
Cyclic Homology Handout Dave Penneys
Quantum Geometry Seminar 4/28/08

Most of the following information comes from Loday’s Cyclic Homology.

I. The Cyclic, Simplicial, and Semi-Simplicial Categories

The Cyclic Category. The category c∆ has the following presentation:

Objects: [n] = {0 < 1 < · · · < n} for n ∈ N.
Morphisms: composites of

δi : [n] −→ [n + 1] for 0 ≤ i ≤ n + 1,

σj : [n− 1] −→ [n] for 0 ≤ j ≤ n, and

τ : [n] −→ [n]

such that the following relations hold:
(i) δjδi = δiδj−1 for i < j,
(ii) σjσi = σiσj+1 for i ≤ j,

(iii) σjδi =


δiσj−1 for i < j

id[n] for i = j, j + 1
δi−1σj for i > j + 1,

(iv) τn+1 = id[n],

(v) τδi =

{
δi−1τ for 1 ≤ i ≤ n

δn for i = 0,

(vi) τσi =

{
σi−1τ for 1 ≤ i ≤ n

σnτ2 for i = 0.

We can take δi to be the strictly increasing injection that skips i, σj the increasing surjection such
that j, j + 1 7→ j, and τ the cyclic permutation such that τ(k) = k + 1 mod (n + 1) for 0 ≤ k ≤ n.

The Simplicial Category. The category s∆ is the subcategory of c∆ generated by the δi’s
and the σj ’s.

The Semi-Simplicial Category. The category ss∆ is the subcategory of c∆ (or s∆) gener-
ated by the δi’s.

II. Cyclic, Simplicial, and Semi-Simplicial Objects

Definition: A cyclic (respectively simplicial, semi-simplicial) object in a category A is a functor

X• : c∆op → A

(respectively s∆op, ss∆op). Denote the category of cyclic (respectively simplicial, semisimplicial)
A-objects by cA (respectively sA, ssA), and note that cA = Fun(c∆op,A), the category of functors
from c∆op to A (respectively sA = Fun(s∆op,A), ssA = Fun(ss∆op,A)).
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Usually we write Xn = X•([n]), di = X•(δi), sj = X•(σj), and t = X•(τ). Note that

di : Xn −→ Xn−1 for 0 ≤ i ≤ n, n > 1
sj : Xn −→ Xn+1 for 0 ≤ j ≤ n, and
t : Xn −→ Xn.

We have the following relations among these maps:
(i) didj = dj−1di for i < j,
(ii) sisj = sj+1si for i ≤ j,

(iii) disj =


sj−1di if i < j

id if i = j, j + 1
sjdi−1 if i > j + 1

(iv) tn+1
n = id,

(v) dit =

{
tdi−1 for 1 ≤ i ≤ n

dn for i = 0,

(vi) sit =

{
tsi−1 for 1 ≤ i ≤ n

t2sn for i = 0.

From this point on, k will be a commutative ring. Note that if C• : c∆op → kMOD, the category of
left k-modules, we set t = (−1)nC•(τ) to satisfy Loday’s sign convention, which accounts for the
sign of the cyclic permutation in Sn+1. Hence (v) and (vi) above are replaced with:

(v) dit =

{
−tdi−1 for 1 ≤ i ≤ n

(−1)ndn for i = 0
and

(vi) sit =

{
−tsi−1 for 1 ≤ i ≤ n

(−1)nt2sn for i = 0.

III. Various Categories and Functors

Given a category A, we will write a ∈ A to mean a ∈ Ob(A) and f ∈ A(a, b) if f : a → b for a, b ∈ A.

We already know about the categories ss∆, s∆, and c∆; ssA, sA, and cA for a given category
A; and the category Fun(A,B) for given categories A and B.

