
More detail on [Pen20, Lem. 3.26] David Penneys

We provide more detail on the proof of [Pen20, Lem. 3.26]. We thank Giovanni Ferrer and
Brett Hungar for their careful reading of the manuscript, leading to this note.

Let (C, φ) be a (semisimple) pivotal tensor category. The following definition is based on
André Henriques’ notion of modular distortion for bimodules over a |rmII1 factor [BCE

+19,
BCE+20].

Definition 1. We say an object c ∈ C has constant distortion δ ∈ C× if

trL(f) = δ · trR(f) ∀ f ∈ EndC(c). (1)

Observe that every simple object has constant distortion.

Lemma 2.

(1) If c ∈ C has constant distortion δc, then so does every subobject b ⊆ c.
(2) If a, b ∈ C have constant distortion δa, δb respectively, then a⊗b has constant distortion

δaδb.

Proof. To prove (1), let r : c → b and s : b → c such that r◦s = idb. Then for all f ∈ EndC(b),
suppressing the pivotal structure φ,
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To prove (2), we observe that for all f ∈ EndC(a⊗ b),
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By Lemma 2 above, we get a (most likely non-faithful) C×-grading on C given by C =⊕
z∈C× Cz where Cz is the semisimple subcategory of C whose objects have constant distortion

z. Observe Cw ⊗ Cz ⊆ Cwz, and if c ∈ Cz, then c∨ ∈ Cz−1 .
Denote by G the subgroup of C× such that Cz ̸= 0 so that C is faithfully graded by G. By

[Pen20, Rem. 3.17], there is a surjective group homomorphism from the universal grading
group UC ↠ G. Composing with the inclusion map G ↪→ C× gives a group homomorphism
UC → C×. In summary, we have the following proposition.

Proposition 3. Let (C, φ) be a pivotal (semisimple) tensor category. The map δ : Irr(C) →
C× given by c 7→ δc := dimL(c)/ dimr(c) gives a group homomorphim from the universal
grading group UC to C×. In particular, Ce is spherical.
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Now suppose (C, φ) is a pivotal (semisimple) multitensor category with unit decomposition
1 =

⊕r
i=1 1i. We write Cij = 1i ⊗ C ⊗ 1j and cij = 1i ⊗ c⊗ 1j for c ∈ C.

Definition 4. We say c ∈ C has constant distortion ∆ ∈ Mr(C×) if cij has constant distortion
∆ij for all 1 ≤ i, j,≤ r. Here, we have used a slight abuse of notation; for fij ∈ EndC(cij),
trL(fij) ∈ EndC(1j) and trR(fij) ∈ EndC(1i). We may identify EndC(1i) ∼= C and EndC(1j) ∼=
C by mapping the identity to 1C; under this isomorphism, we require (1) to hold.

We omit the proof of the following lemma, which is similar to the proofs of Lemma 2.

Lemma 5.

(1) If c ∈ C has constant distortion ∆c, then so does every subobject b ⊆ c.
(2) If a ∈ Cij and b ∈ Cjk have constant distortion ∆a,∆b respectively (which have exactly

one non-zero entry), then a⊗ b ∈ Cik has constant distortion ∆a∆b (which again has
exactly one non-zero entry).

Similar to above, we get a (most likely non-faithful) Gr × C×-grading on C given by
C =

⊕
(Cij)z, where Gr is the groupoid with r objects and a unique isomorphism between

any two objects, and (Cij)z is the semsimple subcategory of Cij whose objects have constant
distortion z. Observe that (Cij)w ⊗ (Cjk)z ⊆ (Cik)wz, and if c ∈ (Cij)z, then c∨ ∈ (Cji)z−1 .

Denote by G the subgroupoid of Gr × C× such that C is faithfully graded by G. Observe
that the map

(Cij)z ∋ c 7−→ z ∈ C×

descends to a well-defined groupoid homomorphism G → C×. By [Pen20, Rem. 3.17], there
is a surjective groupoid homomorphism from the universal grading groupoid UC ↠ G. Com-
posing these two homomorphisms gives a groupoid homomorphism UC → C×. In summary,
we have the following proposition.

Proposition 6. Let (C, φ) be a pivotal (semisimple) multitensor category. The map ∆ :
Irr(C) → C× given by c 7→ δc := dimL(c)/ dimR(c) gives a groupoid homomorphism from
the universal grading groupoid UC to C×. In particular, for any idempotent e ∈ UC, Ce is
spherical.
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