Corrected [JP15, Lem. 5.2] David Penneys

The proof of [JP15, Lem. 5.2] is not correct, as it was based on an incorrect proof of
[Bur03, Prop. 3.2.19] (Burns’ PhD thesis). I realized this when I was asked for a referee
report for Burns’ thesis. That article is now published as [Burl7], where the corresponding
proposition (Prop. 5.21) has been corrected, with help from me and Jesse Peterson. We
provide the setup below.

Suppose P C () is an inclusion of semifinite factors acting on a Hilbert space H, and
Trp and Trg are normal faithful semifinite tracial weights on P and () respectively. By
[Haa79], there is a unique trace preserving operator valued weight 7' : QT — P¥. Recall
that pn, = {2 € QT|Trq(v) < oo} (and similarly for P), and pr = {z € Q7 |T'(z) € PT}.

Lemma ([Burl7, Lem. 5.19], proof due to Jesse Peterson). There is an x € pr with ker(z) =
(0).
Immediate consequence of this lemma are the following results:
e [Burl7, Lem. 5.20]: There is a sequence of projections (p,) C pr such that p, 7 1.
e [Burl7, Prop. 5.21]: Given a II; subfactor N C M of infinite index, there exists an
orthonormal My-basis, i.e., a subset {b} C M such that > beyb* = 1, where the
benb* are mutually orthogonal projections.

We now use this technique to give a correct proof of [JP15, Lem. 5.2]. We do so in slightly
more generality.

Lemma 1. Suppose (A, Tra) and (B, Trp) are semifinite tracial von Neumann algebras with
ACB, andletT : BT — A* be the unique trace preserving operator valued weight. There
is an x € pr N pr, with ker(z) = (0).
Proof. We mimic Jesse Peterson’s proof of [Burl7, Lem. 5.19].

Since Trp is semi-finite, let (p;) € mr, be a sequence of projections with p; * 1. Since
Trp(pi;) < oo, T'(p;) has a spectral resolution

T(p;) :/ Ades.
0

Note that €5 1 as j 7 oo, and elpie} € pr N pry, for all j > 0.

For i,j € N, pick a;; > 0 such that y = 37, - a; ;eiT(p;)e} converges SOT in A*, and
r = Z” ai,jeé-piez- converges SOT in pp,, C B. This can be done by choosing the o; ; such
that

L Zzg O‘i,j|’€}T(Pi)€;“| <oosoy € Ay,
> ai,j|’6}pi63|| < > Qi <00 sox € By, and
o >, ;ii;Trp(ejpie}) <0080 T € pryy.
Then by normality of 7', we have T'(z) =y, so & € pr N pry,.

We claim that ker(z) = (0). Let £ € H \ {0}. Since p; /1, there is an i € N such that
pi€ # 0. Fixing this 7, we have that pie; — p; SOT as j 7 00, s0 pieté — pi #0as j 7 oo,
Hence there is a j € N such that p;ef¢ # 0, so § ¢ ker(pie}) = ker(elpse}). It follows that
x& # 0, and we are finished. O]

Corollary 2. There is a sequence of projections (p,) C pr NP1, with p, 7 1.
1



Proof. Let x € pr Np1y, be as in Lemma 1. Define p,, = X[1/n,00) (%) using the L>-functional
calculus. Since pr and pry, are hereditary, p, € pr N pn, for all n € N, and clearly p,, 1
since ker(z) = 0. O

Theorem 3. Suppose 4Hp is an A — B bimodule. There exists an orthonormal Hpg-basis
consisting of bi-bounded vectors in H° = 4H° N Hy.

Proof. Using Corollary 2 we can find a sequence of mutually orthogonal projections (g,) C
prNpr, such that Y ¢, = 1, where the sum converges SOT. We claim that for every n € N
and n € Hy, ¢.n € 4H°. Indeed, for all a € A and n € N, ag,n € Hg, and thus

llag.n||3; = Tr(Bop)/(LaqnnLann) = Tr(Bop)/(aannL,’;qna) = trA(aT(annL;qn)a)
< Il tra(aT(gn)a*) < Inll7 - 1T (gu)lla, [|a2][72 4-

Thus for every n € N, each g, Hp-basis consists of bi-bounded vectors in H°. Thus a disjoint
union of orthonormal ¢, H-bases does the trick. O
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