequence converges.

Proof.
(1) ⇒ (2): Suppose X is Banach and

∑
∥xn∥ < ∞. Let ε > 0, and pick N > 0 such that∑

n>N ∥xn∥ < ε. Then for all m ≥ n > N ,∥∥∥∥∥
m∑
xi −

n∑
xi

∥∥∥∥∥ =

∥∥∥∥∥
m∑
n+1

xi

∥∥∥∥∥ ≤
m∑
n+1

∥xi∥ ≤
∑
n>N

∥xi∥ < ε.

(2) ⇒ (1): Suppose (xn) is Cauchy, and choose n1 < n2 < · · · such that ∥xm − xn∥ < 2−k

whenever m,n > nk. Define y0 := 0 (think of this as xn0 by convention), and inductively
define yk := xnk

− xnk−1
for all k ∈ N. Then∑
∥yk∥ ≤ ∥xn1∥+

∑
k≥1

2−k = ∥xn1∥+ 1 <∞.
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Hence x := limxnk
=
∑
yk exists in X. Since (xn) is Cauchy, xn → x. □

Proposition 5.1.8. Suppose X, Y are normed spaces and T : X → Y is linear. The
following are equivalent:

(1) T is uniformly continuous (with respect to the norm topologies),
(2) T is continuous,
(3) T is continuous at 0X , and
(4) T is bounded, i.e., there exists a c > 0 such that ∥Tx∥ ≤ c∥x∥ for all x ∈ X.

Proof.
(1) ⇒ (2) ⇒ (3): Trivial.

(3) ⇒ (4): Suppose T is continuous at 0X . Then there is a neighborhood U of 0X such that

TU ⊂ {y ∈ Y |∥y∥ ≤ 1}. Since U is open, there is a δ > 0 such that {x ∈ X|∥x∥ ≤ δ} ⊂ U .
Thus ∥x∥ ≤ δ implies ∥Tx∥ ≤ 1. Then for all x ̸= 0∥∥∥∥δ · x

∥x∥

∥∥∥∥ ≤ δ =⇒
∥∥∥∥δ · Tx∥x∥

∥∥∥∥ ≤ 1 =⇒ ∥Tx∥ ≤ δ−1∥x∥.

(4) ⇒ (1): Let ε > 0. If ∥x1 − x2∥ < c−1ε, then

∥Tx1 − Tx2∥ = ∥T (x1 − x2)∥ ≤ c∥x1 − x2∥ < ε. □

Exercise 5.1.9. Suppose X is a normed space and Y ⊂ X is a subspace. Define Q : X →
X/Y by Qx = x+ Y . Define

∥Qx∥X/Y = inf {∥x− y∥X |y ∈ Y } .

(1) Prove that ∥ · ∥X/Y is a well-defined seminorm.
(2) Show that if Y is closed, then ∥ · ∥X/Y is a norm.
(3) Show that in the case of (2) above, Q : X → X/Y is continuous and open.

Optional: is Q continuous or open only in the case of (1)?
(4) Show that if X is Banach, so is X/Y .

Exercise 5.1.10.

(1) Show that for any two finite dimensional normed spaces F1 and F2, all linear maps
T : F1 → F2 are continuous.
Optional: Show that for any two finite dimensional vector spaces F1 and F2 endowed
with their vector space topologies from Exercise 5.1.2, all linear maps T : F1 → F2

are continuous.
(2) Let X,F be normed spaces with F finite dimensional, and let T : X → F be a linear

map. Prove that the following are equivalent:
(a) T is bounded (there is an c > 0 such that T (B1(0X)) ⊆ Bc(0F )), and
(b) ker(T ) is closed.
Hint: One way to do (b) implies (a) uses Exercise 5.1.9 part (3) and part (1) of this
problem.

Definition 5.1.11. Suppose X, Y are normed spaces. Let

L(X → Y ) := {bounded linear T : X → Y }.
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Define the operator norm on L(X → Y ) by

∥T∥ := sup {∥Tx∥|∥x∥ ≤ 1}
=sup {∥Tx∥|∥x∥ = 1}

=sup

{
∥Tx∥
∥x∥

∣∣∣∣∥x∥ ̸= 0

}
= inf {c > 0|∥Tx∥ ≤ c∥x∥ for all x ∈ X} ,

Observe that if S ∈ L(Y → Z) and T ∈ L(X → Y ), then ST ∈ L(X → Z) and

∥STx∥ ≤ ∥S∥ · ∥Tx∥ ≤ ∥S∥ · ∥T∥ · ∥x∥ ∀x ∈ X.

So ∥ST∥ ≤ ∥S∥ · ∥T∥.

Proposition 5.1.12. If Y is Banach, then so is L(X → Y ).

Proof. If (Tn) is Cauchy, then so is (Tnx) for all x ∈ X. Set Tx := limTnx for x ∈ X. One
verifies that T is linear, T is bounded, and Tn → T . □

Corollary 5.1.13. If X is complete, then L(X) := L(X → X) is a Banach algebra (an
algebra with a complete submultiplicative norm).

Exercise 5.1.14 (Folland §5.1, #7). Suppose X is a Banach space and T ∈ L(X). Let
I ∈ L(X) be the identity map.

(1) Show that if ∥I − T∥ < 1, then T is invertible.
Hint: Show that

∑
n≥0(I − T )n converges in L(X) to T−1.

(2) Show that if T ∈ L(X) is invertible and ∥S − T∥ < ∥T−1∥−1, then S is invertible.
(3) Deduce that the set of invertible operators GL(X) ⊂ L(X) is open.

Exercise 5.1.15. Consider the measure space (Mn(C) ∼= Cn2
, λn

2
). Show that GLn(C)c ⊂

Mn(C) is λn
2
-null.

Exercise 5.1.16 (Folland §5.2, #19). Let X be an infinite dimensional normed space.

(1) Construct a sequence (xn) such that ∥xn∥ = 1 for all n and ∥xm − xn∥ ≥ 1/2 for all
m ̸= n.

(2) Deduce X is not locally compact.

5.2. Dual spaces.

Definition 5.2.1. Let X be a (normed) vector space. A linear map X → F is called a
(linear) functional. The dual space of X is X∗ := Hom(X → F). Here, Hom means:

• linear maps if X is a vector space, and
• bounded linear maps if X is a normed space.

Exercise 5.2.2. Suppose φ, φ1, . . . , φn are linear functionals on a vector space X. Prove
that the following are equivalent.

(1) φ =
∑n

k=1 αkφk for some α1, . . . , αn ∈ F.
(2) There is an α > 0 such that for all x ∈ X, |φ(x)| ≤ αmaxk=1,...,n |φk(x)|.
(3)

⋂n
k=1 ker(φk) ⊂ ker(φ).
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Exercise 5.2.3. Let X be a locally compact Hausdorff space and suppose φ : C0(X) → C
is a linear functional such that φ(f) ≥ 0 whenever f ≥ 0. Prove that φ is bounded.
Hint: Argue by contradiction that {φ(f)|0 ≤ f ≤ 1} is bounded using Proposition 5.1.7.

Proposition 5.2.4. Suppose X is a complex vector space.

(1) If φ : X → C is C-linear, then Re(φ) : X → R is R-linear, and for all x ∈ X,

φ(x) = Re(φ)(x)− iRe(φ)(ix).

(2) If f : X → R is R-linear, then
φ(x) := f(x)− if(ix)

defines a C-linear functional.
(3) Suppose X is normed and φ : X → C is C-linear.

• In Case (1), ∥φ∥ <∞ implies ∥Re(φ)∥ ≤ ∥φ∥
• In Case (2), ∥Re(φ)∥ <∞ implies ∥φ∥ ≤ ∥Re(φ)∥.

Thus ∥φ∥ = ∥Re(φ)∥.

Proof.
(1) Just observe Im(φ(x)) = −Re(iφ(x)) = −Re(φ)(ix).
(2) It is clear that φ is R-linear. We now check

φ(ix) = f(ix)− if(i2x) = f(ix)− if(−x) = if(x) + f(ix) = i(f(x)− if(ix)) = iφ(x).

(3, Case 1) Since |Re(φ)(x)| ≤ |φ(x)| for all x ∈ X, ∥Re(φ)∥ ≤ ∥φ∥.
(3, Case 2) If φ(x) ̸= 0, then

|φ(x)| = sgn(φ(x))φ(x) = φ(sgn(φ(x)) · x) = Re(φ)(sgn(φ(x)) · x).
Hence |φ(x)| ≤ ∥Re(φ)∥ · ∥x∥, which implies ∥φ∥ ≤ ∥Re(φ)∥. □

Exercise 5.2.5. Consider the following sequence spaces.

ℓ1 :=
{
(xn) ⊂ C∞

∣∣∣∑ |xn| <∞
}

∥x∥1 :=
∑

|xn|

c0 := {(xn) ⊂ C∞|xn → 0 as n→ ∞} ∥x∥∞ := sup |xn|

c :=
{
(xn) ⊂ C∞

∣∣∣ lim
n→∞

xn exists
}

∥x∥∞ := sup |xn|

ℓ∞ := {(xn) ⊂ C∞|sup |xn| <∞} ∥x∥∞ := sup |xn|
(1) Show that every space above is a Banach space.

Hint: First show ℓ1 and ℓ∞ are Banach. Then show c0, c are closed in ℓ∞.
(2) Construct isometric isomorphisms c∗0

∼= ℓ1 ∼= c∗ and (ℓ1)∗ ∼= ℓ∞.
(3) Which of the above spaces are separable?

Warning 5.2.6. If X is a normed space, constructing a non-zero bounded linear functional
takes a considerable amount of work. One cannot get by simply choosing a basis for X as
an ordinary linear space and mapping the basis to arbitrarily chosen elements of F.

Definition 5.2.7. Suppose X is an R-vector space. A sublinear (Minkowski) functional on
X is a function p : X → R such that

• (positive homogeneous) for all x ∈ X and r ≥ 0, p(rx) = rp(x), and
• (subadditive) for all x, y ∈ X, p(x+ y) ≤ p(x) + p(y).
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Theorem 5.2.8 (Real Hahn-Banach). Let X be an R-vector space, p : X → R a sublinear
functional, Y ⊂ X a subspace, and f : Y → R a linear functional such that f(y) ≤ p(y)
for all y ∈ Y . Then there is an R-linear functional g : X → R such that g|Y = f and
g(x) ≤ p(x) for all x ∈ X.

