1. TOPOLOGY
Suppose f: X — Y is a function. Then f induces functions
frPX)=PY) by A f(A):={f(a)la € A}
ff1iPY)—P(X) by Bw fY(B):={zeX|f(x) € B}

Exercise 1.0.1.

(1) Determine the relationship between f~'(f(A)) and A C X. When are they equal?
(2) Determine the relationship between f(f~'(B)) and B C X. When are they equal?
(3) Prove that A — f(A) preserves unions, but not necessarily intersections or comple-

ments. Under what conditions on f does this preserve intersections? complements?
(4) Prove that B + f~'(B) preserves unions, intersections, and complements.

1.1. Topology basics.

Definition 1.1.1. A topology on a set X is a collection T of subsets of X such that:
o). XcT,

e 7 is closed under arbitrary unions, and
e 7T is closed under finite intersections.

The elements of T are called open sets. An open set containing x € X is called a neighborhood
of x. Complements of elements of 7 are called closed sets.

Definition 1.1.2. Observe that if S, T are topologies on X, then so is SN7T. This means if
E C P(X), there is a smallest topology T (&) which contains &£ called the topology generated
by E.
Definition 1.1.3. Suppose (X, T) is a topological space. A neighborhood/local base for T
at x € X is a subset B(z) C T consisting of neighborhoods of = such that

e for all U € T such that x € U, there is a V' € B(z) such that V C U.

A base for T is a subset B C T which contains a neighborhood base for T at every point of
X.

Example 1.1.4. Given a topological space (X, T), the set T (x) of all open subsets which
contain x is a neighborhood base at x.

Exercise 1.1.5. Show that B C 7T is a base if and only if every U € T is a union of members
of B.

Definition 1.1.6. Suppose (X, 7)) is a topological space. We call (X, T):

e first countable if there is a countable neighborhood base for T at every z € X
e second countable if there is a countable base for T.

Exercise 1.1.7. Show that second countable implies separable, i.e., there is a countable
dense subset.

Exercise 1.1.8. Suppose X is first countable and A C X. Then x € A (the smallest closed
subset of X containing A) if and only if there is a sequence (z,) C A such that z,, — x (for

every open subset U containing x, (x,) is eventually in U).
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Definition 1.1.9. Suppose X,Y are topological spaces. A function f : X — Y is called
continuous at x € X if for every neighborhood V' of f(x), there is a neighborhood U of x
such that f(U) C V. We call f continuous if f is continuous at x for all z € X.

Exercise 1.1.10. Show that f : X — Y is continuous if and only if the preimage of every
open set in Y is open in X, i.e., for every V € Ty,

V) ={z e X|f(x) eV} e Tx.
Exercise 1.1.11. Show that the composite of continuous functions is continuous.

Exercise 1.1.12. Prove the following assertions.

(1) Given f : X — Y and a topology T on Y, {f~(U)|U € T} is a topology on X.
Moreover it is the weakest topology on X such that f is continuous.

(2) Given f: X — Y and a topology S on X, {U C Y|f~1(U) € S} is a topology on Y.
Moreover it is the strongest topology on Y such that f is continuous.

1.1.1. Metric spaces.
Definition 1.1.13. A metric space is a set X together with a distance function d : X x X —
[0, 00) satisfying

o (definite) d(x,y) = 0 if and only if x = v,

e (symmetric) d(z,y) = d(y,x) for all z,y € X, and

e (triangle inequality) d(z,z) < d(x,y) + d(y, z) for all z,y,z € X.
The topology Ty induced by d is generated by the open balls of radius r

B.(z) :={y € X|d(z,y) <r} r > 0.

That is, U is open with respect to d if and only if for every x € U, there is an » > 0 such
that B,.(z) C U. Observe that every metric space is first countable.
Exercise 1.1.14. Let (X, d) be a metric space. Show tha (X, 7;) is second countable if and
only if (X, 7;) is separable.

Exercise 1.1.15. T'wo metrics di,d, on X are called equivalent if there is a C' > 0 such
that

Cdy(x,y) < do(w,y) < Cdy(z,y) Vo, y € X.
Show that equivalent metrics induce the same topology on X. That is, show that U C X is
open with respect to d; if and only if U is open with respect to ds.

Exercise 1.1.16 (Sarason). Let (X, d) be a metric space.

(1) Let o : [0,00) — [0, 00) be a continuous non-decreasing function satisfying
e «o(s) =0 if and only if s = 0, and
e a(s+1t) < a(s)+ alt) for all s,t > 0.
Define o(x,y) := a(d(z,y)). Show that o is a metric, and o induces the same topology
on X as d.
(2) Define dy,ds : X x X — [0,00) by

(o, y) = d(z,y) ifd(z,y) <1
WY = 1 otherwise.
d(z,y)
1+d(z,y)

2
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Use part (1) to show that d; and dy are metrics on X which induce the same topology
on X asd.

Exercise 1.1.17. Suppose V is a F-vector space for F =R or C. A norm on V is a function
||| : V= [0,00) such that

o (definite) ||v]| = 0 if and only if v = 0.
e (homogeneous) ||A-v|| = |\|-||v]| forall A € Fand v € V.
e (subadditive) ||u + v| < [Jul| + [|v]|.

(1) Prove that d(u,v) := ||u,v|| defines a metric on V.
(2) Prove that the following conditions are equivalent:

(a) (V,d) is a complete metric space, i.e., every Cauchy sequence converges.
(

b) For every sequence (v,) C V with 3 [|v,|| < 00, the sequence (32" v,) converges.
1.1.2. Connectedness.

Definition 1.1.18 (Relative topology). Suppose X is a topological space and A C X is a
subset. The relative topology on A is given by U C A is open if and only if there is an open
set V' C X such that U =V N A.

Exercise 1.1.19. Suppose X is a topological space and A C X is a subset. Show that
F C A is closed if and only if there is a closed set G C X such that F'= G N A.

Definition 1.1.20 ((Dis)connected set). Let X be a topological space. We call a subset
X disconnected if there exist non-empty, disjoint open sets U,V such that X = U I V. A
subset A C X is disconnected if it is disconnected in its relative topology. If a subset is not
disconnected, it is called connected. That is, A C X is connected if and only if whenever
A C X can be written as the disjoint union A = U IV with U, V relatively open in A, then
U or V is empty.

Exercise 1.1.21. Prove that the unit interval [0, 1] C R is connected.

Exercise 1.1.22.

(1) Suppose f : X — Y is continuous and A C X is connected. Prove f(A) C Y is
connected.

(2) A subset A C X is called path connected if for every z,y € A, there is a continuous
map v : [0,1] — A (called a path) such that v(0) = = and v(1) = y. Prove that a
path connected subset is connected.

Exercise 1.1.23. Recall that an interval I C R is a subset such that a < b <cand a,ce€ [
implies b € I.

(1) Show that all intervals in R are connected.
(2) Prove that if X C R is not an interval, then X is not connected.

Exercise 1.1.24.

(1) Show that every open subset of R is a countable disjoint union of open intervals.
(2) Show that every open subset of R is a countable union of open intervals where both

endpoints are rational.
3



1.1.3. Separation azioms.

Definition 1.1.25. We have the following separation properties for a topological space
(X, 7).

(Ty) For every x,y € X distinct, there is an open set U € T which contains exactly one
of x,y.

(T1) For every z,y € X distinct, there is an open set U € T which only contains x.
(Observe that by swapping = and y, there is also an open set V' € T which only
contains y.)

(T3) (a.k.a. Hausdorff) for every x,y € X distinct, there are disjoint open sets U,V € T
such that x € U and y € V.

(T3) (a.k.a. Regular) (77) and for every closed F' C X and x € F*, there are disjoint open
sets U,V € T such that F C U and x € V.

(Ty) (a.k.a. Normal) (77) and for every disjoint closed sets F,G C X, there are disjoint
open sets U,V € T such that F C U and G C V.

Exercise 1.1.26. Let X be a set. The finite complement topology T has its opens those
sets U such that U¢ is finite and the empty set. Show 7 is (7}). When is 7 Hausdorff?

Exercise 1.1.27. Suppose X is a normal topological space and F' C G C X with F' closed
and G open. Show there is an open U such that F C U Cc U C G.

Lemma 1.1.28. Suppose X is a normal topological space and A, B C X are disjoint non-
empty closed sets. Consider the dyadic rationals:

D .= {E
271

There are open sets (Ug)aep such that

OA_CUdCFdCBCforalldED, and
o U, C Uy whenever d < d'.

k
Dypi={—|k=1,..2"-1}.

We construct U, for d € D,, inductively. Here is a cartoon of the main idea:

( N\
( N\

nGN,k:I,...,Q”—l}C(O,l) (1.1.29)

Proof. For n € N, set

1] 1

ool
|
ool~1

'Y () b
oL

\ J
- J

Base case: Let U/, be any open set A C Uy C Uyjp C B
Inductive Step: Suppose that U have been defined for all d € D; U ...,UD,. Then, using
the convention Uy := A and U; := B¢, we define U2k7+i for Kk =0,1,...,2" — 1 to be any

on+

open set such that
Uk/gnCUzkiﬁCUmCU@. O
271

on+1 2m
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Lemma 1.1.30 (Urysohn). Let X be a normal topological space. If A, B C X are disjoint
nonempty closed subsets, there is a continuous function f: X — [0,1] such that f|4 = 0 and

fls=1.

Proof. For the dyadic rationals D C (0,1) as in (1.1.29), we have open sets (Uy)q4ep satisfying
the conditions in Lemma 1.1.28. Define f : X — [0,1] by f(z) :=sup{d|z ¢ Us}. It is clear
by construction that f|4 =0 and f|g = 1. Also observe that

(D1) f(z) > d implies that = ¢ Uy, and f(z) < d', then o € Uy.

(D2) If 2 ¢ Uy, then f(z) > d, and if x € Uy, then f(x) < d'.
It remains to prove that f is continuous. Fix xyp € X and € > 0.
Case 1: Suppose 0 < f(z) < 1. Choose d,d" € D such that d < f(z9) < d and d' —d < e.
By (D1) above, 7g € Uy \ Ug. By (D2) above, |f(z) — f(z0)| < € for all x € Uy \ U,.
Case 2: f(x) =0 or 1. Similar to above and omitted. O

Theorem 1.1.31 (Tietze Extension). Suppose X is normal, A C X is closed, and f: A —
la, b] is continuous. Then there is a continuous function F': X — [a,b] such that F|y = f.

Proof. Without loss of generality, [a,b] = [0, 1]. (Otherwise, replace f with (f —a)/(b—a).)
We inductively construct a sequence of continuous functions (g,) on X such that
e 0<g,<2"1/3" for all n € N, and

e 0< f=> 1k < (%)n on A for alln e N.

Then by (a), > g, converges uniformly to a continuous limit function F on X, and by (b),

Base case: Set B := f71(]0,1/3]) C A and C := f71([2/3,1]) C A. Since f is continuous
on A, B,C C A C X are closed. By Urysohn’s Lemma, there is a continuous function
g1: X —[0,1/3] such that gi|p = 0 and ¢g;|¢ = 1/3. Then

(1 1
§ — U= g on BC A
2 2 2
f=a < 5—025 on A\ (BUC(C) Sg on A.
1 2
\ —'53:35 onC CA

Inductive Step: Suppose we have constructed gy, ...
tion g, : X — [0,2"7'/3"] such that g, = 0 on {f — S7—| g
on {f —37"1 gr > 27/3"}. This implies that f — S7_, &

case.

,gn_1. Then there is a continuous func-

<271/3"} and g, = 2"71/3"
< 2"/3" on A as in the base
U

1.2. Locally compact Hausdorff spaces.

Definition 1.2.1. A topological space X is called compact if every open cover has a finite
subcover.

Exercise 1.2.2. A collection of subsets of (A;);e; of X has the finite intersection property
if for any finite J C I, we have () ies Aj # (). Prove that the following are equivalent.

(1) Every open cover of X has a finite subcover.
(2) For every collection of closed subsets (F;);c; with the finite intersection property,

mieIFi 7 0.
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Fact 1.2.3. An interval in R is compact if and only if it is closed and bounded.

Exercise 1.2.4. In this exercise, you will prove that the half-open interval topology on (0, 1]
is Lindelof, i.e., every open cover has a countable sub-cover.

(1) Suppose U C R is open and suppose ((a;,b;));es is a collection of open intervals

which cover U:
U C U(aj, bj)
jeJ
Show there is a countable sub-cover, i.e., show that there is a countable subset I C J

such that
U C U(ai, bz)
iel
Hint: Use Fxercise 1.1.24.
(2) Suppose ((aj,b;])jes is a collection of half-open intervals which cover (0, 1J:

(07 1] C U(aj, bj]
jet
Show there is a countable sub-cover, i.e., show that there is a countable subset I C J

such that
(0,1] | (as, bi].
el
Exercises 1.2.5. Suppose X is a topological space. Verify the following assertions.
(1) If X is compact and F' C X is closed, then F' is compact.
(2) If X is Hausdorff, K C X is compact, and = ¢ K, then there are disjoint open U, V'
such that x € U and K C V. In particular, K is closed.
(3) If X is compact Hausdorff, then X is normal.
(4) If X is compact and f: X — Y is continuous, then f(X) is compact.
(5) If X is compact and Y is Hausdorff, and continuous bijection f : X — Y is auto-
matically a homeomorphism (i.e., f~! is continuous).

Exercise 1.2.6 (Lebesgue Number Lemma). Suppose (X,d) is a compact metric space.
Prove that for every open cover (U;);cr, there is a § > 0 such that for every xy € X, there is
an ig € I such that Bs(zg) C Uy,.

Exercise 1.2.7. Consider the following conditions:
(1) For every x € X, there is a neighborhood U of x such that U is compact.
(2) For every x € X, there is a neighborhood base B(z) consisting of neighborhoods U
of x such that U is compact.
(3) For every x € X and every neighborhood U of z, there is an open V withx € V C U
with V' compact.
(4) For every x € X and every neighborhood U of z, there is an open V with x € V' C
V C U with V compact.
Determine which conditions imply which other conditions. Then show all the above condi-
tions are equivalent when X is Hausdorff.

Definition 1.2.8. A Hausdorff space satisfying one (equivalently all) of the conditions in

Exercise 1.2.7 is called a locally compact Hausdorff (LCH) space.
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Exercise 1.2.9. Suppose X is a second countable LCH space. Prove the following assertions.
(1) X is o-compact, i.e., there is a sequence (K,) of compact subsets of X such that
X =K,
(2) Every compact K C X is a Gs-set, i.e., a countable intersection of open sets.

Exercise 1.2.10 (Baire Category). Suppose X is either:

(1) a complete metric space, or
(2) an LCH space.

Suppose (U,,) is a sequence of open dense subsets of X. Prove that (U, is dense in X.
Hint: Let Viy be an arbitrary non-empty open set. Inductively construct a decreasing sequence
(Vi)n>1 of non-empty open subsets with V11 C Vipy C Up1 NV, such that in the two cases
above,

(1) V,, is a ball of radius 1/n for alln € N, or
(2) V,, is compact for all n € N.

Exercise 1.2.11. Suppose X is LCH. Verify the following assertions.

(1) If K ¢ U C X where K is compact and U is open, there is an open V with K C
V c V c U with V compact.
Hint: Use Ezercise 1.2.7(4).

(2) (Urysohn) If K C U C X as above, there is a continuous f : X — [0, 1] such that
flx = 1 and f = 0 outside of a compact subset of U.

(3) (Tietze) Of K C X is compact and f € C(K), there is an F' € C.(X) such that
Flg = f.

Definition 1.2.12. Let X be an LCH space. We define the following function algebras:

e ((X) is the algebra of continuous (C-valued) functions on X.

e C.(X) is the algebra of continuous functions of compact support, i.e., there is a
compact set K such that f|x. = 0. We'll write supp(f) := {z|f(x) # 0}, so f has
compact support if and only if supp(f) is compact.

e Cy(X) is the algebra of continuous functions which vanish at infinity, i.e., for all
e >0, {|f|] > e} is compact.

e C,(X) is the algebra of continuous bounded functions.

We write C(X,R), C.(X,R), Co(X,R), Cp(X,R) for the real subalgebras of real-valued func-
tions. Observe that
Ce(X) C Co(X) C Cp(X) C O(X).

The uniform/oo-norm on Cy(X) is given by
1 flloo := sup | f(2)].
zeX
Exercise 1.2.13. Show that C(X), C.(X),Co(X), Cy(X) are all complex algebras. More-
over, show C.(X), Co(X) are unital if and only if X is compact.

Exercise 1.2.14 (Dini’'s Lemma). Suppose X is a compact topological space and (f,) C
C(X,[0,1]). Show that if f,(z) “\, 0 pointwise, then f,, N\, 0 uniformly.

Theorem 1.2.15. Suppose X is LCH.
(1) || - loo @s @ norm on Cy(X).



(2) Cy(X) is complete with respect to || - ||oo-
(8) Co(X) C Cyp(X) is closed (and thus complete).
(1) Cx) = Go(x).

Proof.

(1) Exercise.

(2) Suppose (fy,) is uniformly Cauchy. Then (f,(z)) is Cauchy in C for every z € X. Define
f(z) := lim f,,(x), which is continuous (use /3 argument). Then one shows || f,|l C [0, 0)
is bounded. Finally, you can show f,, — f uniformly, and sup |f(z)| < sup || f.] < oo.

(3) Suppose (fn) C Co(X) such that f, — f in Cp(X). Let ¢ > 0. Pick N € N such that
n > N implies ||f — fullo < €/2. Since fy € Co(X), {|fn| > €/2} is compact. Then
{If] = e} C{|f~n] = €/2} is compact as a closed subset of a compact set.

(4) It suffices to prove that we can uniformly approximate any function in Cy(X) by a function
in Co(X). Let f € Cp(X) and e > 0so that K := {|f| > €} is compact. By the LCH Urysohn
Lemma (Exercise 1.2.11(2)), there is a continuous function g : X — [0, 1] such that g|x =1
and ¢ has compact support. Then fg € C.(X), and || f — fg|l < €. O

Exercise 1.2.16. Suppose (X,7) is a locally compact topological space and (f,) is a se-
quence of continuous C-valued functions on X. Show that the following are equivalent:
(1) There is a continuous function f : X — C such that f,|x — f|x uniformly on every
compact K C C.
(2) For every compact K C X, (f,|x) is uniformly Cauchy.

Deduce that C'(X) is complete in the topology of local uniform convergence.

Exercise 1.2.17. Suppose X is a locally compact Hausdorff space, K C X is compact, and
{Uy,...,U,} is an open cover of K. Prove that there are g; € C.(X,[0,1]) fori =1,...,n
such that g; = 0 on Uf and Y | g; = 1 everywhere on K.

1.3. Convergence in topological spaces. Let (X, 7) be a topological space. Recall that
a sequence (x,) converges to x, denoted x, — z if for every open U € T with z € U,
there is an N € N such that n > N implies z, € U (z, is eventually in U for every open
neighborhood U of x). Not all spaces are first countable, so sequences do not suffice to
describe the topology!

1.3.1. Nets.

Definition 1.3.1. A directed set is a set I equipped with a preorder (reflexive and transitive
binary relation) < satisfying
e for all i,j € I, thereis a k € I such that 1 <k and j < k.

Examples 1.3.2.

(1) N, R, or any linearly ordered set.
(2) R\ {a} where = <y if and only if |x — a| > |y — a| (y is closer to a than x is).
(3) Any neighborhood base T (z) at x € X, ordered by reverse inclusion (U < V iff
vV CU).
(4) If X is any infinite set, { " C X|F is finite} ordered by inclusion.
Definition 1.3.3. Let X be a nonempty set and [ a directed set. A net in X based on I
(or an I-net in X) is a function x : I — X, where write z; := z(i) and x = (;)es-

Given an I-net (x;);c; and a subset S C X, we say
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e (x;) is eventually in S if there is some j € I such that for all i > j, x; € S.

o (x;) is frequently in S if for every j € I, there is an i > j such that z; € S.

We say (x;) converges to x € X if (x;) is eventually in every neighborhood of x. We say x
is a cluster point of (x;) if (x;) is frequently in every neighborhood of z.

Proposition 1.3.4. Suppose X is a topological space and A C X. The following are equiv-
alent for v € X:

(1) x is an accumulation/limit point of A (for all open U such that x € U, AN (U \ {z})
is not empty), and
(2) there is a net in A\ {x} that converges to x.

Proof.

(1) = (2): Let B(z) be any neighborhood base at z, ordered by reverse inclusion. (For ex-
ample, we can take T (z), the set of all open sets which contain x.) For every U € B(x),
pick ziy € UN (A\ {z}). (Observe this requires the Axiom of Choice!l) Then observe that

(Tv)ven) converges to x.
(2) = (1): Exercise. O

Corollary 1.3.5. A subset A C X s closed if and only if every convergent net in A only
converges to points in A.

Proposition 1.3.6. X is Hausdorff if and only if every convergent net has a unique limit.

Proof.

=>: If there is a net without a unique limit, any 2 distinct limit points of the same net cannot
be separted by disjoint open sets.

<: We'll prove the contrapositive. Suppose X is not Hausdorff, so there are x,y € X such
that for every neighborhoods U,V of z,y respectively, U NV is nonempty. Let B(z), B(y)
be a neighborhood base for T at x,y respectively, both ordered by reverse inclusion. Direct
B(z) x B(y) by (Uy,Vi) > (Us, Vo) if and only if Uy € Us and Vi C V;. Then for all

(U, V) € B(z) x B(y), choose a point z,yy € UNV. (Again, this uses the Axiom of Choice!)
This net converges to both x and y. ([l

Proposition 1.3.7. A function f : X — Y is continuous if and only if for every convergent
netx; —»x in X, f(x;) = f(z) inY.

Proof.
=-: Suppose f : X — Y is continuous. Let (x;) be a convergent net with z; — z in X.
We need to show that f(z;) — f(z) in Y. Let V' be an open neighborhood of f(z) in Y.
Observe that f~'(V) is open in X, and z € f~!(V). Since r; — =, (x;) is eventually in
f~YV). Hence f(x;) is eventually in V.
<«: We’ll show that the preimage of every closed set is closed. Let FF C Y be closed. We may
assume [’ is non-empty. By Corollary 1.3.5, it suffices to prove that every convergent net
(z;) in f~Y(F) only converges to points of f~*(F). So suppose (z;) is a convergent net in
f7YF), and say x; — z. Then f(x;) € F for all 4, and f(z;) — f(x) by assumption. Since
F is closed, by Corollary 1.3.5, f(z) € F, and thus z € f~(F). O

Definition 1.3.8. A subnet of an I-net (x;) consists of a J-net (y;) together with a function

f +J — I which need not be injective such that
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oy =uxy foralljeJ,ie,y=zof:J—X.
e for all i € I, there is a jy € J such that f(j) > i for all j > jo, i.e., for every i € I,
(f(j)) is eventually greater than i.

Observe that if x; — x, then y; — z for any subnet (y;) of (x;).

Proposition 1.3.9. Suppose (x;) is a net in X and x € X. The following are equivalent:

(1) = is a cluster point of (x;).
(2) there is a subnet (y;) of (x;) such that y; — x.

Proof.

(1) = (2): Choose a neighborhood base B(z) at x. Define J := I x B(z) where (i1, U;) <
(19,Us) iff 41 < iy and Uy D Us. For each (i,U) € J, define f(i,U) := i’ to be any i with
v >4 and zy € U. Then if (i1,U1) < (iQ,UQ), 1 <19 < f(iz,Ug), and Tf(ia,Us) € U, C Uy.
This means (z ;7)) is a subnet of (x;) converging to x.

(2) = (1): Exercise. O

Exercise 1.3.10. When (X, 7)) is first countable, then Propositions 1.3.4, 1.3.6, 1.3.7, and
1.3.9 and Corollary 1.3.5 all hold with sequences instead of nets.

Exercise 1.3.11. Suppose (X, d) is a metric space. Prove that the following are equivalent:

(1) X is compact.
(2) X is sequentially compact (every sequence has a convergent subsequence).
(3) X is complete and totally bounded.

Deduce that if in addition X is complete and A C X, then A is compact if and only if A is
totally bounded.

Theorem 1.3.12. Suppose X s a topological space. The following are equivalent:

(1) X is compact.

(2) For every family of closed sets (F;) with the finite intersection property, (| F; is
nonempty.

(3) Every net in X has a cluster point.

(4) Every net in X has a convergent subnet.

Proof.
(1) < (2): This is Exercise 1.2.2.

(3) & (4): This follows by Proposition 1.3.9.
(2) = (3): Let (x;) be anet in X. For i € I, define A; := {z;|j > i}. Observe [ 4; is the set

of cluster points of (z;). Moreover, (A;) has the finite intersection property, so (4;) also has
the finite intersection property. We conclude by (2) that (] 4; is nonempty, and thus (a;)
has a cluster point.

(3) = (2): We'll prove the contrapositive. If (2) fails, then there is a family of closed sets (F;)
with the finite intersection property such that () F; = ). Define J to be the set of non-empty
finite intersections of (F;) ordered by reverse inclusion. Since (F;) has the finite intersection
property, for every F € J, F is nonempty. Use the Axiom of Choice to pick zp € F for

every F' € J. Then any cluster point of (z5) lies in (o, F = F; = 0. O
10



1.3.2. Filters.

Exercise 1.3.13 (Pedersen Analysis Now, E1.3.4 and E1.3.6). A filter on a set X is a
collection F of non-empty subsets of X satisfying

e A B € Fimplies AN B € F, and
e Ac Fand A C B implies B € F.

Suppose T is a topology on X. We say a filter F converges to x € X if every open
neighborhood U of z lies in F.

(1) Show that A C X is open if and only if A € F for every filter F that converges to a
point in A.

(2) Show that if F and G are filters and F C G (G is a subfilter of F), then G converges
to z whenever F converges to x.

(3) Suppose (xy) is a net in X. Let F be the collection of sets A such that (z)) is
eventually in A. Show that F is a filter. Then show that x) — z if and only if F
converges to .

(4) Show that (X, 7)) is Hausdorff if and only if every convergent filter has a unique limit.

Exercise 1.3.14 (Pedersen Analysis Now, E1.3.5). A filter F on a set X is called an ultra-
filter if it is not properly contained in any other filter.

(1) Show that a filter F is an ultrafilter if and only if for every A C X, we have either
AeForAe F.
(2) Use Zorn’s Lemma to prove that every filter is contained in an ultrafilter.

Exercise 1.3.15. Let X and Y be sets and f : X — Y a function. Let F be an ultrafilter
on X. Prove that f*(F) :={A CY|f ' (A) € F} is an ultrafilter on Y.

Exercise 1.3.16. Given a filter F on X, show that F is an ultrafilter if and only if [ JI_, A; €
F implies that A; € F for some i € {1,...,n}.

Exercise 1.3.17. Let X be a nonempty set and let U be a collection of subsets of X.
Note: It is not assumed that U is a filter!
Show that the following two statements are equivalent.

(1) U is an ultrafilter on X.

(2) Whenever X can be partitioned into three disjoint sets X = A; IT Ay IT A3, there is
a unique ¢ € {1,2,3} such that A; € U.
Hint: The A;’s need not be distinct nor non-empty.

Exercise 1.3.18. Let (X, T) be a topological space. A net (z))ea is called universal if for
every subset Y C X, (z,) is either eventually in Y or eventually in Y°. Show that every net
has a universal subnet.

Hint: Let (x)) be a net in X. We say a filter F on X is associated to (z)) if (xx) is
frequently in every F € F.

(1) Show that the set of filters associated to () is non-empty.

(2) Order the set of filters associated to (xy) by inclusion. Show that if (F;) is a totally
ordered set of filters for (xy), then UF; is also a filter for (xy).

(8) Use Zorn’s Lemma to assert there is a maximal filter F associated to (xy).

(4) Show that F is an ultrafilter.

(5) Find a subnet of (x)) that is universal.
11



Exercise 1.3.19. Let (X, 7)) be a topological space. Prove that the following are equivalent:
(1) (X,7T) is compact
(2) every ultrafilter converges
(3) every universal net converges.

1.4. Categories, universal properties, and product topology.

Definition 1.4.1. A category C is a collection of objects together with a set of morphisms
C(a — b) for every ordered pair of objects a,b € C and a composition operation — o¢ — :
Cb—c)xCla—b) —Cla—c)ie, f:a—band g:b— ¢, then go f:a — ¢ such that
e composition is associative, i.e., ho(go f) = (hog)o fforall f:a—b, g:b—c,
and h:c—d.
e every object has an identity morphism, i.e., for every b € C, there is a id, : b — b
such that idyof = f forall f:a—band goid, =g forallg:b— ¢

Definition 1.4.2. Suppose (X;);cs is a family of sets. The (categorical) product is the
Cartesian product

[[x = {m:]—>UX,~

el i€l

x; = x(i) € Xl}

together with the canonical projection maps 7; : [[ X; — X given by 7;(x) = ;. It satisfies
the following universal property :

e (product) for any set Z and functions f; : Z — X; for i € I, there is a unique function
[1fi: Z—=1[X;suchthat mjo[[fi=f; forall j el

Z

IS i

[Tier Xi —— X,

fj

Exercise 1.4.3. Suppose Y is another set together with functions 6; : Y — X, for all i €
satisfying the universal property of the product. Show there is a unique bijection between
Y and [] X; which is compatible with the projection maps. In this sense, we say that the
product is unique up to unique isomorphism.

Exercise 1.4.4. A set [[ X; together with maps ¢; : X; — [[ X; for each j € I is called the
coproduct of (X;);ey if it satisfies the following universal property:

e (coproduct) for any set Z and functions f; : X; — Z for i € I, there is a unique
function [[ f; : [[ Xi — Z such that ([] fi) o ¢; = f;.

X; — [Tics Xi

Ji EH!LIfi
*

A

(1) Show that the coproduct, if it exists, is unique up to unique isomorphism.

(2) What is the coproduct in the category of sets?
12



Definition 1.4.5. Suppose (X;);cs is a family of topological spaces. The (categorical) prod-
uct is the Cartesian product [[,.; X; equipped with the weakest topology such that the
canonical projection maps m; : [[ X; — X; are continuous for every j € I. We call this
topology the product topology.

Exercise 1.4.6. Prove that the open sets [[ U; with U; C X open where only finitely many
of the U; are not equal to X; form a base for the product topology.

Exercise 1.4.7. Prove that [[ X; with the product topology together with the canonical
projection maps m; : [[ X; — X is the categorical product in the category of topological
spaces with continuous maps. That is, prove the product satisfies the universal property in
Definition 1.4.2 subject to the additional condition that all functions are continuous.

Exercise 1.4.8. What is the categorical coproduct of topological spaces?

Theorem 1.4.9 (Tychonoff). Suppose (X;)icr is a family of compact topological spaces.
Then the product [[ X; is compact in the product topology.

Proof. Discussion section. 0

Definition 1.4.10. Suppose C,D are categories. A (covariant) functor F : C — D assigns
to each object ¢ € C an object F(¢) € D and to each morphism f € C(a — b) a morphism
F(f) € D(F(a) — F(b)) such that

e F(id.) = idp() for all objects c € C, and

e (gof)=F(g)o F(f) forall f e C(a—b)and geC(b— c).
A contravariant functor F : C — D is similar to a functor, but instead of the second bullet
point above, we have F(go f) = F(f) o F(g) for composable f, g.

Exercise 1.4.11. Let Set denote the category of sets and functions.
(1) For a function f : X — Y, define P(f) : P(X) — P(Y) by P(f)(4) = f(A) =
{f(a)la € A}. Show that PSet — Set is a functor.
(2) For a set X, define P~*(X) := P(X) = {A C X}. For a function f : X — Y and
B C Y, define P~(f)(B) := f~}(B) = {zr € X|f(z) € B}. Show that P~ : Set —

Set is a contravariant functor.

Exercise 1.4.12. Let Top denote the category topological spaces and continuous maps.

(1) There is a forgetful functor Forget : Top — Set which forgets the topology.

(2) Given a set X, we can endow it with the discrete topology Tgisc := P(X). This gives
a functor L : Set — Top. Show that if Y is any topological space, then every function
X — Y is continuous with respect to the discrete topology on X. In other words,

Top(L(X) — Y) = Set(X — Forget(Y)).

(3) Given a set Y, we can endow it with the trivial topology Ty := {0, Y }. This gives
a functor R : Set — Top. Show that if X is any topological space and Y is a set,
then every function X — Y is continuous with respect to the trivial topology on Y.
In other words,

Set(Forget(X) — Y) = Top(X — R(Y)).
13



Exercise 1.4.13. Let CptHsd denote the category of compact Hausdorff topological spaces
and continuous maps. Let Alg, denote the category of unital complex algebras and unital
algebra homomorphisms. Show that X — C(X) and f: X — Y mapsto —o f: C(Y) —
C'(X) gives a contravariant functor CptHsd — Alg,.

Exercise 1.4.14.

(1) Given LCH spaces X, Y and a continuous function f : X — Y, when does the image
of the map —o f : Cy(Y) — C(X) lie in Cp(X)?

(2) Show that on the correct category LCH of locally compact Hausdorff topological
spaces, the assignments X — Cy(X) and f +— — o f define a contravariant functor
to Alg, the category of non-unital complex algebras and algebra homomorphisms

1.5. The Stone-Weierstrass Theorem. Weierstrass’ original theorem from 1885:
(1) The polynomials are dense in Cla, b] where —oo < a < b < 0.
(2) A continuous function on R with period 27 can be uniformly approximated by a
finite linear combination of functions of the form sin(nz),cos(nz) for n € N, i.e., a
trigonometric polynomial.

Theorem 1.5.1 (R-Stone-Weierstrass). Suppose X is compact Hausdorff and A C C(X,R)
is a closed R-subalgebra which separates points (for all distinct z,y € X, there is an f € A
such that f(x) and f(y) are distinct).

e If A contains a non-vanishing function, then A = C(X,R).
o [f every f € A has a zero, then there exists a unique xq € X such that

A={f € C(X,R)|f(x) = 0} .

Exercise 1.5.2. Suppose X is compact Hausdorff and A C C'(X,F) is a subalgebra where

F is R or C. Prove that A is also a subalgebra. Deduce that if A separates points, then so
does A.

Lemma 1.5.3. On any compact K C R, the function © +— |z| on R can be uniformly
approximated on K by a polynomial which vanishes at zero.

Proof. We give a proof of Sarason. We’ll show for R > 0, there is a sequence of polynomials
(pr) which converges uniformly to | - | on [—R, R] such that p,(0) = 0 for all n. Without
loss of generality, R = 1. It suffices to find a sequence (g,) of polynomials converging to
q(t) :=1—[t| on [—1, 1] such that ¢,(0) = 1 for all n. Observe that

q takes values in [0,1] and (1 — ¢(¢))? = ¢* for all [t| < 1. (%)

For a given t € [—1,1], consider the equation (1 — s)> = ¢2. It has 2 solutions, namely
s = 1=+ |t], and exactly one of these values of s lies in [0,1]. Hence ¢(t) is unique function
on [—1, 1] satisfying (x). We can rewrite (x) as

1
q takes values in [0, 1] and ¢(t) = 5(1 — 2+ q(t)?). (%)

We define (g,) inductively by
e ¢o(t) =1, and

o Guii(t) = 5(1 =+ qu(t)?).
14



By induction, for all n > 0, we have ¢, takes values in [0, 1], ¢,(0) = 1, and

1 1

qn — dn+1 = §<qr2b—1 - quL) = §<Qn71 - Qn)(anl + Qn) > 0.

(Indeed, observe that ¢;(t) = 1—3$t2, so go—¢1 = 2t > 0.) This means that (g,) is monotone
decreasing by construction. Let ¢ be the pointwise limit. Observe that ¢ satisfies (xx) by

construction, so ¢ = ¢ by uniqueness! Now as ¢, N\, ¢ on [—1, 1] pointwise, ¢, — ¢ uniformly
by Dini’s Lemma (Exercise 1.2.14). O

Lemma 1.5.4. If A C C(X,R) is a closed R-subalgebra, then A is a lattice (for all f,g € A,
the functions fV g := max{f, g} and fV g :=min{f, g} belong to A).

