

We provide more detail on the proof of [Pen20, Lem. 3.26]. We thank Giovanni Ferrer and Brett Hungar for their careful reading of the manuscript, leading to this note.

Let (\mathcal{C}, φ) be a (semisimple) pivotal tensor category. The following definition is based on André Henriques' notion of *modular distortion* for bimodules over a $rmII_1$ factor [BCE⁺19, BCE⁺20].

Definition 1. We say an object $c \in \mathcal{C}$ has *constant distortion* $\delta \in \mathbb{C}^\times$ if

$$\text{tr}_L(f) = \delta \cdot \text{tr}_R(f) \quad \forall f \in \text{End}_{\mathcal{C}}(c). \quad (1)$$

Observe that every simple object has constant distortion.

Lemma 2.

- (1) If $c \in \mathcal{C}$ has constant distortion δ_c , then so does every subobject $b \subseteq c$.
- (2) If $a, b \in \mathcal{C}$ have constant distortion δ_a, δ_b respectively, then $a \otimes b$ has constant distortion $\delta_a \delta_b$.

Proof. To prove (1), let $r : c \rightarrow b$ and $s : b \rightarrow c$ such that $r \circ s = \text{id}_b$. Then for all $f \in \text{End}_{\mathcal{C}}(b)$, suppressing the pivotal structure φ ,

$$\begin{array}{c} \text{Diagram showing the equality of two string diagrams:} \\ \text{Left: } \text{Diagram with } f \text{ in a box, } b \text{ at the bottom, } c \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Middle: } \text{Diagram with } s \text{ in a box, } b \text{ at the bottom, } c \text{ at the top, } f \text{ and } r \text{ in boxes.} \\ \text{Right: } \text{Diagram with } f \text{ in a box, } b \text{ at the bottom, } c \text{ at the top, } s \text{ and } r \text{ in boxes.} \\ \text{Equation: } \text{Diagram with } f \text{ in a box, } b \text{ at the bottom, } c \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Final: } \text{Diagram with } f \text{ in a box, } b \text{ at the bottom, } c \text{ at the top, } r \text{ and } s \text{ in boxes.} \end{array}$$

To prove (2), we observe that for all $f \in \text{End}_{\mathcal{C}}(a \otimes b)$,

$$\begin{array}{c} \text{Diagram showing the equality of two string diagrams:} \\ \text{Left: } \text{Diagram with } f \text{ in a box, } a \text{ and } b \text{ at the bottom, } b \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Middle: } \text{Diagram with } f \text{ in a box, } a \text{ and } b \text{ at the bottom, } b \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Right: } \text{Diagram with } f \text{ in a box, } a \text{ and } b \text{ at the bottom, } b \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Equation: } \text{Diagram with } f \text{ in a box, } a \text{ and } b \text{ at the bottom, } b \text{ at the top, } r \text{ and } s \text{ in boxes.} \\ \text{Final: } \text{Diagram with } f \text{ in a box, } a \text{ and } b \text{ at the bottom, } b \text{ at the top, } r \text{ and } s \text{ in boxes.} \end{array}$$

By Lemma 2 above, we get a (most likely non-faithful) \mathbb{C}^\times -grading on \mathcal{C} given by $\mathcal{C} = \bigoplus_{z \in \mathbb{C}^\times} \mathcal{C}_z$ where \mathcal{C}_z is the semisimple subcategory of \mathcal{C} whose objects have constant distortion z . Observe $\mathcal{C}_w \otimes \mathcal{C}_z \subseteq \mathcal{C}_{wz}$, and if $c \in \mathcal{C}_z$, then $c^\vee \in \mathcal{C}_{z^{-1}}$.

Denote by G the subgroup of \mathbb{C}^\times such that $\mathcal{C}_z \neq 0$ so that \mathcal{C} is faithfully graded by G . By [Pen20, Rem. 3.17], there is a surjective group homomorphism from the universal grading group $U_{\mathcal{C}} \twoheadrightarrow G$. Composing with the inclusion map $G \hookrightarrow \mathbb{C}^\times$ gives a group homomorphism $U_{\mathcal{C}} \rightarrow \mathbb{C}^\times$. In summary, we have the following proposition.

Proposition 3. Let (\mathcal{C}, φ) be a pivotal (semisimple) tensor category. The map $\delta : \text{Irr}(\mathcal{C}) \rightarrow \mathbb{C}^\times$ given by $c \mapsto \delta_c := \dim_L(c)/\dim_r(c)$ gives a group homomorphism from the universal grading group $U_{\mathcal{C}}$ to \mathbb{C}^\times . In particular, \mathcal{C}_e is spherical.

Now suppose (\mathcal{C}, φ) is a pivotal (semisimple) multitensor category with unit decomposition $1 = \bigoplus_{i=1}^r 1_i$. We write $\mathcal{C}_{ij} = 1_i \otimes \mathcal{C} \otimes 1_j$ and $c_{ij} = 1_i \otimes c \otimes 1_j$ for $c \in \mathcal{C}$.

