Finite dimensional complex multimatrix algebras

Exercises and sections marked (x) below are more advanced and can be skipped on first read
through. Exercises marked (#x*) are very difficult relative to the exposition!

1 Basic facts about M, (C)

Exercise 1. Show that if a € M,,(C) commutes with all b € M,,(C), then a = Al for some A € C.
Exercise 2. Prove that M, (C) has no non-trivial 2-sided ideals.

Exercise 3. Use Exercise 2 to show that any (not necessarily unital) *-algebra map out of M, (C)
into another complex *-algebra is either injective or the zero map.

The matrix algebra M, (C) acts on the inner product (Hilbert) space C" with inner product
given by (&) := >0 n;;.

Definition 4. An element a € M, (C) is called positive, denoted a > 0, if for every & € C",
(ag, &) = 0.
Exercise 5. Show that the following are equivalent for a € M, (C).

1) a>0.

(1)
(2) a is normal (aa* = a*a) and all eigenvalues of a are non-negative.
(3) There is a b € M,,(C) such that b*b = a.

(4)

4) There is a b € M,,«x(C) for some k € N such that b*b = a.

2 Finite dimensional complex multimatrix algebras

In this section, A will always denote a finite dimensional complex x-algebra.
Definition 6. A linear functional ¢ : A — C is called:

e a trace or tracial if p(ab) = p(ba) for all a,b € A.

e positive if p(a*a) > 0 for all a € A.

e a state if p is positive and (1) = 1.

o faithful if ¢ is positive and p(a*a) = 0 implies a = 0.

Definition 7. A finite dimensional complex *-algebra A is called a multimatriz algebra if it is
x-isomorphic to a *x-algebra of the form

Mm((C) DD Mnk((c)

The row vector ng := (nq,...,n) is called the dimension row vector of A. For 1 < i < k, we
denote by p; € A the minimal central projection corresponding to the summand M, (C), so that



Exercise 8. Prove that M, (C) has a unique trace such that tr(1) = 1. In this case, prove that tr
is positive (so tr is a state) and faithful.

Exercise 9 (x). Prove that for any state ¢ on M, (C), there exists d € M, (C) with d > 0 and
tr(d) = 1 such that ¢(a) = tr(da) for all a € M, (C). Prove that ¢ is a faithful if and only if d is
also invertible.

The matrix d is called the density matrix of ¢ with respect to tr.

Exercise 10. Suppose tr is a trace on a multimatrix algebra. Show that:
(1) tr is positive if and only if tr(p) > 0 for all projections p € A (p = p* = p?).
(2) tr is positive and faithful if and only if tr(p) > 0 for all projections p € A.

Exercise 11. Find a bijective correspondence between faithful tracial states on a finite dimensional
complex multimatrix algebra with dimension row vector ng = (n1,...,n;) and column vectors
A € (0,1)7 such that ngA = 1. Under this correspondence, what does the entry \; signify?

3 Finite dimensional operator algebras (x)

Let H denote a finite dimensional inner product (Hilbert) space. Denote by B(H) the unital
x-algebra of linear operators on H, where * is the adjoint operation.

Exercise 12. Show that a choice of orthonormal basis of H gives a unitary linear map v : H — C"
(uu* = iden and w*u = idgy) such that  — uzu* is a unital x-algebra isomorphism B(H) — M, (C),
where the % on the latter is conjugate transpose.

Definition 13. Suppose H is a finite dimensional inner product (Hilbert) space, and denote
by B(H) the linear operators on H. For a subset S C B(H), the commutant of S is S’ :=
{z € B(H)|zs = sz for all s € S}

Exercise 14. Show that if S ¢ T C B(H), then T C S’.
Exercise 15. Show that if S C B(H), then S’ = S".

Exercise 16 (xx). Show that if A C B(H) is a unital x-subalgebra, then A = A”.
Hint: See [Jon10, Thm. 3.2.1].

Exercise 17 (xx).
(1) Show that a finite dimensional von Neumann algebra is a multimatrix algebra.

(2) Show that a finite dimensional C*-algebra is a multimatrix algebra.

4 The GNS construction

Suppose A is a multimatrix algebra and ¢ is a faithful state.

Exercise 18. Show that (a,b) := ¢(b*a) defines a positive definite inner product on A (thought of
as a C-vector space).

Definition 19. We define L%(A, ) to be A as an inner product (Hilbert) space with the inner
product from Exercise 18. We denote the image of 1 € A in L2(A4, ) by £, so af? is the image of
a € A.



Exercise 20. Prove that if a € A, the map given by b2 — ab(2 defines a left multiplication operator
Ao € B(L?(A,¢)). Prove that the adjoint of this operator is A, given by bQ + a*b<2.