Proof. Suppose a € A and a # 0. Then —%— : X — [—1,1]. By Lemma 1.5.3, for all € > 0,

llalloo

there is a polynomial p on [—1, 1] with p(0) = 0 and | |t| —p(t)| < € for all ¢t € [—1, 1]. Hence

Ia(rt)|_p<@(9v")>‘<5 Vae X,

laloo lallo

[al ( a ) _.
_p .

| lafloo
————

€A -
Since p(0) = 0, p(a/||a|l) € span{a”|n € N} C A. Since the algebra A is closed and € > 0
was arbitrary, |a|/||a]l« € A, and thus |a| € A. Hence for all a,b € A,

In other words,

1
max{a,b} = §(a + b+ |a—bl)

1
min{a, b} = é(a +b—|a—10|)
are both elements of A. OJ
Lemma 1.5.5. Suppose A C C(X,R) is a R-vector space which is also a lattice. Suppose
f € C(X,R) satisfies
o for all e > 0 and all distinct x,y € X, there is an a,, € A such that
[f(@) —aey(2)] <& and  [f(y) —asy(y)| <e.

Then f € A.
Proof. For every ¢ > 0 and z,y € X, pick a,, € A such that |f(z) — a,,(z)| < € and
|f(y) — azy(y)| < e. Then z,y are both in:

Uy ={2 € X|f(2) < azy(z) +¢}

Vew =172 € Xlasy(2) < f(2) +€}.
Fix x € X. Then sets (U, ,)yex are an open cover of X. Since X is compact, X C |, Upy,
for some yy,...,y, € X. Then a, := \/_, as, € A, and f(2) < a,(2) + ¢ for all z € X
in construction. Also, a,(z) < f(z) + ¢ for all z € W, := (), V., which is some open
neighborhood of z. Varying over x € X, (W, ).cx are an open cover, so there are finitely
many zi,...,r, € X such that X C Ule W,, by compactness. Setting a. := /\f:1 Ay,

satisfies || f — a.|loc < €. Since £ was arbitrary, we conclude that f € A. O
15



Proof of the R-Stone-Weierstrass Theorem 1.5.1. Suppose x # y in X. Since point evalua-
tion is an R-algebra homomorphism A — R, then

Ay = 1{(f(2), f()|f € A} CR?
is a R-subalgebra. The only R-subalgebras of R? are:

(0,0) R x {0} {0} xR A ={(z,2)|r € R} R?.
Since A separates points, A, , # (0,0) or A for all z # y.

Claim. A, , = R? for all x # y except for when x,y are equal to one possible o € R.

Proof. If there are x # y such that A, , # R?, then without loss of generality, A, , =
{0} x R. Thus f(z) = 0 for all f € A. Since A separates points, f(z') = 0 for all
f € Aimplies 2/ =z. So A,, =R*for all y # x # 2. O

Claim. A,, = R? for all x # y if and only if A contains a non-vanishing function.

Proof of Claim. If A contains a non-vanishing function, then A, , = R? for all  # y.
Conversely, suppose A, , = R? for all  # y. Then for all z € X, choose a continuous
function a, € A such that a,(x) # 0. Observe that the sets (U, := {a, # 0}).ex form
an open cover of X, so by compactness, there are 1, ..., z, such that X C (J_, U,,.
By Lemma 1.5.4, A is a lattice, so

a:=max{az,,...,0z,, Qg .-, —0g, } = max{|a],...,|a |} € A.
Since |a,,| > 0 on U,, for all i = 1,...,n, we have a(z) > 0 for all x € X by
construction. O

From these claims, we see that either A contains a non-vanishing function, in which case
A, = R? for all z # y, or every function in A vanishes at some point of X, in which case
there is a unique xy € X such that a(xy) =0 for all a € A.

Case 1: For all z # y in X and f € C(X,R), there is an a,, € A such that f(z) = a,,(x)
and f(y) = az,(y). By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f € A.

Case 2: For all zg # x # y # zo and f € {g € C(X,R)|g(z¢) = 0} (which is a closed sub-
algebra/ideal of C'(X,R)), there is an a,, € A such that f(z) = a,,(z) and f(y) = a,,(vy).
By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f € A. O

Theorem 1.5.6 (C-Stone-Weierstrass). Suppose X is a compact Hausdorff space. Let
A C C(X) be a closed subalgebra that separates points of X and is closed under complex
conjugation.

e If A contains a non-vanishing function, then A = C(X).

o [f every f € A has a zero, then there exists a unique xqg € X such that

A={f e CX)|f(xo) =0}

Proof. Note that Ag, := {f € A|f = 7} is an R-subalgebra of A. (Here, ‘sa’ stands for self-
adgjoint.) Since A is closed under complex conjugation, for all f € A, Re(f),Im(f) € A, and
thus A = Ag, @ iAs. Moreover, C(X) = C(X,R) & iC(X,R) by similar reasoning. Hence
the strategy is to apply the R-Stone-Weierstrass Theorem 1.5.1 to Az, C C(X, R).
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First, observe Ag, separates points, since if f € A separates x, y, then one of Re(f), Im(f) €
Ag, separates x,y. Second, observe that Ag, is closed, since if (f,,) C As, converges uniformly,
then its limit lies in A as A is closed, and since (f,,) must converge pointwise, its limit only
takes real values and thus lies in Ag,.

We now check the two cases in the statement of the theorem.

Case 1: If A contains a non-vanishing function f, then |f|?> = ff € As, does not vanish. By
the R-Stone-Weierstrass Theorem 1.5.1, Ag, = C(X,R), and thus

A=A, @il = C(X,R)®iC(X,R) = C(X).

Case 2: If every element of A vanishes somewhere, then so does every element of A, C A.
By the R-Stone-Weierstrass Theorem 1.5.1, Ag, = {f € C(X,R)|f(x¢) = 0}, and thus

A= Aq @iAs,
={f € C(X,R)[f(z0) = 0} @ i{f € C(X,R)|f(w0) = 0}
={f € C(X)[f(x0) =0} . O

Exercise 1.5.7. Suppose X is LCH and A C Cy(X) is a closed subalgebra that sepa-
rates points and is closed under complex conjugation. Then either A = Cy(X) or A =
{f € Co(X)|f(xo) = 0} for some xy € X.

Hint: Use the one point (Alexandroff) compactification discussed in §1.0 below.

Exercise 1.5.8. Show the following collections of functions are uniformly dense in the ap-
propriate algebras:

(1) For a < bin R, the polynomials R[¢t] C C([a,b],R).

(2) For a < bin R, the piece-wise linear functions PW L C C([a,b],R).

(3) For K C C compact, the polynomials C[z,z] C C(K).

(4) For R/Z, the trigonometric polynomials span {sin(27nz), cos(2rnz)|n € NU {0}} C
C(R/Z,R).

Exercise 1.5.9.

(1) Use the difference quotient to show that complex cojugation = : C — C given by
z +— Z is nowhere complex differentiable.

(2) Let D C C be the open unit disk {|z| < 1}. Describe the uniform closure of C|[z], the
polynomials in z, in C'(D).
Hint: You may use without proof Morera’s Theorem from Complex Analysis which
states on any open domain U C C, the local uniform limit of complex differentiable
functions is complex differentiable.

(3) Discuss your answer in the context of the Stone-Weierstrass Theorem.

Exercise 1.5.10. Let X, Y be compact Hausdorff spaces. For f € C'(X) and g € C(Y), de-
fine (f®g)(z,y) := f(z)g(y). Prove that span{f ® g|f € C(X) and g € C(Y)} is uniformly
dense in C(X xY).

Exercise 1.5.11 (Sarason). Suppose f € C([0,1],R) such that fol 2" f(z)dx = 0 for all
n > 2020. Prove that f = 0.
Hint: Consider A := span{z"|n > 2020} C C([0,1],R).
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Exercise 1.5.12 (Sarason). Find a sequence of polynomials in R[¢t] C C'(R,R) that simulta-
neously converges to 1 uniformly on every compact subinterval of (0, c0) and to —1 uniformly
on every compact subinterval of (—o0,0).

1.6. One point (Alexandroff) and Stone-Cech compactification.

Definition 1.6.1. Suppose X is a topological space. An embedding ¢ : X — Y is a
continuous injection which is a homeomorphism onto its image, i.e., ¢! : o(X) — X is
continuous with respect to the relative topology.

A compactification of a topological space X consists of a compact space K and an embed-
ding ¢ : X — K such that ¢(X) is dense in K.

Example 1.6.2. Consider the map [0,1) — S* := {z € C||z| = 1} by r — exp(2mir). This
map is a continuous bijection, but not a homeomorphism onto its image.

Examples 1.6.3. Compactifications of R include:

(1) the extended real numbers R = [—o0, o]

(2) the ‘one point’ compactification R U {oo} = S*

(3) You can add (0,0) and S' in R? to an embedding R < R? as a spiral.

(4) You can add a circle S* embedded in a 2-toruse T? C R? to an embedding R < T?
which coils R around the torus from either side.

Definition 1.6.4. Suppose X is an LCH space, and choose any object co ¢ X. Define
X* = X1I{oco}, where IT denotes disjoint union (coproduct in Set). We say U C X* is open
if and only if either

e U C X isopenin X, or
e 0o € U, and U* is compact.

Due to the next theorem, we call X*® the (Alexandroff) one point compactification of X.

Theorem 1.6.5. If X is LCH, then the space X*® is compact Hausdorff, and the inclusion
X — X* is an embedding.

Proof. The inclusion X < X* is obviously an embedding.

Compact: Suppose (U;) is an open cover of X*. Then there is some Uy such that co € Uy
and U§ is compact. Then (U; N X)) is an open cover of U§, which is compact. So pick a finite
subcover.

Hausdorff: Since X is Hausdorff, it suffices to separate x € X from oo € X*. Since X is LCH,
there is an open neighborhood U C X of z such that U C X is compact. Set V := U’ in
X*, which is an open neighborhood of co disjoint from U. U

Definition 1.6.6. A topological space X is completely regular if for every closed FF C X
and x € F°, there is a continuous function f: X — [0, 1] such that f(z) =1 and f|p = 0.
We call X Tychonoff if X is completely regular and 7.

Exercises 1.6.7.

(1) X Tychonoff implies X is Hausdorff.
(2) Every normal space is Tychonoff by Urysohn’s Lemma.

(3) Any subspace of a Tychonoff space is Tychonoff.
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Lemma 1.6.8 (Embedding). Suppose X is a topological space & C C(X,[0,1]) is a family
of continuous functions. Define e : X — [0,1]* := {f : ® = [0,1]} = [];¢4[0, 1] (which is
compact in the product topology!) by x — (f(x))fea-

(1) e is continuous.
(2) e is injective if and only if ® separates points, i.e., for all x # y in X, there is an

f € ® such that f(x) # f(y).
(3) If @ separates points from closed sets (for all F C X closed and x € F€, there is an

f € ® such that f(x) ¢ f(F)), then e is an open map of X onto e(X).
(4) If ® separates points and ® separates points from closed sets, then e is an embedding.

Proof.

(1) Observe that 7y 0 e = f is continuous for all f € ®. Thus e is continuous by the
universal property defining the product in Top.
(2) e(x) # e(y) if and only if there is an f € ® such that

f(x) = (mpoe)(z) # (mroe)(y) = f(y).

(3) Suppose ® separates points from closed sets. Let U C X be open. Suppose = € U.
We want to find an open set V' C [0, 1]® such that e(x) € VNe(X) C e(U). There is

an f € ® such that f(z) ¢ f(U¢). Then W := [0, 1]\ f(U¢) is an open set containing
f(z), soe(z) € W]?l(W), which is open in [0, 1]%. Observe that

ely) e (W)ne(X) <= [fly)¢fU) = yeU.
Setting V := 7rJ71(W), we have e(z) € VNe(X) C e(U) as desired.
(4) By (1) and (2), e : X — [0,1]® is a continuous injection. By (3), e~ on e(X) is
continuous. So e is a homeomorphism onto its image. 0

Corollary 1.6.9. X is Tychonoff if and only if there exists an embedding X — [0,1]F for
some set 1.

Definition 1.6.10. Suppose X is Tychonoff and set ® := C'(X, [0, 1]). Consider the embed-
ding e : X < [0,1]® by e(z); := f(x). The Stone-Cech compactification of X is X = e(X),
with X — SX being the corestriction of e, still denoted e.

Suppose f : X — Y is any continuous map between Tychonoff spaces. Define F' :
[0, 1]®x — [0,1]®Y componentwise for g € ®y = C(Y,[0,1]) by 7, (F(p)) := 7gor(p). Then F
is continuous, since m, 0 F' = myos : [0,1]*% — [0, 1] is continuous for all g € ®y. Moreover,
for all x € X,

mo(Flex (7)) = mgop(ex(x)) = 9(f(2)) = my(ey (f(2))-

This means that Foex = ey o f: X — [0,1]®". Hence im(F|zx) C ey(Y) = BY. Define
Bf = F|sx : BX — BY. Observe we have the following commutative diagram:

X <25 BX —— [0,1]%%

lf lﬂf lF (1.6.11)

Y <2 BY —— [0,1]*.
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Remark 1.6.12. Suppose X,Y are Tychonoff and f : X — Y is continuous. We note for
future use that if every h € ®x factorizes as h = g o f for some g € Py, then F from
Definition 1.6.10 is injective. Indeed, if p, p’ € [0, 1]®%, we have

F(p) = F(p) <= my(F(p)) = me(F () Vge dy
= Thor(p) = 7rgOf<p/> Vge by
> m(p) = m(p) Vhe ®(X)
= p=yp.

Theorem 1.6.13. The Stone-Cech compactification (8X,e) satisfies the universal property

e For every compact Hausdorff space Z and continuous function f : X — Z, there
exists a unique continuous function Bf : X — Z such that foe = f.

BX

SN 3f
e AN
\\
N

x 15z

Proof. First, given any compactification ¢ : X — K, compact Hausdorff Z, and continuous
map f : X — Z, there exists at most one continuous function g : K — Z such that goyp = f.
So it suffices to prove existence of f Just observe that since Z is compact, ez (Z) C fZ is
dense and compact, so ez(Z) = BZ. Hence ez : Z — (7 is a continuous bijection from a
compact space to a Hausdorff space, and is thus a homeomorphism. So the map f: X = Z
given by

sx gz 2,
satisfies fo ex = f by the commutative diagram (1.6.11). O

Exercise 1.6.14. If ¢ : X — Y is any compactification of X satisfying the universal
property in Theorem 1.6.13, then ¢ : fX — Y is a homeomorphism.

Corollary 1.6.15. Let X be Tychonoff and ¢ : X — K a compactification.
(1) The unique lift ¢ : X — K is surjective.
(2) Suppose for all f € Cyp(X) thereis a g € C(K) such that f = gop. Then @ : X — K
18 a homeomorphism.

Proof.

(1) Since poex = ¢ and ¢(X) is dense in K, ¢(fX) is dense in K. But X is compact
and ¢ is continuous, so p(SX) is compact. Since K is compact Hausdorff, compact
subsets are closed, and thus ¢(5X) = K.

(2) By (1), it suffices to prove that ¢ : X — K is injective. Then since X is compact
and K is Hausdorff, the continuous bijection ¢ is automatically a homeomorphism.
Injectivity follows by Remark 1.6.12. Indeed, every f € ®&x C Cy(X) factorizes as
f=gopfor some g € Og. O

Proposition 1.6.16. Stone-Cech compactification is a functor 8 : Tych — CptHsd.

Proof.
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id: Since
BidXOOSX == 6XoidX:€X:id5X06X
(1.6.11)

we must have fidx = idgx as they agree on the dense subset X C 8X.
—o—: Suppose f: X - Y and g: Y — Z are continuous with all spaces Tychonoff. Since

ﬁ(gof)offx(': ezogo f Bgoeyo f BgoBfoex,

1.6.11) (1611) (1.6 11)
B(go f) = BgoBf as the agree on the dense subset X C fX. O

Exercise 1.6.17 (Adapted from Folland §4.8, #74). Consider N(with the discrete topology)
as a subset of its Stone-Cech compactification SN.
(1) Prove that if A, B are non-empty disjoint subsets of N, then their closures in SN are
disjoint.
(2) Suppose (x,) C N is a sequence which is not eventually constant. Show there exist
non-empty disjoint subsets A, B C N such that (z,) is frequently in A and frequently
in B.
(3) Deduce that no sequence in N converges in SN unless it is eventually constant.

Exercise 1.6.18 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Let UN be the set of ultrafilters on N. For a subset S C N, define [S] := {F € UN|S € F}.
Show that the function S + [S] satisfies the following properties:

(1) [0] = 0 and [N] = UN.

(2) For all S,T C N,

()[]C[]lfandonlylfSCT
(b) [S] =[T] if and only if S =T
(c) [SJUT] = [SUT].
(d)%s]ﬂ[] [SNT].

(e) [S] = [S].
(3) Find a sequence of subsets (5,,) of N such that [ JS,] # J[S.]-

(4) Find a sequence of subsets (.S,,) of N such that [ S,] # ([S.)-

Exercise 1.6.19 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Assume the notation of Exercise 1.6.18.

(1) Show that {[S]|S C N} is a base for a topology on UN.

(2) Show that all the sets [S] are both closed and open in UN.

(3) Show that UN is compact.

(4) For n € N, let F,, = {S C N|n € S}. Show F, is an ultrafilter on N.

Note: FEach F, is called a principal ultrafilter on N.

(5) Show that {F,|n € N} is dense in UN.

(6) Show that for every compact Hausdorff space K and every function f : N — K|
there is a continuous function f : UN — K such that f(F,) = f(n) for every n € N.
Deduce that &N is homeomorphic to the Stone-Cech compactification SN.

Hint: Gwen [ : N — K, use Ezercise 1.3.15 to get an wultrafiller on K from an
ultrafilter on N. Then use Exercises 1.3.13(4) and 1.5.19(2) to define f(F) for F €
UN.
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2. MEASURES
We begin with an informal discussion.

Definition 2.0.1. Let X be a set. A measure on X is a function p : M — [0, c0] where
M C P(X) is some collection of subsets (whose properties are to be determined) satisfying:

(1) (@) =0
(2) W(JI En) = > u(E,) when (E,) is a collection of mutually disjoint subsets in M,
where [[ means disjoint union.
We now would like to discuss what kind of properties the subset M C P(X) should satisfy.
e ), X € M (M is nonempty)
e closed under disjoint unions (finite? countable?)

Example 2.0.2 (Counting measure). Let M = P(X) and u(E) := |E|.

Example 2.0.3 (Lebesgue measure). There is a measure A on some M C P(R) such that
e (normalized) A\([0,1)) =1, and
e (translation invariant) A\(E + 1) = A(E) for all E € M and r € R.

For this A, we cannot have M = P(R)! Indeed, define an equivalence relation on [0, 1) by

T~y = r—yeQ.

Using the Axiom of Choice, pick one representative from each equivalence class, and call this
set F. For ¢ € QN [0,1), define

E, ={z+qlz € EN[0,1—q)}U{z+q—1lze EN[l—q,1)}.
Here is a cartoon of the basic idea:
+q

1 ) 3 L Yy 1 ~ 4 [
] / L L7 L

L [
L L

S

F

Observe that there is some countable subset ¢ C @ such that [0,1) = [ Eq-
Now if M = P(X), then we’d have

1=X([0,1)) = A (H Eq) =Y ME) => ME)=XE)) 1€{0,00},

qeQ qeQ q€Q

a contradiction.

Exercise 2.0.4. Let X be a nonempty set and £ C P(X) any collection of subsets which
is closed under finite unions and intersections. Suppose v : P(X) — [0, 0] be a function
which satisfies

e (finite additivity) for any disjoint sets Ey, ..., E, € P(X), v (H E,) = Z v(E;).
i=1 i=1

Prove that v also has the following properties.

(1) (monotonicity) Show that if A, B € £ with A C B, then v(A) < v(B).

(2) (finite subadditivity) Show that for any (not necessarily disjoint) sets Ey, ..., E, € &,

v (Ui Bi) <> v(E).
(3) Show that for all A, B € £, v(A) +v(B) =v(AUB) +v(ANB).
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Exercise 2.0.5. Suppose £ C P(R) is any collection of subsets which contains the bounded
open intervals and is closed under countable unions. Let v : &€ — [0, 00| be a function which
satisfies

e (monotonicity) If £, F € £ with E C F, then v(E) < v(F).
e (subadditivty) for any sequence of sets (E,)0, C &€, v(J —, En) <> 07 v(E,).
e (extends length of open intervals) for all a < b in R, we have v((a,b)) = b — a.

Show that if £ € £ is countable, then v(E) = 0.
2.1. o-algebras.

Definition 2.1.1. A non-empty subset M C P(X) is called an algebra if

(1) M is closed under finite unions, and
(2) M is closed under complements.

Observe that every algebra

e contains X = E IT E° for some E € M, and thus () = X¢.
e is closed under finite intersections

o () - (%)

If in addition an algebra M is closed under countable unions, then we call M a o-algebra.
Here, the ‘o’ signifies ‘countable’. We call the elements of a o-algebra measurable sets.

Examples 2.1.2. Lex X be a set.

(1) {0, X} is the trivial o-algebra.
(2) P(X) is the discrete o-algebra.

Exercise 2.1.3. Define M := {E C X|E or E° is countable}. Show that M is a o-algebra.

Exercise 2.1.4. Let X be a set. A ring R C P(X) is a collection of subsets of X which is
closed under unions and set differences. That is, F, ' € R implies FUF € R and E\ F € R.

(1) Let R C P(X) be a ring.

(a) Prove that ) € R.

(b) Show that E, F € R implies the symmetric difference EAF € R.

(c¢) Show that E, F € R implies ENF € R.

(2) Show that any ring R C P(X) is an algebraic ring where the addition is symmetric

difference and multiplication is intersection.

(a) What is Og?
(b) Show that this algebraic ring has characteristic 2, i.e., E+E = Og for all E € R.
(c) When is the algebraic ring R unital? In this case, what is 1g?
(d) Determine the relationship (if any) between an algebra of sets in the sense of

measure theory and an algebra in the algebraic sense.
(e) Sometimes an algebra in measure theory is called a field. Why?
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Trick. Suppose (E,) is a sequence of subsets of X. Define

k-1 k-1 ¢
1 1

Inductively, one proves (F,) is a sequence of pairwise disjoint subsets of X such that
UE. = [[F.. Moreover, observe that if (E,) C M for some algebra M, then
(F,) C M.

Definition 2.1.5. Observe that if M, N are o-algebras, then so is M N N. This means
if &€ C P(X), there is a smallest o-algebra M(E) which contains £ called the o-algebra
generated by E.

Exercise 2.1.6. Let A C P(X) be an algebra. Show that the following are equivalent:
(1) Ais a o-algebra,
(2) A is closed under countable disjoint unions, and
(3) A is closed under countable increasing unions.

Fact 2.1.7. Suppose &, F C P(X) with &€ C M(F). Then M(E) € M(F).

Example 2.1.8. Suppose (X,7) is a topological space. We call By := M(T) the Borel
o-algebra.

Remark 2.1.9.

e A countable intersection of open sets is called a Gy set.
e A countable union of closed sets is called an F), set.

e A countable union of Gs sets is called a G, set.

e A countable intersection of F, sets is called an F,s set.

And so on and so forth. Observe that By contains all these types of sets, so By is much
larger than 7.

Proposition 2.1.10. The Borel o-algebra Bgr on R generated by the usual topology (which
is induced by the metric p(x,y) = |x — y|) is also generated by the following collections of
sets:

(Br1) open intervals (a,b)

(Br?2) closed intervals |a, b

(Br3) half-open intervals (a, b]
(Br4) half-open intervals [a, b)
(Br5) open rays (a,00) or (—o0,a)
(Br6) closed rays |a,o0) or (—oo,al

Proof. First, observe that each of (Brl), (Br2), (Brb), (Br6) are all open or closed, so they
lie in Bg. Also, (a,b] = (a,00) N (b,00)¢, so each of the sets (Br3) are contained in Bg.
Similarly for (Bgr4). Hence each of (Brl)—(Bg6) lie in Bg, so their generated o-algebras are
contained in By by Fact 2.1.7.

For the other directions, observe all open sets in R are countable unions of open intervals.

(You proved this on HW1.) Hence Bg C M((Bgl)) by Fact 2.1.7. For (j) = (Br2)-(Br6),
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one shows that (Br1) is contained in M((j)):

(a.b) = [a+%,b—1] (Bg2)

n

oy <a, - H (Bs3)
= {a + % b) (Bg4)

= (a,00) N (—o0,b) (Bg5)
= ((—00,a] U [b,0))". (Br0)
Again by Fact 2.1.7, we have Bg C M((Bg1)) C M((j)) C Bg. O

Exercise 2.1.11. Define the h-intervals
H = {0} U{(a,b]|-00 <a<b<oo}U{(a,00)a € R}.

Let A be the collection of finite disjoint unions of elements of H. Show directly from the
definitions that A is an algebra. Deduce that the o-algebra M(A) generated by A is equal
to the Borel g-algebra Bg.

Exercise 2.1.12. Denote by R the extended real numbers [—oo, co] with its usual topology.
Prove the following assertions.

(1) The Borel o-algebra on R is generated by the open rays (a, o] for a € R.
(2) If £ C P(R) generates the Borel o-algebra on R, then £U{{cc}} generates the Borel
o-algebra on R.

Exercise 2.1.13. Let X be aset. A m-system on X is a collection of subsets II C P(X) which
is closed under finite intersections. A A-system on X is a collection of subsets A C P(X)
such that

e X €A
e A is closed under taking complements, and
e for every sequence of disjoint subsets (£;) in A, |J E; € A.

(1) Show that M is a g-algebra if and only if M is both a 7-system and a A-system.
(2) Suppose A is a A-system. Show that for every E € A, the set

AE) ={FCX|FNE €A}
is also a A-system.

Exercise 2.1.14 (m — A Theorem). Let II be a m-system, let A be the smallest A-system
containing II, and let M be the smallest o-algebra containing II.

(1) Show that A C M.

(2) Show that for every E € II, II C A(F) where A(E) was defined in Exercise 2.1.13
above. Deduce that A C A(E) for every E € II.

(3) Show that IT C A(F) for every F' € A. Deduce that A C A(F") for every F € A.

(4) Deduce that A is a o-algebra, and thus M = A.
25



2.2. Measures.

Definition 2.2.1. A set X together with a o-algebra M is called a measurable space. A
measure on (X, M) is a function p : M — [0, 0o such that
e (vacuum) u() =0, and
e (countable additivity) for every sequence of disjoint sets (E,) C M, (][ E.) =
> i En).
Observe that countable additivity implies finite additivity by taking all but finitely many of
the E,, to be 0.
We call the triple (X, M, i) a measure space. A measure space is called:
o finite if u(X) < oo.
e o-finite if X = |J E,, with (E,)) C M a sequence of measurable sets with u(E,) < co.
By disjointification (II), we may take such (F,) to be disjoint.
e semifinite if for every E € M, u(E) = oo, there is an F' C E with F' € M such that
0 < pu(F) < oo.
o complete if E € M with u(E) =0 (E is p-null) and F C E implies F' € M.
Note:We will see that u(F) =0 by monotonicity below in (1) of Facts 2.2./.

Remark 2.2.2. In probability theory, a measure space is typically denoted (€2, F, P), and
P(Q) =1.

Examples 2.2.3.

(1) Counting measure on P(X)
(2) Pick zy € X, and define p,, on P(X) by

2 (B) = 04 =
oo (E) = Oager {1 if 2o € E.

We call pi,, the point mass or Dirac measure at xy.
(3) Pick any f: X — [0,00]. On P(X), define

p(B) =Y f@) =swp Y f@) = dm Y (@)
LA D) el ordered by inclusion z€F

F finite

When f =1, p5 is counting measure. When f = 0,—,,, we get the Dirac measure.
(4) On the o-algebra of countable or co-countable sets, define

0 if F is countable
p(E) = P
1 if E is co-countable.

Facts 2.2.4 (Basic properties of measures). Let (X, M, u) be a measure space.

(1l) (Monotonicity) If E, F' € M, then F' C E implies pu(F) < p(E). In particular, if
u(E) =0, then u(F) = 0.

Proof. p(E) = p(F IL(E\ F)) = p(F) + p(E\ F), and p(E\ F) > 0. O
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(#2) (Subadditivity) If (E,) C M, then pu(JE,) <> u(E,).

Proof. Use disjointification (II). That is, setting F} := E; and F} = Ej \
’ffl E,, we have I}, C Ej for all k, and

p(UE) = (TTF) =D uF) < 3 w(En). =

(13) (Continuity from below) If £y C Ey C E3 C --- is an increasing sequence of elements

of M, then
[L<LJLE%> ::JEEDM(E%)'

Proof. Set Ey = (). In this setting, disjointification (II) is easy; just set F,, :=
E,\ E,_ for all n > 1. Then

p(UB) = (TTF) =D ulFa) = 3 wl(Ba\ Bus)

= lim Y p(By \ Ener) = lim p(Ey). O

k—o00

(u4) (Continuity from above) If Fy D Ey D E3 D -+ - is a decreasing sequence of elements
of M with u(Ejy) < oo for some k € N, then

1 (ﬂ En> = lim u(E,).

n—0o0

Proof. We may assume u(E;) < co. Set Fy := FE; and F,, := E) \ E,, so that
p(Ey) = p(Ey) + p(F,) for all n > 1. Observe that

UFR=UEnE=En <UEn) — BN (ﬂEn>C:E1\ (ﬂEn>

Hence
p(NE:) = uB) —pn(UF) = u(B) - lim u(F,)
= p(En) = lim (u(Ey) = p(Ey)) = lim p(En). O

n—o0

Exercise 2.2.5. Suppose (X, M, 1) is a measure space and (E,) C M. Recall that
liminf E,, = U ﬂ E, and limsup E,, = ﬂ U E,
k n>k k n>k

(1) Prove that p(liminf £,) < liminf u(E,).
(2) Suppose p is finite. Prove that p(limsup £,) > limsup pu(E,).
(3) Does (2) above hold if p is not finite? Give a proof or counterexample.

Theorem 2.2.6. Suppose (X, M, ) is a measure space. Define
M:={EUF|E€ M and F C N for some N € M with u(N) = 0} .

(1) M is a o-algebra containing M.
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(2) There is a unique complete measure i on M such that Tily, = p. We call i the
completion of p.

_Proof.
M a o-algebra:

(0) Observe that ) € M C M, so M # (.
(1) If (E, U F,) C M, then

JE.UF, = (UEn>U<UFn>

—_— Y
eM CUNn

Observe that each F,, C N,, € M with ,u_(Nn) = 0, so by countable subadditivity, we
have p (U Ny) < > p(NV,) = 0. Hence M is closed under countable unions.
(2) Suppose E, N € M with F' C N p-null. Observe that

(EUF)=(ENF)=(E°NF)NX =(E°NF)N(N°ILN)
= (E°NF NN (ENF°NN)=(E°NN)I(E°NF°NN).
N—_—— -~ 2

(. i

=NeeM eM CN

Hence M is closed under taking complements.
7 unique: If 7|y = p, then for all EU F € M with F C N p-null, we have
w(E) =a(E) <EEUF) <AE) +a(F) < p(E) + a(N) = p(E) + p(N) = p(E).
Hence (E U F) = p(E).

7l exists: First, we show that i(E U F) := u(E) is a well-defined function on M. Suppose
E1UF, = E; UF, with F; C N; p-null for ¢ = 1,2. Observe that

FE, C EWUF, = E;UE, C E3UN, — /L(E1> < IU(EQUNQ) < M(E2>+ﬂ(N2) = ILL(EQ)

Swapping the roles of Fy, Ey, Fy, Fy, and Ny, No, we have u(Es) < u(Ey).
Next, we will show 7 is a measure on M:
(0) (Vacuum) Observe that (@) = u(0) = 0.
(1) (o-additivity) Suppose (E, U F,,) C M is a sequence of disjoint sets with F,, C N,
p-null for each n € N. Then (E,,) and (F),) are disjoint, and [[ £, C [J N, is p-null.
Hence

ﬁ(HEnUFn> :ﬁ(HEnUHFn> :u(HEn> =Y wE) =S WEUF,).

7i complete: First, note that if ¥ C N with N p-null, then F = 0 U F € M. Suppose
G C EUF where F' C N is prnull, and p(F) = 0. Then observe G C EUN € M, and
WEUN) < u(E)+ pu(N)=0. Hence G € M. O

Exercise 2.2.7. Let II be a m-system, and let M be the smallest o-algebra containing II.
Suppose i, v are two measures on M whose restrictions to II agree.
(1) Suppose that pu, v are finite and p(X) = v(X). Show u = v.
Hint: Consider A :=={FE € M|v(E) = u(E)}.
(2) Suppose that X = J[7Z, X; with (X;) C IT and p(X;) = v(X;) < oo for all j € N.
(Observe that p and v are o-finite.) Show p = v.
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Exercise 2.2.8 (Folland §1.3, #14 and #15). Given a measure pu on (X, M), define v on
M by
v(E) :=sup{u(F)|F C E and p(F) < oo} .

(1) Show that v is a semifinite measure. We call it the semifinite part of p.

(2) Suppose E € M with v(F) = oo. Show that for any n > 0, there is an F' C E such
that n < v(F) < oc.
This is exactly Folland §1.3, #14 applied to v.

(3) Show that if u is semifinite, then u = v.

(4) Show there is a measure p on M (which is generally not unique) which assumes only
the values 0 and oo such that p=v + p.

Exercise 2.2.9. Suppose pu, v are two measures on a measurable space (X, M). We say u
is absolutely continuous with respect to v if v(E) = 0 implies u(E) = 0. Prove that when u
is finite, the following are equivalent:

(1) p is absolutely continuous with respect to v.
(2) For every € > 0, there is a § > 0 such that £ € M with v(F) < § implies pu(F) < €.

Which direction(s) still hold if y is infinite?

Exercise 2.2.10. A measure space (X, M, p) is called non-atomic if for every E' € M with
w(E) > 0, there is an F' C E with FF € M and 0 < u(F) < p(E). Show that if u(X) = 1,
then {u(E)|E € M} =10,1].

Hint: Apply Zorn’s Lemma to the set of partially defined monotone sections of pn : M — [0, 1],
i.e., the set of pairs (A, E) such that:

o A C[0,1] is a non-empty subset, and
e F: A— M is a function such that whenever a,b € A with a < b, E, C Ej, and for
alla € A, p(E,) = a.

This set is ordered by (A, F) < (B,F) if AC B and F|a = E.
2.3. Outer measures.
Definition 2.3.1. Let X be a set. A function p* : P(X) — [0, 00] is called an outer measure
if
(0) (vacuum) p*(0) = 0.

(1) (monotonicity) £ C F implies p*(F) < p*(F).
(2) (countable subadditivity) p* (U F,) < > u*(E,) for every sequence (E,).

Exercise 2.3.2. Suppose (4] )icr is a family of outer measures on X. Show that
p(E) = sup p; (E)
iel
is an outer measure on X.

Proposition 2.3.3. Let £ C P(X) be any collection of subsets of X satisfying
e ) e E, and

o for all E C X, there is a sequence (E,) C € such that E C |J E,. (Observe that if

X € €&, this condition is automatic.)
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Suppose p : € — [0,00] is any function such that p(0) = 0. Then

p*(E) = inf {Zp ) C &€ with E C UE } (2.3.4)

is an outer measure, called the outer measure induced by (&, p).

Proof.
(0) Setting E,, = 0 for all n gives pu*() = 0.
(1) Observe that whenever F' C |J F,, with F,, € € for all n, then £ C F C |J F,,. Hence

the inf for F is less than or equal to the inf for F.
(2) We'll use the following two tricks:

Trick. Zl 2—n =&

Trick. r < s if and only if for all e > 0, r < s+ .