Definition 4. We say $c \in \mathcal{C}$ has constant distortion $\Delta \in M_r(\mathbb{C}^\times)$ if c_{ij} has constant distortion Δ_{ij} for all $1 \leq i, j \leq r$. Here, we have used a slight abuse of notation; for $f_{ij} \in \text{End}_{\mathcal{C}}(c_{ij})$, $\text{tr}_L(f_{ij}) \in \text{End}_{\mathcal{C}}(1_j)$ and $\text{tr}_R(f_{ij}) \in \text{End}_{\mathcal{C}}(1_i)$. We may identify $\text{End}_{\mathcal{C}}(1_i) \cong \mathbb{C}$ and $\text{End}_{\mathcal{C}}(1_j) \cong \mathbb{C}$ by mapping the identity to $1_{\mathbb{C}}$; under this isomorphism, we require (1) to hold.

We omit the proof of the following lemma, which is similar to the proofs of Lemma 2.

Lemma 5.

- (1) *If $c \in \mathcal{C}$ has constant distortion Δ_c , then so does every subobject $b \subseteq c$.*
- (2) *If $a \in \mathcal{C}_{ij}$ and $b \in \mathcal{C}_{jk}$ have constant distortion Δ_a, Δ_b respectively (which have exactly one non-zero entry), then $a \otimes b \in \mathcal{C}_{ik}$ has constant distortion $\Delta_a \Delta_b$ (which again has exactly one non-zero entry).*

Similar to above, we get a (most likely non-faithful) $\mathcal{G}_r \times \mathbb{C}^\times$ -grading on \mathcal{C} given by $\mathcal{C} = \bigoplus (\mathcal{C}_{ij})_z$, where \mathcal{G}_r is the groupoid with r objects and a unique isomorphism between any two objects, and $(\mathcal{C}_{ij})_z$ is the semisimple subcategory of \mathcal{C}_{ij} whose objects have constant distortion z . Observe that $(\mathcal{C}_{ij})_w \otimes (\mathcal{C}_{jk})_z \subseteq (\mathcal{C}_{ik})_{wz}$, and if $c \in (\mathcal{C}_{ij})_z$, then $c^\vee \in (\mathcal{C}_{ji})_{z^{-1}}$.

Denote by \mathcal{G} the subgroupoid of $\mathcal{G}_r \times \mathbb{C}^\times$ such that \mathcal{C} is faithfully graded by \mathcal{G} . Observe that the map

$$(\mathcal{C}_{ij})_z \ni c \longmapsto z \in \mathbb{C}^\times$$

descends to a well-defined groupoid homomorphism $\mathcal{G} \rightarrow \mathbb{C}^\times$. By [Pen20, Rem. 3.17], there is a surjective groupoid homomorphism from the universal grading groupoid $\mathcal{U}_{\mathcal{C}} \twoheadrightarrow \mathcal{G}$. Composing these two homomorphisms gives a groupoid homomorphism $\mathcal{U}_{\mathcal{C}} \rightarrow \mathbb{C}^\times$. In summary, we have the following proposition.

Proposition 6. *Let (\mathcal{C}, φ) be a pivotal (semisimple) multitensor category. The map $\Delta : \text{Irr}(\mathcal{C}) \rightarrow \mathbb{C}^\times$ given by $c \mapsto \delta_c := \dim_L(c)/\dim_R(c)$ gives a groupoid homomorphism from the universal grading groupoid $\mathcal{U}_{\mathcal{C}}$ to \mathbb{C}^\times . In particular, for any idempotent $e \in \mathcal{U}_{\mathcal{C}}$, \mathcal{C}_e is spherical.*

REFERENCES

- [BCE⁺19] Marcel Bischoff, Ian Charlesworth, Samuel Evington, Luca Giorgetti, David Penneys, and André Henriques, *Modular distortion for II_1 factor bimodules*, Subfactors and Applications (Organized by Dietmar Bisch, Terry Gannon, Vaughan Jones, and Yasuyuki Kawahigashi, eds.), Oberwolfach Rep., vol. 49, 2019, [DOI:10.4171/OWR/2019/49](https://doi.org/10.4171/OWR/2019/49), pp. 42–46.
- [BCE⁺20] Marcel Bischoff, Ian Charlesworth, Samuel Evington, Luca Giorgetti, and David Penneys, *Distortion for multifactor bimodules and representations of multifusion categories*, 2020, [arXiv:2010.01067](https://arxiv.org/abs/2010.01067).
- [Pen20] David Penneys, *Unitary dual functors for unitary multitensor categories*, High. Struct. **4** (2020), no. 2, 22–56, [MR4133163 arXiv:1808.00323](https://arxiv.org/abs/1808.00323).