Proof.
Step 1: For all x ∈ X \Y , there is a linear g : Y ⊕Rx→ R such that g|Y = f and g(z) ≤ p(z)
on Y ⊕ Rx.

Proof. Any extension g of f to Y ⊕Rx is determined by g(y+ rx) = f(y) + rα for all
r ∈ R, where α = g(x). We want to choose α ∈ R such that

f(y) + rα ≤ p(y + rx) ∀ y ∈ Y and ∀ r ∈ R. (5.2.9)

Since f is R-linear and p is positive homogeneous, we need only consider the cases
r = ±1. Restricting to these 2 cases, (5.2.9) becomes:

f(y)− p(y − x) ≤ α ≤ p(z + x)− f(z) ∀ y, z ∈ Y.

Now observe that

p(z+x)−f(z)−f(y)+p(y−x) = p(z+x)+p(y−x)−f(y+z) ≥ p(y+z)−f(y+z) ≥ 0.

Hence there exists an α which lies in the interval

[sup {f(y)− p(y − x)|y ∈ Y } , inf {p(z + x)− f(z)|z ∈ Y }]. □

Step 2: Observe that Step 1 applies to any extension g of f to Y ⊂ Z ⊂ X such that g|Y = f
and g ≤ p on Z. Thus any maximal extension g of f satisfying g|Y = f and g ≤ p on its
domain must have domain X. Note that{

(Z, g)

∣∣∣∣Y ⊆ Z ⊆ X is a subspace and g : Z → R
such that g|Y = f and g ≤ p on Z

}
is partially ordered by (Z1, g1) ≤ (Z2, g2) if Z1 ⊆ Z2 and g2|Z1 = g1. Since every ascending
chain has an upper bound, there is a maximal extension by Zorn’s Lemma. □

Remark 5.2.10. Suppose p is a seminorm on X and f : X → R is R-linear. Then f ≤ p if
and only if |f | ≤ p. Indeed,

|f(x)| = ±f(x) = f(±x) ≤ p(±x) = p(x).

Theorem 5.2.11 (Complex Hahn-Banach). Let X be an C-vector space, p : X → [0,∞) a
seminorm, Y ⊂ X a subspace, and φ : Y → R a linear functional such that |φ(y)| ≤ p(y)
for all y ∈ Y . Then there is a C-linear functional ψ : X → C such that ψ|Y = φ and
|ψ(x)| ≤ p(x) for all x ∈ X.

Proof. By the Real Hahn-Banach Theorem 5.2.8 applied to Re(φ) which is bounded above
by p, there is an R-linear extension g : X → R such that g|Y = Re(φ) and |g| ≤ p. Define
ψ(x) := g(x)− ig(ix). By Proposition 5.2.4, ψ|Y = φ. Finally, for all x ∈ X,

|ψ(x)| = sgnψ(x) · ψ(x) = ψ(sgnψ(x) · x) = g(sgnψ(x) · x) ≤ p(sgnψ(x) · x) = p(x). □

Facts 5.2.12. Here are some corollaries of the Hahn-Banach Theorems 5.2.8 and 5.2.11. Let
X be an F-linear normed space.
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(HB1) If x ̸= 0, there is a φ ∈ X∗ such that φ(x) = ∥x∥ and ∥φ∥ = 1.

Proof. Define f : Fx→ F by f(λx) := λ∥x∥, and observe that |f | ≤ ∥ · ∥. Now
apply Hahn-Banach. □

(HB2) If Y ⊂ X is closed and x /∈ Y , there is a φ ∈ X∗ such that ∥φ∥ = 1 and

φ(x) = ∥x+ Y ∥X/Y := inf
y∈Y

∥x− y∥.

Proof. Apply (HB1) to x + Y ∈ X/Y to get f ∈ (X/Y )∗ such that ∥f∥ = 1
and

f(x+ Y ) = ∥x+ Y ∥ = inf
y∈Y

∥x− y∥.

By Exercise 5.1.9, the canonical quotient map Q : X → X/Y is continuous.
Since

∥x+ Y ∥ = inf
y∈Y

∥x− y∥ ≤ ∥x∥ ∀ x ∈ X,

we have ∥Q∥ ≤ 1. Thus φ := f ◦Q works. □

(HB3) X∗ separates points of X.

Proof. If x ̸= y, then by (HB1), there is a φ ∈ X∗ such that φ(x − y) =
∥x− y∥ ̸= 0. □

(HB4) For x ∈ X, define evx : X∗ → F by evx(φ) := φ(x). Then ev : X → X∗∗ is a linear
isometry.

Proof. It is easy to see that ev is linear. For all φ ∈ X∗,

∥ evx(φ)∥ = |φ(x)| ≤ ∥φ∥ · ∥x∥ =⇒ ∥ evx ∥ ≤ ∥x∥.
Thus evx ∈ X∗∗. If x ̸= 0, by (HB1) there is a φ ∈ X∗ such that φ(x) = ∥x∥
and ∥φ∥ = 1. Thus ∥ evx ∥ = ∥x∥. □

Exercise 5.2.13 (Banach Limits). Let ℓ∞(N,R) denote the Banach space of bounded func-
tions N → R. Show that there is a φ ∈ ℓ∞(N,R)∗ satisfying the following two conditions:

(1) Letting S : ℓ∞(N,R) → ℓ∞(N,R) be the shift operator (Sx)n = xn+1 for x = (xn)n∈N,
φ = φ ◦ S.

(2) For all x ∈ ℓ∞, lim inf xn ≤ φ(x) ≤ lim supxn.

Hint: One could proceed as follows.

(1) Consider the subspace Y = im(S − I) = {Sx− x|x ∈ ℓ∞}. Prove that for all y ∈ Y
and r ∈ R, ∥y + r · 1∥ ≥ |r|, where 1 = (1)n∈N ∈ ℓ∞.

(2) Show that the linear map f : Y ⊕ R1 → R given by f(y + r · 1) := r is well-defined,
and |f(z)| ≤ ∥z∥ for all z ∈ Y ⊕ R1.

(3) Use the Real Hahn-Banach Theorem 5.2.8 to extend f to a g ∈ ℓ∞(N,R)∗ which
satisfies (1) and (2).
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Definition 5.2.14. For a normed space X, its completion is X := ev(X) ⊂ X∗∗, which is
always Banach. Observe that if X is Banach, then ev(X) ⊂ X∗∗ is closed. In this case, if
ev(X) = X∗∗, we call X reflexive.

Exercise 5.2.15. Show that X is reflexive if and only if X∗ is reflexive.
Hint: Instead of the converse, try proving the inverse, i.e., if X is not reflexive, then X∗ is
not reflexive.

Exercise 5.2.16.

(1) (Folland §5.2, #25) Prove that if X is a Banach space such that X∗ is separable,
then X is separable.

(2) Find a separable Banach space X such that X∗ is not separable.

5.3. The Baire Category Theorem and its consequences.

Theorem 5.3.1 (Baire Category). Suppose X is either:

(1) a complete metric space, or
(2) an LCH space.

Suppose (Un) is a sequence of open dense subsets of X. Then
⋂
Un is dense in X.

Proof. Let V0 ⊂ X be non-empty and open. We will inductively construct for n ∈ N a
non-empty open set Vn ⊂ Vn ⊂ Un ∩ Vn−1.
Case 1: Take Vn to be a ball of radius < 1/n.
Case 2: Take Vn such that Vn is compact, so (Vn) are non-empty nested compact sets.

Claim. K :=
⋂
Vn is not empty.

Proof of Claim.
Case 1: Let xn be the center of Vn for all n. Then (xn) is Cauchy, so it converges. The
limit lies in K by construction.
Case 2: Observe (Vn) is a family of closed sets with the finite intersection property.
Since V1 is compact, we have K ̸= ∅. □

Now observe ∅ ̸= K ⊂ (
⋂
Un) ∩ V0. Thus

⋂
Un is dense in X. □

Corollary 5.3.2. If X is as in the Baire Category Theorem 5.3.1, then X is not meager,
i.e., a countable union of nowhere dense sets.

Proof. If (Yn) is a sequence of nowhere dense sets, then (Un := Yn
c
) is a sequence of open

dense sets. Then ⋂
Un =

⋂
Yn

c
=
(⋃

Yn

)c
⊆
(⋃

Yn

)c
is dense in X, so

⋃
Yn ̸= X. □

Lemma 5.3.3. Suppose X, Y are Banach spaces and T ∈ L(X → Y ). Let U ⊂ X be an
open ball centered at 0X and V ⊂ Y be an open ball centered at 0Y . If V ⊂ TU , then
V ⊂ TU .

Proof. Let y ∈ V . Take r ∈ (0, 1) such that y ∈ rV . Let ε ∈ (0, 1) to be decided later.
Observe that

y ∈ rV ⊂ rTU = TrU,
107



so there is an x0 ∈ rU such that

y − Tx0 ∈ εrV ⊂ εrTU = T (εrU).

Then there is an x1 ∈ εrU such that

y − Tx0 − Tx1 ∈ ε2rV ⊂ T (ε2rU).

Hence by induction, we can construct a sequence (xn) such that

xn ∈ εnrU and y −
n∑
j=0

Txj ∈ εn+1rV.

Observe that
∑
xj converges as ∥xj∥ < εjrR (which is summable!), where R := radius(U).

Moreover,

T
∑

xj = lim
n→∞

T
n∑
xj = lim

n→∞

n∑
Txj = y.

Finally, we have ∥∥∥∑xj

∥∥∥ ≤
∑

∥xj∥ <
∞∑
j=0

εjrR =
rR

1− ε
,

so
∑
xj ∈ r

1−εU . Thus if ε < 1− r, then
∑
xn ∈ U , so y ∈ TU . □

Theorem 5.3.4 (Open Mapping). Suppose X, Y are Banach spaces and T ∈ L(X → Y ) is
surjective. Then T is an open map.