Suppose (E,) is a sequence of sets and let ¢ > 0. For each n, there is a cover (F}')y
such that £, C J, F}' such that

Zp F) < (Bn) + o
Then J E, < U, U, FJ, so
i (UB) DD o) 3w (B + o = S w (B + Y o = (B
Since ¢ >% WZS arbitrary, 7; (UE,) < S w(E,). 0

Exercise 2.3.5. Show that the second bullet point in Proposition 2.3.3 can be removed if
we add the convention that inf () = oo.

Example 2.3.6. One can get an outer measure on P(X) by taking any measure p on a
o-algebra M and defining its induced outer measure p* as in (2.3.4).

We get a measure p from an outer measure p* by restricting to the o-algebra M* of
p*-measurable sets.

Definition 2.3.7. Given an outer measure p* on P(X), we define the collection of p*-
measurable sets

M ={ECX|p"(ENF)+u(E°NF)=p"(F) foral FC X}.
That is, E is p*-measurable if it ‘splits’ every other set nicely with respect to u*.

Remarks 2.3.8.
(1) Clearly pu*(F) < p*(ENF)+ p*(E°NF). So
Ee M <= " (F)>p (ENF)+pu (E°NF) VFCX. (2.3.9)
(2) All p*-null sets are in M*. That is, if N C X with u*(N) =0, then for all F C X
W (EQN) + ' (F\N) = 10 (F\ N) < i (F).

CN
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Lemma 2.3.10. For G C X and E, F € M*, define

GOO == G\
G =GN (E\F) w
NG
Gn=GNENF '
F
Then we have
1 (G) = p*(Goo) + 1 (Gor) + ' (Gro) + 17 (Ga)- (2.3.11)

Proof. Since £ € M*,
p(G)=p (GNE)+p (G\ E) = p*(Gi1 UGr) + 1" (Gor U Gop).
Since ' € M*,
1 (G11UG) = p(Gu UGN E) + p* (G UG \ F) = 1" (Gur) + p*(Gho).
Similarly, p*(Go1 U Goo) = p*(Gor) + p*(Goo). The result follows. O

Theorem 2.3.12 (Carathéodory). Let u* be an outer measure on X. The collection of
W -measurable sets M* is a o-algebra, and p = p*| s+ is a (complete) measure.

Proof.
Step 1: M* is an algebra.

(0) Clearly ) € M* since it is p*-null by Remarks 2.3.8(2).
(1) If E,F € M*, then for all G C X, (2.3.11) holds above. By applying (2.3.11) to
GlO U Gll U Ggl, we have

p((EUF)NG) = p*(Gio UG UGa) oo 1 (Gro) + p*(Gu1) + 1 (Gor)-

Moreover, p*((EU F)*NG) = u*(Goo). Again by (2.3.11), we have

p(EUF)NG)+p (EUF)°NG) = (1" (Go) + 1 (Gur) + 17 (Gor)) + 17 (Goo) w(G).

(2) Observe that the Carathéodory Criterion (2.3.9) is preserved under taking comple-
ments.

(2.3:.11)

Step 2: M* is a o-algebra.

Suppose (E,) C M* is a sequence of disjoint sets, and set £ := [[ E,. By Step 1, for all
N e N, ]_[N E, e M*. Let F C X, and define G := F'N ]_[N E,. Then since Ey € M*, we
have

w* (FﬂHEn) = (G)=p (ExyNG)+pu(ExnNG) =p* (Fﬂ ]__[ En> + u(F N Ey).

By iterating as F,, € M* for all n € N, we have

N N
Ty (FﬂHEn) => W (FNE,) VN €N.
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It follows that for all N € N,

u*(F):,u*(FﬂHEn>+u* FN[]E.| =) w(FNE,)+u(F\E).
OF\E

Taking limits in [0, 00] as N — oo, we have

pH(F) =Y @ (FNE,) + p*(F\ E)

> (HFﬂ En) + 1" (F\ E) (2.3.13)
— W(FE) + 4 (F\ B).

Thus E =[] E, € M*.
Step 3: p = p*|pm+ is a measure.

[t remains to show p is o-additive on M*. Suppose (E,) C M* is a sequence of disjoint
sets as in Step 2. Taking F' = E in (2.3.13) above shows us

)= 3 u'(E,) = p(E),

so equality holds. O

2.4. Pre-measures. In the last section, we gave a prescription for constructing a complete
measure on X. Start with any collection of subsets & € P(X) with §§ € & such that
for every E C X, there is some sequence (FE,) C £ with £ C |JE,. Take any function
p: &€ — [0,00] such that p(f)) = 0. We get an induced outer measure p* by (2.3.4). Taking
the p*-measurable sets M*, we get a o-algebra, and p := p*|\+ is a complete measure.
However, we get little control over M* and p. Consider the following two crucial questions:
(1) When is &€ C M*?
(2) In this case, when does pule = p?
Note: we always have p* < p, since every E € &€ is covered by itself. But there might
be some cover E C |J E, from € such that > p(E,) < p(E).

A sufficient condition to ensure a positive answer to both of these questions is that £ is an
algebra, and p is a premeasure.

Definition 2.4.1. Let A C P(X) be an algebra. A function o : A — [0, 00] is called a
premeasure if
(0) (vacuum) po(@) = 0, and
(1) (countable additivity) for every sequence (E,) C A of disjoint sets such that [[ £, €
A, we have po (1T En) = > po(En)-

The adjectives finite, o-finite, and semi-finite for premeasures are defined analogously to
those for measures.

Facts 2.4.2. The following are basic properties of a premeasure 1 on an algebra A C P(X).

(pre-p1) (finite additivity) If Ey, ..., E, € A are disjoint, then uo ([ En) = D po(En).
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Proof. If Ey,...,E, € A are disjoint sets, then observe that [[}_, E; € A. So
by setting E; = () for all i > n, we have

o <]z[ E@) = Mo (H Ez) = Zﬂo(Ei) = i,UO(Ei)- 0

(pre-p2) (monotonicity) If E, F € A with F' C E, then uo(F) < po(E).

Proof. Immediate by (pre-pl) since E = FII (E '\ F). O

(pre-u3) (countable subadditivity) If (E,) C A such that |JE, € A, then po(JE,) <

Proof. We use disjointification (II). Set Fy := E; and inductively define F,, :=
E.\ U?;ll E;. Then F,, € A for all n, and [[ F,, = |J E,,. Thus

o (U Ea) =0 (TTF0) = Y mmo(F) < X wolEn) 0

(pre-p2

(pre-p4) (monotone countable subadditivity) Suppose E € A and (F,) C A such that
E CUE,. Then po(E) <> po(Ey).
Warning: This does not follow immediately by monotonicity and countable subaddi-
tivity, since we are not assured that |J E, € A!

Proof. Let F := E N E; and inductively set F,, := E N (En \ U?:_ll EZ) Then
F, e Afor all n, and [[ F,, = E € A. Hence

polB) = po ([T ) = XopolF) < 7 mo(E). =

(pre-p2

Remark 2.4.3. Recall that if g is only known to be finitely additive and not necessarily

countably additive, then pq still satisfies monotonicity and finite subadditivity (cf. Exercise
2.0.4).

Lemma 2.4.4. Suppose pg is a premeasure on A. Let u* be the induced outer measure given
by (2.3.4).

(1) ¥4 = po, and
(2) AcC M.
Proof.
(1) Suppose E € A.
pw* < po: Setting By := E and E, ;=0 for all n > 1, p*(E) < > puo(Ey) = po(E).
pw* > po: Let e > 0. By definition of x* as an infimum, there is a sequence (E,,) C A such that
E cCcE, and Y u(E,) < p*(E) + . But by monotone countable subadditivity,
po(E) <> po(Ey), and thus pug(E) < p*(E) + . Since € > 0 was arbitrary, py < p*

on A.
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(2) Suppose £ € A and F' C X and € > 0. Pick (F,) C A such that F' C JF, and
> po(FL) < p*(F) + e. Since py is o-additive on A,

p(F) &> po(Fa) = po(Fy N E) + po(F N E°)

= w(F NE)+ Y po(F, 0 E°)
> (F N E) + " (F N E°).

Since € > 0 was arbitrary, we conclude that p*(F) > p*(F N E) + p*(F N E°), and thus
E e M. O

Construction 2.4.5. Starting with a premeasure o on an algebra A, we get a o-algebra
M* which contains A4, and a complete measure p := p*|p+ such that p|4 = po.

Remark 2.4.6. Observe that by Fact 2.1.7, M* contains M := M(A), the o-algebra
generated by A, and | is a (possibly non-complete) measure.

Theorem 2.4.7. Suppose o is a premeasure on an algebra A, and p is the measure on
M* from Construction 2.4.5. If v is a measure on M = M(A) such that v|4 = o, then
v(E) < u(E) for all E € M, with equality when p(E) < oco.

Proof. Suppose E € M.
Step 1: v(E) < u(E).

Since E € M, for all sequences (FE,) C A such that E C |J E,,

v(E) < S (B = 3 o).
Hence v(E) < inf (Y uo(E)|E € UEn} = 1*(E) = p(E).

Step 2: When u(FE) < oo, we show u(E) < v(FE), and thus pu(E) = v(E).
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Let € > 0. Then there exists a sequence (E,,) C A such that £ C |J E,, and

,u (U En> < Z,uo(En) < u(E) +e¢ < oo.
Since £ C |J E, and p(FE) < oo, we have

i ( (U En> \ E) _ (U En> — w(E) <e. (2.4.8)

Now by continuity from below (13) for both p and v, we have

(U = g (Us) = o (U

N (2.4.9)
-y (Us) =+ (Us).
Putting these two equations together, we have
B<u(Us) =, v (UB) =v®+v ((UE)\E)
uB) <u(UB) =, v (UE) =v(®) +v ((UE)\
<v(B)+u((UB)\E) < w(B)+e
(2.4.8)
Since € > 0 was arbitrary, u(F) < v(E).
This concludes the proof. 0

Corollary 2.4.10. Suppose g is a premeasure on an algebra A, and p is the measure
on M* from Construction 2.4.5. If ug is o-finite, then p is the unique extension of gy to

M = M(A).

Proof. Recall that pg is o-finite if there exists a sequence (E,) C A such that |JFE, = X
and pio(E,) < oo for all n. Observe that by disjointification (II), we may assume that the
FE,, are disjoint.

Now for any other v extending py and E € M, we have

M(E)ZM(]_[EmEn> =Y WENE,) =Y vENE,) :u<HEﬂEn> —y(E). O

Exercise 2.4.11. Suppose A is an algebra on X, i a premeasure on A, and p* the induced
outer measure on P(X) given by (2.3.4). Show that for every E C X, there is a u*-
measurable set F' O E such that p*(F) = p*(F).

Exercise 2.4.12 (Adapted from Folland §1.4, #18 and #22). Suppose A is an algebra,
and let M be the o-algebra generated by A. Let pg be a o-finite premeasure on A, p* the
induced outer measure given by (2.3.4), and M* the o-algebra of p*-measurable sets. Show
that the following are equivalent.

(1) Ee M*

(2) E=F\ N where F € M and p*(N) = 0.

(3) E = FUN where F'€ M and p*(N) = 0.
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Deduce that if p is a o-finite measure on M, then p*| 4+ on M* is the completion of p on

M.

Exercise 2.4.13 (Folland §1.4, #20). Let u* be an outer measure on P(X), M* the o-
algebra of p*-measurable sets, and p := p*|p+. Let ut be the outer measure on P(X)
induced by the (pre)measure p on the (o-)algebra M*.
(1) Show that p*(E) < p*(E) for all E C X with equality if and only if there is an
F e M* with E C F and p*(F) = p*(F).
(2) Show that if u* was induced from a premeasure jo on an algebra A, then p* = ™.
(3) Construct an outer measure p* on the two point set X = {0, 1} such that pu* # p*.

Exercise 2.4.14. Let X be a set, A an algebra on X, pg a premeasure on A, and p*
the induced outer measure on P(X) given by (2.3.4). Suppose that (F,) is an increasing
sequence of subsets of X, i.e., By C Fy C E3 C ---. Prove that

W (U E) = Nim " (En).
n=1

Exercise 2.4.15 (Sarason). Suppose fi is a finite premeasure on the algebra A C P(X),
and let p* : P(X) — [0,00] be the outer measure induced by . Prove that the following
are equivalent for £ C X.

(1) E € M*, the p*-measurable sets.

(2) w(E) +p(X\ E) = p(X).
Hint: Use FExercise 2.4.12.

2.5. Lebesgue-Stieltjes measures on R.

2.5.1. Construction of Lebesque-Stieltjes measures. Recall from Exercise 2.1.11 that we de-
fine the collection of h-intervals by

H:= {0} U{(a,b]|-c0c <a<b<oo}U{(a,0)|laeR}.

Let A = A(H) be the collection of finite disjoint unions of elements of 1. By Exercise 2.1.11,
A is an algebra, and the o-algebra generated by A is M(A) = Bg, the Borel o-algebra. Our
goal is to construct a nice class of premeasures on A.

Construction 2.5.1. Let F': R — R be any function which is

e (non-decreasing) r < s implies F(r) < F(s), and
e (right continuous) if r,, \, a, then F(r,) \, F(a)

Extend F to a function R = [~00, 00] — R by
F(—o00) := lim F(a) and F(00) := lim F(b).
a——00

b—o0
Define p9 : H — [0, o0] by
L /L()(@) =0,
e 1o((a,b]) :== F(b) — F(a) for all @ > —o0, and

e 1p((a,00)) = F(o;) — F(a) for all a > —oc.
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In (LS4) below, we extend pg : H — [0, 00] to a well-defined function A = A(H) — [0, o).
In Theorem 2.5.7 below, we prove this extension to A is a premeasure. By Carathéodory’s
outer measure construction, we get an outer measure u} on (R, P(R)) by (2.3.4). By taking
the o-algebra of pj-measurable sets Mp := M*, we get a complete measure fip 1= [ v

Definition 2.5.2. We call up the Lebesgue-Stieltjes measure associated to F'.

Remark 2.5.3. Since pp is o-finite by construction, it follows from Exercise 2.4.12 that
M is the completion Bg of the Borel o-algebra for pp|g,. Thus, sets in Mp are unions of
Borel sets and subsets of Borel sets which are pp-null.

In the remainder of this section, we prove that pg extends to a premeasure on A = A(H).

Facts 2.5.4. We have the following facts about the function .
(LS1) Splitting (a,00) = (a,b] II (b, 00), we have g ((a,00)) = po((a, b)) + po((b, 00)).
(LS2) 1f (a,b] — [T, (@, i), then jio ((a,B]) = S0, pof (s, ).

e ~

Proof. Re-indexing, we may assume a = a1 < by = as < by = a3 < --- < b,.
Then
po ((a,b]) = F(b) — F(a) = > F(bi) — Fla;) = >_ po((as, by)). O
i=1 i=1

(LS3) If Ey,...,E, € H are disjoint and F € H such that F C [, E;, then po(F) =
S polF 0 By,

Proof. Removing elements of (E;)"™; if necessary, we may assume that F'NE; #
( foralli =1,...,n. This means that FNE; € H for alli, and F = [[}_, FNE;.
The result now follows by (LS1) and (LS2). O

(LS4) If (Ey,...,E,) C H and (F,...,F,) C H are two collections of disjoint h-intervals
with 2, B = H?:l Fy, then Y77, po(E;) = 22;1 fo(F}).

Proof. By applying (LS3) twice, we have

D o) =3 ) mo(BinE) =3 3 no(BinFy) = puolF})
i=1 i=1 j=1 j=1 i=1 j=1

Hence pg extends to a well-defined function still denoted pg : A = A(H) — [0, 00| by

Mo (H Ez> = Z ,U{)(EZ) A dlSJOlIlt El, ey En eH.
i=1 i=1

Corollary 2.5.5. The extension g : A — [0,00] afforded by (LS]) is finitely additive and
thus monotone and finitely subadditive by Ezxercise 2.0.4.

Proof. Suppose ' = [[[_, F; with E, £y, ..., E,, € A. Then we may write each £; = [} B!

where E; € H forall j = 1,...,m;, and thus £ = [[_ 1]_["” E’ Then by countable
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additivity of o on H from (LS4), we have

n

wolB) = 3 (B = 3 mo( B, =

=1 j=1 i=1

Exercise 2.5.6. Describe to the best of your ability the set of accumulation points of
right endpoints (b;) for a disjoint collection of bounded h-intervals ((ay,b,])5>; such that
[1(an,b,] = (a,b] for some a < b in R.

Theorem 2.5.7. The extension uy : A — [0,00] afforded by (LS}) is a premeasure on A.

Proof. Tt is clear that po() = 0 by construction.

Suppose (E,) C A is a disjoint sequence such that [[ E,, € A. Then there are disjoint
h-intervals Fi,..., F, € H such that [[ E, = ]_[?:1 F;. We may assume that E, N F; # ()
for at most one j. Thus we may partition the (E,) into (EY) such that [[ B = F} for
j=1,..., k. We make the following claim.

Claim. Suppose H € H is a single h-interval such that H = || H,, where (H,) C H
is a sequence of disjoint h-intervals. Then po(H) = po(Hy).

Then by applying (L.S4), we have

po (TTE) = o (H F) =Y ) = 3D D = 3 )

Jj=1 J= Jj=1

Thus it remains to prove the claim.
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Proof of claim for H = (a,b], a,b € R. Suppose (a,b] = [[(a;, b;]. Then for all n € N,

[15_,(a;,b;] C (a,b]. By (LS4) and monotonicity, we have

XMM%WIM<H%MOSM®M)
=1 j=1
Taking n — oo, we have Y pi0((a;, b;]) < po((a, b]).
To show the reverse inequality, let € > 0. Since F' is right continuous,
e there is 6 > 0 such that F(a +6) — F(a) < §, and
o for all j > 1, there is §; > 0 such that F'(b; +6;) — F'(b;) < 575+
Observe now that {(aj;,b; + 0;)}52, is an open cover of the compact interval [a +
d,b]. Hence there is a finite subcover, i.e., there is an N € N such that [a + §,b] C
UY,(a;,b; + 8,). Then we calculate

po((a, b)) = F(b) — F(a)

€
= po((a +0,0]) + 5
N €
< o | (J(as,0 +5]]> +5
j=1

= (F(bj +8;) = Flay) +
<> (F(bj) + ot F<a3>) *
:Z/Lo((agab]])—{_z:%—{—%
[e'9) e € €
< mollapb) + Y 5+

J
Since £ > 0 was arbitrary, uo((a,b]) <> 772, po((ay, bjl). O

The cases H = (—00,b] for some b < 0o and H = (a,00) for —oo < a are left as the

following exercise. 0
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Exercise 2.5.8. Consider the extension g : A — [0, 00] afforded by (I.S4). Suppose H is
(—o0, b] for some b < oo or (a,00) for —oco < a. If H = [[ H,, where (H,,) C H is a sequence
of disjoint h-intervals, then po(H) = > po(H,).

Exercise 2.5.9 (Folland, §1.5, #28). Let F' : R — R be increasing and right continuous,
and let pr be the associated Lebesgue-Stieltjes Borel measure on Bg. For a € R, define

F(a—) :=lim F(r).

r,\a
Prove that:
(1) pr({a}) = F(a) — F(a—),
(2) pr(la,b)) = F(b—) — F(a—),
(3) :uF([a?b]) = F(b> - F(a_)7 and
(4) pr((a,b)) = F(b—) — F(a)

2.5.2. Lebesgue measure.

Definition 2.5.10. Lebesgue measure A is the Lebesgue-Stieltjes measure piq where id :
R — R is the identity function id(r) = r. The Lebesgue o-algebra is L := M* = By for A|g,.

Definition 2.5.11. For £ C R and r,s € R, define rE := {rz|z € E} and s + E :=
{s+z|z € E}.

Theorem 2.5.12. Suppose E € L.

(1) (dilation homogeneity) If r € R, then rE € L and \(rE) = |r| - A\(E).
(2) (translation invariance) If s € R, then s+ E € L and A(s + E) = \(E).

Proof. We will prove dilation homogeneity and leave translation invariance to the reader.

Step 1: Bg is closed under £ +— rE. This is trivial if » = 0, so assume r # 0. Then
multiplication by 7 is a bijection on P(R) mapping open intervals to open intervals. Thus
multiplication by » maps Br onto itself.

Step 2: It is a straightforward exercise to prove that |r|- A is a measure on £ and \"(F) :=
A(rE) is a measure on Bg.

Step 3: If E € H, then \"(E) = |r| - AM(E), so A" = |r| - A on A(H) and thus all of Bg by
Corollary 2.4.10 (or Exercise 2.2.7) as A" and |r| - A are both o-finite.

Step 4: If £ € L is A-null, then rE € L is A-null. Indeed, by Remark 2.5.3, £ € L is A-null
if and only if there is an N € Bg such that £ C N and A\(N) = 0. Now rE C rN, and
A(rN) =|r| - A(N) = 0 by Step 3.

Step 5: Finally, as £ = Bg for A, we see A" and |r|- A are both defined on £ and agree. [

Exercise 2.5.13. Let Bg be the Borel g-algebra of R. Suppose u is a translation invariant
measure on Bg such that p((0,1]) = 1. Prove that u = A|g,, the restriction of Lebesgue
measure on L to Bg.

Remark 2.5.14. By Exercise 2.5.9(1), A({r}) = 0 for all » € R, and thus A(E) = 0 for all
countable I/ C R.
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Example 2.5.15. The Cantor set C' is defined as () C,, where we define C,, inductively by
‘removing middle thirds’ of [0, 1].

Co= L ]
0 1
G=F—4
0 % % 1
G=HH HH

o
Wi
©l
©|0o

—_

©l=
©olN
Wl

By continuity from above (p4) for A, we have A(C') = lim,, ;o A(C},). By Exercise 2.5.9,

AMCo) =1
/\(Cl):l—é
A(CQ):1_§_§
/\(Cg):l—%—g—2i7 ete.
o oot o onn
— A(C):1—;23n :1—%;@) :1—%(@):0.

It is well known that C' is uncountable; indeed it is in bijection with {0,1}" via base 3
decimal expansions where only the digits 0 and 2 occur. (Recall that decimal expansion is
not unique; one must pick a particular convention here.)

Exercise 2.5.16. Show that the function f : {0, 1} — C given by

fl) =300

n=1
is a homeomorphism of {0, 1} onto the Cantor set.

Exercise 2.5.17. Suppose E € £ with A(E) > 0. Show there is an F' C E such that F' ¢ L.
That is, show any Lebesgue measurable set with positive measure contains a non-measurable
subset.

Exercise 2.5.18 (Sarason). Suppose E € L is Lebesgue null, and ¢ : R — R is a C!
function (continuous with continuous derivative). Prove that ¢(F) is also Lebesgue null.

Exercise 2.5.19. Let (X, p) be a metric (or simply a topological) space. A subset S C X
is called nowhere dense if S does not contain any open set in X. A subset T C X is called
meager if it is a countable union of nowhere dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Exercise 2.5.20. Suppose F' : R — R is a bounded, non-decreasing, right continuous
function, and let ug be the corresponding Lebesgue-Stieltjes measure. (Observe up is finite.)

Prove the following are equivalent:
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(1) pp is absolutely continuous (see Exercise 2.2.9) with respect to Lebesgue measure .
(2) F is absolutely continuous, i.e., for every e > 0, there exists § > 0 such that for any
disjoint set of open intervals (a1, b1), ..., (an,by),

n N

dhi—a)<s = D (F(by) - F(a;) <e.

i=1 =1
2.5.3. Regularity properties of Lebesgue-Stieltjes measures.

Definition 2.5.21. Suppose (X, 7T) is a Hausdorff topological space and M C P(X) is any
o-algebra containing the Borel og-algebra B(7T), i.e., T C M. A measure p on M is called:

e outer reqular if u(E) = inf {u(U)|E C U open}
e inner regular if u(E) = sup {u(K)|compact K C E}
e regular if p is both outer and inner regular.

Proposition 2.5.22. Suppose (X, T) is a Hausdorff topological space and 1 is a measure on
any o-algebra M containing Br. If (X, T) is o-compact and p is outer reqular and finite on

compact sets, then p is inner reqular and thus reqular (and thus Radon; see Exercise 2.5.2)
below).

Proof.
Step { Suppose X is compact and £ € By. Then E is compact. Let ¢ > 0. By outer
regularity, there is an open U D E \ E such that u(U) < u(E \ E) + e. Observe that:
e L\ECU\E,
e K := FE\U is compact and contained in F, and
o since K= KII(UNE)and E C E, E = (KNE)II(UNE), and thus UNE = K°NE.

Here is a cartoon of K, E, E, U:

s=( Ju( )
000
- @@

We now calculate

() = p(E) = p(K° N E) (B = KT (K*NE))
=uwE)—pu(UNE) (ENU=ENK°)
= w(E) = (u(U) = (U \ E)) U= (EnU)IU\E))
> p(E) —p(U) +j(F\E1 (E\ECU\E)
> p(E) —e. -

Since € > 0 was arbitrary, p is inner regular.
Step 2: Since X is o-compact, by disjointification, we may write X = [[ X,, where each X, has

compact closure in X. In particular, u(X,) < oo for all n. Let E € By, and write £ = [[ E,
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where E,, := EN X,. By Step 1, for each n, there is a compact set K,, C E, C X,, C X,
such that p(K,) > u(E,) — 557. Set F, := [[}_, K;, which is still compact. Observe that

p(Fn) = p (H Ez) - g

There are two cases to consider now.
If W(E) = oo, since p(][, E;) / oo, eventually p(F,) > M for every M > 0. Hence
sup{u(F,)|n € N} = co = p(F). Otherwise, p(E) < oo, and there is an N € N such that

N
19 g 9
p(E) < p (]_[E) 5 S ulFN) + 5+ 5 = ulFy) +e.
i=1

Since € > 0 was arbitrary, we conclude p is inner regular. ([l

Exercise 2.5.23. Suppose (X, T) is a topological space, p is a o-finite regular Borel measure,
and E € By is a Borel set. Prove the following assertions.

(1) For every ¢ > 0, there exist an open U and a closed F' with /' C E C U and
pw(U\F) <e.
(2) There exist an F,-set A and a Gs-set B such that A C £ C B and u(B\ A) = 0.

Exercise 2.5.24. Suppose (X, 7T) is a topological space, u is a Borel measure on By. We
call p a Radon measure if p is outer regular, finite on compact sets, and inner regular on all
open sets.
(1) Show that if p is a o-finite Radon measure, then g is inner regular and thus regular.
Deduce that the finite Radon measures are exactly the finite regular Borel measures.
(2) Suppose p is a o-finite regular Borel measure. Is ¢ Radon? That is, is u finite on all
compact sets? Give a proof or a counterexample.

Exercise 2.5.25 (Folland, §7.2, #7). Suppose u is a o-finite Radon measure on (X, 7) and
E € By is a Borel set. Show that ug(F) := u(E N F) defines another (o-finite) Radon
measure.

Remark 2.5.26. Once we have developed the theory of integration, we will be able to
upgrade Proposition 2.5.22 considerably. In Corollary 5.6.10, we will show that if X is LCH
such that every open set is o-compact, then every Borel measure which is finite on compact
sets is regular and thus Radon.

Exercise 2.5.27. Suppose X is a metric space (not necessarily locally compact) and let u
be a finite Borel measure. Show that the collection M C By of sets such that

u(E) = inf {u(U)|E C U open}
= sup {u(F)|E D F closed}

is a o-algebra containing all closed (or open) sets and is thus equal to By. Deduce that p is
outer regular. Then deduce that every finite Borel measure on R is regular.

Exercise 2.5.28. Suppose X is a compact Hausdorff topological space, Bx is the Borel
o-algebra, and p is a regular measure on Bx such that p(X) = 1. Prove there is a compact
K C X such that u(K) =1 and pu(F) < 1 for every proper compact subset F' C K.

Remark: One strateqy uses Zorn’s Lemma, but it is not necessary.
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We now analyze the regularity of the Lebesgue-Stieltjes measure prp on Mp where F' :
R — R is any non-decreasing right continuous function.

Exercise 2.5.29. For every ¥ C R, show that
pp(E) = inf {Z pr((ans b))
n=1

Lemma 2.5.30. For all E C R, pp(E) =inf {d 7 ur((an,b,))|E C s~ (an, by)}-

Proof. Denote the inf on the right hand side by v(FE).
Step 1: ui(E) < v(E).

E c | J(an, ba] with a,,b, €R, Vn € N} .
n=1

Suppose E C (an,b,). We can write each (ay,,b,) = [[2,(al,b!]. Then E C
UnZi 124 (af, 7], and

pur(E) < ZMF((a?,b?]) =D ur((anba)).

Step 2: ui(E) > v(E).

Let ¢ > 0. There exists ((an,b,]) such that £ C J(an,b,] and > pp((an,bn]) <
wr(E) 4 5. For each n, by right continuity of F', pick 6, > 0 such that F'(b, + 0,) —
F(bn) < 7. Then E C [ J(an, by, + 6,) and

ZNF((am b+ 0r)) < Z F(by + 6,) — F(an)
<3 F(b.) - Fla) + 2n€+1

= > el(anbu) + Y 5

e €
< uh(E -+ -
_MF()+2+2

= pp(E) +e.

Since € > 0 was arbitrary, the result follows.

This concludes the proof. O
Theorem 2.5.31. The Lebesque-Stieltjes measure pp on Mg is regular.

Proof. Since R is o-compact and up is finite on all compact intervals by Exercise 2.5.9, by
Proposition 2.5.22, it remains to show g is outer regular. Let £ € Mp. By Lemma 2.5.30,
given £ > 0, there is a sequence ((an,by,)) of open intervals such that £ C |J(an,b,) and
Y opr((an, by)) < u(E) + e. Setting U = | J(an, by), we have £ C U and

pr(E) < pp(U) < pp((an, b)) < p(E) +e.
Since £ > 0 was arbitrary, we have up(E) = inf {up(U)|E C U open}. O

Exercise 2.5.32. Show that u}.(E) = inf {upr(U)|E C U open} for every E C R. Then find

the error in the following ‘proof’ that Mp = P(R).
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‘Proof’. Suppose E C R. By Lemma 2.5.30, for every € > 0, there is an open subset
U so that pu(F) < up(U) + e. Inductively construct a decreasing sequence of open
sets E C U,41 C U, such that p5(U, \ E) < 1/n. Then F := U, € Bg C Mp and
pr(F\E) < ur(U,\ E) <1/n for every n € N. Then N := F \ E is pg*-null, and
E = F\ N, so by Exercise 2.4.12, F € Mp. O

Exercise 2.5.33 (Steinhaus Theorem, Folland §1.5, #30 and #31). Suppose E € L and
A(E) > 0.
(1) Show that for any 0 < v < 1, there is an open interval I C R such that A\(EN 1) >

a(]).
(2) Apply (1) with o = 3/4 to show that the set

E—FE:={x—ylz,y € E}

contains the interval (=\(1)/2, A\(1)/2).

2.6. Hausdorff measure. Let (X, d) be a metric space. For A, B C X nonempty, define

d(a, B) := inf {d(a,b)|b € B} Vaec A
d(A, B) := inf {d(a,b)|la € A, b € B}.

For a set Y C X, define
diam(Y") := sup {d(x,y)|z,y € Y}.

Definition 2.6.1. An outer measure p* on P(X) is called a (Carathéodory) metric outer
measure if

e (metric finite additivity) d(A, B) > 0 (which implies ANB = () implies u*(A][ B) =
p(A) + p(B).

Proposition 2.6.2. If u* is a metric outer measure on P(X), then the Borel o-algebra By
15 contained in M*, the p*-measurable sets.

Proof. Since By is generated by the open sets, it suffices to show all open sets are in M*.
Let U C X be open.
Step 1: We may assume d(U,U¢) = 0. Otherwise, for all ' C X, d(FNU,F\U) > 0, so
P (F)=p*(FNU) 4+ p*(F\U), and thus U € M*.
Step 2: Forn € N, define A,, := {x € U|d(z,U°) > 1/n}. Then (A,) is increasing and | J 4,, =
U. Setting Ay = 0, define B,, := A, \ A, for all n € N. Then [[B, = U, and B, #
frequently. Indeed, observe B, = () for all n > k if and only if Ay = U, which implies
d(U,U°) > 1/k.
Step 3: If |/m —n| > 1 and B,, # 0 # B,, then d(B,,, B,) > 0.
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m—+1
triangle inequality,
1 1 1

d(z,y) > d(z,z) — d(y, z) > E_m—i—l o ——

Taking sup over z,y, we have d(By,, B,) > i > 0.

m+1)

Proof. Suppose 1 < m <n—1. Let z € B,, and y € B,,. Theny ¢ A, 1 D A1,
so there is a z € U¢ such that d(y,z) < —15. But @ € By, so d(z,2) > +. By the

O

Step 4: Let F' C X. If u*(F) = oo, then p*(F) > p*(FNU)+p*(F\U). Assume p*(F) < 0.

Then Y >, p*(FNB,) = 0as k — oco.

Proof. By Step 3, for all £ € N, we have

ZM*(F N Bap-1) = p* (HF N an1> < pr(F)
> W (F O By) = (HFO BQn) < u*(F).

must converge to zero.

Taking k — oo, we have > u*(F N B,) < 2u*(F) < oco. Hence the tail of the sum

U

Step 5: We now calculate for all n € N and F C X:

pEOU) +pt(FAU) < pt(FOA) +p (FO(UNA, ) + " (FA\U)
iz i1 Br

=p (FNA, )+u(F\U +u (H Bk>

k=n+1

d(FmAn,F\U)>d(An Ue)>1+

= W (FN (A4, TTF\U)) (]_[ Bk)

<u(F)+ Y W(EN B,
k=n-+1

J/

~~
— 0 as n — oo by Step 4.

We conclude that U € M*.

Definition 2.6.3. Suppose (X, d) is a metric space, p > 0, and £ > 0. For £ C X, define

[e.9]

m;-(E) := inf {Z(diam(Bn))p

1

(B,) a < e-diameter cover, i.e., a sequence of open
balls with diam(B,,) < ¢ for all n and E C |J B,
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where we use the convention that inf () = co. By Exercise 2.3.5, n,. 18 the outer measure
induced by

Ppe {0 U{B,(z)|x € X and r < e} — [0, 0]
0—0
B, (x) — (diam(B,(z)))".

Moreover, if e < &', then 7, (E) > n; ,(E) as we are taking an infimum over a smaller set
(every < e-diameter cover is a < ¢’-diameter cover). Hence

*

np(E) = T, o(E) = supn, . (F)
gives an outer measure by Exercise 2.3.2.
Proposition 2.6.4. 1 is a metric outer measure.

Proof. Suppose d(E, F') > ¢ > 0. If there is no e-diameter cover of E'II F', then there is no
e-diameter cover of one of E, F', and thus

p(E) + 1, (F) = 0o = m (EILF).

Now suppose there exists an e-diameter cover (B,) of EF' Il F. Then for all n € N, B,
intersects at most one of E, F. So we may partition (B,,) into (BZ) and (Bf) such that

e EC|UBY and BPNE # 10, and
e FCUBI and BENF #0.

Thus
My (B) +m5 (F) < Z diam(BZ)P 4 diam(B)P < Z diam(B,,)?
for any e-diameter cover. Hence for all ¢ < d(E, F),
e (B) + 1, (F) < 1, (ETLF).
Taking ¢ — 0, we get
my(EILF) <y (E) +n,(F) < ny(EILF),
and thus equality holds. O

Definition 2.6.5. Since the Borel o-algebra By for (X, d) is contained in the 7;-measurable
sets M by Propositions 2.6.2 and 2.6.4, we get a Borel measure 1, = n}|s, called p-
dimensional Hausdorff measure.

Facts 2.6.6. Here are some elementary properties about Hausdorff measures.

(Hpl) If f: X — X is an isometry (d(f(z), f(y)) = d(z,y) for all z,y € X), then for all
E € By, np(E) = np(f(E)).

Proof. For all ¢ > 0, n; (E) = n; (f(£)) since £ C B, if and only if
f(E) Cc U f(B,) as isometries are injective. O
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(Hp2) m = Mg, on R with the usual metric.