Exercise 21. Prove that if a € A, the map given by b2 — baf) defines a right multiplication
operator p, € B(L?(A, ¢)). Prove that the adjoint of this operator is py+ given by bQ — ba*Q.

Exercise 22. Suppose ¢ is a faithful state on M, (C). Prove that every linear operator on
L?*(M,(C), ) can be written as a left multiplication operator followed by a right multiplication
operator. Deduce that the commutant of the left M, (C) action on L?(M,(C), ») is the right M,,(C)
action.

Exercise 23. Suppose ¢ is a faithful state on A. Prove that the commutant of the left A acting
on L?(A, ) is the right action of A on L2(A, ).

Exercise 24 (x). Show that a finite dimensional complex *-algebra is a multimatrix algebra if and
only if it has a faithful state.

Hint: For the forward direction, use FExercise 11. For the reverse direction, if A has a faithful state,
then the image of A inside the linear operators on L*(A,¢) is a unital *-subalgebra, and thus a
finite dimensional von Neumann algebra by Ezxercise 16. The result now follows by (1) of Exercise
17.

5 Inclusions of multimatrix algebras

Definition 25. Consider a multimatrix algebra B and a x-subalgebra A C B such that A is also
a multimatrix algebra (so A is unital). We call the inclusion A C B unital if the unit of A is also
the unit of B.

Exercise 26. Give examples of unital and non-unital inclusions of multimatrix algebras.

Exercise 27 (x). Show that Mj(C) isomorphic to a unital *-subalgebra of M, (C) if and only if
k | n. Then show that up to unitary conjugation in M, (C), the isomorphism above is given by

Mp(C)>z— € M,(C)

x
where z is repeated on the diagonal j times where jk = n.

Consider a unital inclusion of multimatrix algebras A C B. Suppose B has dimension row vector
ng = (n1,...,n¢) and A has dimension row vector m4 = (my, ..., mg). Denote the minimal central
projections of A by p1,...,pr and the minimal central projections of B by ¢1, ..., qe. Consider for
1 <i<kand1<j</the *-homomorphism ¢;; : My, (C) — M, (C) given by

M, (C) = A B — My, (C).

T = Pi% = PiT > Piq;T.

That is, @;j(x) := pigjx € B. Note that ¢;; need not be unital, but note that by Exercise 3, ¢; ; is
either injective or zero.

Exercise 28. Show that if we consider ¢;; as a map p;A — p;q;Bp;qj, then ¢;; is a unital *-
homomorphism.



By Exercises 27 and 28 there is a non-negative integer A;; € N> such that up to unitary
conjugation in B, ¢;j(x) consists of A;; copies of z along the diagonal of p;qjBp;qj. Let A =
(Aij) € Myxe(C)

Exercise 29. Show that since A C B is a unital inclusion of multimatrix algebras (1 € A), we
must have mgA = np.

Definition 30. The Bratteli diagram of the inclusion A C B is the bipartite graph I with:
e k even vertices labelled by the integers mq, ..., my,
e ( odd vertices labelled by the integers nq,...,ny, and
e A;; edges from the i-th even vertex to the j-th odd vertex.

That is, I' is the bipartite graph with adjacency matrix A whose even and odd vertices are labelled
by the entries of the dimension row vectors of A and B respectively.

Exercise 31 (). Let B be a multimatrix algebra. Prove that up to unitary conjugation in B, any
unital x-subalgebra A C B is completely determined by its Bratteli diagram.

Exercise 32. Suppose A4 and Ap are trace column vectors for A and B satisfying maAs = ngAp
respectively as in Exercise 11. Assume the entries of A4 and Ap are all strictly positive. Denote by
try and trp the corresponding faithful tracial states on A and B. Prove that trp|4 = tra if and
only if AAp = A 4.

6 Connected inclusions

We continue the notation of the previous section for an inclusion A C B with dimension row vectors
ma = (my,...,mg) and ng = (n1,...,ny) respectively.

Definition 33. The inclusion A C B is called connected if the graph I' is connected.
Exercise 34 (x). Prove that I' is connected if and only if Z(A) N Z(B) = C.

Exercise 35 (x). Show that if A C B is connected, there is a unique d > 0 and unique trace vector
Ap such that mpAg = 1 and ATANg = d?\g. Then deduce:

(1) If Ay := Ag, then ATA4 = d®Ap.

0 A A\ AB
@ (i o) (o) = (an):
Hint: Use the Frobenius-Perron Theorem.
Definition 36. If A C B is connected, the scalar d from Exercise 35 is called the Frobenius Perron

etgenvalue. The trace vector Ap is called a Frobenius Perron eigenvector.
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