Proof. It suffices to prove T maps an open neighborhood of 0X to an open neighborhood of
0Y . Note Y =

⋃
n TBn(0X). By the Baire Category Theorem 5.3.1, there is an n ∈ N such

that TBn(0) contains a non-empty open set, say Tx0 + V where x0 ∈ TBn(0X) and V is an

open ball in Y with center 0Y . Then V ⊂ TBn(0) − Tx0 ⊂ TB2n(0X). By Lemma 5.3.3,
V ⊂ TB2n(0X). □

Facts 5.3.5. Here are some corollaries of the Open Mapping Theorem 5.3.4.

(OMT1) Suppose X, Y are Banach spaces and T ∈ L(X → Y ) is bijective. Then T−1 ∈
L(Y → X), and we call T an isomorphism.

Proof. When T is bijective, T−1 is continuous if and only if T is open. □

(OMT2) Suppose X is Banach under ∥·∥1 and ∥·∥2. If there is a c ≥ 0 such that ∥x∥1 ≤ c∥x∥2
for all x ∈ X, then ∥ · ∥1 and ∥ · ∥2 are equivalent.

Proof. Apply (OMT1) to the identity map id : (X, ∥ · ∥2) → (X, ∥ · ∥1). □

Definition 5.3.6. Suppose X,Y are normed spaces and T : X → Y is linear. The graph of
T is the subspace

Γ(T ) := {(x, y)|Tx = y} ⊂ X × Y.

Here, we endow X × Y with the norm

∥(x, y)∥∞ := max{∥x∥X , ∥y∥Y }.
We say T is closed if Γ(T ) ⊂ X × Y is a closed subspace.
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Remark 5.3.7. If T ∈ L(X → Y ), then Γ(T ) is closed. Indeed, (xn, Txn) → (x, y) if and
only if xn → x and Txn → y. Since T is continuous, Txn → Tx. Since Y is Hausdorff,
Tx = y.

Theorem 5.3.8 (Closed Graph). Suppose X, Y are Banach. If T : X → Y is a closed linear
map, then T ∈ L(X → Y ), i.e., T is bounded.

Proof. Since X, Y are Banach, so is X × Y . Consider the canonical projection maps πX :
X × Y → X and πY : X × Y → Y , which are continuous. Since πX |Γ(T ) : Γ(T ) → X by
(x, Tx) 7→ x is norm decreasing and bijective, πX |−1

Γ(T ) is bounded by (OMT1). Now observe

x (x, Tx) Tx
πX |−1

Γ(T ) πY |Γ(T )
=⇒ T = πY |Γ(T ) ◦ πX |−1

Γ(T )

which is bounded as the composite of two bounded linear maps. □

Exercise 5.3.9. Suppose X, Y are Banach spaces and S : X → Y and T : Y ∗ → X∗ are
linear maps such that

φ(Sx) = (Tφ)(x) ∀ x ∈ X, ∀φ ∈ Y ∗.

Prove that S, T are bounded.

Definition 5.3.10. A subset S of a topological space (X, T ) is called:

• meager if S is a countable union of nowhere dense sets, and
• residual if Sc is meager.

Exercise 5.3.11. Construct a (non-closed) infinite dimensional meager subspace of ℓ∞.

Theorem 5.3.12 (Banach-Steinhaus/Uniform Boundedness Principle). Suppose X, Y are
normed spaces and S ⊂ L(X → Y ).

(1) If supT∈S ∥Tx∥ <∞ for all x in a non-meager subset of X, then supT∈S ∥T∥ <∞.
(2) If X is Banach and supT∈S ∥Tx∥ <∞ for all x ∈ X, then supT∈S ∥T∥ <∞.

Proof.
(1) Define

En : =

{
x ∈ X

∣∣∣∣sup
T∈S

∥Tx∥ ≤ n

}
=
⋂
T∈S

{x ∈ X|∥Tx∥ ≤ n}

=
⋂
T∈S

(∥ · ∥ ◦ T︸ ︷︷ ︸
cts

)−1([0, n]),
(5.3.13)

which is closed in X. Since
⋃
En is a non-meager subset of X, some En is non-meager. Thus

there is an x0 ∈ X, r > 0, and n > 0 such that Br(x0) ⊂ En. Then Br(0) ⊂ E2n:

∥Tx∥ ≤ ∥T ( x− x0︸ ︷︷ ︸
∈Br(x0)⊂En

)∥+ ∥Tx0∥ ≤ 2n when ∥x∥ ≤ r.

Thus for all T ∈ S and ∥x∥ ≤ r, we have ∥Tx∥ ≤ 2n. This implies

sup
T∈S

∥T∥ ≤ 2n

r
.
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(2) Define En as in (5.3.13) above. Since X =
⋃
En is Banach, the sets cannot all be meager

by Corollary 5.3.2 to the Baire Category Theorem 5.3.1. The result now follows from (1). □

Exercise 5.3.14. Provide examples of the following:

(1) Normed spaces X, Y and a discontinuous linear map T : X → Y with closed graph.
(2) Normed spaces X, Y and a family of linear operators {Tλ}λ∈Λ such that (Tλx)λ∈Λ is

bounded for every x ∈ X, but (∥Tλ∥)λ∈Λ is not bounded.

Exercise 5.3.15. Suppose X and Y are Banach spaces and T : X → Y is a continuous
linear map. Show that the following are equivalent.

(1) There exists a constant c > 0 such that ∥Tx∥Y ≥ c∥x∥X for all x ∈ X.
(2) T is injective and has closed range.

Exercise 5.3.16 (Folland §5.3, #42). Let En ⊂ C([0, 1]) be the space of all functions f
such that there is an x0 ∈ [0, 1] such that |f(x)− f(x0)| ≤ n|x− x0| for all x ∈ [0, 1].

(1) Prove that En is nowhere dense in C([0, 1]).
(2) Show that the subset of nowhere differentiable functions is residual in C([0, 1]).

Exercise 5.3.17. Suppose X, Y are Banach spaces and (Tn) ⊂ L(X → Y ) is a sequence of
bounded linear maps such that (Tnx) converges for all x ∈ X.

(1) Show that Tx := limTnx defines a bounded linear map.
(2) Does Tn → T in norm? Give a proof or a counterexample.

Hint: Think about shift operators on a sequence space.

5.4. Topological vector spaces.

Definition 5.4.1. An F-vector space X equipped with a topology T is called a topological
vector space if

+ : X ×X −→ X

· : F×X −→ X

are continuous.
A subset C ⊆ X is called convex if if

x, y ∈ C =⇒ tx+ (1− t)y ∈ C ∀ t ∈ [0, 1].

A topological vector space is called locally convex if for all x ∈ X and open neighborhoods
U ⊂ X of x, there is a convex open neighborhood V of x such that V ⊆ U .

Facts 5.4.2. Suppose P is a family of seminorms on the F-vector space X. For x ∈ X,
p ∈ P , and ε > 0, define

Ux,p,ε := {y ∈ X|p(x− y) < ε} .
Let T be the topology generated by the sets Ux,p,ε, i.e., arbitrary unions of finite intersections
of sets of this form.

(LCnvx1) Suppose x1, . . . , xn ∈ X, p1, . . . , pn ∈ P , and ε1, . . . , εn > 0 and x ∈
⋂n
i=1 Uxi,pi,εi .

Then there is a ε > 0 such that
n⋂
i=1

Ux,pi,ε = {y ∈ X|pi(x− y) < ε ∀ p1, . . . , pn ∈ P} ⊂
n⋂
i=1

Uxi,pi,εi .
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Hence sets of the form
⋂n
i=1 Ux,pi,ε = {y ∈ X|pi(x− y) < ε ∀ p1, . . . , pn ∈ P} form a

neighborhood base for T at x.

Proof. Define ε := min {εi − pi(x− xi)|i = 1, . . . , n}. Then for all y ∈⋂n
i=1 Ux,pi,ε and j = 1, . . . , n,

pj(xj − y) ≤ pj(xj − x) + pj(x− y) ≤ (εj − ε) + ε = εj.

Thus y ∈
⋂n
i=1 Uxi,pi,εi , and thus

⋂n
i=1 Ux,pi,ε ⊆

⋂n
i=1 Uxi,pi,εi . □

(LCnvx2) If (xi) ⊂ X is a net, xi → x if and only if p(x− xi) → 0 for all p ∈ P .

Proof. By (LCnvx1) xi → x if and only if (xi) is eventually in Ux,p,ε for all
ε > 0 and p ∈ P if and only if p(x− xi) → 0 for all p ∈ P . □

(LCnvx3) T is the weakest topology such that the p ∈ P are continuous.

Proof. Exercise. □

(LCnvx4) (X, T ) is a topological vector space.

Proof.
+ cts: Suppose xi → x and yi → y. Then for all p ∈ P ,

p(x+ y − (xi + yi)) ≤ p(x− xi) + p(y − yi) → 0.

· cts: Suppose xi → x and αi → α. Then for all p ∈ P ,

p(αixi − αx) ≤ p(αixi − αxi) + p(αxi − αx)

≤ |αi − α|︸ ︷︷ ︸
→0

· p(xi)︸ ︷︷ ︸
→p(x)

+|α| · p(xi − x)︸ ︷︷ ︸
→0

. □

(LCnvx5) (X, T ) is locally convex.

Proof. Observe that each Ux,p,ε is convex. Indeed, if y, z ∈ Ux,p,ε, then for all
t ∈ [0, 1],

p(x− (ty + (1− t)z)) = p((tx+ (1− t)x)− (ty + (1− t)z))

= p((t(x− y) + (1− t)(x− z))

≤ t · p(x− y) + (1− t) · p(x− z)

< tε+ (1− t)ε

= ε.

The result now follows from (LCnvx1) as the intersection of convex sets is
convex. □
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(LCnvx6) (X, T ) is Hausdorff if and only if P separates points if and only if for all x ∈ X \{0},
there is a p ∈ P such that p(x) ̸= 0.

Proof. Exercise. □

(LCnvx7) If (X, T ) is Hausdorff and P is countable, then there exists a metric d : X × X →
[0,∞) which is translation invariant (d(x + z, y + z) = d(x, y) for all x, y, z ∈ X)
which induces the same topology as P .