Proof. Since 1:((0,1]) = 1 (observe diam(B) = A(B) for any open ball B and
apply Lemma 2.5.30), this follows by uniqueness of the translation invariant
Borel measure on R from Exercise 2.5.13. U

(Hp3) If n,(E) < oo, then n,(E) = 0 for all ¢ > p.

Proof. Let € > 0. Since n,(E) < oo, there is a sequence (B,,) of open balls with
diam(B,,) < € such that ) diam(B,)? < n,(E) + 1. But if ¢ > p, then

mi(E) < diam(B,)"

= Z diam(B,,)?"? diam(B,,)?
~—— —

<egd—p
<e?? Z diam(B,,)?
< e P(n,(E)+1).
Letting ¢ — 0, we have
1a(E) = n(E) = lim 5 .(B) < lim 72, (E) + 1) = 0. a

(Hpd) If n,(E) > 0, then n,(E) = oo for all ¢ < p.

Proof. This follows as the contrapositive of (Hpu3). O

Definition 2.6.7. The Hausdorff dimension of E € By is
inf {p > 0[n,(E) = 0} = sup {p = OJn,(E) = oo}.

Remark 2.6.8. If £ € B, and p > 0 such that 0 < 7,(E) < oo, then the Hausdorff
dimension of £ is necessarily p by Lemma 2.6.6(3,4).

Exercise 2.6.9. Prove that the Cantor set from Example 2.5.15 has Hausdorff dimension
In(2)/In(3).

Exercise 2.6.10. Find an uncountable subset of R with Hausdorfl dimension zero.
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3. INTEGRATION

3.1. Measurable functions.

Definition 3.1.1. If (X, M) and (Y, N) are measurable spaces, we say f : X — Y is
(M — N) measurable if f~(E) € M for all E € N.

Exercise 3.1.2. Prove the following assertions.

(1) Given f : X — Y and a o-algebra N on Y, {f71(E)|E € N'} is a o-algebra on X.
Moreover it is the smallest o-algebra on X such that f is measurable.

(2) Given f: X — Y and a g-algebra M on X, {E C Y|f~(E) € M} is a o-algebra
on Y. Moreover it is the largest o-algebra on Y such that f is measurable.

Exercise 3.1.3. Prove that the composite of two measurable functions is measurable. More
precisely, if f: (X, M) — (Y,N) is M — N measurable and g : (Y,N) = (Z,P) is N — P
measurable, then go f is M —P measurable. Deduce that measurable spaces and measurable
functions form a category.

Proposition 3.1.4. Suppose (X, M) and (Y,N') are measurable spaces, f : X — Y, and
N = (&) for some & C P(Y). Then f is measurable if and only if f~(E) € M for all
Ee€é.

Proof. The forward direction is trivial. Suppose f~}(E) € M for all E € £. Then £ is
contained in the o-algebra Ny on Y co-induced by M, f, i.e., the largest o-algebra such that

[ is measurable. Since N is a o-algebra containing &, we see that Ny contains N. Since f
is M — N; measurable, f is M — N measurable. O

Exercise 3.1.5. Show that every monotone increasing function f : R — R is Borel measur-
able.

Definition 3.1.6. Suppose X, Y are topological spaces. We call f : X — Y Borel measurable
if it is Bx — By measurable.

Corollary 3.1.7. Continuous functions are Borel measurable.

Proof. Observe f : X — Y is continuous if and only if for all U € Ty, f~1(U) € Tx C Byx.
This implies f is Borel measurable by Proposition 3.1.4. U

Corollary 3.1.8. Suppose (X, M) is a measurable space and f : X — R (where R is
equipped with the Borel o-algebra). The following are equivalent:

(1) [ is M — Bg measurable.

(2) f~1(a,0) € M for all a € R.
(3) fa,0) € M for all a € R.
(4) [~Y(—00,a) € M for alla € R.
(5) f~Y(—o0,a] € M for all a € R.

Observe that we can also use collections of intervals (a,b), [a,b), (a,b],[a,b] for all a,b € R.
Corollary 3.1.9. If (X, M) is a measurable space and f : X — R = [—00,00], then

Corollary 3.1.8 holds replacing R with R and intervals excluding oo with intervals including
+o00 respectively.

Proof. Use Exercise 2.1.12. O
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Definition 3.1.10. Suppose (X, M) is a measurable space. We say a function f : X —
R, R, C is M-measurable if f is M — Br, M — Bg, M — B¢ measurable respectively.

Warning 3.1.11. If f,g: R — R are Lebesgue measurable (i.e., £ — Bg measurable),
then f o g need not be Lebesgue measurable!

Exercise 3.1.12. Find examples of f, g : R — R are Lebesgue measurable with f og
not Lebesgue measurable.

Note: First find an E € L\ Bg and an L-measurable function f : R — R such that
f~YE) ¢ L. Then set g:= xg.

Exercise 3.1.13. Suppose (X, M) is a measurable space and X,Y are topological spaces,
1:Y — Z is a continuous injection which maps open sets to open sets, and f : X — Y.

(For example, Y = R and Z = R.)
Z
2]
/

X —Y

Show that f is M — By measurable if and only if i o f is M — Bz measurable. Deduce that
if f: (X, M) — R only takes values in R, then f is M — Bg measurable if and only if f is
M — Br measurable. Hence we can say f is M-measurable without any confusion.

Exercise 3.1.14. Let (X, M) be a measurable space.
(1) Prove that the Borel o-algebra B¢ on C is generated by the ‘open rectangles’

{z € Cla < Re(z) < band c < Im(z) <d}.

(2) Prove directly from the definitions that f : X — C is M — B¢ measurable if and only
if Re(f) and Im(f) are M — Bg measurable.

Definition 3.1.15. Suppose (X, M, u)_is a measure space. We say that a property P of a
measurable function f from X into R, R, or C holds almost everywhere (a.e.) if there is a
p-null set £ € M such that P holds on E°. For example, f > 0 a.e. if there is a py-null set

E € M such that f|ge > 0.

Exercise 3.1.16. Define a relation on the set of M-measurable functions (into R, R, or C)
by f ~ g if and only if f = g a.e. Prove ~ is an equivalence relation.

Exercise 3.1.17. Suppose f,g : R — R are right continuous. Prove that if f = g A-
a.e. where \ is Lebesgue measure, then f = g everywhere.

Notation 3.1.18. Given f : X — R, we write {a < f} = f~'(a,00]. We define {a <
fHASf <bh{f <b},{a < f < b}, etc. similarly.

Facts 3.1.19. Suppose (X, M) is a measurable space and f, g : X — R are M-measurable.
The following functions are all M-measurable:

(M-measl) (f V g)(x) := max{f(z), g(x)} and (f5€ g)(x) := min{ f(z), g(x)}



Proof. 1If a € R, then

{a< fvgl={a< flUul{a<g}eM
{a< fAgt={a< f}n{a<g}eM. O

(M-meas2) any well-defined linear combination of f, g, where by convention, 0 - 00 = 0 and
400 + 00 = F00, but +00 F 0o is not defined.

Proof.
Step 1: For a,c € R,

( ifc=0<a)
fc=0>a

0
X
{cf >a} = {ﬂ<f} ife>0 > which are all in M.
c

{9>f}ﬂm<o
e
Step 2: If f + g is well-defined, then for a € R,

{a< f+g}= U{"r<f}ﬂ{s<g}€./\/l. O

r,8€Q
a<r—+s

Vs

(M-meas3) fg

Proof.
Step 1: Suppose f, g are non-negative. Then for all a > 0,

fa<fgl= |J {r<fln{s<glem

T’SEQ>0
a<rs

Also, for all a < 0, {a < fg} = X € M.
Step 2: For f, g arbitrary, we use the following trick:

Trick. f = f. — f_ where f, := fVvO0and f_ := —(f A0). Observe that
Jx- fi =0.
Similarly, we can write g = g, — ¢g_. Then
f9=Ffege — f-9+ — fo9-+ f-9-,
all of which have disjoint support. Hence each of the summands of fg is

measurable by Step 1, and the linear combination is measurable by (3) as it is
well-defined. 0

Exercise 3.1.20. Suppose f : X — R. Show that f = f, — f_ is the unique decomposition
of f as g — h such that g,h > 0 and gh = 0.

Exercise 3.1.21. Let (X, M) be a measurable space.
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(1) Prove that the M — B¢ measurable functions form a C-vector space.

(2) Show that if f: X — C is M — B¢ measurable, then |f| : X — [0,00) is M — Bg
measurable.

(3) Show that if (f,,) is a sequence of M — B¢ measurable functions X — C and f,, — f
pointwise, then f is M — B¢ measurable.

Facts 3.1.22. Suppose (f,) is a sequence of M-measurable functions X — R. The following
functions are M-measurable.

(M-meas4) sup f,, and inf f,

Proof. For all a € R,
{a<sup fu} = Jla< fu} eM

{a<inff,} = {a< fu} e M. O
(M-meash) limsup f,, and liminf f,
Proof. Observe that
limsup f, = lim sup f; = in sup fr
n—00 k>np o k>n

measurable by (M-meas4)
liminf f,, = lim inf f; = sup inf fj
k>n

n—o00 k>n n
~——
measurable by (M-meas4)

Applying (M-meas4) again, we see that limsup f, and liminf f,, are M-
measurable. U

3.2. Measurable simple functions. For this section, fix a measurable space (X, M).

Definition 3.2.1. An M-measurable function 1) : X — R is simple if it takes finitely many
values. Observe that if v is simple, we can write

¢:ZCkXEk Cl,...,cn €R E,....,E, € M.
k=1

Here, we write xg for the characteristic function of E:

o [ ifreE
XS =N 0 itz e EC

Observe that there is exactly one such expression of a simple function, called its standard
form, such that

® ¢q,...,c, are distinct, and

e Ey,...,E, are disjoint and non-empty such that X = [[;_, Ej.

Denote by SF the collection of simple (M-measurable) functions. Define SF* := {4 € SF|y) > 0}.
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Exercise 3.2.2. Verify the uniqueness of standard form of an simple function.

Exercise 3.2.3.

(1) Prove that SF is an R-algebra and SF* is closed under addition, multiplication, and
non-negative scalar multiplication.
(2) Prove SF is a lattice (closed under max and min) and SF* C SF is a sublattice.

Proposition 3.2.4. Suppose f: X — [0,00] is M-measurable. There is a sequence (¢,,) C
SF* such that

o Y,(x) N f(x) for allx € X, and
e for all N € N, o, = f uniformly on {f < N}.

Proof. Forn > 0 and 1 < k < 22", set

on 7 on
Observe that X = f~1(0) I F,, I ]_[i?:nl E*. Define

} and  F, = f1(2", 00)].

2271

i k-1
k=1

Here is a cartoon of g, 11, 1s:

34 Cutoff at 1 3 Cutoff at 2 3 Cutoff at 4
5/2 5/2
2 - 2 2
3/2 3/2
1 1 - 1
1/2 1/2
%o 1 b2
Observe that ¢, < ¢,y for allm > 0, and 0 < f — 4, < 27" on {f < 2"}. The result
follows. O

Exercise 3.2.5. Let (X, M, i) be the completion of the measure space (X, M, u).

(1) Show that if f is M-measurable and g = f a.e., then g is M-measurable.
Optional: Does this hold with M replaced by M ?

(2) Show that if f is M-measurable, there exists an M-measurable g such that f = g
a.e.
Hint: First do the case [ is R-valued.

(3) Show that if (f,) is a sequence of M-measurable functions and f,, — f a.e., then f
is M-measurable.
Optional: Does this hold with M replaced by M ?

(4) Show that if (f,) is a sequence of M-measurable functions and f,, — f a.e., then f
is M-measurable. Deduce that there is an M-measurable function g such that f = g
a.e., so f, — g a.e.

For all parts, consider the cases of R, R, and C-valued functions.
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3.3. Integration of non-negative functions. For this section, fix a measure space (X, M, p).
Define

Lt :=L"(X, M, u) = {M-measurable f: X — [0, 00]}.
Definition 3.3.1. For ¢ = >} cxxg, € SF™ C LT in standard form, define

n

[o= [ vin= [ v dn) = 3 anm

k=1

For E € M, we define [, := [4 - xp. Observe that to calculate [, 1, we must write the
simple function v - yg in standard form.
We say that 1) € SF* is integrable if [ 1) < co. We write ISF* := {4 € SF*|¢) integrable}.

Exercise 3.3.2. Suppose f : (X, M, u) — [0, 00| is M-measurable and {f > 0} is o-finite.
Show that there exists a sequence of (¢,,) C ISF* such that 1, /* f pointwise.
Optional: In what sense can you say V¥, / f uniformly?

Theorem 3.3.3. The map [ : SF™ — [0, 00] satisfies

(1) (homogeneous) for all v >0, [rip =1 [1.
(2) (monotone) if ¢ < everywhere, then [ ¢ < [1).
(3) (additive) [ ¢+ = [d+ [

Hence | : SF" — [0, 00] is an order-preserving R*-linear functional.

Proof.
(1) Observe if r = 0, then [r¢p =0=0-[4¢. If r > 0 and ¢ = Y." ¢xxp,, then r¢p =
> " repxe, is in standard form, and

/rw = ircku(Ek) = ri cei(Ey) = r/z/;.

(2) Suppose that ¢ = > " a;xg, and ) = " bpxp, are in standard form. Here is the trick:

[ Trick. Since X = [[" E; = [[" F), we have E; = [[;_, E;NF}, and F, = ]_[Tzl E;NEy. ]

Since ¢ < 1) everywhere,
6= axpon < Y bxenm = ¥,
Jsk 4.k

and so a; < by whenever E; N Fy, # (). Thus

[ o= a5 = 3 St 150 < 3 St 150 = S et = [ v

j=1 k=1 k=1 j=1
54



(3) Suppose that ¢ = > X5, 2/1 > " bexr,, and ¢ + 1 = > coxg, are in standard
form. Similar to the argument in (2) above, a; + by, = ¢, whenever E; N Fy, N G, # (). Then

[o+ / 6= auEy) + S ben(Fi)
= Z a; + by)p(E; N Fy)

= Z(aj + be) (£ 0 Fi, N Ge)

gkl

= Z Cg/L(Ej N Fk N Gg)

gkl

Remark 3.3.4. Observe that the map M — [0,00] by E — [ du equals f.

Lemma 3.3.5. For ¢y € SF*, puy, : M — [0,00] by E — [, 0 is a measure.

Proof.
(0) Observe that 1xg = 0, so

¢(®)=/@¢=/¢xw=/0=0-

(1) Write ¢ = > ™" | a;Xp; in standard form. If (F},) C M is a disjoint sequence, then observe
VX1 F = 2_je1 @jXE;n[] F, 18 also in standard form (up to a subset of {1)x11r, = 0}).

iy <HFn> = HFnzb

= / VXIIFn

= Z a;u(E; 0 ] Fa)
= i aju(E; N Ey,)

= ) [
Definition 3.3.6. For f € L™, define
/f = /deu = /Xf(x)du(x) = sup{/w‘¢ € SFT such that 0 < ¢ < f} .

Remarks 3.3.7.
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(1) Observe that for ¢ € SF", we have

[omsd]

Hence the above definition extends [ for ) € SF™ to f € L.

(2) If f,g € L with f < g, then [ f < [ g as we are taking sup over a larger set.

(3) If fe L™ and r € (0,00), then [rf =7 [ f, since if S C [0,00], suprS =r -sup S.
(Remember that 0 - oo = 0.)

ngESF”LsuchthatOngSg@/J}.

Proposition 3.3.8. Suppose f € L*. The following are equivalent.

(1) [ f=0, and
(2) f =0 a.e., i.e., there is a p-null set E € M such that f|g. = 0.
Proof.

(1) = (2): We'll prove the contrapositive. If f is not zero a.e., there is an n > 0 such that
p({% < f})>0. Then f > Lxi_p, 50

o< o({E <)) [l

(2) = (1): First, if f = >}, ckxp, € SF is in standard form, then [ f = 0 if and only if
w(Ey) = 0 for all k such that ¢, # 0 if and only if f = 0 a.e. Second, if f € LT with f =0
a.e., then for all 1) € SF* with 0 <+ < f, 1) =0 a.e., so [ f =supgcy<s [ = 0. O

Theorem 3.3.9 (Monotone Convergence, a.k.a MCT). Suppose (f,,) C LT is an increasing
sequence and f = lim f,, = sup f,. Then

/ f= le fn-
Proof.

<: Observe ([ f,) is increasing in [0, 0|, and thus it converges. Moreover, [ f, < [ f for all

1, 50 limy o [ fu < J .
>: Pick ay € SF" with 0 < ¢ < fand 0 <e < 1. Set E, := {e¢) < f,}. Then observe
(E,) C M is an increasing sequence such that | J £, = X, so by continuity from below (13),

Sy & A [ . Thus
iz [ gze [ v fo

Hence lim [ f,, > & [¢ for all 0 < ¢ < 1. Since € was arbitrary, letting ¢ — 1, we have
lim [ f,, > [. Taking sup over all 0 < ¢ < f gives lim [ f,, > [ f. O

Facts 3.3.10 (Corollaries of the MCT).

(MCT1) If f € L™, then [ f = lim [ 4, for all sequences (1,,) C SF* such that ¢,  f.
(MCT2) For all f,ge L*, [f+g9=[f+ [y

Proof. If ¢n /7 f and ¢, 7 g, then ¢n +thn 7 f + g, s0

R e AT LA




(MCT3)

(MCT4)

For f,ge LT, if f =g ae., then [ f= [g.

Proof. Let EE € M such that fxg = gxp and E€ is g-null. Then

/f i) /fXE+/ fXBe = /fXE = /QXE = /QXE+/9XEC o) /9-
U

For all (f,) C L™, Y. [ fu = [ fn, where >_ f, is the sup of the sequence of partial

sums (which is a measurable function).

Proof. Observe

[Sh= [ S b ot (S0 = i > [ 1 z/fn

(MCT5) If (f,) c L™, f, / f ae, and f € L™ (which is automatic if p is complete), then

(MCT6)

ff:limffn.

Proof. Suppose f, /' fon E € M and E°is py-null. Then

= = i n = i n-
/f (MCT3) /fXE (MCT) 1m/f XE (MCT3) 1m/f

(Fatou’s Lemma) If (f,) C L*, then [liminf f, < liminf [ f,.

Proof. For all j > k € N, inf,>; f, < fj, so

/ileg Jn < /fj forall 5> k.

Thus [inf,sy fr <infjs; [ fj. Letting k — oo, we have

T) k—oo n> k—oo 5>k

o _ < e .
/ liminf f,, o) lim mf fn < lim inf / f; = liminf / fn

0

(MCT7) If (f,) C LT, f, — f ae., and f € L" (which is automatic if p is complete), then

[ f <liminf [ f,.

Proof. Let E € M such that f, — f on F and E° is p-null. Then

— <  liminf " = liminf n-
/ f ®3) / fxe (MCT6) / Jaxe (MCT3) / /

O

Exercise 3.3.11. Assume Fatou’s Lemma (MCT6) and prove the Monotone Convergence
Theorem from it.

Exercise 3.3.12. If f € LT and [ f < oo, then {f = oo} is p-null and {0 < f} is o-finite.
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Exercise 3.3.13. Suppose (X, M, u) is a finite measure space and f : X — C is measurable.
Prove that u({n <|f|}) — 0 as n — oc.

Exercise 3.3.14. Suppose (X, M, p1) is a measure space and f € Lt. For £ € M, define

= / fdp.
E
(1) Prove that v is a measure on M.
(2) Prove that [gdv = [ fgdu for all g€ LT
Hint: First suppose g is simple.

3.4. Integration of R-valued functions. For this section, (X, M, ) is a fixed measure
space.

Definition 3.4.1. An M-measurable function f : X — R is called integrable if [ fe < o0
where f = f, — f_ with f, =0V fand f- = —(0A f). Since |f| = f+ + f_, observe that f
is integrable if and only if [ |f] < oc.

Define L'(p, R) := {integrable f : X — R}.

Exercise 3.4.2. Show that a simple function ¢ = Y ,_, cxxp, € SF with ¢, ..., ¢, distinct
and Fi,..., E, disjoint is integrable if and only if p(Fy) < oo for all k such that ¢; # 0.

Proposition 3.4.3. The set L'(p,R) is an R-vector space. Moreover, [ : L'(u,R) — R
given by [ f:= [ fi — [ f- is a linear functional.

Proof. If r e R and f,g € L'(u,R), then |rf + g| <|r|-|f| + |g| which is integrable. Hence
L'(u,R) is an R-vector space.
If r € R and f € L*(u, R), then there are three cases:

rfyi ifr>0
(rf)e =<0 ifr=20
—rfy it r <O.

In all three cases, by Remarks 3.3.7(3), we have

rf_ ifr>0
rf= [0 [ (f)- = / / Hr=00=r [ fo=r ]
Jri=Jen-]

/ (-nf-= [ itr<o
If f,g € L'(u,R), observe

(f+9)+—+9-=Ff+g=fr+g:—[-—9g-
which implies
(fta++f-+g-=(f+9)-+fr+0+

Jesons [+ o= [tro-+ [+ [o

and rearranging yields the result. 0
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3.5. Integration of C-valued functions. For this section, fix a measure space (X, M, p).
Recall from Exercise 3.1.14(2) that f : X — C is measurable if and only if Re(f) and Im(f)
are measurable. By Exercise 3.1.21(2), | f| is measurable.

Definition 3.5.1. A measurable function f : X — C is integrable if [|f| < oo, ie.,
|f] € L'(u,R). Since

[f1 < [Re(f) + [Tm(f)] < 2[f] ,
Re(z)

f is integrable if and only if Re(f) and Im(f) are integrable. In this case, we define

/f—/Re )+i [ 1)

It follows from Proposition 3.4.3 that

L'(u,C) := {integrable f : X — C}
is a C-vector space, and [ : L'(y, C) — C is linear.
Proposition 3.5.2. For all f € L'(u,C Uf|<f|f]

Proof.
Step 1: If f is R-valued, then | [ f| = |[ f+ — [ f-| < [ fe+ [ f- = [If].
Step 2: Suppose f is C-valued. We may assume [ f # 0. We use the following trick:

s ~

Trick. Define sgn ([ f) := % € T := {2z € C||2] = 1}. Then since 2~ = Z for all
z €T,
[ =m(f3) [ 3= [([1)s
Y i

We then calculate

/f /sgn(/f)sze/Wf:/Re<Wf>
B i N

Corollary 3.5.3. For all f,g € L*(u,C), the following are equivalent:

(1) f=g a.e.
(2) [1f—gl=0
(8) fordlE€e M, [,f=[,9.
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Proof.
(1) < (2) Observe f = g a.e. if and only if |f — g| = 0 a.e. if and only if [|f —g| = 0 by

Proposition 3.3.8.
(2) = (3) By Proposition 3.5.2, for all E € M,
- [a =|[ir=one| < [1r = < [1r a0
(3) = (1) Recall that fEf g= [y Re(f —g)+1i[,Im(f —g). So by assumption,
/Re(f—g):O and /Im(f—g):O VE e M.
E E

We now look at the following particular £ € M:
E={0<Re(f—-9)} = e(f—g)+ =0 ae.
E={0>Re(f—9g)} = Re(f—g)-=0ae.
E={0<Im(f-g)} = (f=9)+ =0ae.
E={0>Im(f—-9g)} = Im(f—g)-=0ae.

Hence Re(f — ¢g) = 0 and Im(f — g) = 0 a.e., which is equivalent to f = g a.e. O

—

m

Exercise 3.5.4. Suppose (X, M, u) be a measure space and f € L'(u,C). Prove that
{f # 0} is o-finite.

Exercise 3.5.5. Suppose (X, M, u) is a measure space and f € L'(u,C). Prove that for
every € > 0, there exists a 6 > 0 such that for every E € M with u(E) <0, [, |f] <e.

Definition 3.5.6. Define £!'(u, C) := L'(u,C)/ ~ where f ~ g if and only if f = g a.e. We
write f € L'(p, C) to mean f € L'(u, C) representing its equivalence class in £!(u, C).

Exercise 3.5.7. Let (X, M, i) be a measure space.
(1) Prove that || - |1 : £'(i,C) — [0, 00) given by | f|l1 := [|f| is a norm.
(2) Let (X, M,7i) be the completion of (X, M,u). Find a canonical C-vector space
isomorphism £!(u, C) = £!(zz, C) which preserves || - [|;.
Hint: Use Exercise 3.2.5.

Theorem 3.5.8 (Dominated Convergence, a.k.a. DCT). Suppose (f,) C L*(u, C) such that
fo — f ae If there is a g € L'Y(u,C) N LT such that eventually |f,| < g a.e., then

fel(p,C)and [ f=1lm [ f,.

Proof. By redefining f on a p-null set if necessary by Exercise 3.2.5, we may assume f is M-
measurable. Taking limits pointwise, |f| < g, so f € L'(u,C). Taking real and imaginary

parts of f, we may assume (f,), f are all R-valued. Then —g < f,, < g a.e., so
g+ =0 and g—fn=>0 a.e.

By Fatou’s Lemma (MCT6),

/g+/f /g-l—fSliminf/g+fnZ/g—l—liminf/fn
/9—/f—/g—fSliminf/g—fn—/g—limsup/fn-
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Combining these inequalities,

limsup/fng/fgliminf/fn. O

Corollary 3.5.9. Suppose (f,) C L*(n, C) such that Y [ |fn| < co. Then Y f, converges
a.e. to a function in L'(p,C), and [ fo =3 [ fa.

Exercise 3.5.10. Suppose (X, M, u) is a measure space, and (f,,) C L* is a decreasing
sequence of non-negative M-measurable functions, i.e., f, > f,41 for all n € N.

(1) Find an example of such a sequence such that [ f, does not converge to [ f.
(2) Suppose [ f < oco. Find a necessary and sufficient condition so that [ f, — [ f as
n — oo.

Exercise 3.5.11. Suppose (X, M, p) is a finite measure space and f : X — [0,00] is
measurable. Prove that f € £'(u) if and only if > °7, u({n < f}) < cc.

Exercise 3.5.12. Prove that the metric d; on £!(u, C) induced by || - ||; is complete. That
is, prove every Cauchy sequence converges in £!.

Note: This follows immediately from Corollary 3.5.9 if one shows that completeness of a
normed vector space V' 1is equivalent to the property that every absolutely convergent series
converges in V.

Exercise 3.5.13. Let u be a Lebesgue-Stieltjes Borel measure on R. Show that C.(R), the
continuous functions of compact support ({f # 0} compact) is dense in £'(u, R). Does the
same hold for C-valued functions?

Hint: You could proceed in this way:

(1) Reduce to the case f € L* N L.
(2) Reduce to the case f € L* N SF™.
(8) Reduce to the case f = xg with E € Bg and p(F) < oo.
4) Reduce to the case f = xy with U C R open and u(U) < oco.
Q
5) Reduce to the case f = X(ap) with a < b in R.
(a,b)

3.6. Modes of convergence. Let (X, M, u) be a measure space. For (f,), f all M — B¢
measurable functions, f,, — f could mean many things:

e (pointwise) f,(z) — f(x) for all z € X.

e (ae.) fo(z) = f(x) for ae. x € X.

e (uniformly) for all e > 0, there is an N € N such that n > N implies |f,(z)— f(x)| < &
for all v € X.

e (almost uniformly, a.k.a. a.u.) for all € > 0, there is an £ € M with u(F) < € such
that f,xgc — fXxge uniformly.

o (inLY) [|fn—fl—=0asn— oco.

e (in measure) for all e > 0, u ({e < |f — ful}) — 0.

Observe that obviously uniform implies a.u., uniform implies pointwise, and pointwise
implies a.e.

Proposition 3.6.1. Almost uniform convergence implies almost everywhere convergence.

Proof. Suppose f, — f au. For k € N, let E}, € M such that u(Ey) < 1/k and fuxge —
fxge uniformly. Let E := () Ej. Then u(E) = 0 by continuity from above (4), and since

E¢ =|J E§, we have f,xge — fxge pointwise. O
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Proposition 3.6.2. Almost uniform convergence implies convergence in measure

Proof. Suppose f, — f a.u. Let ¢ > 0. Show for all § > 0, there is an N € N such that
n > N implies p ({e < |f — ful}) < 6. Pick E € M such that u(E) < § and f,xge — fxge

uniformly. Then
fe<|f—fallNE)+p{e<|f— fal} N E)

p{e <1f = Fl}) = ple < )+
alwe;/g <é =0 fo?:z large
[l

for n sufficiently large.
Proposition 3.6.3. Convergence in L' implies convergence in measure

Proof. Suppose f, — fin L. Let € > 0, and set £ := {e <|f — f.|}. Then

]_ 1 n—oo
E €JE € JE

Facts 3.6.4 (Counterexamples). We consider the following important counterexamples

~X(0,n) converges uniformly to zero, but not in Lt
X(n,n+1) converges pointwise to zero, but not in measure

()fni

(2) f

(3) fn = TX[0.1/n] CONVEIgES a.c. to zero with u(X) < 00, but not in £!

(4) fu(z) := 2™ on [0, 1] almost uniformly to zero, but not pointwise.

(5) (shifting intervals) fi = X1, f2 = X[o,1/2]; f3 = X2 fa = X/ f5 = X142

etc. converges in £', but not a.e.

I”
uniform ¥ pointwise | *0m , implies ——%

1
i Ve !
z™ on [O 1] - L7 1
- -+ “X(n,n+1) ! conditional ——
-7 P -7 1
~ = S - 1
\ 1
[almost uniform], - “[ almost everywherej P counterexample - - - -
< z 1§
,M,(X’)<oo Ny .
e EgOrOH shifting I I " X{ 717 ] /I
I intervals ! , I /z(X)<oo S
~ )7

measure )<
(X) <00 I

Lemma 3.6.5. If f,, — f uniformly and u(X) < oo, then f, — f in L!

Proof. Observe that
/|fn_f| < (Sup|fn_f|)'/1:(Sup|fn_f|)'M(X)'
N e’

—0 as n—o0

Theorem 3.6.6 (Egoroff). If f,, = f a.e. and u(X) < oo, then f, — f a.u
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Proof. By replacing X with X \ N for some p-null set N € M, we may assume f, — f
pointwise. Now observe that for all k € N,

[e.9]

En,k:U{%SU—fﬂ}\@ as n — 00.

j=n
Since p(X) < 0o, by continuity from above (u4), u(E, ) — 0 as n — oco. Let £ > 0. For all
k € N, choose ny, € N such that u(E,, ») < /2F. Setting E := U~ En, x, we have

B) <Y () <2327k =

Finally, observe that for all n > ny, if v € E¢ = (2, Ef,_ ,, then |f(2) — fu(z)| < 1/k. Thus
fn — [ uniformly on E°. 0

Definition 3.6.7. A sequence (f,,) of M-measurable functions is Cauchy in measure if for
all e > 0,

N({g < |fm fn|}) X

Exercise 3.6.8. Prove that if f,, — f in measure, then (f,) is Cauchy in measure.

Theorem 3.6.9. If (f,) is Cauchy in measure, then there exists a unique (up to p-null set)
M-measurable function f such that f, — f in measure. Moreover, there is a subsequence
(fn.) such that fn, — f a.e.

Proof.
Step 1: There is a subsequence (f,,) such that p ({27 < |fu, — fa,,|}) <275

Proof. For all k € N, pn ({27% < | f, — fin|}) — 0 as m,n — co. Pick ny, inductively so
nyt1 > g and m,n > ny implies p ({27 < |f, — finl}) <27 O

Step 2: (fn,) is pointwise Cauchy off a p-null set N.

Proof. For k € N, set By :={27% < |fy, — far, |}, and for £ € N, set Ny := {J,_, E.
Then p(Ny) < >°,_,27% = 2174 Setting N = (| N, = limsup Ej, we have u(N) = 0
by continuity from above (p4). If z € N¢ then x € Ny for some ¢, where

= () Ei = {z € X||fu, (&) = fapon(@)| <27 for all k > ¢} .
={

Thus for all £ <17 < 7,

7= j—1
‘fnl( fn] Z ‘fnk fnk+1 (iL‘)’ < Z 27}6 < 2171- (3610)
k= k=i
We conclude that (f,,) is pointwise Cauchy on N°. 0
Step 3: Define
flz) == 0 if x € N (which is p-null)
" iy £, (z) if 2 € N°.
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Then f is M-measurable and f,, — f a.e.

Proof. It remains to show f is measurable. Observe f,,, - xnc is M-measurable for all
k, and thus so is f = lim f,,, - xne by Exercise 3.2.5. U

Step 4: f,, — f in measure.

s ~

Proof. Fix £ € N. For all x € Nj and k > ¢, we have

| fo (@) = f(@)] = Hm |fo, (2) = fo, ()] < 27F koo
J—reo (3.6.10)

It follows that for any € > 0, eventually

{ES |fnk_f|} C N - M({gg |fnk—f|}) Su(Ng):Ql_Z.
Since ¢ € N was arbitrary, we conclude that for any ¢ > 0,

pe < [fm — 1) =2 0. O

Step 5: f, — f in measure.

Proof. We use the following trick:

Trick. For non-negative M-measurable f, g, {a+b < f+¢} C {a < f}U{b < g}.

Now observe that

fe<lfa— 1 {5 Slfa—ful}U{S <Ifu —fl}/-

(. 4

vV Vv
w—0as (fn) u — 0 by Step 4
Cauchy in measure

Hence u({e < |f. — f|}) = 0 as n — oo. O

Step 6: f is unique (up to a p-null set) such that f,, — f in measure.

Proof. Suppose g is another such candidate. Then using the same trick as in Step 5,

felf-at {5 <lr-nlfu{s <lo-£l}.

- v - v

N
pn— 0asn— oo n— 0asn— oo

Hence u({e < |f —g|}) =0 for all ¢ > 0, and thus f = g a.e. O

This concludes the proof. 0]

Exercise 3.6.11 (Lusin’s Theorem). Suppose f : [a,b] — C is Lebesgue measurable and
e > 0. There is a compact set E C [a, b] such that A(E°) < ¢ and f|g is continuous.
Hint: Use Fxercise 3.3.13 and Egoroff’s Theorem 3.6.6.

Exercise 3.6.12. Suppose f € £!([0,1],)) is an integrable non-negative function.
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(1) Show that for every n € N, /f € £'([0, 1], ).
(2) Show that ({/f) converges in £! and compute its limit.

Hint for both parts: Consider {f > 1} and {f < 1} separately.

Exercise 3.6.13. Suppose (X, M, p) is a measure space and f,, — f in measure and g, — ¢
in measure (these functions are assumed to be measurable). Show that
(1) |ful = |f| in measure.
(2) fn+ gn — [+ g in measure.
(3) fugn — fg if p(X) < oo, but not necessarily if p(X) = oo.
Hint: First show f,g — fg in measure. To do so, one could follow the following
steps.
(a) Show that for any e > 0, by Exercise 3.3.13, X = E 11 E° where |g|g| < M and
u(E°) < e/2.
(b) For § >0 and carefully chosen M >0 and E,

{Ufng = fol > 0} = ({Ifug — fgl > 6y N E)IL({|fng — fg| > 6} N E®)
c {Ifn—fl >%}UEC.

Exercise 3.6.14 (Folland §2.4, #33 and 34). Suppose (X, M, u) is a measure space and
fn — [ in measure (these functions are assumed to be measurable).

(1) Show that if f, > 0 everywhere, then [ f <liminf [ f,.
(2) Suppose |f,| < g € L' Prove that [ f=lim [ f, and f, — f in L.

Exercise 3.6.15. Let (X, M, 1) be a measure space. Suppose (E,) C M is a sequence of
measurable sets with u(E,) < oo for all n. Show that if xg, — f in £' (this assumes f is
M-measurable), then there is an £ € M such that f = xg a.e.

3.7. Comparison of the Lebesgue and Riemann integrals. We now review the Rie-
mann integral for a Reimann integrable function f : [a,b] — R.