Definition: Categories will be denoted by the sans-serif font: ABC, etc.
(1) Grp is the category of groups, and AB is the category of abelian groups, which will sometimes

be referred to as Z-modules since the term “cyclic abelian group” would be ambiguous.
(2) Set is category of sets.
(3) Top is the category of topological spaces with continuous maps.
(4) kMOD (respectively MODk) is the category of left (respectively right) k-modules.
(5) CPLX will denote the category of chain complexes of abelian groups, and kCPLX (respec-

tively CPLXk) will denote the category of chain complexes in kMOD (respectively MODk).
(6) kALG is the category of k-algebras.
(7) Cat is the category of small categories.

Sometimes we add a subscript to the category to denote certain properties.
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Definition: U will denote the forgetful functor. We have obvious forgetful functors

ssA sA
Uoo cA.

Uoo

In fact, there are left adjoints to these functors.

Definition: The functor F = FREE : Set → AB is given by X 7→ Z〈X〉, the free abelian group
on the elements of X.

F extends to a functor F : ssSet → ssAB by F (Xn) = Z〈Xn〉 and extending the maps Z-linearly.
Similarly, we can look at the functor F : ssSet → sskMOD. We can also replace ss with s or c in the
above discussion.

F is left adjoint to U : AB → Set.

Definition: The functor ALT : sskMOD → kCPLX is given by C• 7→ (C∗, b) where Cn is the
same as before, and b is the alternating sum of the di’s:

b =
n∑

i=0

(−1)idi.

Once again, we can replace ss with s or c in the above discussion.

IV. Examples

(1) Singular Homology. Let X be a topological space, and let ∆n = co{e0, . . . , en} ⊂ Rn+1

be the standard n-simplex. For 0 ≤ i ≤ n + 1, define

δi : ∆n −→ ∆n+1 by
n∑

j=0

αjej 7−→
n∑

j=0

αjeδi(j)

where α0, . . . , αn ∈ [0, 1] with α0 + · · ·+ αn = 1. Define the semi-simplicial set

∆•(X) : ss∆ → SET

by Sn(X) = {continuous f : ∆n → X} and di = ∆•(δi) = δ∗i , i.e. di(f) = f ◦ δi:

X ∆n+1
foo ∆n.

δioo

Applying the functor F : ssSET → ssAB, we have a semi-simplicial Z-module S•(X) =
F (∆•(X)). Now applying the functor ALT : ssAB → CPLX and the functor Hn : CPLX →
AB gives the nth singular homology of X. Hence, singular homology is the composite of the
following functors:

AB CPLX
Hnoo ssAB

ALToo ssSET
Foo Top.

∆•oo
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(2) Group Homology. Let A be a small category.

Definition: The nerve of A is the simplicial set N•(A) is given by

N0(A) = Ob(A),

N1(A) =
{

b a
foo

∣∣∣∣a, b ∈ A

}
,

N2(A) =
{

c b
goo a

foo
∣∣∣∣a, b, c ∈ A

}
,

and so forth. The maps di are given by delting the ith object, e.g.

d0

(
c b

goo a
foo

)
= c b

goo ,

d1

(
c b

goo a
foo

)
= c a

g◦foo , and

d2

(
c b

goo a
foo

)
= b a

foo .

The maps sj are given by adding the identity morphism for the jth object, e.g.

s0

(
c b

goo a
foo

)
= c b

goo a
foo a

idaoo ,

s1

(
c b

goo a
foo

)
= c b

goo b
idboo a

foo , and

s2

(
c b

goo a
foo

)
= c c

idcoo b
goo a

foo .

If A has only one object, Ob(A) = {∗}, then N•(A) is the cyclic set where the map t is given
by the cyclic permutation, e.g.

t

(
∗ ∗hoo ∗goo ∗foo

)
= ∗ ∗goo ∗foo ∗hoo .

Suppose now that A is a group, i.e. Ob(A) = {∗} and all morphisms are invertible. Then
applying the functors U , F , ALT , and Hn, we get group homology. That is, if G = N1(A),
then Hn(G) is given by the following composite of functors:

AB CPLX
Hnoo cAB

ALToo cSET
Foo Cat∗

N•oo Grp,oo

where Cat∗ is the category of all small categories with one object.