Proof. Let P = (pn) be an enumeration and set

d(x, y) :=
∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)

We leave it to the reader to verify that d is a translation invariant metric which
induces the topology T . □

(LCnvx8) If (X, T ) is locally convex Hausdorff TVS, then T is given by a separating family of
seminorms.

Proof. Beyond the scope of this course; take Functional Analysis 7211. □

Proposition 5.4.3. Suppose (X,P) and (Y,Q) are seminormed locally convex topological
vector spaces. The following are equivalent for a linear map T : X → Y :

(1) T is continuous.
(2) T is continuous at 0X .
(3) For all q ∈ Q, there are p1, . . . , pn ∈ P and c > 0 such that q(Tx) ≤ c

∑n
j=1 pj(x) for

all x ∈ X.

Proof.
(1) ⇒ (2): Trivial.

(2) ⇒ (3): Suppose T is continuous at 0X and q ∈ Q. Then there are p1, . . . , pn ∈ P and

ε > 0 such that for all x ∈ V :=
⋂n
i=1 U0,pi,ε, we have q(Tx) < 1. Fix x ∈ X. If pi(x) = 0 for

all i = 1, . . . , n, then rx ∈ V for all r > 0, so

rq(Tx) = q(Trx︸︷︷︸
∈V

) < 1 ∀ r > 0.

This implies q(Tx) = 0 ≤ c
∑n

i=1 pi(x) for all c > 0, so we may assume p1(x) > 0. Then

y :=

(
ε

2
∑n

i=1 pi(x)

)
· x ∈ V

as pi(y) ≤ ε/2 < ε for all i = 1, . . . , n. Thus

q(Tx) =

(
2

ε

n∑
i=1

pi(x)

)
q(Ty) <

2

ε

n∑
i=1

pi(x)

as desired.
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(3) ⇒ (1): We must show if xi → x in X, then q(Txi− Tx) → 0 for all q ∈ Q. Since xi → x,

p(xi−x) → 0 for all p ∈ P . Fix q ∈ Q. By (3), there are p1, . . . , pn ∈ P and c > 0 such that

q(T (xi − x)) ≤ c

n∑
j=1

pj(xi − x) −→ 0 ∀x ∈ X. □

Definition 5.4.4. Let X be a normed space. Recall that X∗ separates points of X by the
Hahn-Banach Theorem 5.2.8 or 5.2.11. Consider the family of seminorms

P := {x 7→ |φ(x)| |φ ∈ X∗}
on X, which separates points. Hence P induces a locally convex Hausdorff vector space
topology on X in which xi → x if and only if φ(xi) → φ(x) for all φ ∈ X∗ by (LCnvx2). We
call this topology the weak topology on X.

Proposition 5.4.5. If U ⊂ X is weakly open then U is ∥ · ∥-open.
Proof. Observe that every basic open set Ux,φ,ε = {y ∈ X| |φ(x− y)| < ε} is norm open in
X. Indeed, y 7→ |φ(x − y)| is norm continuous as φ ∈ X∗ is norm continuous, the vector
space operations are norm-continuous, and | · | : C → [0,∞) is continuous. □

Exercise 5.4.6. Let X be a normed space. Prove that the weak and norm topologies agree
if and only if X is finite dimensional.

Proposition 5.4.7. A linear functional φ : X → F is weakly continuous (continuous with
respect to the weak topology) if and only if φ ∈ X∗ (continuous with respect to the norm
topology).

Proof. Suppose φ ∈ X∗. Then φ−1(Bε(0C)) = {x ∈ X| |φ(x)| < ε} = U0,ε,ε is weakly open.
Hence φ is continuous at 0X and thus weakly continuous by Proposition 5.4.3.
Now suppose φ : X → C is weakly continuous. Then for all U ⊂ C open, φ−1(U) is

weakly open and thus norm open by Proposition 5.4.5. Thus φ is ∥ · ∥-continuous and thus
in X∗. □

Definition 5.4.8. The weak* topology on X∗ is the locally convex Hausdroff vector space
topology induced by the separating family of seminorms

P = {φ 7→ | evx(φ)| = |φ(x)| |x ∈ X} .
Observe that φi → φ if and only if φi(x) → φ(x) for all x ∈ X.

Theorem 5.4.9 (Banach-Alaoglu). The norm-closed unit ball B∗ of X∗ is weak*-compact.

Proof.

Trick. For x ∈ X, let Dx = {z ∈ C| |z| ≤ ∥x∥ }. By Tychonoff’s Theorem, D :=∏
x∈X Dx is compact Hausdorff. The elements (dx) ∈ D are precisely functions f :

X → C (not necessarily linear) such that |f(x)| ≤ ∥x∥ for all x ∈ X.

Observe B∗ ⊂ D is the subset of linear functions. The relative product topology on B∗ is
the relative weak* topology, as both are pointwise convergence. It remains to prove B∗ ⊂ D
is closed. If (φi) ⊂ B∗ is a net with φi → φ ∈ D, then

φ(αx+ y) = limφi(αx+ y) = limαφi(x) + φi(y) = αφ(x) + φ(y). □
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Exercise 5.4.10. Let X be a normed space.

(1) Show that every weakly convergent sequence in X is norm bounded.
(2) Suppose in addition that X is Banach. Show that every weak* convergent sequence

in X∗ is norm bounded.
(3) Give a counterexample to (2) when X is not Banach.

Hint: Under ∥ · ∥∞, c∗c
∼= ℓ1, where cc is the space of sequences which are eventually

zero.

Exercise 5.4.11 (Goldstine’s Theorem). Let X be a normed vector space with closed unit
ball B. Let B∗∗ be the unit ball in X∗∗, and let i : X → X∗∗ be the canonical inclusion.
Recall that the weak* topology on X∗∗ is the weak topology induced by X∗. In this exercise,
we will prove that i(B) is weak* dense in B∗∗.
Note: You may use a Hahn-Banach separation theorem that we did not discuss in class to
prove the result directly if you do not choose to proceed along the following steps.

(1) Show that for every x∗∗ ∈ B∗∗, φ1, . . . , φn ∈ X∗, and δ > 0, there is an x ∈ (1 + δ)B
such that φi(x) = x∗∗(φi) for all 1 ≤ i ≤ n.
Hint: Here is a walkthrough for this first part. Fix φ1, . . . , φn ∈ X∗.
(a) Find x ∈ X such that φi(x) = x∗∗(φi) for all 1 ≤ i ≤ n.
(b) Set Y :=

⋂
ker(φi) and let δ > 0. Show by contradiction that (x+Y )∩(1+δ)B ̸=

∅. (This part uses the Hahn-Banach Theorem.)
(2) Suppose U is a basic open neighborhood of x∗∗ ∈ B∗∗. Deduce that for every δ > 0,

(1 + δ)i(B) ∩ U ̸= ∅. That is, there is an xδ ∈ (1 + δ)B such that i(xδ) ∈ U .
(3) By part (2), (1 + δ)−1xδ ∈ B. Show that for δ sufficiently small (which can be

expressed in terms of the basic open neighborhood U), (1 + δ)−1i(xδ) ∈ i(B) ∩ U .

Exercise 5.4.12. Suppose X is a Banach space. Prove that X is reflexive if and only if the
unit ball of X is weakly compact.
Hint: Use the Banach-Alaoglu Theorem 5.4.9 and Exercise 5.4.11.

Exercise 5.4.13. Suppose X,Y are Banach spaces and T : X → Y is a linear transforma-
tion.

(1) Show that if T ∈ L(X, Y ), then T is weak-weak continuous. That is, if xλ → x in
the weak topology on X induced by X∗, then Txλ → Tx in the weak topology on Y
induced by Y ∗.

(2) Show that if T is norm-weak continuous, then T ∈ L(X, Y ).
(3) Show that if T is weak-norm continuous, then T has finite rank, i.e., TX is finite

dimensional.

Hint: For part (3), one could proceed as follows.

(1) First, reduce to the case that T is injective by replacing X with Z = X/ ker(T ) and
T with S : Z → Y given by x + ker(T ) 7→ Tx. (You must show S is weak-norm
continuous on Z.)

(2) Take a basic open set U = {z ∈ Z| |φi(z)| < ε for all i = 1, . . . , n} ⊂ S−1B1(0Y ). Use
that S is injective to prove that

⋂n
i=1 ker(φi) = (0).

(3) Use Exercise 5.2.2 to deduce that Z∗ is finite dimensional, and thus that Z and
TX = SZ are finite dimensional.

Exercise 5.4.14. Suppose X is a Banach space. Prove the following are equivalent:
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(1) X is separable.
(2) The relative weak* topology on the closed unit ball of X∗ is metrizable.

Deduce that if X is separable, the closed unit ball of X∗ is weak* sequentially compact.
Hint: For (1) ⇒ (2), you could adapt either the proof of (LCnvx7) or the trick in the proof
of the Banach-Alaoglu Theorem 5.4.9 using a countable dense subset. For (2) ⇒ (1), there a
countable neighborhood base (Un) ⊂ B∗ at 0X such that

⋂
Un = {0}. For each n ∈ N, there

is a finite set Dn ⊂ X and an εn > 0 such that

Un ⊇ {φ ∈ X∗| |φ(x)| < εn for all x ∈ Dn} .

Setting D =
⋃
Dn, show that span(D) is dense in X. Deduce that X is separable.

Exercise 5.4.15. Suppose X is a Banach space. Prove the following are equivalent:

(1) X∗ is separable.
(2) The relative weak topology on the closed unit ball of X is metrizable.

Exercise 5.4.16. How do you reconcile Exercises 5.4.12, 5.4.14, and 5.4.15? That is, how
do you reconcile the fact that there exist separable Banach spaces which are not reflexive?

Exercise 5.4.17.

(1) Prove that the norm closed unit ball of ℓ∞ is weak* sequentially compact.
(2) Prove that the norm closed unit ball of ℓ∞ is not weakly sequentially compact.

Hint: One could proceed as follows.
(a) Prove that the weak* topology on ℓ∞ ∼= (ℓ1)∗ is contained in the weak topology,

i.e., if xi → x weakly, then xi → x weak*.
(b) Consider the sequence (xn) ⊂ c ⊂ ℓ∞ given by

(xn)(m) =

{
0 if n < m

1 if n ≥ m.