Definition 3.7.1. A partition of [a,b] is a set of points P = {a = 59 < s1 < -+ < 8, = b}.
We say an interval J € P if J = [s;,_1, s;] for some i = 1,...,m. We write
my :=inf {f(x)|z € J} My :=sup{f(z)|x € J}.
We define the:
e Lower sum: L(f, P):=> ,.pmyA(J)
e Upper sum: U(f, P) =3 ,;.p MjA(J)
Here, A\(J) is the length (Lebesgue measure) of the interval. Observe L(f, P) < U(f, P).

A refinement of P is a partition @ = {a =ty < t; < --- < t, = b} D P. Observe that if
Q refines P, then

L(f,P) < L(f,Q) < U(f.Q) < U([, P).

Thus if P;, P, are two partitions of [a,b] and @ is a common refinement, then
sup L(f. P) < L(f.Q) < U(£.Q) < inf U(f.P).

i=12
We define the:

e Upper integral: T[G b]f =infp U(f, P)
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e Lower integral: i[a b]f := supp L(f, P)

We say f is Riemann integrable on [a, b] if [ (ab] f=7 o] f, and we denote this common value
b b
by [ f(z)dx.

Exercise 3.7.2. Suppose [ : [a,b] — R. Prove the following are equivalent:

(1) fis Riemann integrable
(2) for all € > 0, there is a partition P of [a,b] such that U(f, P) — L(f, P) < e.

Theorem 3.7.3. If f is Riemann integrable on |a,b], then f is Lebesque integrable and
b
Jog FdX= [, f(2)dz.

Proof. Let (P,) be a sequence of partitions of [a, b] such that P, refines P, and U(f, P,) —
L(f,P,) <1/n for all n € N. Here’s the trick:

Trick. Define the simple functions ¢, := ;. p myx; and ¥, := >, p M;x,.

Observe that L(f, P,) = [ ¢, d\ and U(f, P,) = [ ¥,,d\ and
wngwn+1§f§q]n+1§\pn VnEN

Define ¢ := lim,, and ¥ := lim ¥,,, which exists as (¢,,) and (¥,,) are pointwise bounded
and monotone. Then by (a slight modification of) the MCT 3.3.9, ¢, ¥ are integrable, and

/wzhm/¢wzlw“mm:hm/w":/w'

But since U — ) > 0 everywhere, [V — 1 = 0 implies U = f = ¢ a.e. So f € L' and
[f=[ f(z)de. 0

Lemma 3.7.4. Suppose f : [a,b] — R is Riemann integrable and bounded. Then for all € >
0, there are continuous functions g, h : [a,b] — R such that h < f < g and f[a i (g—h)d\ <e.

Proof.
Step 1: If f = x; for some interval J, then we can find piecewise linear functions g, h such
that h < f < g such as in the following cartoon:

Then [, ,9=AJ)+¢e/2and [, h=AJ)—¢/2, 50 [g—h=c¢.
Step 2: Without loss of generality, we may assume f > 0. (Otherwise, treat fi separately.)

Take a partition P of [a, b] such that U(f, P)— L(f, P) < /2. As in the trick in the previous
theorem, define the simple functions

Y=Y maxs < f < W= Myx,
Jep Jep
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so that [¢ = L(f, P) and [ ¥ =U(f,P). Apply Step 1 to each x; to get continuous gy, hy
with h; < x; < gy such that [g; — hy < 2|P|M where |P| is the number of intervals of P

and M :=sup {f(z)la < x < b}. Setting g := > ;. p Myg; and h:= ), ,m;h;, we have

h:ZthJmeJXJ=¢§f§¢=ZMJXJ§ZMJ9J=9>

Jep JeP JEP JEP
and thus
/g_h:ZMJ/gJ_mJ/hJ
JeP
—UfP ZMJ/\ fP +ZMJ )+ZMJ/9J—mJ/hJ
. JEP . JEP JeP
=0 =0
— U(f,P) = L(}, P M — _
(f. P) = L(f, )‘*’Z\;L/QJ XJ mJ/XJ hy
JEP <y >0 <M >0
U P) = LU P MY [ gt
<§ JGP\_V_/
: 2\P\M
< e. [

Exercise 3.7.5. Let X be a topological space and let g : X — R. We say that g is upper
semicontinuous at xy € X if for every € > 0, there is an open neighborhood U of xy such
that x € U implies f(x) < f(zo) + . We say ¢ is upper semicontinuous if g is upper
semicontinuous at every x € X.

(1) Show that g is upper semicontinuous if and only if {g < r} is open in for all r € R.
(2) Define lower semicontinuity (both at o € X and everywhere) and prove the analo-
gous statement to (1).

Theorem 3.7.6 (Lebesgue). A bounded function f : [a,b] — R is Riemann integrable if and
only if it is continuous a.e.

Proof.
=-: Suppose f is Riemann integrable. By Lemma 3.7.4, there are sequence of continuous
functions (h,) and (g,) on [a,b] with h, < f < g, such that [ g, — h, < 1/n for all n € N.
Since

Int1 A Gn — g1 V iy < gngr — g Vn eN,
we may assume that
hp < hpyr < f < gng1 < g Vn eN.
Setting h :=limh,, and ¢ :=limg,, we have h < f < gand [h= [ f= [ g by MCT 3.3.9.

Since g — h > 0, we know g = f = h a.e. on [a,b].
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Claim. Since g, \( g, g is upper semicontinuous. Similarly, h is lower semicontinuous

Proof. Let xy € [a,b] and € > 0. Pick N € N such that n > N implies g,(zo) —g(zo) <
e/2. Pick 6 > 0 such that x € (zg — J,z0 + 6) N [a, b] implies |gn(x) — gn(z0)| < €/2.
Then for all z € (g — §, 20 + 0) N [a, b],

g(@0) > gn(wo) = 5 > g (@) =€ > g(a) — <. O

Whenever h(xg) = f(xo) = g(z0), f is both upper semicontinuous and lower semicontinu-
ous at xg, i.e., [ is continuous at xy. This happens on [a, b a.e.
<: Suppose [ is continuous on [a,b] a.e. Let E be the A-null set of discontinuities, and
let ¢ > 0. We'll construct a partition P such that U(f, P) — L(f,P) < e. By outer
regularity of A, there is an open U D FE such that \(U) < ¢’ to be determined later. Let
K :=|a,b] \ U, which is compact, and observe that f is continuous at all points of K (not
flx!). For each x € K, pick d, > 0 such that y € [a,b] (not K!) and |z — y| < §, implies
|f(xz) = f(y)] < €'. Then {Bs,2(x)}sck is an open cover of K, so there are xq,...,2, € K
such that K C J;_, Bs, /2(w:). Set 0 := min {d,,/2li = 1,...,n}.

Claim. Ifx € K and y € [a,b] and |z —y| < /2, then |f(z) — f(y)| < 2.
Proof. Without loss of generality, € By, j2(x1). Then y € Bs, (1), and thus
[f (@) = fFW)l < |f(2) — fla)l + |f (@) — Fy)] < 2¢". O

Let P be any partition of [a,b] whose intervals have length at most 4. Let P’ consist of
the intervals that intersect K and let P” be the intervals that do not intersect K. By the
claim, if J € P, then M; —m; < 4¢’. Thus

U(f,P) = L(f.P) =Y (M;—m)A(J)

JepP
= > (My—m)ANT)+ > (My —my)A(J)
JeP’ JepP
<Y AEAT) + D (M —m)A(J)
JeP’ JepP”
< 4e'(b—a) + (M — m)A(U) ( U 7¢ U)
JeP

<&'(4(b—a)+ (M —m))
where M = sup,c(,p f(z) and m = inf.cjoy f(z). Taking &' = ¢/(4(b — a) + (M — m))

works. ]

3.8. Product measures.

Definition 3.8.1. Given measurable spaces (X, M) and (Y, N'), a measurable rectangle is
a set of the form £ x F C X xY where £ € M and F € N. The product o-algebra

M x N C P(X xY) is the o-algebra generated by the measurable rectangles.
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Exercise 3.8.2. Prove that M x A is the smallest o-algebra such that the canonical pro-
jection maps mx : X XY — X and 7y : X x Y — Y are measurable. Deduce that M x N/
is generated by 73! (Ex) U my ' (Ey) for any generating sets Ex of M and &y of N.

Warning 3.8.3. Recall that given topological spaces X,Y, the canonical projections 7wx :
X XY = Xand y : X XY — Y are open maps. When (X, M), (Y, N) are measurable,
however, 7x, my need not map measurable sets to measurable sets. (Unfortunately, actually
constructing a set in M x N whose projection to X is not measurable is quite difficult.)

Exercise 3.8.4. Show that the subset of P(X x Y) consisting of finite disjoint unions of
measurable rectangles is an algebra which generates M x N.
Hint: For E,E,,Ey € M and F,F,, F, € N,
o (Ey x F1)N(Ey x Fy) = (E1NEy) x (F1NFE,y), and
o (EXF)=(ExF)I(E°x F)II(Ex F°).
Proposition 3.8.5. Suppose (X,dx) and (Y, dy) are metric spaces.
(1) Bx X By is generated by (Tx x Y)U (X x Ty).
(2) Bx x By C BXXY'
(8) If X, Y are separable, then Bx X By = Bxxy .

Proof.

(1) This is an immediate consequence of Exercise 3.8.2.

(2) Since Ty XY, X X Ty C Tx X Ty C Txxy, we have By x By C Bxxy.

(3) Suppose C' C X and D C Y are countable dense subsets. Let Ex, & be the collections of
open balls centered at C, D respectively with rational radii. Note that C' x D is a countable
dense subset of X X Y, and thus Tx«y is generated by Ex x & C Bx x By. Hence
Bxxy C Bx x By. O

Exercise 3.8.6.

(1) Find an example of (non-separable) metric spaces X,Y such that Bx x By C Bxxy-
(2) If one of X or Y is separable, is By X By = Bxxy? Find a proof or a counterexample.

Exercise 3.8.7. Suppose (X, M), (Y,N), (Z,P) are measurable spaces and f : Z — X and
g:Z —Y. Show that f x g: Z — X x Y (the unique map from the universal property of
the product) is measurable if and only if f and g are measurable. Deduce that the category
of measurable spaces and measurable functions has finite categorical products.

Exercise 3.8.8. Prove that + : R xR — R and - : R x R — R are continuous and thus
(Borel) measurable.

Corollary 3.8.9. If f: (X,M) >R andg: (Y,N) =R are measurable, then so are f + g
and fg. (This also holds for other codomains such as C and R if the sum is well-defined.)

Proof. Observe that fg and f + g are composites:

Xxy —1 L RxR ort+ ' R

(z,y) ——— (f(2),9(y)) ———— f(x) + g(y) or f(z)g(y).

The map f X g is measurable as the preimage of every (Borel) measurable rectangle is
a measurable rectangle. Thus the composite of these measurable functions is M x N-

measurable. 0
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Exercise 3.8.10. Adapt the proof of Corollary 3.8.9 to give another proof that f : (X, M) —
C is measurable if and only if Re(f), Im(f) are measurable.

For the rest of this section, suppose (X, M, ) and (Y, N, v) are measure spaces, and let
A be the algebra of finite disjoint unions of measurable rectangles from Exercise 3.8.4.

Proposition 3.8.11. For G =[[;_, Ex x I}, € A, define

(1% v)o( Z,UEk:

with the convention that 0 - oo = 0. Then (u X V)o is a premeasure on A.

Proof. 1t suffices to show that if £ € M and F' € N such that E x F' = [[ E,, x F,, for some
(non-disjoint!) sequences (E,) C M and (F,) C N, then u(E)v(E) =3 w(E,)v(E,).

7~

Trick. For all x € E and y € F, there is a unique k such that (z,y) € Ejy x Fj. Hence,
for any fixed y € F, (z,y) € E x F for all x € F, and thus

E = ]_[ E,.
k s.t. yeFk

This is a disjoint union, since if x € E; N Ey and y € F; N Fy, then (z,y) € (E; X F;)N
(E) X Fy), so j = k. Here is a cartoon of this trick:

E=E111Ey=FE3llEy
E1=Fs5 and Ey=E4
F=F11F3=F,11F,
Fi=F, and F3=F}

E3XF3|Eyg X Fy

E1><F1 E2><F2

E

Hence for y € F',
wE) = > ulB) =) w(E)xn ()
k s.t. yeFy
and thus u(E)xr(y) = > w(Ex)xr, (y). Integrating over y yields

u(EW(E) = [ u(B)xel) dvly) = / S u(B)xn (v) dv(y)
MCT) Z/ Ek XFk dV Z,u Ek |:|

Now use Carathéodory’s outer measure construction, we get an outer measure (u x v)*
on P(X xY), which restricts to a measure pu X v on the (u x v)*-measurable sets, which
is a o-algebra containing M x N (as sets in A are (u X v)*-measurable, and A generates

M x N).

Exercise 3.8.12. Suppose X, Y are topological spaces and p, v are o-finite Borel measures
on X,Y respectively.
(1) Prove that pu x v is o-finite.

(2) Show that if u, v are both outer regular, then so is u x v.
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(3) Show that (2) fails when the o-finite condition is dropped.
Hint: Consider a Dirac mass 0 at xo such that 6({x¢}) = oc.

3.9. The Fubini and Tonelli Theorems. For this section, fix measure spaces (X, M, )
and (Y, N, v).

Definition 3.9.1. For £ C X x Y, we define
o (z-section) E, :={y € Y|(z,y) € E} =ny(EN({z} xY))
o (y-section) EY := {zx € X|(z,y) € E} =nx(EN (X x {y}))

Here is a cartoon of x- and y-sections:

Ey I:
Yy 4
Ey [

Exercise 3.9.2. Suppose (FE,) C P(X xY). Prove the following assertions.

(1) (U En), = U(En).
(3) (En \ Ek‘)w = (En)w \ (Ek>z
(4) xE.(z,y) = X(@.). W).
Deduce similar statements also hold for y-sections.
Proposition 3.9.3. Let E€ M xN. Forallz € X, E, €¢ N and forally €Y, EY € M.

Proof. We prove the first statement, and the second is similar.

Trick. We’ll show that the following set is a o-algebra on X x Y:
S={FECXXY|E, e N}.

This implies the result, since S contains the measurable rectangles in M x N, which
generates M x N. Thus M x N C S.
(0) Observe ) € N implies § € S.
(1) If (E,) C S, then (E,), € N for all n € N. By Exercise 3.9.2, (JE»): = U(Ey): € N.
Thus J E, € S.
(2) If E € S, then E, € N. Observe (E¢), = (E,)¢ € N, and thus E° € S. O

Exercise 3.9.4. Use Proposition 3.9.3 to show that £ x £ is not equal to £2, where L is
the Lebesgue g-algebra and £? denotes the o-algebra of (A x \)*-measurable sets in R?.

Definition 3.9.5. For f: X x Y — R, R, or C, we define
e (z-section) f, : Y = R, R, or C by f.(y) := f(x,y), and
e (y-section) f¥: X — R, R, or C by f¥(z) := f(z,y).
Corollary 3.9.6. If f : X xY - R, R, or C is M x N -measurable, then

e forallz € X, f, is N-measurable, and
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o forallyeY, fY is M-measurable.

Proof. We'll prove the first statement, and the second is similar. Observe that for all z € X
and measurable G contained in the codomain, f;}(G) = f~1(G). € N. O

Exercise 3.9.7. Suppose f : R? — R is such that each z-section f, is Borel measurable and
each y-section fY is continuous. Show f is Borel measurable.

Theorem 3.9.8 (Tonelli for characteristic functions). Suppose (X, M, u) and (Y,N,v) are
o-finite measure spaces. Then for all E € M x N,

(1) The functions x +— v(E,) and y — p(EY) are measurable, and
(2) (uxv)(E) = [v(E,)du(z) = [ (EY)dv(y).
Proof.
Step 1: First, we’ll assume p, v are finite measures. Let A € M x N be the subset for which

(1) and (2) above hold. Observe that IT := {measurable rectangles in M x N'} is contained
in A.
Step la: II is a m-system.

[ Proof. The intersection of 2 measurable rectangles is a measurable rectangle. 0 ]

Step 1b: A is a A-system. Thus by the m — A Theorem,
MxN=AI)CACMxN,
and thus equality holds.

- )

Proof.
(0) First, note X x Y € IT C A.
(1) If E € A so that (1) and (2) hold for E, then as we assumed v is finite,

z = V((E%)x) = v((Ee)) = v(Y) — v(E)

is measurable (as a constant function minus a measurable function), as is y — p((E°),),
so (1) holds for E°. Moreover, p X v is finite, so

(1 x V)(E) = (1 x 1)(X x ) = (1 x 1)(E)

_/Xy(y) du(x)—/V(Ez)dﬂ(x)

_ /X (W(Y) — v(E,)) du(x)

= [ (B duo

= [ (B dute) PreviRE prtiof () or &7

= /Y p((E9)Y) dv(y) similarly.

Thus A is closed under taking complements.
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(2) Suppose (E,) C Ais asequence of disjoint subsets. Observe for allz € X, ((E,).) C
N is disjoint. Then for all n, z — v((E,,),) is measurable, and thus so is

2 Y U((Ba)a) = v (H(En)x> — v ((]_[ En>> .

Similarly, y — p (([[ En)?) is measurable, proving (1) for [ ] E,,. We calculate

(1 x ) (T En) = (0 x v)(En)
=3 [ (B dute)
= /X > v((En)a) dulx) (by the MCT 3.3.9)
- /X v (11 duz)
_ /X v ((I1B.) ) dutz)  proving part of (2) for ]| 2,
_ /Y o (11 En>y> dv(y)  similatly.

Thus A is closed under taking countable disjoint unions. 0

Step 2: When p, v are o-finite, write X X Y as an increasing union X x Y = J X,, x Y, with
X,, x'Y,, measurable rectangles such that u(X,),v(Y,) < oo for allm € N. For E € M x N,
write E,, ;== EN (X, xY,), and observe E,, " E, so (E,), /* E,. Thus the function

r+— v(E,) =limv((E,).)

is measurable (as a pointwise limit of measurable functions), as is y —— p(EY). We then
calculate

(1 x v)(B) = lim( x v)(E,)

= lim ; V((En)a) dp() (by Step 1)

_ /X lim v ((En)a) du(z) (by the MCT 3.3.9)

— [ v duta)

_ /Y H(EY) du(y) similarly. 0

Theorem 3.9.9 (Tonelli). Suppose (X, M,u) and (Y,N,v) are o-finite measure spaces.
For fe L"(X xY,M x N),

(1) z— / fedv is M-measurable (an element of LT (X, M)),
Yy

(2) y— / fYdu is N-measurable (an element of LT (Y,N)), and
be
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o [ o= f ([ ) ()

Proof. If f = xg for some E € M x N, this is exactly the previous theorem. Since (¢f+g), =
¢(fz)+g. (this is an exercise), we get the result for non-negative simple functions by linearity.
Suppose now f € L7 is arbitrary and (1,,) C SF" such that 1,  f everywhere. Then

(Vn)ze A fo and (¢,)Y 2 fY, so by the MCT 3.3.9,

[wedr [ foar wmd [ wrdn s [

which implies (1) and (2) (countable supremums of measurable functions are measurable).
Again by the MCT 3.3.9,

/X (/Y fmdl/) du:/X (lim/y(%)de) di
[ ([

= lim Un d(pn X V) by previous theorem
XxY

= fd(pxv)

XxY

= / ( / fY du) dv similarly. O
y \Jx

Exercise 3.9.10 (Counterexample: Folland §2.5, #46). Let X =Y = [0,1], M =N =
Bjo), = A Lebesgue measure, and v counting measure. Let A = {(z,z)|z € [0,1]} be the
diagonal. Prove that [ [ xadudv, [ [ xadvdu, and [ xad(p x v) are all distinct.

Exercise 3.9.11. Suppose f : R — [0, 00) is Borel measurable.

(1) Show that F := {(z,y) € R*0 <y < f(x)} is Borel measurable.
(2) Show that [ f(z)d\(x) = (A X A\)(E).

Remark 3.9.12. Under the hypotheses of Tonelli’s Theorem 3.9.9, if in addition f € L*(X x
Y,M x N)N L'(u x v), then

. / fedv < oo (f, € L'(v)) ae. x € X, and
Yy

o / fldp < oo (fYe L' (u)ae yey.
X

Corollary 3.9.13 (Fubini). Suppose (X, M, u) and (Y,N,v) are o-finite measure spaces.
If fe L' (uxv), then

(1) fo € L*(v) a.e. x € X and f¥ € L'(u) a.e. y €Y,
(2) (xr—> / fmdl/) € L'(p) and (y»—>/ fyd,u> € L'(v), and

) [ e - /(/fde/)du /(/ fydu)dv



Proof. Recall that

f=Re(f)+ —Re(f)- +¢Im(f)+ —iIm(f)-,
where Re(f)+, Im(f)+ € LT (X x Y, M x N) N L'(u x v). Hence Tonelli’s Theorem 3.9.9
applies to the 4 functions, as does Remark 3.9.12. The result follows. OJ

Exercise 3.9.14 (Counterexample: Folland §2.5, #48). Let X =Y =N, M =N = P(N),
and i = v counting measure. Define
1 iftm=n
f(m,n): =< -1 ifm=n+1
0 else.

Prove that [ |f|d(p % v) = o0, and [ [ fdudv and [ [ fdvdp both exist and are unequal.

Exercise 3.9.15. Let f,g € L'([0,1],\) where X is Lebesgue measure. For 0 < x < 1,
define

F(x):= fdx and G(x) = / gdA.
[z,1] [x,1]

(1) Prove that F' and G are continuous on [0, 1].

(2) Compute

Jop - gy oA

to prove the integration by parts formula:
/ Fgdx = F0)G(0) — / Gf dn.
[0,1] [0,1]
Exercise 3.9.16. Prove the Fubini Theorem (Corollary 3.9.13) also holds replacing (M x
N, i x v) with its completion (M x N, X v/)

Exercise 3.9.17. Show that the conclusions of the Fubini and Tonelli Theorems hold when
(X, M, 1) is an arbitrary measure space (not necessarily o-finite) and Y is a countable set,
N = P(Y), and v is counting measure.

Exercise 3.9.18. Suppose (X, M, ) and (Y, N, v) are measure spaces which are not as-
sumed to be o-finite. Let f € L'(u,R) and g € L*(v,R), and define h(z,y) := f(z)g(y).

(1) Prove that h is M x N-measurable.
(2) Prove that h € L'(u x v).

(3) Prove that/ hd(p x v) :/ fdu/ gdv.
XxY b Y

Remark: Since (X, M, u) and (Y,N,v) are not assumed to be o-finite, you cannot directly
apply the Fubini or Tonelli Theorems!

As an application, we give the following exercise on convolution multiplication on £1(R, \).

Exercise 3.9.19. Suppose f,g € L1(R, ).

(1) Show that y — f(z—y)g(y) is measurable for all z € R and in £}(R, \) for a.e. x € R.
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(2) Define the convolution of f and g by

(f % g)(x) = / F(x — y)g(y) dA).

Show that f g € L}(R,\).
(3) Show that £'(R,\) is a commutative C-algebra under -, +, *.
(4) Show that [ [f*g| < o [f] [z 19l i-e., || -]l is submultiplicative.
Since we already know that £!(R,\) is complete, this shows that the C-algebra £'(RR, \) is
a Banach algebra.

3.10. Then n-dimensional Lebesgue integral. Recall that £ is the Lebesgue o-algebra
on R and A is Lebesgue measure.
Definition 3.10.1. We define (R", £", A") as the completion of (R", £ x --- x L, A x --- X )).

v vV
n factors n factors

Facts 3.10.2. Here are some properties of Lebesgue measure. Verification is left as an
exercise.

(1) A" is o-finite.

(2) A" is regular.

(3) Forall E € L™ with A"(E) < oo, for all € > 0, there are disjoint rectangles Ry, ..., R,
whose sides (projections) are intervals such that A"(E A [[" Ri) < €, where A denotes
symmetric difference.

(4) ISF = SF N LY(A\") is dense in L' (A™).

(5) C.(R™) is dense in LY(\").

(6) Suppose E € L™.

o Forallr e R", r+ E € L" and \"(r + F) = \"(E).
e Forall T € GL(n,R), TE € L™ and \"(TE) = |det(T)| - \"(E).

(7) For all L™measurable f : R"™ — C, the following functions are also £"-measurable:

z+— f(x +r) for r € R", and
x+— f(Tx) for T € GL(n,R).

If moreover f € LT or £'(\"), then
/f(x +7)d\"(7) = /f(:l?) d\"(z) and
[ t@av@ = jde(@)]- [ 5T av ).

Exercise 3.10.3. Suppose ( is a translation-invariant measure on Bg» such that ([0, 1]") =
1. Show that p = A\"|g,n-
Exercise 3.10.4. Prove some assertions from Facts 3.10.2.

Exercise 3.10.5. Suppose T' € GL,,(C) and f € L* or L}(A\").

(1) Prove that foT € Lt or £L'(\") respectively.
(2) Show that

/ f() dX"(z) = | det(T)| / J(T) d\"(z).
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4. SIGNED MEASURES AND DIFFERENTIATION

4.1. Signed measures. For this section, let (X, M) be a measurable space.

Definition 4.1.1. A function v : M — R is called a signed measure if

e v takes on at most one of the values £o0,
e (vacuum) v(0) = 0, and
e (o-additivity) for every disjoint sequence (E,) C M, v (][ E,) = >_v(E,).

We call v finite if v does not take on the values 4o0.

Remark 4.1.2. If v is a signed measure and (E,) C M are disjoint, then o-additivity of v
implies that the sum Y v(E,) must converge absolutely if |v ([ E,)| < oco. Indeed, reindex-
ing the sets (F,) does not change [[ E,,, and thus it must not change the sum »_ v(FE,).

Exercise 4.1.3.

(1) If py, po are measures on (X, M) with at least one of py, ps finite, then v := puy — po
is a signed measure.

(2) Suppose p is a measure on (X, M). If f : X — R is measurable and extended
p-integrable, i.e., at least one of [ fi < oo, then v(E) := fE f du is a signed measure.

It is now our goal to prove these are really the only ways to construct signed measures!

Definition 4.1.4. Suppose v is a signed measure on (X, M). We call £ € M:

e positive if for all measurable F' C E, u(F) > 0,
e negative if for all measurable FF C E, u(F) <0, and
e null if for all measurable F' C E, u(F) = 0.

Observe that N € M is null if and only if N is both positive and negative.

Facts 4.1.5. For v a signed measure on (X, M), we have the following facts about positive
measurable sets. Similar statements hold for negative and null measurable sets.

(1) E positive implies v(E) > 0.
(2) E positive and F' C E measurable implies F' is positive.
(3) (E,) C M positive implies | J E,, positive.

Proof. Disjointify the E, so that |JFE, = [[ F, where F} := E; and F,, =
E, \J" " E} is positive for all n € N. If G € |JE, = [[ F,,, then

u(G):u(GmHFn>:Zu(Gan)zo. O

(4) If 0 < v(F) < o0, there is a positive F' C E such that v(F') > 0.
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Proof. 1f E is positive, we win. Otherwise, let n; € N be minimal such that that
there is a measurable F; C E and v(F,) < —nil. Observe that v(E \ E;) > 0,
so if E'\ Ej is positive, we win. Otherwise, let ny € N minimal such that there
is a measurable Fy C E '\ E; with v(Ey) < —niz. We can inductively iterate
this procedure. Either E'\[[" E is positive for some n, or we have constructed
a disjoint sequence (Fy) with v(FEy) < —é for all k. Set F':= E\ ] E. Since
V(E) < oo and E = F II [] E, by countable additivity, Y [v(Ex)| < oo, so
>, — = converges. Hence ny — oo as k — oo. Since v(E) > 0 and v(Ey) < 0

ng
for all k, v(F') > 0. Suppose G C F is measurable. Then v(G) > —ﬁ for all
k with ny > 1, and thus v(G) > 0. So F' is positive. O

Theorem 4.1.6 (Hahn Decomposition). Let v be a signed measure on (X, M). There is a
positive set P € M such that P¢ is negative. Moreover, if Q) € M 1is another positive set
such that Q¢ is negative, then P A @ and P¢ A Q° are null.

A positive P € M such that P¢ is negative is called a Hahn decomposition of X with
respect 1o v.

Proof.
Existence: We may assume oo ¢ im(v) C R (otherwise, replace v with —v). Define

r:=sup {v(FE)|F is positive} .

Then there is a sequence (FE,) of positive sets such that v(E,) — r. Take P := |JE,,
which is positive. Since a signed measure restricted to a positive set is a positive measure,
v(P) = limv(E,) = r by continuity from below (x3). We claim that P¢ is negative. If
F C P¢ such that v(F) > 0, by Facts 4.1.5(4), there is a positive G C F such that v(G) > 0.
Then P II G is positive with v(P II G) = v(P) + v(G) > r, a contradiction.
Uniqueness: Suppose P, () C X are positive such that P¢ Q)¢ are negative. Then

PaQQ=(P\QU@Q\P)= (PNQ°)U (QNP)

pos. and neg.  pos. and neg.

is v-null. Similarly, P¢ A Q¢ is v-null. U

Definition 4.1.7. We say positive measures p1, ps on (X, M) are mutually singular, denoted
p1 L pio, if there exist disjoint E, F' € M such that X = EII F and 1 (F) = 0 = pa(E).

Theorem 4.1.8 (Jordan decomposition). Let v be a signed measure on (X, M). There exist
unique mutually singular measures vy on (X, M) such that v = vy — v_, which we call the
Jordan decomposition of v.

Proof.

Existence: Given a Hahn decomposition X = PII P¢, v, (F) := v(EN P) and v_(F) :=
—v(E N P°) are positive measures on M, such that v, (P¢) =0=v_(P) and v = v, —v_.
(Observe vy are independent of the Hahn decomposition.)

Uniqueness: Suppose that v = pu, —pu_ = v, —v_ where po and v are all positive measures
with gy L p— and v4 L v_. Then by definition of mutual singularity, there exist two Hahn
decompositions for v: X = P II P¢ such that py(P°) =0 = p_(P) and X = Q II Q° such
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that v, (Q°) =0=v_(Q). Thus P A Q and P A Q¢ are v-null, and for all £ € M,
pi(E)=ps(ENP)=v(ENP)=v(ENPNQ)+v(ENPNQ°
v-null
=v(ENPNQ)=v(ENPNQ)+v(ENP'NQ)=v(ENQ)
v-null
= v (ENQ) =vi(E).

Hence py = v, and similarly, p = v_. 0J

Definition 4.1.9. For a signed measure v on (X, M), define L'(v) := L'(v, )N L' (v_). For

f € LY(v), define
/fdu::/fdy+—/fdy.

Clearly L'(v) is a C-vector space and [ is a linear functional. We define £!(v) to be the
quotient of L*(v) by the equivalence relation f = g v -a.e. and v_-a.e.

Exercise 4.1.10. Suppose v is a signed measure on (X, M). Prove that £ € M is v-null
if and only if F is v,-null and v_-null. Deduce that f = g v,-a.e. and v_-a.e if and only if
f =g up to a v-null set.

Definition 4.1.11. For a signed measure v on (X, M), define the total variation of v =
vy —v_ by |v| := vy + v_, which is a positive measure. Observe that

V()| = v (B) — v_(E)| < v4(E) + v_(E) = |o|(E) VEeM.
Hence v is finite if and only if |v| is finite.

Exercise 4.1.12. Suppose v is a signed measure on (X, M), let v = v, — v_ be its Jordan
decomposition, and let |v| be its total variation.

(1) Prove that for £ € M, v (E) = sup {v(F)|F € M with F' C E}.
(2) Prove that for £ € M, v_(F) = —inf {v(F)|FF € M with F' C E}.
(3) Prove that for £ € M,

v|(E) = sup {Z V(£

Exercise 4.1.13. Suppose (X, M) is a measurable space, v is a signed measure on (X, M),
and A, are positive measures on (X, M) such that v = X\ — p. Show that v, < A and
v_ < pu where v = v, — v_ is the Jordan decomposition of v.

E\,...,E, € M disjoint with E = HE} :

=1

Lemma 4.1.14. Suppose 1, o are measures on X with at least one of py, po finite, and set
v =i — p2. Then [v|(X) < n(X) + pa(X).

Proof. Let v = vy — v_ be the Jordan decomposition of v, and let X = P II P¢ be a Hahn
decomposition such that v, (P°¢) = 0 = v_(P). Then

0 < v (X) =v(XNP)=v(P) = p(P) = p2(P) < pn(P) < pa(X)

0 <v_(X) = —v(X N P) = —v(P°) = pa(P°) — pa (P°) < pa(P°) < pa(X)

Hence |[v[(X) = v4(X) +v_(X) < 11 (X) —|—[L729(X). O



Exercise 4.1.15 (Folland §3.1, #3). Suppose p is a positive measure on (X, M) and v is a
signed measure on (X, M). Prove that the following are equivalent.

(1) vLp

(2) [v[ L p

(3) vy Lpandv_ L p.

Exercise 4.1.16 (Folland §3.1, #3). Let v be a signed measure on (X, M). Prove the
following assertions:

(1) LY(v) = cwm
(2) If feLl(v u¢m4<fuww
B)IfEeM, |uy( ) =sup{|[, fdv||-1< f<1}.

Exercise 4.1.17. Suppose p, v are finite signed measures on the measurable space (X, M).

)

(1) Prove that the signed measure p A v := $(u+ v — | — v|) satisfies (u A v)(E) <
min{u(FE),v(E)} for all E € M.

(2) Suppose in addition that u, v are positive. Prove that p L v if and only if u Av = 0.

Exercise 4.1.18 (Folland §3.1, #6). Suppose

/fd,u EeM

where p is a positive measure on (X, M) and and f is an extended p-integrable function.
Describe the Hahn decompositions of v and the positive, negative, and total variations of v
in terms of f and pu.

Exercise 4.1.19. In this exercise, we will show that
M := M (X, M,R) := {finite signed measures on (X, M)}
is a Banach space with ||v|| := |v|(X).
(1) Prove ||lv| := |v|(X) is a norm on M.
(2) Show that (1,,) C M Cauchy implies (v,(F)) C R is uniformly Cauchy for all £ € M.
That is, show that for all € > 0, there is an N € N such that for all n > N and
Ee M, |vn(E) —v,(E)| <e.
(3) Use part (2) to define a candidate limit signed measure p on M. Prove that v is
o-additive.
Hint: first prove v is finitely additive.
(4) Prove that > v(E,) converges absolutely when (E,) C M is disjoint, and thus v is

a finite signed measure.
(5) Show that v,, - v in M.

4.2. Absolute continuity and the Lebesgue-Radon-Nikodym Theorem. For this
section, we fix a measurable space (X, M).

Definition 4.2.1. Let v be a signed measure and p a positive measure on (X, M). We say
v is absolutely continuous with respect to p, denoted v < p, if u(E) = 0 implies v(E) = 0.

Example 4.2.2. Let f € L'(1,R) and set v(E) := [, f du. (This is sometimes denoted by
dv := fdp.) Then v < p.
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Exercise 4.2.3 (Folland §3.2, #8). Suppose p is a positive measure on (X, M) and v is a
signed measure on (X, M). Prove that the following are equivalent.

(1) v<p

@) v] < p

(3) vy < pand v_ < p.

Exercise 4.2.4. Suppose (X, M) is a measurable space and v is a signed measure and A, i
are positive measures on (X, M) such that v = A — . Show that v, < X and v_ < u where
v = v, — v_ is the Jordan decomposition of v.

Exercise 4.2.5 (Adapted from Folland §3.2, #9). Suppose {v;} is a sequence of positive
measures on (X, M) and p is a positive measure on (X, M). Prove the following assertions.

(1) If {v;} is a sequence of positive measures on (X, M) with v; L p for all j, then
> v Lo

(2) If vy, vy are positive measures on (X, M) with at least one of vy, 15 is finite and v; L p
for j = 1,2, then (v; — 1n) L p.

(3) If {v;} is a sequence of positive measures on (X, M) with v; < p for all j, then
Do v L .

(4) If vy, 15 are positive measures on (X, M) with at least one of v,y is finite and
v; < pfor j =1,2, then (1 —1n) < L.

