
Corrected [JP15, Lem. 5.2] David Penneys

The proof of [JP15, Lem. 5.2] is not correct, as it was based on an incorrect proof of
[Bur03, Prop. 3.2.19] (Burns’ PhD thesis). I realized this when I was asked for a referee
report for Burns’ thesis. That article is now published as [Bur17], where the corresponding
proposition (Prop. 5.21) has been corrected, with help from me and Jesse Peterson. We
provide the setup below.

Suppose P ⊂ Q is an inclusion of semifinite factors acting on a Hilbert space H, and
TrP and TrQ are normal faithful semifinite tracial weights on P and Q respectively. By

[Haa79], there is a unique trace preserving operator valued weight T : Q+ → P̂+. Recall
that pTrQ = {x ∈ Q+|TrQ(x) <∞} (and similarly for P ), and pT = {x ∈ Q+|T (x) ∈ P+}.
Lemma ([Bur17, Lem. 5.19], proof due to Jesse Peterson). There is an x ∈ pT with ker(x) =
(0).

Immediate consequence of this lemma are the following results:

• [Bur17, Lem. 5.20]: There is a sequence of projections (pn) ⊂ pT such that pn ↗ 1.
• [Bur17, Prop. 5.21]: Given a II1 subfactor N ⊂ M of infinite index, there exists an

orthonormal MN -basis, i.e., a subset {b} ⊂ M such that
∑
beNb

∗ = 1, where the
beNb

∗ are mutually orthogonal projections.

We now use this technique to give a correct proof of [JP15, Lem. 5.2]. We do so in slightly
more generality.

Lemma 1. Suppose (A,TrA) and (B,TrB) are semifinite tracial von Neumann algebras with

A ⊆ B, and let T : B+ → Â+ be the unique trace preserving operator valued weight. There
is an x ∈ pT ∩ pTrB with ker(x) = (0).

Proof. We mimic Jesse Peterson’s proof of [Bur17, Lem. 5.19].
Since TrB is semi-finite, let (pi) ∈ mTrB be a sequence of projections with pi ↗ 1. Since

TrB(pi) <∞, T (pi) has a spectral resolution

T (pi) =

∫ ∞
0

λdeiλ.

Note that eij ↗ 1 as j ↗∞, and eijpie
i
j ∈ pT ∩ pTrB for all j ≥ 0.

For i, j ∈ N, pick αi,j > 0 such that y =
∑

i,j αi,je
i
jT (pi)e

i
j converges SOT in A+, and

x =
∑

i,j αi,je
i
jpie

i
j converges SOT in pTrB ⊂ B+. This can be done by choosing the αi,j such

that

•
∑

i,j αi,j‖eijT (pi)e
i
j‖ <∞ so y ∈ A+,

•
∑

i,j αi,j‖eijpieij‖ ≤
∑

i,j αi,j <∞ so x ∈ B+, and

•
∑

i,j αi,j TrB(eijpie
i
j) <∞ so x ∈ pTrB .

Then by normality of T , we have T (x) = y, so x ∈ pT ∩ pTrB .
We claim that ker(x) = (0). Let ξ ∈ H \ {0}. Since pi ↗ 1, there is an i ∈ N such that

piξ 6= 0. Fixing this i, we have that pie
i
j → pi SOT as j ↗∞, so pie

i
jξ → piξ 6= 0 as j ↗∞.

Hence there is a j ∈ N such that pie
i
jξ 6= 0, so ξ /∈ ker(pie

i
j) = ker(eijpie

i
j). It follows that

xξ 6= 0, and we are finished. �

Corollary 2. There is a sequence of projections (pn) ⊂ pT ∩ pTrB with pn ↗ 1.
1



Proof. Let x ∈ pT ∩ pTrB be as in Lemma 1. Define pn = χ[1/n,∞)(x) using the L∞-functional
calculus. Since pT and pTrB are hereditary, pn ∈ pT ∩ pTrB for all n ∈ N, and clearly pn ↗ 1
since ker(x) = 0. �

Theorem 3. Suppose AHB is an A − B bimodule. There exists an orthonormal HB-basis
consisting of bi-bounded vectors in H◦ = AH

◦ ∩H◦B.

Proof. Using Corollary 2 we can find a sequence of mutually orthogonal projections (qn) ⊂
pT ∩pTrB such that

∑
n qn = 1, where the sum converges SOT. We claim that for every n ∈ N

and η ∈ H◦B, qnη ∈ AH
◦. Indeed, for all a ∈ A and n ∈ N, aqnη ∈ H◦B, and thus

‖aqnη‖2H = Tr(Bop)′(LaqnηL
∗
aqnη) = Tr(Bop)′(aqnLηL

∗
ηqna) = trA(aT (qnLηL

∗
ηqn)a)

≤ ‖η‖2H trA(aT (qn)a∗) ≤ ‖η‖2H · ‖T (qn)‖A+‖aΩ‖2L2A.

Thus for every n ∈ N, each qnHB-basis consists of bi-bounded vectors in H◦. Thus a disjoint
union of orthonormal qnHB-bases does the trick. �
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