Show that xn → 0 weak* in ℓ∞.
(c) Show that (xn) does not converge weakly in ℓ∞ by extending lim : c→ C to ℓ∞.
(d) Deduce no subsequence of (xn) converges weakly in ℓ∞.

Remark 5.4.18. The Eberlein-Šmulian Theorem (which we will not prove here) states that
if X is a Banach space and S ⊂ X, the following are equivalent.

(1) S is weakly precompact, i.e., the weak closure of S is weakly compact.
(2) Every sequence of S has a weakly convergent subsequence (whose weak limit need

not be in S).
(3) Every sequence of S has a weak cluster point.

Exercise 5.4.19. Let X be a compact Hausdorff topological space. For x ∈ X, define
evx : C(X) → F by evx(f) = f(x).

(1) Prove that evx ∈ C(X)∗, and find ∥ evx ∥.
(2) Show that the map ev : X → C(X)∗ given by x 7→ evx is a homeomorphism onto its

image, where the image has the relative weak* topology.
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5.5. Hilbert spaces.

Definition 5.5.1. A sesquilinear form on an F-vector spaceH is a function ⟨ · , · ⟩ : H×H →
F which is

• linear in the first variable: ⟨αx+ y, z⟩ = α⟨x, z⟩+ ⟨y, z⟩ for all α ∈ F and x, y, z ∈ H,
and

• conjugate linear in the second variable: ⟨x, αy + z⟩ = α⟨x, y⟩ + ⟨x, z⟩ for all α ∈ F
and x, y, z ∈ H.

We call ⟨ · , · ⟩:
• self-adjoint if ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ H,
• non-degenerate if ⟨x, y⟩ = 0 for all y ∈ H implies x = 0
• positive if ⟨x, x⟩ ≥ 0 for all x ∈ H. A positive sesquilinear form is called definite if
moreover ⟨x, x⟩ = 0 implies x = 0.

A self-adjoint positive definite sesquilinear form is called an inner product.

Exercise 5.5.2. Suppose ⟨ · , · ⟩ is a self-adjoint sesquilinear form on the R-vector space H.
Show that:

• (R-polarization) 4⟨x, y⟩ = ⟨x+ y, x+ y⟩ − ⟨x− y, x− y⟩ for all x, y ∈ H.

Now suppose ⟨ · , · ⟩ is a sesquilinear form on the C-vector space H. Prove the following.

(1) (C-polarization) 4⟨x, y⟩ =
∑3

k=0 i
k⟨x+ iky, x+ iky⟩ for all x, y ∈ H.

(2) ⟨ · , · ⟩ is self-adjoint if and only if ⟨x, x⟩ ∈ R for all x ∈ H.
(3) Positive implies self-adjoint.

Definition 5.5.3. Suppose that ⟨ · , · ⟩ is positive and self-adjoint (so (H, ⟨ · , · ⟩) is a pre-
Hilbert space). Define

∥x∥ := ⟨x, x⟩1/2.
Observe that ∥ · ∥ is homogeneous : ∥αx∥ = |α| · ∥x∥ for all α ∈ F and x ∈ H.

We say that x and y are orthogonal, denoted x ⊥ y, if ⟨x, y⟩ = 0.

Facts 5.5.4. We have the following facts about pre-Hilbert spaces:

(H1) (Pythagorean Theorem) x ⊥ y implies ∥x+ y∥2 = ∥x∥2 + ∥y∥2.

Proof. ∥x+ y∥2 = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2 = ∥x∥2 + ∥y∥2. □

(H2) x ⊥ y if and only if ∥x∥2 ≤ ∥x+ αy∥2 for all α ∈ F.

Proof.
⇒: ∥x+ αy∥2 =

(H1)
∥x∥2 + |α|2∥y∥2 ≥ ∥x∥2 for all α ∈ F.

⇐: Suppose

∥x∥2 + 2Re(α⟨x, y⟩) + |α|2∥y∥2 = ∥x+ αy∥2 ≥ ∥x∥2 ∀α ∈ F.
Then for all α ∈ F,

0 ≤ 2Re(α⟨x, y⟩) + |α|2∥y∥2.
Taking α ∈ F sufficiently close to 0F, the term 2Re(α⟨x, y⟩) dominates, and
this can only be non-negative for all α ∈ F if ⟨x, y⟩ = 0. □
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(H3) The properties of being definite and non-degenerate are equivalent.

Proof.
⇒: Trivial; just take y = x in the definition of non-degeneracy.
⇐: If ∥x∥2 = 0, then for all α ∈ F and y ∈ H, ∥x∥2 = 0 ≤ ∥x + αy∥2
by positivity. Hence x ⊥ y for all y ∈ H by (H2). Thus x = 0 by non-
degeneracy. □

(H4) (Cauchy-Schwarz Inequality) For all x, y ∈ H, |⟨x, y⟩| ≤ ∥x∥ · ∥y∥.

Proof. For all r ∈ R,
0 ≤ ∥x− ry∥2 = ∥x∥2 − 2rRe⟨x, y⟩+ r2∥y∥2,

which is a non-negative quadratic in r. Therefore its discriminant

4(Re⟨x, y⟩)2 − 4 · ∥x∥2 · ∥y∥2 ≤ 0,

which implies |Re⟨x, y⟩| ≤ ∥x∥ · ∥y∥.

Trick. |⟨x, y⟩| = α⟨x, y⟩ for some α ∈ U(1) = {z ∈ C| |z| = 1}.

Then
|⟨x, y⟩| = α⟨x, y⟩ = ⟨αx, y⟩ ≤ ∥αx∥ · ∥y∥ = ∥x∥ · ∥y∥. □

(H5) (Cauchy-Schwarz Definiteness) If ⟨ · , · ⟩ is definite, then |⟨x, y⟩| = ∥x∥ · ∥y∥ implies
{x, y} is linearly dependent.

Proof. We may assume y ̸= 0. Set

α :=
|⟨x, y⟩|
∥y∥2

sgn(⟨x, y⟩).

Then we calculate

∥x− αy∥2 = ∥x∥2 − 2Re(α⟨x, y⟩) + |α|2 · ∥y∥2

= ∥x∥2 − 2
|⟨x, y⟩|2

∥y∥2
+

|⟨x, y⟩|2

∥y∥4
∥y∥2

= ∥x∥2 − |⟨x, y⟩|2

∥y∥2

= ∥x∥2 − ∥x∥2 · ∥y∥2

∥y∥2
= 0.

This implies x = αy by definiteness.
(The essential idea here was to minimize a quadratic in α.) □
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(H6) ∥ · ∥ : H → [0,∞) is a seminorm. It is a norm exactly when ⟨ · , · ⟩ is definite, i.e., an
inner product.

Proof. It remains to prove subadditivity of ∥ · ∥, which follows by the Cauchy-
Schwarz Inequality (H4):

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + 2|⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥ · ∥y∥+ ∥y∥2 (H4)

= (∥x∥+ ∥y∥)2.
Now take square roots. The final claim follows immediately. □

Proposition 5.5.5. A norm ∥ · ∥ on a C-vector space comes from an inner product if and
only if it satisfies the parallelogram identity:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2) x+y
x−y

x

y

Proof.
⇒: If ∥ · ∥ comes from an inner product, then add together

∥x± y∥2 = ∥x∥2 ± 2Re⟨x, y⟩+ ∥y∥2.

⇐: If the parallelogram identity holds, just define

⟨x, y⟩ := 1

4

3∑
k=0

ik∥x+ iky∥2

by polarization. One checks this works. □

Definition 5.5.6. A Hilbert space is an inner product space whose induced norm is complete,
i.e., Banach.

Exercise 5.5.7. Verify the follows spaces are Hilbert spaces.

(1) ℓ2 := {(xn) ∈ C∞|
∑

|xn|2 <∞} with ⟨x, y⟩ :=
∑
xnyn.

(2) Suppose (X,M, µ) is a measure space. Define

L2(X,µ) :=

{
measurable f : X → C

∣∣∫ |f |2 dµ <∞
}

equality a.e.

with ⟨f, g⟩ :=
∫
fg dµ.

Exercise 5.5.8. Suppose H is a Hilbert space and S, T : H → H are linear operators such
that for all x, y ∈ H, ⟨Sx, y⟩ = ⟨x, Ty⟩. Prove that S and T are bounded.

From this point forward, H will denote a Hilbert space.
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Theorem 5.5.9. Suppose C ⊂ H is a non-empty convex closed subset and z /∈ C. There is
a unique x ∈ C such that

∥x− z∥ = inf
y∈C

∥y − z∥.

Proof. By translation, we may assume z = 0 /∈ C. Suppose (xn) ⊂ C such that ∥xn∥ → r :=
infy∈C ∥y∥. Then by the parallelogram identity,∥∥∥∥xm − xn

2

∥∥∥∥2 + ∥∥∥∥xm + xn
2

∥∥∥∥2 = 2

(∥∥∥xm
2

∥∥∥2 + ∥∥∥xn
2

∥∥∥2)
Rearranging, we have

∥xm − xn∥2 = 2 ∥xm∥2︸ ︷︷ ︸
→r2

+2 ∥xn∥2︸ ︷︷ ︸
→r2

−4

∥∥∥∥xm + xn
2

∥∥∥∥2︸ ︷︷ ︸
≥r2

where the last inequality follows since (xm + xn)/2 ∈ C by convexity. This means that

lim sup
m,n

∥xm − xn∥2 ≤ 2r2 + 2r2 − 4r2 = 0,

and thus (xn) is Cauchy. Since H is complete, there is an x ∈ H such that xn → x, and
∥x∥ = r. Since C is closed, x ∈ C.

For uniqueness, observe that if x′ ∈ C satisfies ∥x′∥ = r, then (x, x′, x, x′, . . . ) is Cauchy
by the above argument, and thus converges. We conclude that x = x′. □

Definition 5.5.10. For S ⊂ H, define the orthogonal complement

S⊥ := {x ∈ H|⟨x, s⟩ = 0 ,∀ s ∈ S} .

Observe that S⊥ is a closed subspace.

Facts 5.5.11. We have the following facts about orthogonal complements.

(⊥1) If S ⊂ T , then T⊥ ⊂ S⊥.