Proposition 4.2.6. Suppose v is a finite signed measure and 1 is a positive measure on
(X, M). The following are equivalent:
(1) v < p, and
(2) For all ¢ > 0, there is a 6 > 0 such that for all E € M, |v(E)| < e whenever
u(E) < 4.

Proof. Since v < p if and only if |v| < p and |v(E)| < |v|(E), we may assume v is positive.
The result now follows from a previous exercise. For completeness, we’ll provide the proof
below.

First, it is clear that (2) implies (1). Suppose (2) fails. Then there is an € > 0 such that for
all n € N, there is an E,, € M with u(E,) < 27", but v(E,) > e. Set F := (), Ure,, En-

Since
u(Um) <y ok =ol VkeN,
k=n n=~k
p(F') = 0. But since v is finite, v(F') = limy (U,—,, En) > €. Hence (1) fails. O
Example 4.2.7. On (N, P(N)), define u(E) := > 527" and v(E) = > 52" Then

v < pand g < v, but (2) above fails as v is not finite.

Lemma 4.2.8. Suppose u,v are finite measures on (X, M). Fither v L p or there is an
e >0 and E € M such that p(E) >0 and v > ey on E, i.e., E is positive for v — ep.

Proof. Let X = P, 11 P¢ be a Hahn decomposition for v —n =1y for alln € N. Set P :=J P,
so P¢ = PS¢ Then P¢is negative for all v — n~'p. Observe
1
0 <wv(P° < —u(P° VneN,
N~~~

<oo
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so v(P¢) = 0. If u(P) =0, then v L p. If u(P) > 0, then p(P,) > 0 for some n, and P, is
positive for v — n~1p. O

Theorem 4.2.9 (Lebesgue-Radon-Nikodym). Let v be a o-finite signed measure and p a o-
finite positive measure on (X, M). There are unique o-finite signed measures \, p on (X, M)
called the Lebesgue decomposition of v such that

AL p, p <L [y and v=A+p.

Moreover, there exists a unique extended p-integrable function f called the Radon-Nikodym
derivative of p with respect to p such that dp = fdu. If v is positive or finite, then so are A
and p respectively, and f € LT or L' (u) respectively.

Proof.

Case 1: Suppose pu, v are finite positive measures.

Uniqueness: Suppose A, \' are finite signed measures such that \, \' L p and f, f’ € £ such
that dv = d\ + fdpu = dN + f'du. Then as signed measures, d(A — X) = (f' — f)du. But
(A=XN) L pand (f — f)du < dp, so as signed measures by Exercise 4.2.5, d(A —X) =0 =
(f' = f)du. We conclude that A = X and f = f"in £

Existence: Set

A= {f € L'(X,u,[0,00])

/fd,ugu(E) forallEEM}.
E

Observe that 0 € A.

Claim. f,g € A implies f V g € A.
Proof. For all E € M,

/ngdu—/ fdu+/ gdp < v(EN{g < fH+r(E\{g < f}) = v(E).
E En{g<f} E\{g<f} -

Set M := sup{[ fdu|f € A}, and note that M < v(X) < co. Choose (f,) C A such

that [ f,du 7 M. Set g, := max{fi,..., f.} € A and f := supg,. Then by the Squeeze
Theorem,

[ tudus [ gudn 7o
Since g, * f pointwise,
du = lim ndpn < v(E VE € M.
/Efu(MCT)n/Eg p<v(E)

SofeAand [ fdu=M.
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Claim. \(E) := v(E) — [, f dp > 0 is mutually singular with respect to . So setting
dp := fdu, we have N L p, p << p, v =N+ p, and dp = fdu.

Proof. Suppose A is not mutually singular with respect to . Then by Lemma 4.2.8,
there is a £ € M and € > 0 such that u(E) > 0 and A > e on E. But then for all
FeM,

l/f+fXEW“:/jd#+ﬂdEﬂF)
F F

g/fw+MEmm

:/fdu—l—u(EﬂF)— fdu
F ENF
:/ fdu+v(ENF)
F\E
<v(F\E)+v(ENF)
=v(F).
Hence f +exp € A, but [ f+expdu= M +ep(E) > M, a contradiction. O

Case 2: Suppose u, v are o-finite positive measures.

Existence: Write X = [ X,, such that p(X,,) < co and v(X,,) < oo for all n. Set p,(F) =
w(ENX,) and v,(E) = v(ENX,) for all n. By Case 1, there exist positive measures
A Lo and f, € L1(X,, ) such that duv, = d\, + fudp,. Since p,(XE) = v,(XE) = 0,
we have

(X)) = v (X5) — fndpn, = 0.
X5
Hence we may assume f,|xe = 0. Set A\ :== > A\, and f := > f, € LT. Then A L p by
Exercise 4.2.5, A and fdu are o-finite, and dv = d\ + fdpu.

Uniqueness: If X' is another positive measure such that N L p and f' € LT such that
dv = dXN + f'du. Setting A (FE) .= XN(ENX,) for E € M and f! := f'xx,, by Uniqueness
from Case 1, we have A, = \, and f/ = f,, in £'(u,). Then

)\':ZA;:Z)\TL:)\ on X, and
F=> 0= f="f in £'().

Case 3: Suppose p is o-finite positive and v is o-finite signed. In this case, we use the Jordan
Decomposition Theorem 4.1.8 to get v = v, — v_ with v, L v_. We apply Case 2 to vy
separately and subtract the results. This shows existence and uniqueness. 0

Remark 4.2.10. If px is o-finite positive and v is o-finite signed with v < pu, there is a

unique extended p-integrable function g—” called the Radon-Nikodym derivative of v with
m

respect to p such that dv = g—:du.

Exercise 4.2.11. Suppose v is a o-finite signed measure.
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(1) Show that d| )

(2) Suppose further that v < u for some o-finite positive measure 4 on (X, M). Show
that for all f € L'(v), f§2 € L'(u) and [ fdv = [ f¢

(3) Suppose even further that p<K )\ for some o-finite posmve measure . Show v < A

dv _ dvdy
and 7% = dp dx

=1, |v]-a.e.

Definition 4.2.12. A signed measure v on a topological space (X, T) is called reqular if |v|
is regular.

Exercise 4.2.13. Suppose v is a finite signed Borel measure on the LCH space X. Determine
which of the conditions below are equivalent.
(1) v is regular.
(2) vg is regular.
(3) For every E € Bx and ¢ > 0, there is a compact K C X with K C E such that
V(E) —v(K)| <e.
(4) For every E € By and € > 0, there is an open U C X with £ C U such that
lv(U) —v(E)| <e.
Which of the above conditions are equivalent if
e X is g-compact?
e 1 is not finite?

4.3. Complex measures. For this section, fix a measurable space (X, M).

Definition 4.3.1. A function v : M — C is called a complex measure if

e (vacuum) v(f) = 0, and

e (o-additivity) For every disjoint sequence (E,) C M, v ([[ E,) = > v(E,).
Observe that if v is a complex measure on (X, M), then Re(v) and Im(v) are finite signed
measures on (X, M).

Remark 4.3.2. As in Remark 4.1.2, if v is a complex measure and (F,) C M are disjoint,
then o-additivity of v implies that the sum Y v(E,) converges absolutely.
Exercise 4.3.3. Prove the following assertions.

(1) If po, i1, fio, 3 are finite measures on (X, M), then Zi:o i* 113, is a complex measure.
(2) For p a measure on (X, M) and f € L'(u), v(E) := [, fdu is a complex measure
on (X, M).

By the Jordan Decomposition Theorem 4.1.8, we get the following corollary:

Corollary 4.3.4. If v is a complex measure on (X, M), there exist unique pairs of mutually
singular finite measures Re(v)y and Im(v)y such that

3
v =Re(r); —Re(v)_ +i(Im(v); — Im =: Z i*uy..
—— == S—— =0
=19 =9 = =:l/3

Definition 4.3.5. For a complex measure v on (X, M), we define L' (v) := (;_, L (). We
1,2,3.

0
define £!(v) to be the quotient under the equivalence relation f = g vg-a.e. for k = 0,
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For f € L'(v,), we define

L/fdyﬁzézif/fdw,

Warning 4.3.6. The total variation of a complex measure v = 22:0 kv, is not Zz:o Vg.
We must use the complex Radon-Nikodym Theorem 4.3.9 below.

Definition 4.3.7. Suppose v is a complex measure and p is a positive measure on (X, M).
We say:

o v 1 puif Re(v) L pand Im(v) L u, and

o v < pif Re(rv) < p and Im(v) < p.

Exercise 4.3.8. Suppose v is a complex measure and p is a positive measure on (X, M).
Show that v < p if and only if for all E € M, p(E) = 0 implies [v(E)| = 0.

Theorem 4.3.9 (Complex Lebesgue-Radon-Nikodym). If v is a complex measure on (X, M)
and p s a o-finite positive measure on (X, M), there exists a unique complex measure X on
(X, M) and a unique f € L'(u) such that X L p and dv = d\ + fdpu.

Proof. Apply the Lebesgue-Radon-Nikodym Theorem 4.2.9 to Re(r) and Im(v) separately
and then recombine. 0J

Lemma 4.3.10. Suppose v is a complexr measure on (X, M). There is a unique positive
measure [v| on (X, M) satisfying the following property:
e For all o-finite positive measures i on (X, M) and f € L'(u) such that dv = fdpu,
dlv| = | fldp.

We call |v| the total variation of v.

Proof. First consider p:=|Re(v)| 4+ |Im(v)|. Since |Re(v)| < p and |Im(v)| < p, we have
Re(v) < p and Im(v) < p, and thus v < p. By the complex Lebesgue-Radon-Nikodym
Theorem 4.3.9, there is an f € L£'(u) such that dv = fdu. Define d|v| := |f|dp. Observe
this uniquely determines |v| if it satisfies the uniqueness property in the bullet point above.
So suppose that dv = gdp for another o-finite positive measure p on (X, M) and g € L(p).
Consider p + p on (X, M) and observe that v < p, p < u+ p, and p < p+ p. Hence

du dp
dp = ————d(p+p and dp = ———d(u+ p).
ﬂ#+m( ) ﬂu+m( )
Since y g
1 P
f————=d(p+p) = fdp=dv = gdp = g————d(pn+ p),
Mu+m( ) ﬂu+m( )
by Exercise 4.2.11(2) we have
du dv dp
f = =9 ptp
dlp+p) dlp+p)  “dlp+p) et )
This implies
dp dp
/ ‘f ‘ ‘9—’29— u+p)-a.e
|Mu+p d(p+ p) d(p+ p) Hﬂu+m ( )

Again by Exercise 4.2.11(2), |f|du = d|v| = |g|dp, and thus v satisfies the uniqueness

condition in the bullet point. U
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Exercise 4.3.11. Repeat Exercise 4.2.11 for v a complex measure on (X, M).

Facts 4.3.12. Suppose v is a complex measure on (X, M).

(1) v < |v], as
!_‘/fdﬂ /!f!du v|(E) V,E € M.

(2) If v is a finite signed measure (Im(v) = 0), then dv = (xp — xpc)d|v|, and so
dlv|" = (xp + xpc)d|v| = d|v| for any Hahn decomposition X = P II P¢ for v. This
means this new definition |v|" for a complex measure agrees with the old definition
|v| for a finite signed measure.

(3) Observe that if dv = fdu, then
IRe) =Re(f)dp _ d|Re(v)| = |Rel)ldn
dTm(v) = Tm(f)d | T (v)| = | Tn( )l
Since | f|*> = | Re(f)]* + | Im(f)|?, we have

2 2 1/2
P10~ (!Re<f>12+|1m<f>|2)”2=<(—‘”Re<”)‘) +(—d'lm<”)')) .

du du

Exercise 4.3.13. Suppose v is a complex measure on (X, M). Prove that |Re(v)| < |v|,
| Im(v)| < |v|, and |v| < |Re(v)| + | Im(v)]| as [0, co)-valued functions on M.

Exercise 4.3.14. Suppose v is a complex measure on (X, M).

(1) Prove that L'(v) = L'(|v|).
(2) Show that for f € L'(v),
[ ] < [ina.

Exercise 4.3.15. In this exercise, we will show that
M = M(X, M, C) := {complex measures on (X, M)}
is a Banach space with ||v|| := [v|(X).

(1) Prove that max{|| Re(»)], | Im(»)||} < v]] < 2max{|| Re(v)]] | Im(v)]}

(2) Show that if (V| - ||v),(W,|| - ||w) are normed vector spaces, then ||(v,w)|s :=
max{||v|], ||w] } is a norm on V& W. Moreover, show that if (V|- ||v) and (W, |- ||w)
are complete, then sois (V& W, | - ||«)-

(3) Show that M (X, M,C) = M(X, M,R) & iM (X, M,R), where M(X, M,R) was
defined in Exercise 4.1.19.

(4) Show that ||-|| on M (X, M, C) is equivalent to |||/ on M (X, M,R)®iM (X, M,R).
Deduce that M (X, M, C) is complete.

Definition 4.3.16. A complex Borel measure v on a topological space (X,7T) is called
reqular if |v| is regular.

Exercise 4.3.17. Repeat Exercise 4.2.13 for a complex Borel measure v, where (2) is re-

placed by

(2’) Re(v) and Im(v) are regular signed measures.
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4.4. Lebesgue differentiation. Here, I will be following notes from a graduate course I
took in Fall 2005 at UC Berkeley from Sarason. We will treat differentiation of f € L'(\"),
and we’ll then explain how to extend these results to

Ly, = L. (\") == {f : R* — C|f is integrable on bounded measurable sets} .
Definition 4.4.1. A cube in R™ is a set @ C R™ of the form @ = [[,_, Ix where each I}, is

a closed interval of the same length, which we denote by ¢(Q).

e For z € R", define C(x) := {cubes Q|z € Q and 0 < {(Q) < oo}.
e For ) a cube and r > 0, 7@ is the cube with the same center as (), but with

((rQ) = rt(Q).
Our goal is to prove the following theorem.

Theorem 4.4.2 (Lebesgue Differentiation). For all f € L

loc?

: 1 0
f(glé%‘)m/czfd)\ = f(x) a.e. (LDT)

As a direct corollary, we get (for n = 1):

Theorem 4.4.3 (Fundamental Theorem of Calculus). Suppose f € LY(N\). Define F(x) :=
f(_oo x)fd/\. Then F'(x) = f(x) a.e.

Proof. Observe

Illir%F(a:—l—hf)L—F(w): lim Fdy = f0) ae -
- zEQh:3x7z+h] (Qh) Qn (LDT)

Definition 4.4.4 (Hardy-Littlewood Maximal Function). For f € L] , define M f := R" —
[0, 00] by

O [ inaviee )}

— {f : R" — [0, 00]} is called the Hardy-Littlewood mazximal function.

The function M : Ll

loc
Facts 4.4.5. The Hardy-Littlewood maximal function satisfies the following properties:
(1) M(rf)=|r|- Mf for all r € R.
(2) M(f+9) <Mf+ Mgforall f,ge L.
(3) M f > 0 everywhere unless f =0 a.e.
(4) M f is lower semicontinuous ({M f > r} is open for all r € R), and thus measurable.

Example 4.4.6. For x|_1;: R — C,

1 x € [—1,1]
MX[—l,l}(x) = 2 xé[—1,1]
1+ |z| ’
and thus My _1,1 ¢ L'. Here is a cartoon:
1 X[-1,1] 1 2
— _1dh =
e A<@>/QX[ M e
-1 1 T
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Exercise 4.4.7 (Sarason). Prove that for the f defined below, f € L*(\), but M f ¢ L] :
1
fz) = q lz[(Infz])”

0 if |x| >

if |z <

NI—= N

Theorem 4.4.8 (Hardy-Littlewood Maximal, a.k.a. HLMT). There is a ¢ > 0, only depend-
ing on n, such that for all f € LY(\") and a > 0,

N((1f > ap) < e 10

Remark 4.4.9. The HLMT 4.4.8 is a generalization of Chebyshev’s Inequality for a measure
space (X, M, u): for all a > 0, f{a<‘f|} |fldu > ap({a < |f]}). Hence for all f € L'(u) and
a >0,

1 f1]x

pla <|fl}) = == (4.4.10)

To prove the HLMT 4.4.8, we’ll use a variation of the Vitali Covering Lemma. We’'ll prove
the more general Vitali Covering Lemma, and T’ll leave the exact variation that we’ll use to
prove the HLMT as an exercise.

Lemma 4.4.11 (Vitali Covering). Let B be some collection of open balls in R", and let
U=UpgegB- Ifc < X*(U), then there exist disjoint By, ..., By € B such that Z§:1 \'(B;) >

37 "c.

Proof. Since A" is regular, there is a compact K C U such that ¢ < A*(K). Then there
exist finitely many balls in B which cover K, say Ay,...,A,,. Define By to be the largest
(in terms of radius) of the A;, and inductively for j > 2, define B; to be the larges of the
the A; disjoint from By, ..., B;_;. Since there are finitely many A;, this process terminates,
giving By, ..., By.

Trick. If A; is not one of By, ..., By, there is a smallest 1 < j < k such that A, N B; #
(). Then rad(A;) < rad(Bj), so A; C 3B;, where 3B; has the same center as B;, but
three times the radius.

Then K C |J*3B;, so

k k
¢ < N'(K) <) MN'(3B;) =3")_ N'(By). O

Exercise 4.4.12 (Sarason, variation of Vitali Covering Lemma 4.4.11). Suppose £ C R"
(not assumed to be Borel measurable) and let C be a family of cubes covering E such that

sup {{(Q)|Q € C} < occ.

Show there exists a sequence (@) C C of disjoint cubes such that
SN(@0) 2 5O (B).
k=1
Hint: Inductively choose Qi such that 20(Qy) is larger than the sup of the lengths of all cubes

which do not intersect Q1, ..., Qr_1, with Qo = 0 by convention.
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Proof of HLMT /./.8. Suppose f € L'(A\") and a > 0. Let £ = {a < M f} and

a<@/@|f|d)\”}.

By definition, the cubes in C cover E. Observe that a < £(Q)7"||f]: implies £(Q) <
/n
m)l

C = {cubes Q

By Exercise 4.4.12; there is a sequence (Q);) C C of disjoint cubes such that
STN(Q;) > 5"A"(E). Then

a

Proof of the Lebesgue Differentiation Theorem j./.2.
Step 1: (LDT) for all f € L implies (LDT) for all f € L}

loc*

Proof. Suppose f € Li . Tt suffices to show that for all R > 0, (LDT) holds a.e. = €

Qr(0) :== [["[-R,R]. For z € Qg(0) and Q € C(z) with £(Q) < 1, the value
of @ fodA” only depends on f(y) for y € Qr+1(0). So we can replace f with

fXQR+1(0) € L. O

Step 2: (LDT) for all f € C.(R™) implies (LDT) for all f € L'.

Proof. For @Q € C(0) and f € L', define (Igf)(z) := m Josa fAN". Observe I is
linear, and |Iof| < M f everywhere. Now fix f € L' and € > 0. Let

E.:= ¢z e R"limsup |Iof(z) — f(z)] > ¢
2(Q)—0
QeC(0)

We'll show (A*)*(E.) = 0, which implies E. € £" and \"(E.) = 0. If ¢ < ¢, then
E. C E.. Hence |J Ey/, has measure zero, which implies the result.

In order to show (A")*(E.) = 0, let 6 > 0. Since C.(R") C L' is dense, there is a
continuous g € C.(R™) such that || f — g||; < d. Then

of — fl=o(f —9) + (Igg —g9) + (g — f)]
< |l(f —9)l +(Igg — 9)| + (g — f)I
< M(f —g)+ |9 —9)|+lg — f]
—_——

—0

By assumption, as £(Q) — 0 for Q € C(0), |({lgg — ¢g)| — 0. Hence
5 £
B.c{s<my-g}u{s<ir-d}.
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By the HLMT 4.4.8 and Chebyshev’s Inequality (4.4.10),
Wy (E) < ({5 <M -g}) +x ({5 <15 -9l})
celf =gl NS =gl
- g/2 /2

~ 2Dy g,

2 1

_2et))
£

But § > 0 was arbitrary, so (\")*(E.) = 0. O

- 0.

Step 3: (LDT) holds for all g € C.(R™).

Proof. Observe that ¢ is uniformly continuous. Let ¢ > 0, and pick 0 > 0 such that
z,y € Q with £(Q) < ¢ implies |g(z) — g(y )| < e. Then for all such @,

960~ 535 | 900 0)| < 5735 [ o)~ st i) <

Since € > 0 was arbitrary, the result follows. 0
Combining Steps 1-3 yields the result. 0
Definition 4.4.13. Suppose E € L". A point x € F is called a Lebesgue point of density of
E if
(Q)—0  A™(Q)

QeC(x)
Corollary 4.4.14. For E € L", almost all points of E are Lebesgue points of density.
Proof. Apply the Lebesgue Differentiation Theorem 4.4.2 to xg. O

Exercise 4.4.15 (Steinhaus Theorem, version 2). Suppose that A, B C R are sets with
positive Lebesgue measure. Prove that there is an interval I with A(/) > 0 such that

ICA+B={a+blac Aand be B}.
Definition 4.4.16. For f ¢ Ll()\") r € R" is called a Lebesgue point of f if

/!f F(@)dx" = 0.

—>0 )\”
QEC x)

Corollary 4.4.17. For f € L}

Proof. As in the proof of the Lebesgue Differentiation Theorem 4.4.2, we may assume f € L.
Let D C C be a countable dense subset (Q + iQ will suffice). For d € D, set

locs almost all points of R™ are Lebesgue points of f.

Eui={w € R lim /|f dl — | f(z) — | d\" = 0
%0/\”
QEC
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By the Lebesgue Differentiation Theorem 4.4.2, ES is A"-null, which implies £; € L". Set
E = Nyep Ea € L7, and observe E¢ = J,.p Ej is still A"-null. We claim that every x € E
is a Lebesgue point of f. Indeed, if x € F, then for all d € D,

|f = f@)| < |f —dl+|f(x) —d] = (If —d] = |f(z) = d]) + 2| f(x) — d].
This implies for all d € D,

_ 1 . , 1 .
12235’ Q) /Q |f = f(x)[dA" < 2[f(x) —d| HES)SEE Q) /Q |f —d| = [f(z) — d|dA
QeC(x) \QEC(:B)
-0
=2|f(z) —d].
But since D is dense in C, we can approximate f(x) by d € D up to any € > 0. We conclude
that x is a Lebesgue point of f. O

4.5. Functions of bounded variation. Recall that the Lebesgue-Stieltjes measures on R
were constructed from non-decreasing right continuous functions F' : R — R. They enjoyed
the properties of being a complete measure which is equal to the completion of the restriction
to Bg, which is a regular Borel measure.

We can adapt this construction to get a complex measure from a function F' : R — C with
bounded variation.

Definition 4.5.1. For a function F': R — C, define its total variation Tp : R — [0, c0] by

Tp(x) == sup {Z |F(x;) — F(xi_1)]

n € N and —oo<x0<x1<---<xn::c}.

Observe that T is a non-decreasing function. We say F' has bounded variation if Tr is
bounded, which is equivalent to lim, ,, Tr(x) < co. We define

BV := {F : R — C|F has bounded variation} .

Exercise 4.5.2. Prove that for all a,b € R with a < band F: R — C,

Tr(b) = Tp(a) + sup {Z |F(z;) — F(zi_1)]

nENanda:x0<x1<---<xn:b}.

The sup on the right hand side is called the total variation of F on [a,b]. We say F has
bounded variation on [a, b] if this number is bounded.

Exercise 4.5.3. Show that if F is differentiable and F” is bounded, then F' € BV]a, b] for
all a < bin R.

Facts 4.5.4. Here are some facts about functions with bounded variation.

(BV1) If F': R — R is increasing, then F' € BV if and only if F' is bounded.
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Proof. For any —oco < xg <21 < --- < 1x, =T,
> |F(z:) = F(zi1)| = F(x) — F(zo)-
i=1

Hence T% is bounded if and only if F' is bounded. O

\. .

(BV2) F € BV if and only if T € BV.

Proof. If F € BV, then T : R — [0, 00| is increasing and bounded, and thus
in BV by (BV1). Conversely, if Tr € BV, then T is bounded by (BV1), and
thus F' € BV. O

(BV3) BV is a complex vector space which is closed under complex conjugation.

Proof. The triangle inequality implies T, g < Tp + T, homogeneity (jwz| =
|w| - |2|) implies T,r < |z| - Tr, and |Z| = |2| for z € C implies T = Tp. O

(BV4) F € BV if and only if Re(F), Im(F) € BV.

Proof. Just observe that Re(F) = 1(F + F) and Im(F) = 5(F — F), so the
result follows from (BV3). O

(BV5) If F: R — R and F € BV, then Tr &+ F are increasing (and in BV).

Proof. Suppose a < bin R. Let € > 0, and choose ¢y < 1 < --- < z, = a such
that

Z |F(z:) — F(zi-1)| = Tr(a) — €.

Then since F(b) = (F(g) — F(a)) + F(a),

Tr(b) £ F(b) = Z |F(2:) = F(@ia)| + [F(b) = F(a)| £F(b)

J/

<Tp(b)

S

-~

>0

= Z |F(2;) = F(zi1)| + |F(b) = F(a)| + (F(b) — F(a)) £F(a)

> TF(CL) —€Z|ZF<G)

Since € > 0 was arbitrary, we have Tr £+ F' is increasing. (The parenthetical
follows from (BV3).) O

(BV6) If F : R — C, then F € BV if and only if F = 30_ i*F}, where Fj, : R — R is
bounded and increasing for k£ = 0,1, 2, 3.
92



Proof. By (BV4), F' € BV if and only if Re(F'), Im(F') € BV, so we may assume
F:R — R. If ' € BV, just observe
1 1
F:§<TF+F)_§(TF_F)'
The converse follows from (BV1) and (BV3). O

(BVT) If ' € BV, then F(z+) := lim,\, F'(y) and F(z—) := lim, », F'(y) exist for all z € R,
as do F(+00) := lim, 1 F(y).

Proof. This follows from (BVG6). O

Remark 4.5.5. For an R-valued F' € BV, we call

1 1
the Jordan decomposition of F. We call (T £ F) the positive/negative variations of F
respectively.

Definition 4.5.6. The space of normalized functions of bounded variation is
NBV := {F € BV|F is right continuous and F'(—o0) = 0}.
Observe that NBV is a complex vector subspace of BV closed under complex conjugation.

Exercise 4.5.7. Suppose f € L'()\) where X is Lebesgue measure on R. Consider the
function F: R — C by F(z) = [*_ f(t)dt.

(1) Prove directly from the definitions that F' € NBV.

(2) Describe Tk to the best of your ability. Justify your answer.
Lemma 4.5.8. Suppose F': R — C.

(1) If F € BV, then Tr(—o00) = 0.

(2) If moreover F is right-continuous, then so is Tg.
Hence F' € NBV implies Tr € NBV.

Proof.
(1) Let € > 0. For x € R, choose zy < 21 < --+ < x,, = « such that

Z |F(x;) — Fxi—1)| > Tp(z) —e.

By Exercise 4.5.2
Tr(x) — Tp(xg) > Tr(z) — ¢,

and thus Tp(y) < ¢ for all y < . Since € > 0 was arbitrary, Tr(—00) = 0.
(2) Now suppose F' is right continuous. Fix = € R, and define

a = lim Tr(y) — Tr(x).
AN
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To show a = 0, fix e > 0, and let § > 0 such that 0 < h < § implies both |F(z+h)—F(z)| < ¢
and
Tp(x+h) —Tr(x) —a=Tr(x + h) — li\rln Tr(y) < e. (4.5.9)
¥\

Now fixing 0 < h < §, by Exercise 4.5.2, there are x = xg < 11 < --- < x, = ¥+ h such that

n

3 3 -
12 < 1 Tr(z+h)=Tr(z)) < D NF (@)= Fla)| = |[Flao) = Flay)|+ Y [Fla;)=F(x;1)|
i=1 > =2
which implies that
3 n
Ja—e< 22 |F(x;) — F(z;.1)]. (4.5.10)
J:
Again using Exercise 4.5.2, there are x = xqg = tg < t; < ---t, = x1 such that
3 3 -
¢ = ~(Tr(z1) = Tr(z)) < Z |F(t:) — F(ti-1)]- (4.5.11)
(Tr M 4 (Ex. 45.2) “=5
Combining these inequalities, we have
a+e>Tr(x+h) —Tp(z) by (4.5.9)

k n
> Z |F(t;) — F(tic1)] + Z |F(z;) — F(z-1)| by Exercise 4.5.2
i=1 j=2

3 3
> 1 + 10 ¢ by (4.5.10) and (4.5.11)
~ 20—
=5 )
This implies a < 4e, but since € > 0 was arbitrary, o = 0. U

Theorem 4.5.12.

(1) If v is a complex Borel measure on R, then F,(z) := v((—o0,x]) defines a function
i NBV.
(2) If F € NBV, there is a unique complex Borel measure vp such that F(x) = vp((—o0, x]).

Proof. For a complex Borel measure v, we have v = 22:0 i*v;, where each v is a finite
positive measure. If we set Fy := v;((—00,x]), then Fj is increasing and right continuous,
Fy(—00) = 0, and Fj,(00) = v4(R) < co. Thus each Fy, € NBV, and thus F, := >;_ i*F} is
in NBV.

Conversely, by (BV6) and Lemma 4.5.8, any F' € NBV can be written as F' = 2220 ik Fy,
where each Fj, : R — [0, 00) is increasing and in NBV. By the Lebesgue-Stieltjes construction,
for each Fy, there is a finite regular Borel measure v on R with v ((—o0, x]) = Fi(x). Setting
v =3 »_, "y, gives a complex Borel measure such that F(z) = v((—00,z]). Uniqueness
follows by being determined on h-intervals together with the 7 — A Theorem. O

Exercise 4.5.13. Suppose F' € NBV, and let vr be the corresponding complex Borel mea-
sure from Theorem 4.5.12.

(1) Prove that vp is regular.

(2) Deduce that every complex Borel measure on R is regular (cf. Exercise 2.5.27).
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(3) Prove that |vg| = vr,.
One could proceed as follows.
(a) Define G(x) := |vp|((—o0, z]). Show that |vp| = vr, if and only if G = Tk.
(b) Show Tr < G.
(¢) Show that |vp(E)| < vr.(E) whenever E is an interval.
(d) Show that |vp| < vr,.

Exercise 4.5.14. Show that if F' € NBV, then (vp)y = Vi(rpsr), €., the positive/negative

variations of F' exactly correspond to the positive/negative parts of the Jordan decomposition
of vp.
Hint: Use Fzxercise 4.5.135.

Exercise 4.5.15. Show that Theorem 4.5.12 gives an isomorphism of Banach spaces

V—VE

{Complex Borel measures on R} —— NBV

where the norm on the left hand side is ||v|| = |v|(R) and the norm on the right hand side

4.6. Bounded variation, differentiation, and absolute continuity. We now want to
connect functions of bounded variation and ordinary differentiation on R.

Definition 4.6.1. Recall that F' : R — C is called absolutely continuous if for every € > 0,
there exists § > 0 such that for any finite set of disjoint open intervals (ay,by),. .., (an, by),

n

Y hi—a)<s = }:w@g—p@n<&

i=1
Exercise 4.6.2 (https://math.stackexchange.com/q/348448). Define

_ Jasin(2) ifz#0
f@)_{o if 2 = 0.

1

fil) = {fﬂsin (1) it fo] >

d
zsin(n) if |z| < o

SI=3=

Prove that each f, is absolutely continuous, f is not absolutely continuous, and f, — f
uniformly.

Exercise 4.6.3. Suppose F' € NBV. Show F' is absolutely continuous if and only if TF is
absolutely continuous.
Hint: Use Fxercise /.5.2.

Proposition 4.6.4. If F' € NBV, then F is absolutely continuous if and only if vp << A.
Proof.

Claim. We may assume F is [0,00)-valued and increasing. Thus vp = pp is an
honest Lebesque-Stieltjes measure.

Proof. By Exercises 4.3.13 and 4.5.13(2), vp < A if and only if |vp| = vy, < A\. By
Exercise 4.6.3, F is absolutely continuous if and only if T is absolutely continuous.
Hence we may replace F' with Tx € NBV which is [0, co)-valued and increasing. [
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That purp < A for a Lebesgue-Stieltjes measure is equivalent to absolute continuity of a
bounded, right-continuous F' : R — [0, 00) with F/(—oo) = 0 now follows Exercise 2.5.20. We
provide a proof here for completeness and convenience using Proposition 4.2.6 which states:

e up < A if and only if for all £ > 0, there is a 6 > 0 such that for all £ € M,
pr(E) < € whenever A\(F) < 0.

First, suppose ur < \. For any finite set of disjoint h-intervals ((a;, b;]),, we have

Z(bi —a;) = A <H(ai,bi]> <90 = L <H a;,b; ) Z,up ((ai, bi])

=1

This immediately implies F' is absolutely continuous.

Conversely, suppose F' is absolutely continuous, and € > 0. Pick § > 0 for F' as in the
definition of absolute continuity for any 0 < ¢’ < €. Suppose E € L such that A\(F) < §. By
outer regularity of A and pup (by Exercise 4.5.13(1)), there is an open set U with £ C U such
that A(U) < 6. Then U is a countable disjoint union of open intervals by Exercise 1.1.24,
say U = [[(ai, b;). For each n € N,

n

bi—a)<AU)<s = X)wa“z }:F <é.

=1

Taking the limit as n — oo, we have

NF(E)SMF(U):M<H (as, z) ZMF @, byl ZF )<e<e

Hence pp < A. O

Exercise 4.6.5. Prove that if F' : [a,b] — C with a,b € R is absolutely continuous, then
F € BV[a,b].

Exercise 4.6.6 (cf. Folland Thm. 3.22). Denote by A" Lebesgue measure on R™. Suppose v
is a regular signed or complex Borel measure on R™ which is finite on compact sets (and thus
Radon and o-finite). Let dv = dp + fd\" be its Lebesgue-Radon-Nikodym representation
from Theorem 4.3.9. Then for A™-a.e. x € R",

v(Q)

lim
©(Q)—0 A"(Q)
QeC(z)

= [(2).

Hint: One could proceed as follows.

(1) Show that d|v| = d|p| + | f|d\". Deduce that p and fd\" are reqular, and f € L
(2) Use the Lebesque Differentiation Theorem to reduce the problem to showing

Ip|(Q)

lim
€Q)—0 A"(Q)
Q€eC(x)

loc*

=0 N'-a.e. x € R".

Thus we may assume p is positive.
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(3) Since p L X", pick P C R" Borel measurable such that p(P) = A\"(P¢) = 0. For
a >0, define
Pl(Q)

E,=<zeP| lim ——= >a
¢(Q)—0 A\*(Q)
QeC(x)

Let € > 0. Since p is regular, there is an open U. D P such that p(U.) < . Adapt
the proof of the HLMT to show there is a constant ¢ > 0, depending only on n, such
that for all a > 0,

N(E,) < e p(gs) ..

SHEG

(Choose your family of cubes to be contained in U..) Deduce that \"(E,) = 0.

Lemma 4.6.7. Suppose that F': R — R s increasing or F € BV.

(1) The set of points at which F' is discontinuous is countable.

(2) Suppose in addition F is right continuous. Let up be the corresponding (reqular,
o-finite) Lebesque-Stieltjes measure, and let d\ = dp + fd\ be its Lebesque-Radon-
Nikodym representation from Theorem /.3.9. Then F 1is differentiable \-a.e. with
F'(xz) = f(x) A-a.e.

(3) Setting G(x) := limy, F(y), F' and G are differentiable a.e., with F' = G’ a.e.

Proof. Since every F' € BV is a linear combination of four increasing, bounded functions
R — R by (BV6), we may assume F': R — R is an arbitrary increasing function.
(1) Observe that at every discontinuity x € R, the open interval

(}f}% F(y), lim F(y)> # 0

and thus contains a rational point. Since F is increasing, these open intervals at distinct
discontinuities will be disjoint, and we can construct an injective mapping from the set of
discontinuities to Q.

