
Finite dimensional complex multimatrix algebras

Exercises and sections marked (∗) below are more advanced and can be skipped on first read
through. Exercises marked (∗∗) are very difficult relative to the exposition!

1 Basic facts about Mn(C)

Exercise 1. Show that if a ∈Mn(C) commutes with all b ∈Mn(C), then a = λ1 for some λ ∈ C.

Exercise 2. Prove that Mn(C) has no non-trivial 2-sided ideals.

Exercise 3. Use Exercise 2 to show that any (not necessarily unital) ∗-algebra map out of Mn(C)
into another complex ∗-algebra is either injective or the zero map.

The matrix algebra Mn(C) acts on the inner product (Hilbert) space Cn with inner product
given by 〈η, ξ〉 :=

∑n
j=1 ηjξj .

Definition 4. An element a ∈ Mn(C) is called positive, denoted a ≥ 0, if for every ξ ∈ Cn,
〈aξ, ξ〉 ≥ 0.

Exercise 5. Show that the following are equivalent for a ∈Mn(C).

(1) a ≥ 0.

(2) a is normal (aa∗ = a∗a) and all eigenvalues of a are non-negative.

(3) There is a b ∈Mn(C) such that b∗b = a.

(4) There is a b ∈Mn×k(C) for some k ∈ N such that b∗b = a.

2 Finite dimensional complex multimatrix algebras

In this section, A will always denote a finite dimensional complex ∗-algebra.

Definition 6. A linear functional ϕ : A→ C is called:

• a trace or tracial if ϕ(ab) = ϕ(ba) for all a, b ∈ A.

• positive if ϕ(a∗a) ≥ 0 for all a ∈ A.

• a state if ϕ is positive and ϕ(1) = 1.

• faithful if ϕ is positive and ϕ(a∗a) = 0 implies a = 0.

Definition 7. A finite dimensional complex ∗-algebra A is called a multimatrix algebra if it is
∗-isomorphic to a ∗-algebra of the form

Mn1(C)⊕ · · · ⊕Mnk
(C).

The row vector nA := (n1, . . . , nk) is called the dimension row vector of A. For 1 ≤ i ≤ k, we
denote by pi ∈ A the minimal central projection corresponding to the summand Mni(C), so that
piApi ∼= Mni(C).
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Exercise 8. Prove that Mn(C) has a unique trace such that tr(1) = 1. In this case, prove that tr
is positive (so tr is a state) and faithful.

Exercise 9 (∗). Prove that for any state ϕ on Mn(C), there exists d ∈ Mn(C) with d ≥ 0 and
tr(d) = 1 such that ϕ(a) = tr(da) for all a ∈ Mn(C). Prove that ϕ is a faithful if and only if d is
also invertible.
The matrix d is called the density matrix of ϕ with respect to tr.

Exercise 10. Suppose tr is a trace on a multimatrix algebra. Show that:

(1) tr is positive if and only if tr(p) ≥ 0 for all projections p ∈ A (p = p∗ = p2).

(2) tr is positive and faithful if and only if tr(p) > 0 for all projections p ∈ A.

Exercise 11. Find a bijective correspondence between faithful tracial states on a finite dimensional
complex multimatrix algebra with dimension row vector nA = (n1, . . . , nk) and column vectors
λ ∈ (0, 1)j such that nAλ = 1. Under this correspondence, what does the entry λi signify?

3 Finite dimensional operator algebras (∗)
Let H denote a finite dimensional inner product (Hilbert) space. Denote by B(H) the unital
∗-algebra of linear operators on H, where ∗ is the adjoint operation.

Exercise 12. Show that a choice of orthonormal basis of H gives a unitary linear map u : H → Cn

(uu∗ = idCn and u∗u = idH) such that x 7→ uxu∗ is a unital ∗-algebra isomorphism B(H)→Mn(C),
where the ∗ on the latter is conjugate transpose.

Definition 13. Suppose H is a finite dimensional inner product (Hilbert) space, and denote
by B(H) the linear operators on H. For a subset S ⊂ B(H), the commutant of S is S′ :=
{x ∈ B(H)|xs = sx for all s ∈ S}

Exercise 14. Show that if S ⊂ T ⊂ B(H), then T ′ ⊂ S′.

Exercise 15. Show that if S ⊂ B(H), then S′ = S′′′.

Exercise 16 (∗∗). Show that if A ⊂ B(H) is a unital ∗-subalgebra, then A = A′′.
Hint: See [Jon10, Thm. 3.2.1].

Exercise 17 (∗∗).

(1) Show that a finite dimensional von Neumann algebra is a multimatrix algebra.

(2) Show that a finite dimensional C*-algebra is a multimatrix algebra.

4 The GNS construction

Suppose A is a multimatrix algebra and ϕ is a faithful state.

Exercise 18. Show that 〈a, b〉 := ϕ(b∗a) defines a positive definite inner product on A (thought of
as a C-vector space).

Definition 19. We define L2(A,ϕ) to be A as an inner product (Hilbert) space with the inner
product from Exercise 18. We denote the image of 1 ∈ A in L2(A,ϕ) by Ω, so aΩ is the image of
a ∈ A.
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Exercise 20. Prove that if a ∈ A, the map given by bΩ 7→ abΩ defines a left multiplication operator
λa ∈ B(L2(A,ϕ)). Prove that the adjoint of this operator is λa∗ given by bΩ 7→ a∗bΩ.