Proof. Observe x ∈ T⊥ if and only if ⟨x, t⟩ = 0 for all t ∈ T ⊇ S. Hence
x ∈ S⊥. □

(⊥2) S ⊂ S⊥⊥ and S⊥ = S⊥⊥⊥.

Proof. If s ∈ S, then ⟨s, x⟩ = ⟨x, s⟩ = 0 for all x ∈ S⊥. Thus s ∈ S⊥⊥. Since
S⊥⊥ is closed, S ⊂ S⊥⊥.
Now replacing S with S⊥, we get S⊥ ⊂ S⊥⊥⊥. But since S ⊆ S⊥⊥, by (⊥1),
we have S⊥⊥⊥ ⊆ S⊥. □

(⊥3) S ∩ S⊥ = {0}.

Proof. If x ∈ S ∩ S⊥, then ⟨x, x⟩ = 0, so x = 0. □
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(⊥4) If K ⊂ H is a subspace, then H = K ⊕K⊥.

Proof. By (⊥2) and (⊥3),

{0} ⊆ K ∩K⊥ ⊆ K⊥⊥ ∩K⊥ = {0},
so equality holds everywhere.
Let x ∈ H. Since K is closed and convex, there is a unique y ∈ K minimizing
the distance to x, i.e., ∥x − y∥ ≤ infk∈K ∥x − k∥. We claim that x − y ∈ K⊥,
so that x = y + (x− y), and H = K +K⊥. Indeed, for all k ∈ K and α ∈ C,

∥x− y∥2 ≤ ∥x− (y − αk)∥2 = ∥(x− y) + αk∥2 ∀α ∈ C.
By (H2), we have (x− y) ⊥ k for all k ∈ K, i.e., x− y ∈ K⊥ as claimed. □

(⊥5) If K ⊂ H is a subspace, then K = K⊥⊥.

Proof. Let x ∈ K⊥⊥. By (⊥4), there are unique y ∈ K and z ∈ K⊥ such that
x = y + z. Then

0 = ⟨x, z⟩ = ⟨y + z, z⟩ = ⟨y, z⟩︸ ︷︷ ︸
=0 by (⊥2)

+ ⟨z, z⟩.

Hence z = 0, and x = y ∈ K. □

Notation 5.5.12 (Dirac bra-ket). Let (H, ⟨ · , · ⟩) be a Hilbert space, where ⟨ · , · ⟩ is linear
on the left and conjugate linear on the right. Define ⟨ · | · ⟩ : H ×H → F by

⟨x|y⟩ := ⟨y, x⟩.

That is, ⟨ · | · ⟩ is the ‘same’ inner product, but linear on the right and conjugate linear on
the left.

We may further denote a vector x ∈ H by the ket |x⟩. For x ∈ H, we denote the linear
map H → F by y 7→ ⟨x|y⟩ by the bra ⟨x|. Observe that the bra ⟨x| applied to the ket |y⟩
gives the bracket ⟨x|y⟩.

Theorem 5.5.13 (Riesz Representation). Let H be a Hilbert space.

(1) For all y ∈ H, ⟨y| ∈ H∗ and ∥⟨y|∥ = ∥y∥.
(2) For φ ∈ H∗, there is a unique y ∈ H such that φ = ⟨y|.
(3) The map y 7→ ⟨y| is a conjugate-linear isometric isomorphism.

Proof.
(1) Clearly ⟨y| is linear. By Cauchy-Schwarz, |⟨y|x⟩| ≤ ∥x∥ · ∥y∥, so ∥⟨y|∥ ≤ ∥y∥. Taking
x = y, we have |⟨y|y⟩| = ∥y∥2, so ∥⟨y|∥ = ∥y∥.
(2) If ⟨y| = ⟨y′|, then

∥y − y′∥2 = ⟨y − y′|y − y′⟩ = ⟨y|y − y′⟩ − ⟨y′|y − y′⟩ = 0,

and thus y = y′. Suppose now φ ∈ H∗. We may assume φ ̸= 0. Then ker(φ) ⊂ H is a closed
proper subspace. Pick z ∈ ker(φ)⊥ with φ(z) = 1. Now for all x ∈ H, x − φ(x)z ∈ ker(φ),
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so

⟨z|x⟩ = ⟨z|x− φ(x)z + φ(x)z⟩ = ⟨ z︸︷︷︸
∈ker(φ)⊥

| x− φ(x)z︸ ︷︷ ︸
∈ker(φ)

⟩+ ⟨z|φ(x)z⟩ = ⟨z|φ(x)z⟩ = φ(x)∥z∥2.

We conclude that φ =
〈

z
∥z∥2

∣∣∣.
(3) y 7→ ⟨y| is isometric by (1) and onto by (2). Conjugate linearity is straightforward. □

Exercise 5.5.14. Suppose H is a Hilbert space. Show that the dual space H∗ with

⟨⟨x|, ⟨y|⟩H∗ := ⟨y, x⟩H
is a Hilbert space whose induced norm is equal to the operator norm on H∗.

Definition 5.5.15. A subset E ⊂ H is called orthonormal if e, f ∈ E implies ⟨e, f⟩ = δe=f .

Observe that ∥e− f∥ =
√
2 for all e ̸= f in E. Thus if H is separable, any orthonormal set

is countable.

Exercise 5.5.16. Suppose H is a Hilbert space, E ⊂ H is an orthonormal set, and
{e1, . . . , en} ⊂ E. Prove the following assertions.

(1) If x =
∑n

i=1 ciei, then cj = ⟨x, ej⟩ for all j = 1, . . . , n.
(2) The set E is linearly independent.
(3) For every x ∈ H,

∑n
i=1⟨x, ei⟩ei is the unique element of span{e1, . . . , en} minimizing

the distance to x.
(4) (Bessel’s Inequality) For every x ∈ H, ∥x∥2 ≥

∑n
i=1 |⟨x, ei⟩|2.

Theorem 5.5.17. For an orthonormal set E ⊂ H, the following are equivalent:

(1) E is maximal,
(2) span(E), the set of finite linear combinations of elements of E, is dense in H.
(3) ⟨x, e⟩ = 0 for all e ∈ E implies x = 0.
(4) For all x ∈ H, x =

∑
e∈E⟨x, e⟩e, where the sum on the right:

• has at most countably many non-zero terms, and
• converges in the norm topology regardless of ordering.

(5) For all x ∈ H, ∥x∥2 =
∑

e∈E |⟨x, e⟩|2.
If E satisfies the above properties, we call E an orthonormal basis for H.

Proof.
(1) ⇒ (2): If span(E) is not dense, there is an e ∈ span(E)⊥ with ∥e∥ = 1. Then E ⊊ E∪{e},
which is orthonormal.
(2) ⇒ (3): Suppose ⟨e, x⟩ = 0 for all e ∈ E. Then ⟨x| = 0 on span(E). Since span(E) is

dense in H and ⟨x| is continuous, ⟨x| = 0 on H, and thus x = 0 by the Riesz Representation
Theorem 5.5.13.
(3) ⇒ (1): (3) is equivalent to E⊥ = 0. This means there is no strictly larger orthonormal set
containing E.
(3) ⇒ (4): For all e1, . . . , en ∈ E, by Bessel’s Inequality, ∥x∥2 ≥

∑n |⟨x, ei⟩|2. So for all

countable subsets F ⊂ E, ∥x∥2 ≥
∑

f∈F |⟨x, f⟩|2. Hence {e ∈ E|⟨x, e⟩ ̸= 0} is countable.

Let (ei) be an enumeration of this set. Then∥∥∥∥∥
n∑
m

⟨x, ei⟩ei

∥∥∥∥∥
2

=
n∑
m

|⟨x, ei⟩|2
m,n→∞−−−−→ 0.
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So
∑

⟨x, ei⟩ei converges as H is complete. Obsere that for all e ∈ E,〈
x−

∑
⟨x, ei⟩ei, e

〉
= 0,

so x =
∑

⟨x, ei⟩ei by (3).
(4) ⇒ (5): Let x ∈ H and let {ei} be an enumeration of {e ∈ E|⟨x, e⟩ ̸= 0}. Then

∥x∥2 −
n∑

|⟨x, ei⟩|2 =

∥∥∥∥∥x−
n∑
⟨x, ei⟩ei

∥∥∥∥∥
2

n→∞−−−→ 0.

(Indeed, expand the term on the right into 4 terms to see you get the term on the left.)
(5) ⇒ (3): Immediate as ∥ · ∥ is definite. □

Exercise 5.5.18. Suppose H is a Hilbert space. Prove the following assertions.

(1) Every orthonormal set E can be extended to an orthonormal basis.
(2) H is separable if and only if it has a countable orthonormal basis.
(3) Two Hilbert spaces are isomorphic (there is an invertible U ∈ L(H → K) such that

⟨Ux, Uy⟩K = ⟨x, y⟩ for all x, y ∈ H) if and only if H and K have orthonormal bases
which are the same size.

(4) If E is an orthonormal basis, the map H → ℓ2(E) given by x 7→ (⟨x, ·⟩ : E → C)
is a unitary isomorphism of Hilbert spaces. Here, ℓ2(E) denotes square integrable
functions E → C with respect to counting measure.

Exercise 5.5.19. Consider the space L2(T) := L2(R/Z) of Z-periodic functions R → C
such that

∫
[0,1]

|f |2 <∞. Define

⟨f, g⟩ :=
∫
[0,1]

fg.

(1) Prove that L2(T) is a Hilbert space.
(2) Show that the subspace C(T) ⊂ L2(T) of continuous Z-periodic functions is dense.
(3) Prove that {en(x) := exp(2πinx)|n ∈ Z} is an orthonormal basis for L2(T).

Hint: Orthonormality is easy. Use (2) and the Stone-Weierstrass Theorem to show
the linear span is dense.

(4) Define F : L2(T) → ℓ2(Z) by F(f)n := ⟨f, en⟩L2(T) =
∫ 1

0
f(x) exp(−2πinx) dx. Show

that if f ∈ L2(T) and F(f) ∈ ℓ1(Z), then f ∈ C(T), i.e., f is a.e. equal to a
continuous function.

5.6. The dual of C0(X). Let X be an LCH space. In this section, we prove the Reisz
Representation Theorem which characterizes the dual of C0(X) in terms of Radon measures
on X.