(2) Suppose in addition that F' is right-continuous. Let D C R be the countable set of
discontinuities of F', and observe that A(D) = 0. By Exercise 4.6.6,

pr(Q)

lim
(Q)—0 AQ)
QeC(x)

Now observe that for = ¢ D and h > 0, by Exercise 2.5.9,
pr ({2 + 1) = Y (g0 -+ ) = limn a4+ b) = F(y) = F(z+ ) = F(o)
y/r y 'x

= f(z) A-a.e. x € R.

If in addition # — h ¢ D, then we also have
ur(lz — hya]) = Fla) — F(z - h).

Since D is countable and F' is increasing, we may take the following limit for x € D¢ along
h — 0 such that  — |h| ¢ D to conclude that

F(z+h)— F(x) pr([min{z, x + h}, max{z, = + h}])

. _
ho h IL%\I:%D A([min{z, z + h}, max{x,z + h}])
= f(x) M-a.e. ¥ € D° by Exercise 4.6.6.
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(3), Step 1: G is increasing and right-continuous, and thus G is differentiable a.e. by (2).

If a < bin R, then since F' is increasing,
G(a) = lm F(@) = lim F(z) < F(b) < G@),
a<z<b

and thus G is increasing. To show G is right continuous at x € R, let ¢ > 0. Since
G(x) = limy~, F'(y), we can pick 6’ > 0 such that 0 < A’ < ¢’ implies F'(z+h")—G(z) <
e. Then forany 0 < h < d < h' < ¢,

Glx+h)—Gx) < F(x+h)-G@) <e.

(2), Step 2: Setting H := G — F > 0, H' exists and is zero a.e.

First, note H(d) > 0 for all d € D, and

Y H(d)= ) G(d)-F(d) < G(N)- F(N) < o. (4.6.8)
=N e

Claim. Setting n =) ,., H(d)dq where 04 is the Dirac point mass at d, 1 is a
reqular Borel measure such that n L \.

Proof. Observe 7 is finite on compact sets by (4.6.8). We define h : R — R by
picking an arbitrary ro € D, setting h(rg) = 0, and setting

Z deD H(d) if?“>7"0
h(’f’) = ro<d<r
—Z deD H(d) if?“<7“0.

r<d<rg
Observe that h is increasing and right-continuous, and by construction, the
Lebesgue-Stieltjes measure p;, = 1, which is thus regular. Since 7 is supported
on D and A(D) = 0, we have n L . O

. J

Now for |h| # 0, again by Exercise 4.6.6,
H(x+h) - H(@z)| H(z+h)+H(@) (e~ |hl,z+h]]) ro
h B Al Mz — |hl,x + [h]])
We conclude that H =0 a.e.

>0 a.e.xz€R.

This concludes the proof. 0

Facts 4.6.9. Suppose F' € NBV, and let vp = pr + fd) where f € L*(\) be the Lebesgue-
Radon-Nikodym Representation of vr from Theorem 4.3.9.

(NBV'1) F’ exists A-a.e. with F' = f € L'(\).
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Proof. By (BV6), F = Y;_,i*F, where each Fj, : R — R is an increasing
right-continuous function in NBV. Let pp, = pr, + frd\ where f € L'()) for
k=0,1,2,3 be the Lebesgue-Radon-Nikodym representation of the Lebesgue-
Stieltjes measure pp, from Theorem 4.2.9. By Lemma 4.6.7(2), F}, exists A-a.e.,
and F) = fi A-a.e. By the proof of the Complex Lebesgue-Radon-Nikodym

Theorem 4.3.9, we have f = 22:0 i* f.. Hence

3 3
Fr=) itF=> ifi=f M-a.e. O
k=0 k=0

(NBV'2) vr L Xif and only if F/ =0 a.e.

Proof. This follows immediately from (NBV'1) and the Lebesgue-Radon-
Nikodym Representation of vp. O

(NBV'3) vp < Aif and only if F(z) = [T F'(t)dt.
Proof. Observe vp < A if and only if pp = 0 if and only if dvp = F'd\ by
(NBV'1). This last condition is equivalent to

T

F(q:)zz/p((—oo,a:]):/ FU(#) dt. 0

—00

Proposition 4.6.10. The following are equivalent for F' : R — C.
(1) F € NBV is absolutely continuous.
(2) F is differentiable a.e., F' € L*(X), and F(z) = [ F'(t) dt.
(3) There is an f € L*(\) such that F(z) = [*_ f(t)dt.
Proof.
(1) = (2): If F € NBV is absolutely continuous, then vp < A by Proposition 4.6.4. By
(NBV'1), F is differentiable a.e. with F” € L*(\), and by (NBV'3), F(z) = ffoo F(t)dt.
(2) = (3): Trivial.
(3) = (1): Since f € L*(\), dv := fd\ is a complex Borel measure. Thus

Fa) = [ 50t = (~0.a)

defines a function in NBV by Theorem 4.5.12(1). Since v < A by construction, F is absolutely
continuous by Proposition 4.6.4. O

We leave the proof of the following corollary to the reader.
Corollary 4.6.11 (Fundamental Theorem of Calculus for Lebesgue Integrals). Let a,b € R

with a < b, and suppose F : [a,b] — C. The following are equivalent.

(1) F is absolutely continuous on [a,b].
(2) F is differentiable a.e. on [a,b], F' € L'([a,b],\), and F(x) — F(a) = [T F'(t)dt.
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(8) F(z) — F(a) = [ f(t)dt for some f € L'([a,b], ).

Exercise 4.6.12 (Folland §3.5, #37). Show that F': R — R is Lipschitz continuous (there
isan M > 0 such that |F(z)— F(y)| < M|z —y] for all z,y € R) if and only if F is absolutely
continuous and |F'| < M a.e.
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5. FUNCTIONAL ANALYSIS

5.1. Normed spaces and linear maps. For this section, X will denote a vector space
over F =R or C. (We will assume F = C unless stated otherwise.)

Definition 5.1.1. A seminorm on X is a function || - || : X — [0, 00) which is
e (homogeneous) || Az|| = [A| - ||zl
o (subadditive) [lz +y|| < [lz]| + ||yl
We call || - || a norm if in addition it is
e (definite) ||z|| = 0 implies = 0.
Recall that given a norm || - || on a vector space X, d(z,y) := ||z — y|| is a metric which
induces the norm topology on X. Two norms || - ||1, | - || are called equivalent if there is a

¢ > 0 such that
¢zl < flzllz < cllfly Vze X.

Exercise 5.1.2. Show that all norms on F” are equivalent. Deduce that a finite dimensional
subspace of a normed space is closed.
Note: You may assume that the unit ball of F™ is compact in the Euclidean topology.

Exercise 5.1.3. Show that two norms || - ||1,|| - ||z on X are equivalent if and only if they
induce the same topology.

Definition 5.1.4. A Banach space is a normed vector space which is complete in the induced
metric topology.

Examples 5.1.5.

(1) If X is an LCH topological space, then Cy(X) and C,(X) are Banach spaces.

(2) If (X, M, p1) is a measure space, £'(X, M, ;1) is a Banach space.

(3) € = {(zn) CF*[3 |zn| < oo}
Definition 5.1.6. Suppose (X, || -]|) is a normed space and (z,) C (X, | - ||) is a sequence.
We say > x, converges to x € X if ZN T, — v as N — oo. We say Y x, converges
absolutely if Y ||x,] < oo.

Proposition 5.1.7. The following are equivalent for a normed space (X, | - ).
(1) X is Banach, and
(2) Every absolutely convergent sequence converges.
Proof.
(1) = (2): Suppose X is Banach and ) ||z,|| < co. Let ¢ > 0, and pick N > 0 such that
Y non |Tn|l < e. Then for all m > n > N,

m n m

n+1
(2) = (1): Suppose (x,) is Cauchy, and choose n; < ny < --- such that ||z, — z,| < 27"
whenever m,n > ng. Define yy := 0 (think of this as z,, by convention), and inductively
define yy, := z,,, — x,, , for all k € N. Then

DMl < el + Y- 27% = [l || +1 < o0,

k>1
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Hence z :=limz,, = ) yx exists in X. Since (z,) is Cauchy, z, — x. O

Proposition 5.1.8. Suppose X,Y are normed spaces and T : X — Y is linear. The
following are equivalent:

(1) T is uniformly continuous (with respect to the norm topologies),

(2) T is continuous,

(8) T is continuous at Ox, and

(4) T is bounded, i.e., there exists a ¢ > 0 such that | Tz|| < c||z|| for all z € X.

Proof.
(1) = (2) = (3): Trivial.
(3) = (4): Suppose T is continuous at Ox. Then there is a neighborhood U of 0x such that

TU C {y € Y||ly|| < 1}. Since U is open, there is a 6 > 0 such that {x € X|||z| <} C U.
Thus ||z|| < ¢ implies ||Tz|| < 1. Then for all x # 0

T
H(g.i ‘ <5 — '5._""5 <1 = |Tz| <6 Y.
]l ]
(4) = (1): Let € > 0. If ||z — 22|| < ¢ ', then
|Txy — Tas|| = ||T(x1 — z2)|| < cljzy — 22| < e. O

Exercise 5.1.9. Suppose X is a normed space and Y C X is a subspace. Define Q) : X —
X/Y by Qr = x4+ Y. Define

Q]| x/y = nf{l[z = yllx|y € Y}

(1) Prove that || - ||x/y is a well-defined seminorm.

(2) Show that if Y is closed, then || - ||x/y is a norm.

(3) Show that in the case of (2) above, @) : X — X/Y is continuous and open.
Optional: is Q continuous or open only in the case of (1)?

(4) Show that if X is Banach, so is X/Y.

Exercise 5.1.10.

(1) Show that for any two finite dimensional normed spaces F; and Fj, all linear maps
T . I} — F5 are continuous.
Optional: Show that for any two finite dimensional vector spaces Fy and Fy endowed
with their vector space topologies from Fxercise 5.1.2, all linear maps T : F} — Fy
are continuous.

(2) Let X, F' be normed spaces with F finite dimensional, and let 7' : X — F' be a linear
map. Prove that the following are equivalent:
(a) T is bounded (there is an ¢ > 0 such that T(B(0x)) € B.(0r)), and
(b) ker(T) is closed.
Hint: One way to do (b) implies (a) uses Exercise 5.1.9 part (3) and part (1) of this
problem.

Definition 5.1.11. Suppose X, Y are normed spaces. Let

L(X —Y) := {bounded linear T": X — Y'}.
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Define the operator norm on L(X — Y') by

7]} = sup {| T [[|=]] < 1}
= sup {||Tz[|[[}«]| = 1}

= {1 et #0f

=inf {¢ > 0|||Tz|| < ¢||z]|| for all z € X},
Observe that if S € L(Y — Z) and T € L(X — Y), then ST € L(X — Z) and
STl < IS 1Tl < [1S]] - [17°]] - [l VreX.
So [STI < ISl - 1.
Proposition 5.1.12. IfY is Banach, then so is L(X — V).

Proof. 1f (T},) is Cauchy, then so is (T,,x) for all x € X. Set Tz := lim T,z for v € X. One
verifies that T is linear, T" is bounded, and T,, — T'. O

Corollary 5.1.13. If X is complete, then L(X) := L(X — X) is a Banach algebra (an
algebra with a complete submultiplicative norm,).

Exercise 5.1.14 (Folland §5.1, #7). Suppose X is a Banach space and T" € L(X). Let
I € L(X) be the identity map.
(1) Show that if || — T'|| < 1, then T is invertible.
Hint: Show that Y (I —T)" converges in L(X) to T~
(2) Show that if T' € L£(X) is invertible and ||S — T'|| < ||T~!||7}, then S is invertible.
(3) Deduce that the set of invertible operators GL(X) C £(X) is open.

Exercise 5.1.15. Consider the measure space (M, (C) = C", \"*). Show that GL,(C)° C
M,(C) is A’ -null.

Exercise 5.1.16 (Folland §5.2, #19). Let X be an infinite dimensional normed space.

(1) Construct a sequence (x,) such that ||z,|| = 1 for all n and ||z, — z,|| > 1/2 for all

(2) Deduce X is not locally compact.
5.2. Dual spaces.

Definition 5.2.1. Let X be a (normed) vector space. A linear map X — F is called a
(linear) functional. The dual space of X is X* := Hom(X — F). Here, Hom means:

e linear maps if X is a vector space, and
e bounded linear maps if X is a normed space.

Exercise 5.2.2. Suppose ¢, ¢1,...,p, are linear functionals on a vector space X. Prove
that the following are equivalent.

(1) ¢ => 7, arpy for some oy, ..., o, €F.
(2) There is an a > 0 such that for all x € X, |p(z)| < amaxy—;

(3) Miy ker(or) C ker(yp).
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Exercise 5.2.3. Let X be a locally compact Hausdorff space and suppose ¢ : Co(X) — C
is a linear functional such that ¢(f) > 0 whenever f > 0. Prove that ¢ is bounded.
Hint: Argue by contradiction that {¢(f)|0 < f <1} is bounded using Proposition 5.1.7.

Proposition 5.2.4. Suppose X is a complex vector space.
(1) If o : X — C is C-linear, then Re(p) : X — R is R-linear, and for all x € X,

p(x) = Re(p)(x) —iRe(p)(iz).
(2) If f: X — R is R-linear, then

p(x) == f(z) —if (iz)
defines a C-linear functional.
(3) Suppose X is normed and ¢ : X — C is C-linear.
o In Cuase (1), ||l¢|| < oo implies || Re(p)| < ||¢|
o In Case (2), || Re(p)|| < oo implies [|¢]| < [[Re(y)]|-
Thus ¢ll = || Re(o)]-

Proof.
(1) Just observe Im(p(x)) = — Re(ip(z)) = — Re(p)(iz).
(2) It is clear that ¢ is R-linear. We now check

i) = f(i) = i) = i) = i (=) = i (2) + Jlix) = i) — 8F(02) = ig(0),
(3, Case 1) Since |Re(p)(x)| < |p(z)| for all x € X, || Re(p)| < |l¢]|-
(3, Case 2) If p(x) # 0, then

|o(z)| = sgn(p(x))e(z) = p(sgn(p(r)) - ) = Re(p)(sgn(e(z)) - z).

Hence [o(z)| < [[Re(@)| - [[«]l, which implies [|¢]| < [|Re(p)]]. m

Exercise 5.2.5. Consider the following sequence spaces.

0= {(mn) C (COOIZ |z, | < oo} |x]|1 == Z |2, |

co = {(z,) C C*®|x,, — 0 as n — oo} 7|0 := sup |2,

c = {(xn) c C*®| lim =z, exists} 2| = sup |2,
n—o0

2 = {(,,) C C=|sup |z,| < 00} [2]|oo = sup |2]

(1) Show that every space above is a Banach space.

Hint: First show {* and (> are Banach. Then show cy,c are closed in (.
(2) Construct isometric isomorphisms ¢f = ¢! = ¢* and (£')* = (>°.
(3) Which of the above spaces are separable?

Warning 5.2.6. If X is a normed space, constructing a non-zero bounded linear functional
takes a considerable amount of work. One cannot get by simply choosing a basis for X as
an ordinary linear space and mapping the basis to arbitrarily chosen elements of F.

Definition 5.2.7. Suppose X is an R-vector space. A sublinear (Minkowski) functional on
X is a function p : X — R such that

e (positive homogeneous) for all z € X and r > 0, p(rz) = rp(z), and

e (subadditive) for all z,y € X, p(z +y) < p(x) + p(y).
104



Theorem 5.2.8 (Real Hahn-Banach). Let X be an R-vector space, p : X — R a sublinear
functional, Y C X a subspace, and f : Y — R a linear functional such that f(y) < p(y)
for all y € Y. Then there is an R-linear functional g : X — R such that gly = f and
g(z) < p(x) for allx € X.

Proof.
Step 1: For all x € X \ Y, there is a linear g : Y @ Rz — R such that gy = f and g(z) < p(z)
on Y @ Rz.

s ~

Proof. Any extension g of f to Y @ Rz is determined by ¢(y + rz) = f(y) + ra for all
r € R, where oo = g(x). We want to choose a € R such that

fly) +ra<ply+rz) VyeY and Vr € R. (5.2.9)

Since f is R-linear and p is positive homogeneous, we need only consider the cases
r = +1. Restricting to these 2 cases, (5.2.9) becomes:

fly) —ply—z) <a<plz+z)— f(2) Vy,z€Y.
Now observe that

p(z+x)—f(2)— f(y) +ply—2) = p(z+z)+ply—2)— fly+2) > p(y+2)— f(y+2) > 0.
Hence there exists an o which lies in the interval

[sup {f(y) — p(y — 2)ly € Y}, inf{p(z + =) = f(2)|]z € Y}]. 0

Step 2: Observe that Step 1 applies to any extension g of f to Y C Z C X such that gly = f
and g < p on Z. Thus any maximal extension g of f satisfying g|y = f and g < p on its
domain must have domain X. Note that

Y C Z C X is asubspace and g : Z7 — R
{(Z,g) T oihat b g }

such that gly = fand g <pon Z
is partially ordered by (Z1,g1) < (Zs,g2) if Z1 C Z5 and go|z, = g1. Since every ascending
chain has an upper bound, there is a maximal extension by Zorn’s Lemma. 0

Remark 5.2.10. Suppose p is a seminorm on X and f : X — R is R-linear. Then f < p if
and only if | f| < p. Indeed,

[f(2)] = £f(2) = f(£x) < p(+x) = p(2).

Theorem 5.2.11 (Complex Hahn-Banach). Let X be an C-vector space, p : X — [0,00) a
seminorm, Y C X a subspace, and ¢ : Y — R a linear functional such that |o(y)| < p(y)
for ally € Y. Then there is a C-linear functional b : X — C such that Y|y = ¢ and
[Y(2)| < p(x) for all x € X.

Proof. By the Real Hahn-Banach Theorem 5.2.8 applied to Re(y¢) which is bounded above
by p, there is an R-linear extension g : X — R such that g|y = Re(p) and |g| < p. Define
() = g(x) —ig(iz). By Proposition 5.2.4, ¥|y = ¢. Finally, for all z € X,

()] = sgnyp(x) - P(x) = Y (sgny(x) - x) = g(sgnp(x) - ) < p(sgn(x) - ) = p(x). O
Facts 5.2.12. Here are some corollaries of the Hahn-Banach Theorems 5.2.8 and 5.2.11. Let

X be an F-linear normed space.
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(HB1) If x # 0, there is a ¢ € X* such that ¢(x) = ||z|| and ||¢|| = 1.

Proof. Define f : Fx — F by f(Az) := A||z||, and observe that |f| < -||. Now
apply Hahn-Banach. O

(HB2) If Y C X is closed and x ¢ Y, there is a ¢ € X* such that [|¢| =1 and
= Y = inf ||z —y||.
p(e) = llz + Yllxyy = nf f|lz —y|

Proof. Apply (HB1) to x +Y € X/Y to get f € (X/Y)* such that || f| =1
and
fle+Y) =z + Y| = inf [lz —yl|.
yey

By Exercise 5.1.9, the canonical quotient map @ : X — X/Y is continuous.
Since
|z + Y| = inf [z — y[| <[] VieX,
yey

we have ||@Q]| < 1. Thus ¢ := f o Q) works. O

(HB3) X* separates points of X.
Proof. If © # y, then by (HB1), there is a ¢ € X* such that p(x — y) =
lz —yl| # 0. O

(HB4) For z € X, define ev, : X* — F by ev,(¢) := ¢(x). Then ev: X — X*™ is a linear
isometry.

' )

Proof. 1t is easy to see that ev is linear. For all p € X*,

leva(@)ll = lp(@)] < llell -l = lleva | <l
Thus ev, € X**. If x # 0, by (HB1) there is a ¢ € X* such that p(z) = ||z||
and ||¢|| = 1. Thus ||ev, || = ||z O

\. J

Exercise 5.2.13 (Banach Limits). Let ¢>°(N,R) denote the Banach space of bounded func-
tions N — R. Show that there is a ¢ € £*°(N,R)* satisfying the following two conditions:
(1) Letting S : £*°(N,R) — ¢*°(N, R) be the shift operator (Sz),, = z,41 for x = (2, )nen,

p=@pobS.
(2) For all z € £, liminf z,, < ¢(z) < limsup z,,.

Hint: One could proceed as follows.

(1) Consider the subspace Y =1im(S — I) = {Sx — x|z € {>°}. Prove that for ally € Y
andr € R, |ly +7r-1|| > |r|, where 1 = (1),en € €.
(2) Show that the linear map f:Y & R1 — R given by f(y +r-1) :=r is well-defined,
and |f(2)] < ||z|| for all z € Y & R1.
(8) Use the Real Hahn-Banach Theorem 5.2.8 to extend f to a g € (*°(N,R)* which
satisfies (1) and (2).
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Definition 5.2.14. For a normed space X, its completion is X = ev(X) C X**, which is
always Banach. Observe that if X is Banach, then ev(X) C X** is closed. In this case, if
ev(X) = X**, we call X reflezive.

Exercise 5.2.15. Show that X is reflexive if and only if X™* is reflexive.

Hint: Instead of the converse, try proving the inverse, i.e., if X is not reflexive, then X* is
not reflexive.

Exercise 5.2.16.

(1) (Folland §5.2, #25) Prove that if X is a Banach space such that X* is separable,
then X is separable.
(2) Find a separable Banach space X such that X* is not separable.

5.3. The Baire Category Theorem and its consequences.

Theorem 5.3.1 (Baire Category). Suppose X is either:

(1) a complete metric space, or
(2) an LCH space.

Suppose (U,) is a sequence of open dense subsets of X. Then (U, is dense in X.

Proof. Let Vi C X be non-empty and open. We will inductively construct for n € N a
non-empty open set V,, C Vi, CU, N V.

Case 1: Take V,, to be a ball of radius < 1/n.

Case 2: Take Vj, such that V, is compact, so (V,,) are non-empty nested compact sets.

Claim. K := )V, is not empty.

Proof of Claim.

Case 1: Let x, be the center of V,, for all n. Then (x,) is Cauchy, so it converges. The
limit lies in K by construction.

Case 2: Observe (V},) is a family of closed sets with the finite intersection property.
Since V; is compact, we have K # (). O

Now observe ) # K C ((U,) N'Vy. Thus (U, is dense in X. O

Corollary 5.3.2. If X is as in the Baire Category Theorem 5.5.1, then X is not meager,
i.€., a countable union of nowhere dense sets.

Proof. If (Y,) is a sequence of nowhere dense sets, then (U, := Y,°) is a sequence of open

dense sets. Then o N c
e = = (UF) < ()

is dense in X, so Y, # X. O

Lemma 5.3.3. Suppose X,Y are Banach spaces and T € L(X — Y). Let U C X be an
open ball centered at Ox and V' C Y be an open ball centered at Oy. If V C TU, then
VCcTU.

Proof. Let y € V. Take r € (0,1) such that y € V. Let € € (0,1) to be decided later.
Observe that
yerV crTU =TrU,
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so there is an xg € rU such that

y—Txg €ecrV CerTU =T(erU).
Then there is an z; € erU such that

y — Ty — Ty € ¥V C T(e2r).

Hence by induction, we can construct a sequence (x,) such that

n
v, €U and  y—)» Tx; €V
=0

Observe that Y x; converges as ||z;|| < e/rR (which is summable!), where R := radius(U).

Moreover,
Tij = li_)m TZ:Uj = li_)rn Zij =.

HZIJ < Z l|lz;|l < ]Z;g]rR: 17“_87

soy wj€ =U. Thusife <1—r, then Yz, € U,soycTU. O

Finally, we have

Theorem 5.3.4 (Open Mapping). Suppose X,Y are Banach spaces and T € L(X —Y') is
surjective. Then T is an open map.

Proof. 1t suffices to prove T maps an open neighborhood of Oy to an open neighborhood of
Oy. Note Y = J,, TB,(0x). By the Baire Category Theorem 5.3.1, there is an n € N such
that T'B,,(0) contains a non-empty open set, say Tzo + V where xy € TB,(0x) and V' is an
open ball in Y with center Oy. Then V' C TB,(0) — Tzo C T'B,(0x). By Lemma 5.3.3,
V C TBy,(0x). O

Facts 5.3.5. Here are some corollaries of the Open Mapping Theorem 5.3.4.

(OMT1) Suppose X,Y are Banach spaces and T € L(X — Y) is bijective. Then T™! €
LY — X), and we call T an isomorphism.

[ Proof. When T is bijective, T~ is continuous if and only if 7" is open. U ]

(OMT2) Suppose X is Banach under ||-||; and |- ||2. If there is a ¢ > 0 such that ||z||; < c[|z]|2
for all z € X, then || - ||, and || - ||2 are equivalent.

[ Proof. Apply (OMT1) to the identity map id : (X, || - ||2) = (X, || - |[1)- O ]

Definition 5.3.6. Suppose X, Y are normed spaces and T': X — Y is linear. The graph of
T is the subspace
D(T) = {(2,9)|T2 = y} € X x V.

Here, we endow X X Y with the norm

12, Y)lloo := max{][|]|x, ly[ly}-

We say T is closed if I'(T') C X x Y is a closed subspace.
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Remark 5.3.7. If T' € L(X — Y), then I'(T) is closed. Indeed, (z,,Tx,) — (z,y) if and
only if z, — z and T, — y. Since T is continuous, T'x, — Tx. Since Y is Hausdorff,
Tr =vy.

Theorem 5.3.8 (Closed Graph). Suppose X,Y are Banach. If T : X — Y is a closed linear
map, then T € L(X —Y), i.e., T is bounded.

Proof. Since X,Y are Banach, so is X x Y. Consider the canonical projection maps mx :
X xY — X and 7y : X x Y — Y, which are continuous. Since mx|rry : I'(T) — X by
(x,Tx) — x is norm decreasing and bijective, WX\;(lT) is bounded by (OMT1). Now observe

X |_1 s
z —3 (z,Tx) ﬂﬁ Tx — T = my|rmry o WX\;(IT)
which is bounded as the composite of two bounded linear maps. 0J

Exercise 5.3.9. Suppose X,Y are Banach spacesand S : X — Y and T : Y* — X* are
linear maps such that

p(Sz) = (T'p)(x) VreX, VpeY™
Prove that S, T are bounded.
Definition 5.3.10. A subset S of a topological space (X, T) is called:

e meager if S is a countable union of nowhere dense sets, and
o residual if S° is meager.

Exercise 5.3.11. Construct a (non-closed) infinite dimensional meager subspace of ¢>°.

Theorem 5.3.12 (Banach-Steinhaus/Uniform Boundedness Principle). Suppose XY are
normed spaces and S C L(X —Y).
(1) If suppes [|[Tx|| < oo for all x in a non-meager subset of X, then suppes ||T|| < oc.
(2) If X is Banach and suppcg | Tx|| < oo for all x € X, then suppcs ||T]| < oo.

Proof.
(1) Define

En::{xEX

sup [Tl < nf = () o € X7l < )
TeS

res (5.3.13)

ﬂ LT IIOT H([0,n)),

which is closed in X. Since J En is a non-meager subset of X, some FE,, is non-meager. Thus
there is an xy € X, r > 0, and n > 0 such that B,(x¢) C E,. Then B,(0) C Ea,:

[Tzl <[ITC 2 =g )+ [Txoll < 2n when |[z]] <.
~——
€By(z0)CEn
Thus for all 7' € S and ||z]| < r, we have ||Tz| < 2n. This implies
2n
sup 71| < 2.
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(2) Define E,, as in (5.3.13) above. Since X = J £, is Banach, the sets cannot all be meager
by Corollary 5.3.2 to the Baire Category Theorem 5.3.1. The result now follows from (1). O

Exercise 5.3.14. Provide examples of the following:

(1) Normed spaces X, Y and a discontinuous linear map 7" : X — Y with closed graph.
(2) Normed spaces X,Y and a family of linear operators {73} ea such that (T\z)xea is
bounded for every x € X, but (||T)||)aea is not bounded.

Exercise 5.3.15. Suppose X and Y are Banach spaces and T : X — Y is a continuous
linear map. Show that the following are equivalent.

(1) There exists a constant ¢ > 0 such that ||Tz||y > ¢||z|x for all z € X.
(2) T is injective and has closed range.

Exercise 5.3.16 (Folland §5.3, #42). Let E, C C([0
such that there is an xy € [0, 1] such that |f(z) — f(z0)

(1) Prove that E,, is nowhere dense in C([0, 1]).
(2) Show that the subset of nowhere differentiable functions is residual in C([0, 1]).

,1]) be the space of all functions f
| < nl|z — x| for all z € [0,1].

Exercise 5.3.17. Suppose X, Y are Banach spaces and (7},) C L(X — Y') is a sequence of
bounded linear maps such that (7,,x) converges for all z € X.

(1) Show that Tz := lim T,z defines a bounded linear map.
(2) Does T,, — T in norm? Give a proof or a counterexample.
Hint: Think about shift operators on a sequence space.

5.4. Topological vector spaces.

Definition 5.4.1. An F-vector space X equipped with a topology T is called a topological
vector space if

+: X xX—X
cFx X — X
are continuous.
A subset C' C X is called convex if if
x,y € C = tr+(1—-t)yeC Vtelol].
A topological vector space is called locally convex if for all x € X and open neighborhoods
U C X of z, there is a convex open neighborhood V' of x such that V C U.
Facts 5.4.2. Suppose P is a family of seminorms on the F-vector space X. For z € X,
p € P, and € > 0, define
U:v,p,a = {y € X|p(l’ - y) < 8} :

Let T be the topology generated by the sets U, , ., i.e., arbitrary unions of finite intersections
of sets of this form.

(LCnvx1) Suppose z1,...,2, € X, p1,...,pn € P, and &1,...,6, > 0 and = € (i Up, pic;-
Then there is a € > 0 such that

ﬂ Ux,pi,a = {y € X’pl(x - y) <e€ vpla R S P} C ﬂ Uxi,pi,ai'
i=1 i=1
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Hence sets of the form (), Uy p,c = {y € X|pi(zx —y) <& Vpi1,...,p, € P} form a
neighborhood base for T at x.

Proof. Define ¢ := min{e; —pi(xr —z;)|i =1,...,n}. Then for all y €
Ny Uppicand j=1,...,n,

pi(z; —y) <pj(z; —z) +pi(z —y) < (g5 —¢) +e=¢;.
Thus Yy € ﬂ?:l Uxi,pmfz" and thus m?:1 U%Pivf g ﬂ?:1 Uxi,pi,ﬁi' O

(LCnvx2) If (x;) C X is a net, x; — z if and only if p(z — z;) — 0 for all p € P.

Proof. By (LCnvxl) z; — « if and only if (x;) is eventually in U, ,. for all
e >0 and p € P if and only if p(x — x;) — 0 for all p € P. O

(LCnvx3) T is the weakest topology such that the p € P are continuous.

Proof. Exercise. 0

(LCnvx4) (X, T) is a topological vector space.

Proof.
+ cts: Suppose x; — x and y; — y. Then for all p € P,

p(x+y— (zi +y)) <plz — ;) +ply —yi) = 0.
- cts: Suppose x; — x and «; — «. Then for all p € P,

poz; — ax) < p(a;x; — ax;) + plax; — ax)

< | —af -p(ai) +lel - ple; — ). [
—— —~— ————
—0 A)p(x) —0

(LCnvxb) (X, 7T) is locally convex.

Proof. Observe that each U, . is convex. Indeed, if y,z € U, , ., then for all
t €0,1],

p(z = (ty + (1 =1)2)) = p((tz + (1 = )z) = (ty + (1 = 1)2))

=p((t(x —y) + (1 = t)(z - 2))
<t-plx—y)+(1-t) plz—2)
<te+ (1 —t)e

The result now follows from (LCnvxl) as the intersection of convex sets is
convex. U
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(LCnvx6) (X, T) is Hausdorff if and only if P separates points if and only if for all x € X'\ {0},
there is a p € P such that p(z) # 0.

[ Proof. Exercise. O ]

(LCnvx7) If (X, T) is Hausdorff and P is countable, then there exists a metric d : X x X —
[0, 00) which is translation invariant (d(z + z,y + z) = d(z,y) for all z,y,z € X)
which induces the same topology as P.

Proof. Let P = (p,) be an enumeration and set
. = Pn (JZ B y)
d(z,y) = 27— =
( ) ; 1+ DPn (J} - y)
We leave it to the reader to verify that d is a translation invariant metric which
induces the topology T . d

(LCnvx8) If (X, T) is locally convex Hausdorff TVS, then 7 is given by a separating family of
seminorms.

[ Proof. Beyond the scope of this course; take Functional Analysis 7211. U

Proposition 5.4.3. Suppose (X, P) and (Y, Q) are seminormed locally convex topological
vector spaces. The following are equivalent for a linear map T : X — Y

(1) T is continuous.

(2) T is continuous at Ox.

(3) For all q € Q, there are pi,...,p, € P and ¢ > 0 such that q(T'x) < c) 7, pj(x) for
allx € X.

Proof.
(1) = (2): Trivial.
(2) = (3): Suppose T is continuous at Ox and ¢ € Q. Then there are py,...,p, € P and

e > 0 such that for all x € V := (., Uy, ., we have ¢(Tz) < 1. Fix z € X. If p;(z) = 0 for
alli=1,...,n, then rx € V for all r > 0, so

rq(Tz) = q(Trx) < 1 Vr > 0.
ev

This implies ¢(Tz) =0 < ¢ ., p;i(z) for all ¢ > 0, so we may assume p;(z) > 0. Then

€
(221':1191'(1'))
as pi(y) <e/2<eforali=1,...,n. Thus
2 ¢ 2
¢(Tx) = (g Zm(@) a(Ty) < = > _pilw)
i=1 i=1

as desired.
112



(3) = (1): We must show if x; — x in X, then ¢(Tz; — Tz) — 0 for all ¢ € Q. Since x; — z,
p(z; —x) — 0 for all p € P. Fix g € Q. By (3), there are pq,...,p, € P and ¢ > 0 such that

q(T(xi—x))Schj(xi—x)—)O VzeX. O
j=1

Definition 5.4.4. Let X be a normed space. Recall that X* separates points of X by the
Hahn-Banach Theorem 5.2.8 or 5.2.11. Consider the family of seminorms
Pi={z [o(z)| e € X"}

on X, which separates points. Hence P induces a locally convex Hausdorff vector space
topology on X in which x; — x if and only if p(z;) — ¢(z) for all ¢ € X* by (LCnvx2). We
call this topology the weak topology on X.

Proposition 5.4.5. If U C X is weakly open then U is || - ||-open.

Proof. Observe that every basic open set U, ,. = {y € X||p(xr —y)| < e} is norm open in
X. Indeed, y — |p(z — y)| is norm continuous as ¢ € X* is norm continuous, the vector
space operations are norm-continuous, and |- | : C — [0, 00) is continuous. O

Exercise 5.4.6. Let X be a normed space. Prove that the weak and norm topologies agree
if and only if X is finite dimensional.

Proposition 5.4.7. A linear functional ¢ : X — F is weakly continuous (continuous with
respect to the weak topology) if and only if ¢ € X* (continuous with respect to the norm
topology).
Proof. Suppose ¢ € X*. Then ¢ 1(B.(0c)) = {z € X||p(z)| < e} = Up.. is weakly open.
Hence ¢ is continuous at Ox and thus weakly continuous by Proposition 5.4.3.

Now suppose ¢ : X — C is weakly continuous. Then for all U C C open, ¢ }(U) is

weakly open and thus norm open by Proposition 5.4.5. Thus ¢ is || - ||-continuous and thus
in X*. 0
Definition 5.4.8. The weak™ topology on X* is the locally convex Hausdroff vector space
topology induced by the separating family of seminorms

P ={p = leva(@)] = [p(2)| |z € X}.
Observe that ¢; — ¢ if and only if ¢;(z) — ¢(x) for all x € X.
Theorem 5.4.9 (Banach-Alaoglu). The norm-closed unit ball B* of X* is weak*-compact.

Proof.