(3) Hochschild Homology. Let A be a unital k-algebra, and let M be an A − A-bimodule.
Define the simplicial module C•(A,M) by Cn(A,M) = M⊗A⊗n where ⊗ means ⊗k. Define
the di’s by

d0 (a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an) = a0a1 ⊗ a2 ⊗ · · · ⊗ an,

di (a0 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an for 0 < i < n, and

dn (a0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an) = ana0 ⊗ a1 ⊗ · · · ⊗ an−1

for a0 ∈ M and a1, . . . , an ∈ A. Define the si’s by

si (a0 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an
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(where 1 ∈ A). If M = A, then C•(A,A) is a cyclic module where t is given by

t (a0 ⊗ · · · ⊗ an−1 ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1.

Taking ALT and Hn gives the nth Hochschild homology Hn(A,M), so Hochschild homology
is a composite of the following functors:

AB kCPLX
Hnoo skMOD

ALToo
kALGunital

C•(−,M)oo

If M = A, we write HHn(A) = Hn(A,A), and the above sequence is altered by replacing
skMOD with ckMOD.

If G : kALGunital → A is a functor where A is an abelian category, we can extend G to
a functor G̃ : kALG → A. For I ∈ kALG, we can form its unitalization Ĩ = k⊕ I, and define
G̃(I) = coker(G(i)), where i : k → Ĩ in the natural inclusion:

0 Ioooo Ĩ
poo k

ioo 0.oo

Hence, Hochschild homology extends to a functor kALG → AB.

V. Cyclic Homology

Given a cyclic module C•, there is a classical complex arising from calculations in group homology:

· · · Cn
1−too Cn

Noo Cn
1−too · · ·Noo

where N = 1 + t + t2 + · · · + tn is the “norm map.” A group action on a space X is a continuous
map

G×X −→ X.

We can think of this classical complex “acting” on (C∗, b) = ALT (C•) to get the cyclic bicomplex
CC∗∗:

b
��

−b′
��

b
��

−b′
��

C2

b
��

C2
1−too

−b′

��

C2
Noo

b
��

C2
1−too

−b′

��

Noo

C1

b
��

C1
1−too

−b′

��

C1
Noo

b
��

C1
1−too

−b′

��

Noo

C0 C0
1−too C0

Noo C0
1−too Noo

where b′ = d0 − d1 + · · ·+ (−1)n−1dn−1. The relations of a cyclic module imply b(1− t) = (1− t)b′

and b′N = Nb, so the bicomplex above is well defined.

Definition: Then nth cyclic homology of a cyclic module C• is the nth total homology of the
associated cyclic bicomplex CC∗∗:

HCn(C•) = Hn(Tot∗(CC∗∗)).

Cyclic homology is thus the composite of the following functors:

AB kBCPLX
Hnoo ckMODoo
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We have an additional method of taking homology of a cyclic module by the functors described
before, which will be denoted by HHn:

HHn(C•) = Hn(ALT (C•)) = Hn(C∗, b).

From this bicomplex construction, we can reconstruct Connes’ initial construction of cyclic homol-
ogy and many of the tools he developed for calculation. First, note that the complex (C∗,−b′) is
contractible via contraction −s = −(−1)ntsn. We will need the following lemma:

Killing Contractible Complexes Lemma: Let (A∗ ⊕A′
∗, d) ∈ kCPLX

· · · An−1 ⊕A′
n−1

oo An ⊕A′
n

d=

"
α β
γ δ

#
oo · · ·oo

such that (A′
∗, δ) ∈ kCPLX is contractible via contraction h. Then (A∗, α− βhγ) ∈ kCPLX, and the

inclusion
(id,−hγ) : (A∗, α− βhγ) −→ (A∗ ⊕A′

∗, d)
is a quasi-isomorphism.