Definition 5.6.1. A Radon measure on X is a Borel measure which is

• finite on compact subsets of X,
• outer regular on all Borel subsets of X, and
• inner regular on all open subsets of X.

Facts 5.6.2. Recall the following facts about Radon measures on an LCH space X.

(R1) If µ is a Radon measure on X and E ⊂ X is σ-finite, then µ is σ-finite on E by
Exercise 2.5.24(1). Hence every σ-finite Radon measure is regular.
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(R2) If X is σ-compact, every Radon measure is σ-finite and thus regular.
(R3) Finite Radon measures on X are exactly finite regular Borel measures on X.

Exercise 5.6.3. Suppose X is LCH and µ is a Radon measure on X. Prove Cc(X) is dense
in L1(µ).

Notation 5.6.4. Recall that the support of f : X → C is supp(f) := {f ̸= 0}. We say f has

compact support if supp(f) := {f ̸= 0} is compact, and we denote the (possibly non-unital)
algebra of all continuous functions of compact support by Cc(X). For an open set U ⊂ X,
we write f ≺ U to denote 0 ≤ f ≤ 1 and supp(f) ⊂ U . Observe that if f ≺ U , then f ≤ χU ,
but the converse need not be true.

Definition 5.6.5. A Radon integral on X is a positive linear functional φ : Cc(X) → C,
i.e., φ(f) ≥ 0 for all f ∈ Cc(X) such that f ≥ 0.

Lemma 5.6.6. Radon integrals are bounded on compact subsets. That is, if K ⊂ X is
compact, there is a cK > 0 such that for all f ∈ Cc(X) with supp(f) ⊂ K, |φ(f)| ≤ cK ·∥f∥∞.

Proof. Let K ⊂ X be compact. Choose g ∈ Cc(X) such that g = 1 on K by the LCH
Urysohn Lemma (Exercise 1.2.11(2)).
Step 1: If f ∈ Cc(X,R) with supp(f) ⊂ K, then |f | ≤ ∥f∥∞ · g on X. So ∥f∥∞ · g − |f | ≥ 0,
and ∥f∥∞ · g ± f ≥ 0. Thus ∥f∥∞ · φ(g)± φ(f) ≥ 0. Hence

|φ(f)| ≤ φ(g) · ∥f∥∞ ∀ f ∈ Cc(X,R) with supp(f) ⊂ K.

Taking cK := φ(g) works for all f ∈ Cc(X,R).
Step 2: Taking real and imaginary parts, we see cK := 2φ(g) works for all f ∈ Cc(X). Indeed,

|φ(f)| ≤ |φ(Re(f))|+ |φ(Im(f))| ≤ φ(g)∥Re(f)∥∞ + φ(g)∥ Im(f)∥∞ ≤ 2φ(g)∥f∥∞
for all f ∈ Cc(X) with supp(f) ⊂ K. □

Theorem 5.6.7 (Riesz Representation). If φ is a Radon integral on X, there is a unique
Radon measure µφ on X such that

φ(f) =

∫
f dµφ ∀ f ∈ Cc(X).

Moreover, µφ satisfies:

(µφ1) For all open U ⊂ X, µφ(U) = sup {φ(f)|f ∈ Cc(X) with f ≺ U}, and
(µφ2) For all compact K ⊂ X, µφ(K) = inf {φ(f)|f ∈ Cc(X) with χK ≤ f}.
Proof.
Uniqueness: Suppose µ is a Radon measure such that φ(f) =

∫
f dµ for all f ∈ Cc(X). If

U ⊂ X is open, then φ(f) ≤ µ(U) for all f ∈ Cc(X) with f ≺ U . If K ⊂ U is compact, then
by the LCH Urysohn Lemma (Exercise 1.2.11(2)), there is an f ∈ Cc(X) such that f ≺ U
and f |K = 1, and

µ(K) ≤
∫
f dµ = φ(f) ≤ µ(U).

But µ is inner regular on U as it is Radon, and thus

µ(U) = sup {µ(K)|U ⊃ K is compact} ≤ sup {φ(f)|f ∈ Cc(X) with f ≺ U} ≤ µ(U).

Hence µ satisfies (µφ1), so µ is determined on open sets. But since µ is outer regular, µ is
determined on all Borel sets.
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Existence: For U ⊂ X open, define µ(U) := sup {φ(f)|f ∈ Cc(X) with f ≺ U} and

µ∗(E) := inf {µ(U)|U is open and E ⊂ U} E ⊂ X.

Step 1: µ is monotone on inclusions of open sets, i.e., U ⊂ V both open implies µ(U) ≤ µ(V ).
Hence µ∗(U) = µ(U) for all open U .

Proof. Just observe that if U ⊆ V are open, then f ∈ Cc(X) with f ≺ U
implies f ≺ V . Hence µ(U) ≤ µ(V ) are we are taking sup over a super set. □

Step 2: µ∗ is an outer measure on X.

Proof. It suffices to prove that if (Un) is a sequence of open sets, then
µ (
⋃
Un) ≤

∑
µ(Un). This shows that

µ∗(E) = inf
{∑

µ(Un)
∣∣∣the Un are open and E ⊂

⋃
Un

}
,

which we know is an outer measure by Proposition 2.3.3. Suppose f ∈ Cc(X)

with f ≺
⋃
Un. Since supp(f) is compact, supp(f) ⊂

⋃N
n=1 Un for some N ∈ N.

Trick. By Exercise 1.2.17, there are g1, . . . , gN ∈ Cc(X) such that gn ≺
Un and

∑N
n=1 gn = 1 on supp(f).

Then f = f
∑N

n=1 gn and fgn ≺ Un for each n, so

φ(f) =
N∑
n=1

φ(fgn) ≤
N∑
n=1

φ(χUn) =
N∑
n=1

µ(Un) ≤
∑

µ(Un).

Since f ≺ U was arbitrary,

µ
(⋃

Un

)
= sup

{
φ(f)

∣∣∣f ∈ Cc(X) with f ≺
⋃

Un

}
≤
∑

µ(Un). □

Step 3: Every open set is µ∗-measurable, and thus BX ⊂ M∗, the µ∗-measurable sets. Hence
µφ := µ∗|BX

is a Borel measure which is by definition outer regular and satisfies
(µφ1).

Proof. Suppose U ⊂ X is open. We must prove that for every E ⊂ X such
that µ∗(E) <∞, µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E \ U).
Case 1: If E is open, then E ∩ U is open. Given ε > 0, there is a f ∈ Cc(X)

with f ≺ E ∩U such that φ(f) > µ(E ∩U)− ε/2. Since E \ supp(f) is
open, there is a g ≺ E \ supp(f) such that φ(g) > µ(E \ supp(f))−ε/2.
Then f + g ≺ E, so

µ(E) ≥ φ(f) + φ(g)

> µ(E ∩ U) + µ(E \ supp(f))− ε

≥ µ∗(E ∩ U) + µ∗(E \ U)− ε.

124



Since ε > 0 was arbitrary, the result follows.
Case 2: For a general E, given ε > 0, there is an open V ⊇ E such that

µ(V ) < µ∗(E) + ε. Thus

µ∗(E) + ε > µ(V )

≥ µ∗(V ∩ U) + µ∗(V \ U)
≥ µ∗(E ∩ U) + µ∗(E \ U).

Again, as ε > 0 was arbitrary, the result follows. □

Step 4: µφ satisfies (µφ2) and is thus finite on compact sets.

Proof. Suppose K ⊂ X is compact and f ∈ Cc(X) with χK ≤ f . Let ε > 0,
and set Uε := {1 − ε < f}, which is open. If g ∈ Cc(X) with g ≺ Uε, then
(1− ε)−1f − g ≥ 0, so φ(g) ≤ (1− ε)−1φ(f). Hence

µφ(K) ≤ µφ(Uε) = sup {φ(g)|g ≺ Uε} ≤ (1− ε)−1φ(f).

As ε > 0 was arbitrary, we conclude that µφ(K) ≤ φ(f).
Now, for all open U ⊃ K, by the LCH Urysohn Lemma (Exercise 1.2.11(2)),
there is an f ≺ U such that χK ≤ f (f |K = 1), and by definition, φ(f) ≤
µφ(U). Since µφ is outer regular on K by definition,

µφ(K) = inf {µφ(U)|K ⊂ U open} = inf {φ(f)|f ≥ χK} . □

Step 5: µφ is inner regular on open sets and thus Radon.

Proof. If U ⊂ X is open and 0 ≤ α < µ(U), choose f ∈ Cc(X) such that
f ≺ U and φ(f) > α. For all g ∈ Cc(X) with χsupp(f) ≤ g, we have g − f ≥ 0,
so α < φ(f) ≤ φ(g). Since (µφ2) holds, α < µ(supp(f)) ≤ µ(U). Hence µ is
inner regular on U . □

Step 6: For all f ∈ Cc(X), φ(f) =
∫
f dµφ.

Proof. We may assume f ∈ Cc(X, [0, 1]) as this set spans Cc(X). Fix N ∈ N,
and set Kj := {f ≥ j/N} for j = 1, . . . , N + 1 and K0 := supp(f) so that

∅ = KN+1 ⊂ KN ⊂ · · · ⊂ K1 ⊂ K0 = supp(f).

for j = 1, . . . , N , define

fj :=

((
f − j − 1

N

)
∨ 0

)
∧ 1

N
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which is equivalent to

fj(x) =


0 if x /∈ Kj−1

f(x)− j−1
N

if x ∈ Kj−1 \Kj

N−1 if x ∈ Kj.

Observe that this implies:

• χKj

N
≤ fj ≤

χKj−1

N
for all j = 1, . . . , N , and

•
∑N

j=1 fj = f ,

which gives us the inequalities

1

N
µφ(Kj) ≤

∫
fj dµφ ≤ 1

N
µφ(Kj−1). (5.6.8)

Now for all open U ⊃ Kj−1, Nfj ≺ U , so Nφ(fj) ≤ µφ(U). By (µφ2) and
outer regularity of µφ, we have the inequalities

1

N
µφ(Kj) ≤ φ(fj) ≤

1

N
µφ(Kj−1). (5.6.9)

Now summing over j = 1, . . . N for both (5.6.8) and (5.6.9), we have the
inequalities

1

N

N∑
j=1

µφ(Kj) ≤
∫
f dµφ ≤ 1

N

N−1∑
j=0

µφ(Kj)

1

N

N∑
j=1

µφ(Kj) ≤ φ(f) ≤ 1

N

N−1∑
j=0

µφ(Kj).