Trick. For x € X, let D, = {z € C||2| < ||z|| }. By Tychonoft’s Theorem, D :=
[I,cx Dz is compact Hausdorff. The elements (d,) € D are precisely functions f :
X — C (not necessarily linear) such that |f(x)| < ||z|| for all z € X

Observe B* C D is the subset of linear functions. The relative product topology on B* is
the relative weak™® topology, as both are pointwise convergence. It remains to prove B* C D
is closed. If (¢;) C B* is a net with ¢; — ¢ € D, then

plar +y) = limp;(ar +y) = 1iﬁ13a¢i(x) +¢i(y) = ap(r) + ¢(y). O



Exercise 5.4.10. Let X be a normed space.

(1) Show that every weakly convergent sequence in X is norm bounded.

(2) Suppose in addition that X is Banach. Show that every weak* convergent sequence
in X* is norm bounded.

(3) Give a counterexample to (2) when X is not Banach.
Hint: Under || - ||oo, ¢& = (1, where c, is the space of sequences which are eventually
zero.

Exercise 5.4.11 (Goldstine’s Theorem). Let X be a normed vector space with closed unit
ball B. Let B** be the unit ball in X**, and let ¢ : X — X™** be the canonical inclusion.
Recall that the weak™® topology on X** is the weak topology induced by X*. In this exercise,
we will prove that i(B) is weak™ dense in B**.

Note: You may use a Hahn-Banach separation theorem that we did not discuss in class to
prove the result directly if you do not choose to proceed along the following steps.

(1) Show that for every z** € B™ ¢1,...,p, € X*, and 6 > 0, there is an z € (14 0)B
such that ¢;(x) = 2™ (¢;) for all 1 <i <n.
Hint: Here is a walkthrough for this first part. Fiz p1,..., 0, € X*.
(a) Find x € X such that p;(x) = 2™ (p;) for all 1 <i < n.
(b) SetY :=ker(yp;) and let 6 > 0. Show by contradiction that (x+Y )N (1+5)B #
(0. (This part uses the Hahn-Banach Theorem.)
(2) Suppose U is a basic open neighborhood of ** € B**. Deduce that for every § > 0,
(140)i(B)NU # (. That is, there is an x5 € (1 4 0)B such that i(xs) € U.
(3) By part (2), (1 +0)"'zs € B. Show that for ¢ sufficiently small (which can be
expressed in terms of the basic open neighborhood U), (1 +6) 'i(zs) € i(B)NU.

Exercise 5.4.12. Suppose X is a Banach space. Prove that X is reflexive if and only if the
unit ball of X is weakly compact.
Hint: Use the Banach-Alaoglu Theorem 5.4.9 and Ezxercise 5.4.11.

Exercise 5.4.13. Suppose X,Y are Banach spaces and T': X — Y is a linear transforma-
tion.

(1) Show that if T" € L(X,Y), then T is weak-weak continuous. That is, if zy — z in
the weak topology on X induced by X*, then Tx), — T'x in the weak topology on Y
induced by Y*.

(2) Show that if 7' is norm-weak continuous, then 7' € L(X,Y).

(3) Show that if 7" is weak-norm continuous, then 7" has finite rank, i.e., TX is finite
dimensional.

Hint: For part (3), one could proceed as follows.

(1) First, reduce to the case that T is injective by replacing X with Z = X/ ker(T) and
T with S : Z — Y given by x + ker(T) — Tz. (You must show S is weak-norm
continuous on Z.)

(2) Take a basic open setU = {z € Z||pi(z)| <€ for alli=1,...,n} C S7'B1(0y). Use
that S is injective to prove that (;_; ker(y;) = (0).

(3) Use Exercise 5.2.2 to deduce that Z* is finite dimensional, and thus that Z and
TX =57 are finite dimensional.

Exercise 5.4.14. Suppose X is a Banach space. Prove the following are equivalent:
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(1) X is separable.
(2) The relative weak* topology on the closed unit ball of X* is metrizable.

Deduce that if X is separable, the closed unit ball of X* is weak* sequentially compact.
Hint: For (1) = (2), you could adapt either the proof of (LCnuvz7) or the trick in the proof
of the Banach-Alaoglu Theorem 5.4.9 using a countable dense subset. For (2) = (1), there a
countable neighborhood base (U,) C B* at 0x such that (U, = {0}. For each n € N, there
s a finite set D,, C X and an €, > 0 such that

Up, 2 {p € X |p(z)| <ep foralz € D,}.
Setting D = |J D,,, show that span(D) is dense in X. Deduce that X is separable.

Exercise 5.4.15. Suppose X is a Banach space. Prove the following are equivalent:

(1) X* is separable.
(2) The relative weak topology on the closed unit ball of X is metrizable.

Exercise 5.4.16. How do you reconcile Exercises 5.4.12, 5.4.14, and 5.4.157 That is, how
do you reconcile the fact that there exist separable Banach spaces which are not reflexive?

Exercise 5.4.17.

(1) Prove that the norm closed unit ball of /*° is weak* sequentially compact.
(2) Prove that the norm closed unit ball of /> is not weakly sequentially compact.
Hint: One could proceed as follows.
(a) Prove that the weak* topology on £°° = ({1)* is contained in the weak topology,
i.e., if x; — x weakly, then x; — x weak™.
(b) Consider the sequence (x,) C ¢ C € given by

() (m) = {0 ifn<m

1 ifn>m.

Show that x,, — 0 weak™ in £>°.
(¢) Show that (x,) does not converge weakly in (> by extending lim : ¢ — C to €.
(d) Deduce no subsequence of (z,,) converges weakly in (.

Remark 5.4.18. The Eberlein-Smulian Theorem (which we will not prove here) states that
if X is a Banach space and S C X, the following are equivalent.

(1) S is weakly precompact, i.e., the weak closure of S is weakly compact.

(2) Every sequence of S has a weakly convergent subsequence (whose weak limit need
not be in 5).

(3) Every sequence of S has a weak cluster point.

Exercise 5.4.19. Let X be a compact Hausdorff topological space. For x € X, define
ev, : C(X) = F by ev.(f) = f(z).
(1) Prove that ev, € C'(X)*, and find | ev, .

(2) Show that the map ev : X — C(X)* given by z — ev, is a homeomorphism onto its

image, where the image has the relative weak™ topology.
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5.5. Hilbert spaces.

Definition 5.5.1. A sesquilinear form on an F-vector space H is a function (-, -) : HxH —
F which is
e linear in the first variable: (azx+vy,2) = a(x, z) + (y, 2) for all &« € F and z,y,2z € H,
and
e conjugate linear in the second variable: (z,ay + z) = a(x,y) + (z,2) for all « € F
and x,y,z € H.
We call (-, -):
o self-adjoint if (x,y) = (y,z) for all z,y € H,
e non-degenerate if (x,y) = 0 for all y € H implies x =0
e positive if (x,x) > 0 for all z € H. A positive sesquilinear form is called definite if
moreover (z,z) = 0 implies z = 0.
A self-adjoint positive definite sesquilinear form is called an inner product.

Exercise 5.5.2. Suppose (-, ) is a self-adjoint sesquilinear form on the R-vector space H.
Show that:
e (R-polarization) 4(z,y) = (z +y,z +vy) — (x —y,x — y) for all z,y € H.

Now suppose (-, -) is a sesquilinear form on the C-vector space H. Prove the following.

(1) (C-polarization) 4(z,y) = So_,i*(x + i*y, x + i*y) for all z,y € H.

(2) (-, -) is self-adjoint if and only if (x,z) € R for all x € H.

(3) Positive implies self-adjoint.
Definition 5.5.3. Suppose that (-, -) is positive and self-adjoint (so (H, (-, -)) is a pre-
Hilbert space). Define

lz]| = (&, 2)'/2.
Observe that || - || is homogeneous: ||ax|| = |a| - ||z|| for all « € F and z € H.
We say that = and y are orthogonal, denoted x L y, if (x,y) = 0.

Facts 5.5.4. We have the following facts about pre-Hilbert spaces:
(H1) (Pythagorean Theorem) x L y implies ||z + y||*> = [|z||*> + [|y||*.

Proof. ||z + y|* = llz]* + 2Re(z,y) + lylI* = [l=]* + llyl*. D

(H2) z L y if and only if ||z]|* < ||z + ayl|? for all « € F.

Proof.
= o+ ayl? = floll* + oyl > [lo]? for all @ € F.
< Suppose
Jall? + 2 Re(afa, ) + lalllyl = 1z + ay|2 > [l VaeF.

Then for all a« € F,

0 < 2Re(az,y)) + laf*llyll*.
Taking o € F sufficiently close to Op, the term 2Re(a(x,y)) dominates, and
this can only be non-negative for all a € F if (z,y) = 0. O
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(H3) The properties of being definite and non-degenerate are equivalent.

Proof.
= Trivial; just take y = x in the definition of non-degeneracy.
<: If ||z]|> = 0, then for all « € F and y € H, ||z]|? = 0 < ||z + ayl?

by positivity. Hence z L y for all y € H by (H2). Thus z 0 by non-
degeneracy. 0
(H4) (Cauchy-Schwarz Inequality) For all z,y € H, [{x,y)| < ||| - ||y||-
Proof. For all r € R,
0 < flz —ryll* = lz]|* — 2r Re(z, y) + r*|lyl*,
which is a non-negative quadratic in r. Therefore its discriminant
4(Re(z,y))* =4 [l=]I* - ly|* < 0,

which implies | Re(z, )| < ||z - Iyl
[ Trick. |(z,y)| = a(z,y) for some o € U(1) = {z € C||z| = 1}.
Then

[(z,9)| = afz,y) = (ax, y) < |laz| - [yl = ll=| - [yl [

(H5) (Cauchy-Schwarz Definiteness) If (-, -) is definite, then |(x,y)| = ||z| - ||y|| implies
{z,y} is linearly dependent.

Proof. We may assume y # 0. Set

_e,y)]

lyl1>

sgn((r,y))-
Then we calculate

lz — ayl® = llz|l* = 2Re(a(z, y)) + |of* - [lyll*

2 ’<3§',y>|2 |<l’,y>’2 2
L e
— ”xHQ _ |<Iay>|2
lyll?
lyl?

=0.
This implies © = ay by definiteness.
(The essential idea here was to minimize a quadratic in «.) U
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(H6) || - || - H — [0,00) is a seminorm. It is a norm exactly when (-, -) is definite, i.e., an
inner product.

e )

Proof. 1t remains to prove subadditivity of || - ||, which follows by the Cauchy-
Schwarz Inequality (H4):

|z +y|* = (z+y,2+y)
= ||z|* + 2Re(z, y) + ||yl
< |lz|* + 2|z, v)| + |ly|I”

< lz||? + 2/l - llyll + llyll? (H4)
= (lzll + llyl)>.
Now take square roots. The final claim follows immediately. 0
Proposition 5.5.5. A norm || - || on a C-vector space comes from an inner product if and

only if it satisfies the parallelogram identity:
y
2+ Y12+l = yI? = 2(Je? + 191 N
Proof.

= If || - || comes from an inner product, then add together
lo £ ylI* = [|2]|* £ 2Re(z, y) + [ly|I*.

<« If the parallelogram identity holds, just define

3

1 : :
(,) 1= 7 D e+ iyl

k=0

by polarization. One checks this works. O

Definition 5.5.6. A Hilbert space is an inner product space whose induced norm is complete,
i.e., Banach.

Exercise 5.5.7. Verify the follows spaces are Hilbert spaces.

(1) 2 := {(z,) € C®|_ |zn|* < 0o} with (z,y) == .U
(2) Suppose (X, M, u) is a measure space. Define

{measurable f : X — (C|f |fI?dp < oo}

equality a.e.

LX(X,p) =

with (f, g) == [ fgdp.

Exercise 5.5.8. Suppose H is a Hilbert space and S, T : H — H are linear operators such
that for all x,y € H, (Sz,y) = (x, Ty). Prove that S and T" are bounded.

From this point forward, H will denote a Hilbert space.
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Theorem 5.5.9. Suppose C' C H is a non-empty convex closed subset and z ¢ C. There is
a unique x € C' such that

— 2| = inf ||ly — z]|.
o = =]l = inf fly =l

Proof. By translation, we may assume z = 0 ¢ C. Suppose (x,,) C C such that ||z,| — r =
inf,cc [|y||. Then by the parallelogram identity,

2

2 2 |
Rearranging, we have
2
e — a2 = 2 [l +2 | —4 || 2L
—_—— N~ 2
—r2 —r2
>r2

where the last inequality follows since (z,, + z,,)/2 € C by convexity. This means that

limsup ||z, — @, ||* < 2r* + 20% — 4r* =0,

m,n

and thus (z,) is Cauchy. Since H is complete, there is an x € H such that z,, — z, and
|z|| = r. Since C'is closed, x € C.

For uniqueness, observe that if 2’ € C' satisfies ||2'|| = r, then (z,2',z,2’,...) is Cauchy
by the above argument, and thus converges. We conclude that = = 2. U

Definition 5.5.10. For S C H, define the orthogonal complement
ti={x e H|{(z,s)=0 ,Vsc S}.
Observe that S+ is a closed subspace.

Facts 5.5.11. We have the following facts about orthogonal complements.
(L1) If S C T, then T+ C S*.

Proof. Observe x € T+ if and only if (z,t) = 0 for all t € T D S. Hence
r € S+ O

(L2) S c S+ and S+ = S+

7

Proof. If s € S, then (s, z) = (x,s) = 0 for all z € S*. Thus s € S**. Since
S+ is closed, S ¢ St+.

Now replacing S with S+, we get St c S+t+. But since S C S+, by (1),
we have S+H+ C S+ O

(L3) 8N st = {o}.

[ Proof. If x € SN S*, then (x,z) =0, so z = 0. O
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(14) If K C H is a subspace, then H = K @ K*.

Proof. By (12) and (L3),
{0} CKNK*C K-+ nK*={0},

so equality holds everywhere. o

Let z € H. Since K is closed and convex, there is a unique y € K minimizing
the distance to z, i.e., |z — y|| < infre | — k||. We claim that = —y € K,
so that z =y + (z —y), and H = K + K*. Indeed, for all k € K and « € C,

lz = ylI* < llz = (y — ak)|* = [|(z — y) + ak| VaeC.
By (H2), we have (x —y) L k for all k € K, ie., z —y € K+ as claimed. O

(L5) If K C H is a subspace, then K = K+

Proof. Let x € K*+*+. By (4), there are unique y € K and z € K+ such that
x =19y + 2. Then
0= <.’B,Z> = <y+z,z> = (y,z) + <Z7Z>

~——
=0 by (L2)

Hence 2 =0,and z =y € K. O

\. J

Notation 5.5.12 (Dirac bra-ket). Let (H, (-, -)) be a Hilbert space, where (-, -) is linear
on the left and conjugate linear on the right. Define (-|-): H x H — F by

{zly) = (y, ).
That is, (-|-) is the ‘same’ inner product, but linear on the right and conjugate linear on
the left.
We may further denote a vector x € H by the ket |x). For x € H, we denote the linear

map H — F by y — (z|y) by the bra (z|. Observe that the bra (x| applied to the ket |y)
gives the bracket (z|y).

Theorem 5.5.13 (Riesz Representation). Let H be a Hilbert space.

(1) Forally € H, {y| € H* and |[(y[|| = llyll-
(2) For ¢ € H*, there is a unique y € H such that ¢ = (y|.
(8) The map y — (y| is a conjugate-linear isometric isomorphism.

Proof.
(1) Clearly (y| is linear. By Cauchy-Schwarz, |(y|z)| < [|z|| - [|y]l, so ||{y]]| < ||ly||. Taking

z =y, we have |(y|y)| = [ly|I?, so |[(y]]| = llyll-
(2) If (y| = (¥/|, then
ly=v1IP=Ww—vlv—v)=Wly—y)—Wly—y) =0,

and thus y = y/. Suppose now ¢ € H*. We may assume ¢ # 0. Then ker(p) C H is a closed

proper subspace. Pick z € ker(¢)t with ¢(2) = 1. Now for all z € H, x — ¢(x)z € ker(y),
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SO

(zlo) = (2lz — p(z)z + 9(2)2) = ( 2 |2 = o(2)2) + (zlo(2)2) = (zlp(2)2) = p(z)]] ||
€ker(p)+ Eker(y)

We conclude that ¢ = <W

(3) y — (y| is isometric by (1) and onto by (2). Conjugate linearity is straightforward. O
Exercise 5.5.14. Suppose H is a Hilbert space. Show that the dual space H* with

<<:L‘|7 <y|>H* = <ya :L‘>H
is a Hilbert space whose induced norm is equal to the operator norm on H*.

Definition 5.5.15. A subset £ C H is called orthonormal if e, f € E implies (e, f) = de—y.

Observe that ||e — f|| = v/2 for all e # f in E. Thus if H is separable, any orthonormal set
is countable.

Exercise 5.5.16. Suppose H is a Hilbert space, £ C H is an orthonormal set, and
{e1,...,e,} C E. Prove the following assertions.
(1) If o =>"" | cie;, then ¢; = (x,e;) forall j=1,...,n.
(2) The set E is linearly independent.
(3) For every x € H, Y (x,e;)e; is the unique element of span{ey, ..., e,} minimizing
the distance to z.
(4) (Bessel’s Inequality) For every x € H, ||z||* > Y7 [{z,e;)|
Theorem 5.5.17. For an orthonormal set E C H, the following are equivalent:
(1) E is mazimal,
(2) span(E), the set of finite linear combinations of elements of E, is dense in H.
(3) (x,e) =0 for all e € E implies x = 0.
(4) Forallz € H, x =) __p(z,e)e, where the sum on the right:
e has at most countably many non-zero terms, and
e converges in the norm topology regardless of ordering.
(5) For allz € H, ||z]]> = 3 cp |z, €)|*.

If E satisfies the above properties, we call E an orthonormal basis for H.

Proof.

(1) = (2): If span(E) is not dense, there is an e € span(E)* with |le]| = 1. Then £ C FU{e},
which is orthonormal.

(2) = (3): Suppose (e,x) = 0 for all e € E. Then (z| = 0 on span(F). Since span(F) is
dense in H and (z| is continuous, (x| = 0 on H, and thus z = 0 by the Riesz Representation
Theorem 5.5.13.

(3) = (1): (3) is equivalent to £+ = 0. This means there is no strictly larger orthonormal set
containing F.

(3) = (4): For all e,...,e, € E, by Bessel’s Inequality, ||z|* > >." [{x,e;)]*>. So for all
countable subsets F' C E, |lz||* > > ;p |(z, f)]*. Hence {e € E|(x,e) # 0} is countable.
Let (e;) be an enumeration of this set. Then

n

Z(m,eﬁei

m

2 n
=> [z, &) 50,
m
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So Y (x,e;)e; converges as H is complete. Obsere that for all e € F,
<ZE - Z<x7 ei>ei7 €> = 07
sox = > (z,e;)e; by (3).
(4) = (5): Let x € H and let {e;} be an enumeration of {e € E|(x,e) # 0}. Then

Izl =D e el = o = > (, enes

n—ro0
(Indeed, expand the term on the right into 4 terms to see you get the term on the left.)
(5) = (3): Immediate as || - || is definite. O

0.

Exercise 5.5.18. Suppose H is a Hilbert space. Prove the following assertions.

(1) Every orthonormal set £ can be extended to an orthonormal basis.

(2) H is separable if and only if it has a countable orthonormal basis.

(3) Two Hilbert spaces are isomorphic (there is an invertible U € L(H — K) such that
(Uz,Uy)kx = (x,y) for all z,y € H) if and only if H and K have orthonormal bases
which are the same size.

(4) If E is an orthonormal basis, the map H — (*(E) given by z — ({z,-) : E — C)
is a unitary isomorphism of Hilbert spaces. Here, />(E) denotes square integrable
functions £ — C with respect to counting measure.

Exercise 5.5.19. Consider the space L*(T) := L?*(R/Z) of Z-periodic functions R — C
such that [, | f[* < co. Define

(f,9) = fg.

[0,1]
(1) Prove that L*(T) is a Hilbert space.
(2) Show that the subspace C(T) C L*(T) of continuous Z-periodic functions is dense.
(3) Prove that {e,(x) := exp(2minz)|n € Z} is an orthonormal basis for L*(T).
Hint: Orthonormality is easy. Use (2) and the Stone-Weierstrass Theorem to show
the linear span is dense.
(4) Define F : LA(T) — (2(Z) by F(f)n = (f,en) 2 = [, f( exp —2minx) dz. Show
that if f € L*(T) and F(f) € (Y(Z), then f € C(T), i.e., f is a.e. equal to a

continuous function.

5.6. The dual of Cy(X). Let X be an LCH space. In this section, we prove the Reisz
Representation Theorem which characterizes the dual of Cy(X) in terms of Radon measures
on X.

Definition 5.6.1. A Radon measure on X is a Borel measure which is
e finite on compact subsets of X,
e outer regular on all Borel subsets of X, and
e inner regular on all open subsets of X.

Facts 5.6.2. Recall the following facts about Radon measures on an LCH space X.

(R1) If p is a Radon measure on X and £ C X is o-finite, then p is o-finite on E by

Exercise 2.5.24(1). Hence every o-finite Radon measure is regular.
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(R2) If X is o-compact, every Radon measure is o-finite and thus regular.
(R3) Finite Radon measures on X are exactly finite regular Borel measures on X.

Exercise 5.6.3. Suppose X is LCH and p is a Radon measure on X. Prove C.(X) is dense
in £1(p).

Notation 5.6.4. Recall that the support of f : X — Cissupp(f) :={f # 0}. We say f has
compact support if supp(f) := {f # 0} is compact, and we denote the (possibly non-unital)
algebra of all continuous functions of compact support by C.(X). For an open set U C X,

we write f < U to denote 0 < f < 1 and supp(f) C U. Observe that if f < U, then f < xy,
but the converse need not be true.

Definition 5.6.5. A Radon integral on X is a positive linear functional ¢ : C.(X) — C,
ie., p(f) >0 for all f e C.(X) such that f > 0.

Lemma 5.6.6. Radon integrals are bounded on compact subsets. That is, if K C X 1s
compact, there is a cx > 0 such that for all f € C.(X) withsupp(f) C K, |¢(f)| < cx || flloo-

Proof. Let K C X be compact. Choose g € C.(X) such that ¢ = 1 on K by the LCH
Urysohn Lemma (Exercise 1.2.11(2)).
Step 1: If f € Co(X, R) with supp(f) C K, then |f| < |[f]l-g on X. So [|flls-g—[f| =0,
and || fll - g £ f = 0. Thus [|f[[ - ¢(g) £ ¢(f) = 0. Hence
le(N < @(g) - [[fll Vf € Ce(X,R) with supp(f) C K.
Taking cx := ¢(g) works for all f € C.(X,R).
Step 2: Taking real and imaginary parts, we see cx := 2¢(g) works for all f € C.(X). Indeed,
()] < leRe(f))] + le(Im(f))] < (g)| Re(f)lloo + (@) Tm(f)lloc < 20(9)I[f]lo0
for all f € C.(X) with supp(f) C K. O

Theorem 5.6.7 (Riesz Representation). If ¢ is a Radon integral on X, there is a unique
Radon measure i, on X such that

o(f) = /fd/w VfeC.(X).

Moreover, p., satisfies:
(1p1) For all open U C X, pu,(U) =sup{¢(f)|f € C(X) with f < U}, and
(11,2) For all compact K C X, py(K) =1inf {p(f)|f € Ce(X) with xx < f}.
Proof.

Uniqueness: Suppose y is a Radon measure such that ¢(f) = [ fdu for all f € C.(X). If
U C X is open, then ¢(f) < p(U) for all f € C.(X) with f < U. If K C U is compact, then
by the LCH Urysohn Lemma (Exercise 1.2.11(2)), there is an f € C.(X) such that f < U
and f|x =1, and

u(K) < [ £du=olf) < (0.
But p is inner regular on U as it is Radon, and thus
u(U) = sup {u(K)|U D K is compact} < sup {@(f)|f € Co(X) with f < U} < u(U).

Hence p satisfies (f1,1), so p is determined on open sets. But since p is outer regular, p is

determined on all Borel sets.
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Existence: For U C X open, define u(U) :=sup {p(f)|f € Ce(X) with f < U} and
W (E) :=1inf {u(U)|U is open and E C U} EC X.

Step 1: p is monotone on inclusions of open sets, i.e., U C V both open implies u(U) < pu(V).
Hence p*(U) = p(U) for all open U.

are open, then f € C.(X) with f < U

Proof. Just observe that if U C V
< u(V) are we are taking sup over a super set. []

implies f < V. Hence u(U)

Step 2: p* is an outer measure on X.

Proof. Tt suffices to prove that if (U,) is a sequence of open sets, then
p(UUn) <> u(Uy,). This shows that

p*(E) = inf {Z w(Uy,)|the U, are open and E C U Un} :

which we know is an outer measure by Proposition 2.3.3. Suppose f € C.(X)
with f < \JU,. Since supp(f) is compact, supp(f) < J_, U, for some N € N.

Trick. By Exercise 1.2.17, there are g1, ..., gn € C.(X) such that g, <
U, and ZnN:1 gn = 1 on supp(f).

Then f = fanzl gn and fg, < U, for each n, so

o(f) =Y _o(fgn) <D olxw,) =D uUn) <D u(Us).

Since f < U was arbitrary,

1 () =sw {e(n)|f € cx) with £ <[ JUn} <> u(@n). O

Step 3: Every open set is p*-measurable, and thus Bx C M*, the p*-measurable sets. Hence
Ly = p*|py is a Borel measure which is by definition outer regular and satisfies

(ppl).

Proof. Suppose U C X is open. We must prove that for every £ C X such

that p*(E) < oo, p*(E) > p*(ENU) + p*(E\U).

Case 1: If E is open, then ENU is open. Given & > 0, there is a f € C.(X)
with f < ENU such that ¢(f) > u(ENU)—¢/2. Since E \ supp(f) is
open, there is a ¢ < E\ supp(f) such that ¢(g) > u(E \supp(f))—e/2.
Then f+g < E, so

H(E) = ¢(f) + ¢(9)
> uW(ENU) + pu(E \supp(f)) —¢
> (ENU)+p (E\U) —e.
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Since € > 0 was arbitrary, the result follows.
Case 2: For a general E, given € > 0, there is an open V O FE such that
p(V) < p*(E) +e. Thus

W(E) +e>uV)
> p(VnU)+p (VAU)
2 (ENU)+p (E\U).

Again, as £ > 0 was arbitrary, the result follows. U

Step 4: ., satisfies (11,2) and is thus finite on compact sets.

Proof. Suppose K C X is compact and f € C.(X) with xx < f. Let ¢ > 0,
and set U, := {1 —e < [}, which is open. If g € C.(X) with g < U,, then
(1—e)7'f—920,50 p(g) < (1 —¢)7"p(f). Hence

po(K) < po(Us) = sup {e(9)lg < U} < (1 = &) o(f).
As € > 0 was arbitrary, we conclude that p,(K) < ¢(f).
Now, for all open U D K, by the LCH Urysohn Lemma (Exercise 1.2.11(2)),

there is an f < U such that xx < f (f|x = 1), and by definition, ¢(f) <
po(U). Since pi, is outer regular on K by definition,

(K = inf {1, (U)|K € U open} = inf {p(f)If > vx}- O

Step 5: i, is inner regular on open sets and thus Radon.

Proof. If U € X is open and 0 < a < p(U), choose f € C.(X) such that
f < U and ¢(f) > a. For all g € Co(X) with xeupp(r) < g, we have g — f >0,
so a < o(f) < p(g). Since (u,2) holds, o < p(supp(f)) < w(U). Hence p is
inner regular on U. ]

Step 6: For all f € C.(X), o(f) = [ fdpuy.

Proof. We may assume f € C.(X,|[0,1]) as this set spans C.(X). Fix N € N,
and set K; :={f >j/N}forj=1,...,N+1 and K, := supp(f) so that

0 =Ky CKyC--- C Ky CKy=supp(f).
for j =1,..., N, define

- (-5 %
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which is equivalent to

which gives us the inequalities

N

Now summing over j = 1,...
inequalities

1
N

1
N

i

This implies that

0 ifed K;_
file)={fle) -5 ifze K \K;
N1 if z € K.
Observe that this implies:
° X% <f; < XK]{,‘I forall j=1,...,N, and
o YL fi= 1,

Now for all open U D Kj,l, Nf; < U, so N(p(fj) < uy,(U).
outer regularity of u,, we have the inequalities

1 1
~Ho(K;) < o(f;) < P (B

po (K1) (5.6.8)

k)< [ fydn, <

By (41,2) and

). (5.6.9)
N for both (5.6.8) and (5.6.9), we have the

N—-1
/ Fu < = 3 oK
j=0
1
<y Z HolK

) Mw(KN) < N@(Supp(f» N—oco

> ()

/fdu@ <

as fiy(supp(f)

) < oo and N € N was arbitrary.

N N

This completes the proof.

O

The following corollary is the upgrade of Proposition 2.5.22 promised in Remark 2.5.26.

Corollary 5.6.10. Suppose X is LCH and every open subset of X is o-compact (e.g., if
X is second countable). Then every Borel measure on X which is finite on compact sets is

Radon.

Proof. Suppose p is such a Borel measure.
linear functional on C.(X). By the Riesz
Radon measure v on C such that ¢(f)

Since Co(X) C LY(u), ¢(f) := [ fdp is a positive
Representation Theorem 5.6.7, there is a unique

= [ fdv for all C.(X). It remains to prove yu = v.

For an open U C X, write U = |J K; with K compact for all j. We may inductively find

fn € C.(X) such that f, < U and f,, = 1 on the compact set [J" K; U[J"""

supp(f;). Then
126



fn /" xu pointwise, so by the MCT 3.3.9,

w(U) zlim/fndpzlimw(fn) zlim/fndy:y(U).

Now suppose E € By is arbitrary. By (R2), v is a regular Borel measure, so by Exercise
2.5.23, given € > 0, there are F' C F C U with F closed, U open, and v(U \ F) < ¢. But
since U \ F' is open,

pUN\F) =v(U\F) <,

and thus p(U) —e < p(F) < u(U). Hence pu is outer regular, and thus p = v. O

Lemma 5.6.11. Suppose X is LCH and pu is a Radon measure on X. Define o(f) :== [ fdp
on C.(X). The following are equivalent:

(1) ¢ extends continuously to Cy(X).
(2) ¢ is bounded with respect to || - || so-

(3) (X)) is finite.
Proof.
(1) < (2): This follows as C.(X) C Cp(X) is dense with respect to || || by the LCH Urysohn

Lemma (Exercise 1.2.11(2)).
(2) < (3): This follows as u(X) =sup {¢(f) = [ fdu|f € Ce(X) with 0 < f < 1}, O

Corollary 5.6.12. A positive linear functional in Co(X)* is of the form [ -du for some
finite Radon measure fu.

Proposition 5.6.13. If ¢ € Cy(X,R)*, there are positive pL € Co(X,R)* such that ¢ =
w1 — p_. Hence there are finite Radon measures jiy, jto on X such that

@(f)_/fdﬂl_/fdﬂ2_/fd(u1—u2) Vf e Co(X,R).

Proof. For f € Cy(X,[000)), define ¢, (f) := sup{p(g9)|0 < g < f}. For f € Co(X,R),

define p (f) := w4 (fr) — i (f2) as fi € Co(X, [0, 00)).
Step 1: For all fi, fo € Co(X,[0,00)) and ¢ > 0, 1 (cfi + f2) = co+(f1) + 01(f2).

Proof. 1t suffices to show additivity. Whenever 0 < ¢; < f; and 0 < gy < fs,
0 < g1+ g2 < fi+ f2. This implies ¢ (f1 + f2) > ¢ (f1) + ¢4 (f2)-
Now if 0 < g < fi+ fo, set g1 := g A f1 and g2 := g — ¢1. Then 0 < g; < f; and
0 < g2 < fa, s0

p(9) = ¢(g1) + ©(g2) < 01 (f1) + 0+(f2).
Taking sup over such g gives ¢, (f1 + f2) < o1 (f1) + ¢+ (f2). O

Step 2: If f € Cyp(X,R) with f = g — h where g,h > 0, then ¢, (f) = p+(9) — ¢+ (h).

Proof. Observe that g+ f_- = h+ f. > 0,50 o1 (9)+o(f-) = @i (h)+ e (fr) by Step
1. Rearranging gives the result. 0

Step 3: ¢4 is linear on Cy(X,R).
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Proof. Suppose ¢ € Rand f,g € Co(X,R). If ¢ > 0, thencf+g = cfy +g9.—(¢f-+9g_)
where cfy + g+ > 0. Then
er(cf +9) = pilefr +94) —prlef-+9-) (Step 2)

= cp+(f+) + o1 (9+) — cor(f-) — p-(9-) (Step 1)

= c(p+(f+) — @+ (f2)) + (p+(9+) — p+(9-))

= cp(f) + v+(9) (Step 2). O

Step 4: ¢, € Co(X,R)* is positive with ||| < [l¢]|.
Proof. First suppose f € Cy(X, [0,00)). Since
(@)l < llell - llglloe < M1l - 1f llos VO<g<f
we have that
0=0(0) < @i (f) < llell - [1fllo Vf € Co(X, [0, 00)).
Now if f € Cy(X,R) is arbitrary,
o+ ()] < max{pi(f+), o+ (f-)} < [l - max{|[follos, [[f=lloc} < [l - [[flloo-

Hence [[p4]| < ll]- O

Step 5: Finally, the linear functional p_ := ¢ — ¢ € Cy(X,R)* is also positive as ¢, (f) >

o(f) for all f € Cy(X,[0,00)) by definition of ¢,

0

Exercise 5.6.14. For p € Cy(X)*, there are finite Radon measures p, i1, pi2, 13 on X such

that

@(f)—iik/fduk—/fd<3 i’%)

Definition 5.6.15. Let X be an LCH space.

VfeCyX).

e A signed Borel measure v on X is called a signed Radon measure if v are Radon,
where v = v, — v_ is the Jordan decomposition of v. We denote by RM(X,R) C

M (X, R) the subset of finite signed Radon measures.

e A complex Borel measure v on X is called a complex Radon measure if Re(v), Im(v)
are Radon. We denote by RM(X,C) C M(X,C) the subset of complex Radon mea-

sures.

Exercise 5.6.16 (Lusin’s Theorem). Suppose X is LCH and p is a Radon measure on X.
If f: X — C is measurable and vanishes outside a set of finite measure, then for all € > 0,

there is an E € Bx with u(E°¢) < e and a g € C.(X) such that g = f on E. Moreover:

o If || fllo < o0, we can arrange that [|g]/cc < | f]]co-
o If im(f) C R, we can arrange that im(g) C R.

Theorem 5.6.17 (Real Riesz Representation). Suppose X is LCH. Define ® : RM(X,R) —

Co(X,R)* by v — ¢, where p,(f) := [ fdv. Then ® is an isometric linear isomorphism.
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Proof. Clearly ® is linear. By Proposition 5.6.13, ® is surjective. It remains to prove ® is
isometric, which also implies injectivity. Fix v € RM.
S‘/fdmr +‘/fdl/_

loull < v For all f € Co(X, R),
< / fldvs + / fldv. = / 1] < [ flloo - 117 lrw

|%(f)|=‘/fdu :‘/fdmr—/fdy_

Hence [lg, || < [|v]|.

v I‘ =1on X |v|-a.e. Let ¢ > 0. Since |v|
is finite, by Lusin’s Theorem (Exercise 5.6.16), there is an f € C.(X,R) such that || f|l« =1
and f = <% on E € Bx where |u|(EC) < g/2. Then

dy dv dv
d d n
vl = / v| = /‘ d|y| d|y| V] (Ex. 4.2.11) /d\l/|

< ‘/fdv +‘/f—mdv < H%H-Hf\joﬁ/‘f—w‘ v

< [leull + 2w[(E°) < leu]l + .
Since € > 0 was arbitrary, ||v| < |l¢. |- O

Exercise 5.6.18 (Complex Riesz Representation). Suppose X is LCH. Define ® : RM(X, C) —
Co(X,C)* by v — ¢, where ¢,(f) := [ fdv. Show that ® is an isometric linear isomor-
phism.

leu]l > |lv||: Since v is finite, by Exercise 4.2.11 ‘
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