Exercise 21. Prove that if a ∈ A, the map given by bΩ 7→ baΩ defines a right multiplication
operator ρa ∈ B(L2(A,ϕ)). Prove that the adjoint of this operator is ρa∗ given by bΩ 7→ ba∗Ω.

Exercise 22. Suppose ϕ is a faithful state on Mn(C). Prove that every linear operator on
L2(Mn(C), ϕ) can be written as a left multiplication operator followed by a right multiplication
operator. Deduce that the commutant of the left Mn(C) action on L2(Mn(C), ϕ) is the right Mn(C)
action.

Exercise 23. Suppose ϕ is a faithful state on A. Prove that the commutant of the left A acting
on L2(A,ϕ) is the right action of A on L2(A,ϕ).

Exercise 24 (∗). Show that a finite dimensional complex ∗-algebra is a multimatrix algebra if and
only if it has a faithful state.
Hint: For the forward direction, use Exercise 11. For the reverse direction, if A has a faithful state,
then the image of A inside the linear operators on L2(A,ϕ) is a unital ∗-subalgebra, and thus a
finite dimensional von Neumann algebra by Exercise 16. The result now follows by (1) of Exercise
17.

5 Inclusions of multimatrix algebras

Definition 25. Consider a multimatrix algebra B and a ∗-subalgebra A ⊂ B such that A is also
a multimatrix algebra (so A is unital). We call the inclusion A ⊂ B unital if the unit of A is also
the unit of B.

Exercise 26. Give examples of unital and non-unital inclusions of multimatrix algebras.

Exercise 27 (∗). Show that Mk(C) isomorphic to a unital ∗-subalgebra of Mn(C) if and only if
k | n. Then show that up to unitary conjugation in Mn(C), the isomorphism above is given by

Mk(C) 3 x 7→

x . . .

x

 ∈Mn(C)

where x is repeated on the diagonal j times where jk = n.

Consider a unital inclusion of multimatrix algebras A ⊂ B. Suppose B has dimension row vector
nB = (n1, . . . , n`) and A has dimension row vector mA = (m1, . . . ,mk). Denote the minimal central
projections of A by p1, . . . , pk and the minimal central projections of B by q1, . . . , q`. Consider for
1 ≤ i ≤ k and 1 ≤ j ≤ ` the ∗-homomorphism ϕij : Mmi(C)→Mnj (C) given by

Mmi(C) ↪→ A ↪→ B �Mnj (C).

x 7→ pix = pix 7→ piqjx.

That is, ϕij(x) := piqjx ∈ B. Note that ϕij need not be unital, but note that by Exercise 3, ϕi,j is
either injective or zero.

Exercise 28. Show that if we consider ϕij as a map piA → piqjBpiqj , then ϕij is a unital ∗-
homomorphism.
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By Exercises 27 and 28 there is a non-negative integer Λij ∈ N≥0 such that up to unitary
conjugation in B, ϕij(x) consists of Λij copies of x along the diagonal of piqjBpiqj . Let Λ =
(Λi,j) ∈Mk×`(C)

Exercise 29. Show that since A ⊂ B is a unital inclusion of multimatrix algebras (1B ∈ A), we
must have mAΛ = nB.

Definition 30. The Bratteli diagram of the inclusion A ⊂ B is the bipartite graph Γ with:

• k even vertices labelled by the integers m1, . . . ,mk,

• ` odd vertices labelled by the integers n1, . . . , n`, and

• Λij edges from the i-th even vertex to the j-th odd vertex.

That is, Γ is the bipartite graph with adjacency matrix Λ whose even and odd vertices are labelled
by the entries of the dimension row vectors of A and B respectively.

Exercise 31 (∗). Let B be a multimatrix algebra. Prove that up to unitary conjugation in B, any
unital ∗-subalgebra A ⊂ B is completely determined by its Bratteli diagram.

Exercise 32. Suppose λA and λB are trace column vectors for A and B satisfying mAλA = nBλB
respectively as in Exercise 11. Assume the entries of λA and λB are all strictly positive. Denote by
trA and trB the corresponding faithful tracial states on A and B. Prove that trB |A = trA if and
only if ΛλB = λA.

6 Connected inclusions

We continue the notation of the previous section for an inclusion A ⊂ B with dimension row vectors
mA = (m1, . . . ,mk) and nB = (n1, . . . , n`) respectively.

Definition 33. The inclusion A ⊂ B is called connected if the graph Γ is connected.

Exercise 34 (∗). Prove that Γ is connected if and only if Z(A) ∩ Z(B) = C.

Exercise 35 (∗). Show that if A ⊂ B is connected, there is a unique d > 0 and unique trace vector
λB such that mBλB = 1 and ΛTΛλB = d2λB. Then deduce:

(1) If λA := ΛλB, then ΛTλA = d2λB.

(2)

(
0 Λ
λT 0

)(
λB
dλA

)
= d

(
λB
dλA

)
.

Hint: Use the Frobenius-Perron Theorem.

Definition 36. If A ⊂ B is connected, the scalar d from Exercise 35 is called the Frobenius Perron
eigenvalue. The trace vector λB is called a Frobenius Perron eigenvector.
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