This implies that∣∣∣∣φ(f)− ∫ f dµφ

∣∣∣∣ ≤ µφ(K0)− µφ(KN)

N
≤ µφ(supp(f))

N

N→∞−−−→ 0

as µφ(supp(f)) <∞ and N ∈ N was arbitrary. □

This completes the proof. □

The following corollary is the upgrade of Proposition 2.5.22 promised in Remark 2.5.26.

Corollary 5.6.10. Suppose X is LCH and every open subset of X is σ-compact (e.g., if
X is second countable). Then every Borel measure on X which is finite on compact sets is
Radon.

Proof. Suppose µ is such a Borel measure. Since Cc(X) ⊂ L1(µ), φ(f) :=
∫
f dµ is a positive

linear functional on Cc(X). By the Riesz Representation Theorem 5.6.7, there is a unique
Radon measure ν on C such that φ(f) =

∫
f dν for all Cc(X). It remains to prove µ = ν.

For an open U ⊂ X, write U =
⋃
Kj with Kj compact for all j. We may inductively find

fn ∈ Cc(X) such that fn ≺ U and fn = 1 on the compact set
⋃nKj ∪

⋃n−1 supp(fj). Then
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fn ↗ χU pointwise, so by the MCT 3.3.9,

µ(U) = lim

∫
fn dµ = limφ(fn) = lim

∫
fn dν = ν(U).

Now suppose E ∈ BX is arbitrary. By (R2), ν is a regular Borel measure, so by Exercise
2.5.23, given ε > 0, there are F ⊂ E ⊂ U with F closed, U open, and ν(U \ F ) < ε. But
since U \ F is open,

µ(U \ F ) = ν(U \ F ) < ε,

and thus µ(U)− ε ≤ µ(E) ≤ µ(U). Hence µ is outer regular, and thus µ = ν. □

Lemma 5.6.11. Suppose X is LCH and µ is a Radon measure on X. Define φ(f) :=
∫
f dµ

on Cc(X). The following are equivalent:

(1) φ extends continuously to C0(X).
(2) φ is bounded with respect to ∥ · ∥∞.
(3) µ(X) is finite.

Proof.
(1) ⇔ (2): This follows as Cc(X) ⊂ C0(X) is dense with respect to ∥·∥∞ by the LCH Urysohn

Lemma (Exercise 1.2.11(2)).
(2) ⇔ (3): This follows as µ(X) = sup

{
φ(f) =

∫
f dµ

∣∣f ∈ Cc(X) with 0 ≤ f ≤ 1
}
. □

Corollary 5.6.12. A positive linear functional in C0(X)∗ is of the form
∫

· dµ for some
finite Radon measure µ.

Proposition 5.6.13. If φ ∈ C0(X,R)∗, there are positive φ± ∈ C0(X,R)∗ such that φ =
φ+ − φ−. Hence there are finite Radon measures µ1, µ2 on X such that

φ(f) =

∫
f dµ1 −

∫
f dµ2 =

∫
f d(µ1 − µ2) ∀ f ∈ C0(X,R).

Proof. For f ∈ C0(X, [0∞)), define φ+(f) := sup {φ(g)|0 ≤ g ≤ f}. For f ∈ C0(X,R),
define φ+(f) := φ+(f+)− φ+(f−) as f± ∈ C0(X, [0,∞)).
Step 1: For all f1, f2 ∈ C0(X, [0,∞)) and c ≥ 0, φ+(cf1 + f2) = cφ+(f1) + φ+(f2).

Proof. It suffices to show additivity. Whenever 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2,
0 ≤ g1 + g2 ≤ f1 + f2. This implies φ+(f1 + f2) ≥ φ+(f1) + φ+(f2).
Now if 0 ≤ g ≤ f1 + f2, set g1 := g ∧ f1 and g2 := g − g1. Then 0 ≤ g1 ≤ f1 and
0 ≤ g2 ≤ f2, so

φ(g) = φ(g1) + φ(g2) ≤ φ+(f1) + φ+(f2).

Taking sup over such g gives φ+(f1 + f2) ≤ φ+(f1) + φ+(f2). □

Step 2: If f ∈ C0(X,R) with f = g − h where g, h ≥ 0, then φ+(f) = φ+(g)− φ+(h).

Proof. Observe that g+ f− = h+ f+ ≥ 0, so φ+(g)+φ(f−) = φ+(h)+φ+(f+) by Step
1. Rearranging gives the result. □

Step 3: φ+ is linear on C0(X,R).
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Proof. Suppose c ∈ R and f, g ∈ C0(X,R). If c ≥ 0, then cf+g = cf++g+−(cf−+g−)
where cf± + g± ≥ 0. Then

φ+(cf + g) = φ+(cf+ + g+)− φ+(cf− + g−) (Step 2)

= cφ+(f+) + φ+(g+)− cφ+(f−)− φ−(g−) (Step 1)

= c(φ+(f+)− φ+(f−)) + (φ+(g+)− φ+(g−))

= cφ+(f) + φ+(g) (Step 2). □

Step 4: φ+ ∈ C0(X,R)∗ is positive with ∥φ+∥ ≤ ∥φ∥.

Proof. First suppose f ∈ C0(X, [0,∞)). Since

|φ(g)| ≤ ∥φ∥ · ∥g∥∞ ≤ ∥φ∥ · ∥f∥∞ ∀ 0 ≤ g ≤ f,

we have that

0 = φ(0) ≤ φ+(f) ≤ ∥φ∥ · ∥f∥∞ ∀ f ∈ C0(X, [0,∞)).

Now if f ∈ C0(X,R) is arbitrary,
|φ+(f)| ≤ max{φ+(f+), φ+(f−)} ≤ ∥φ∥ ·max{∥f+∥∞, ∥f−∥∞} ≤ ∥φ∥ · ∥f∥∞.

Hence ∥φ+∥ ≤ ∥φ∥. □

Step 5: Finally, the linear functional φ− := φ+ − φ ∈ C0(X,R)∗ is also positive as φ+(f) ≥
φ(f) for all f ∈ C0(X, [0,∞)) by definition of φ+. □

Exercise 5.6.14. For φ ∈ C0(X)∗, there are finite Radon measures µ0, µ1, µ2, µ3 on X such
that

φ(f) =
3∑

k=0

ik
∫
f dµk =

∫
f d

(
3∑

k=0

ikµk

)
∀ f ∈ C0(X).

Definition 5.6.15. Let X be an LCH space.

• A signed Borel measure ν on X is called a signed Radon measure if ν± are Radon,
where ν = ν+ − ν− is the Jordan decomposition of ν. We denote by RM(X,R) ⊂
M(X,R) the subset of finite signed Radon measures.

• A complex Borel measure ν on X is called a complex Radon measure if Re(ν), Im(ν)
are Radon. We denote by RM(X,C) ⊂ M(X,C) the subset of complex Radon mea-
sures.

Exercise 5.6.16 (Lusin’s Theorem). Suppose X is LCH and µ is a Radon measure on X.
If f : X → C is measurable and vanishes outside a set of finite measure, then for all ε > 0,
there is an E ∈ BX with µ(Ec) < ε and a g ∈ Cc(X) such that g = f on E. Moreover:

• If ∥f∥∞ <∞, we can arrange that ∥g∥∞ ≤ ∥f∥∞.
• If im(f) ⊂ R, we can arrange that im(g) ⊂ R.

Theorem 5.6.17 (Real Riesz Representation). Suppose X is LCH. Define Φ : RM(X,R) →
C0(X,R)∗ by ν 7→ φν where φν(f) :=

∫
f dν. Then Φ is an isometric linear isomorphism.
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Proof. Clearly Φ is linear. By Proposition 5.6.13, Φ is surjective. It remains to prove Φ is
isometric, which also implies injectivity. Fix ν ∈ RM.
∥φν∥ ≤ ∥ν∥: For all f ∈ C0(X,R),

|φν(f)| =
∣∣∣∣∫ f dν

∣∣∣∣ = ∣∣∣∣∫ f dν+ −
∫
f dν−

∣∣∣∣ ≤ ∣∣∣∣∫ f dν+

∣∣∣∣+ ∣∣∣∣∫ f dν−

∣∣∣∣
≤
∫

|f | dν+ +

∫
|f | dν− =

∫
|f | d|ν| ≤ ∥f∥∞ · ∥ν∥RM.

Hence ∥φν∥ ≤ ∥ν∥.
∥φν∥ ≥ ∥ν∥: Since ν is finite, by Exercise 4.2.11,

∣∣∣ dνd|ν| ∣∣∣ = 1 on X |ν|-a.e. Let ε > 0. Since |ν|
is finite, by Lusin’s Theorem (Exercise 5.6.16), there is an f ∈ Cc(X,R) such that ∥f∥∞ = 1

and f = dν
d|ν| on E ∈ BX where |ν|(Ec) < ε/2. Then

∥ν∥ =

∫
d|ν| =

∫ ∣∣∣∣ dνd|ν|
∣∣∣∣2 d|ν| = ∫ dν

d|ν|
· dν
d|ν|

d|ν| =
(Ex. 4.2.11)

∫
dν

d|ν|
dν

≤
∣∣∣∣∫ f dν

∣∣∣∣+ ∣∣∣∣∫ f − dν

d|ν|
dν

∣∣∣∣ ≤ ∥φν∥ · ∥f∥∞︸ ︷︷ ︸
=1

+

∫ ∣∣∣∣f − dν

d|ν|

∣∣∣∣ d|ν|
≤ ∥φν∥+ 2|ν|(Ec) ≤ ∥φν∥+ ε.

Since ε > 0 was arbitrary, ∥ν∥ ≤ ∥φν∥. □

Exercise 5.6.18 (Complex Riesz Representation). SupposeX is LCH. Define Φ : RM(X,C) →
C0(X,C)∗ by ν 7→ φν where φν(f) :=

∫
f dν. Show that Φ is an isometric linear isomor-

phism.
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