(1) Connes’ Periodicity Exact Sequence. Let CC∗∗ be the cyclic bicomplex associated to
the cyclic module C•. Let CC

(2)
∗∗ be the bicomplex obtained from CC∗∗ by looking at only

the first two columns, and let CC[2]∗∗ be the bicomplex obtained from CC∗∗ by shifting
the bicomplex two columns to the right. We then get an exact sequence of bicomplexes

0 CC[2]∗∗oo CC∗∗oo CC
(2)
∗∗

oo 0oo

which yields an exact sequence in total complexes, which in turn, yields a long exact se-
quence in homology via the snake lemma:

· · · HHn−1(C•)oo HCn−2(C•)oo HCn(C•)oo HHn(C•)oo HCn−1(C•)oo · · · .oo

Note that
Hn(Tot∗(CC

(2)
∗∗ )) ∼= HHn(C•) = Hn(C∗, b)

by the lemma, and clearly

Hn(Tot∗(CC[2]∗∗)) = HCn−2(C•).

(2) Connes’ Bicomplex. By applying the lemma to the −b′ columns of the cyclic bicomplex
which are contractible via −s, we get Connes’ bicomplex BC∗∗ where B = (1− t)sN :

b
��

b
��

b
��

C2

b
��

C1
Boo

b
��

C0
Boo

C1

b
��

C0
Boo

C0
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(3) Connes’ Complex. Connes’ initial definition of cyclic homology was given as the homology
of a complex instead of a total complex of a bicomplex. Since b(1− t) = (1− t)b′, we have
that b descends to a map

· · · Cλ
n−1

eboo Cλ
n

eboo Cλ
n+1

eboo · · ·
eboo

where Cλ
n = Cn/ im(1− t). Define Hλ

n(C•) = Hn(Cλ
∗ , b̃).

Theorem: If Q ⊆ k, there is a canonical isomorphism Hλ
n(C•) ∼= HCn(C•).

Proof. Let

h′ =
1

n + 1
id, h =

−1
n + 1

n∑
i=1

iti

be maps Cn → Cn:

Cn

h

&&NNNNNNNNNNNNN Cn
(1−t)oo

h′

&&NNNNNNNNNNNNN

id
��

Cn

h

&&NNNNNNNNNNNNN
Noo

id
��

Cn

h′

&&NNNNNNNNNNNNN
(1−t)oo

id
��

· · ·Noo

Cn Cn
(1−t)oo Cn

Noo Cn
(1−t)oo · · ·Noo

From the relations of a cyclic module, h′N +(1− t)h = id and Nh′+h(1− t) = id. Hence, the rows
of CC∗∗ are acyclic augmented complexes with H0 = Cλ

n , and there is a first quadrant spectral
sequence IIE0

p,q ⇒ HCp+q(C•) with

IIE0
p,q = CCp,q and d0 = dh,

IIE1
p,q = H(CCp,q, d

h) = δp,0C
λ
q and d1 = [dv], and

IIE2
p,q =II E∞

p,q = H(δp,0C
λ
q , [dv]) = δp,0Hq(Cλ

∗ , b̃) and d2 = 0.

�

VI. Elementary Computations

(1) Hochschild Homology. Let A ∈ kALGunital and M ∈ AMODA. Clearly

H0(A,M) = MA = M/〈am−ma〉,

the module of coinvariants of M by A. If M = A, then HH0(A) = A/[A,A]. If A is
commutative, HH0(A) = A. If A = k, we have the cylic module C•(k) given by Cn(k) =
k⊗(n+1) ∼= k, and each di is the identity. Hence, the Hochschild complex C∗(k) is given by

k k
0oo k

1oo k
0oo k

1oo · · ·oo

and we have HH0(k) = k and HHn(k) = 0 for all n > 0.
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(2) Cyclic Homology. We have Cn(A) = A⊗n+1 for A ∈ kALGunital, and Connes’ boundary
map B : A⊗n+1 −→ A⊗n+2 is given explicitly by

B(a0 ⊗ · · · ⊗ an) = (1− t)(−1)ntsn

n∑
i=0

ti(a0 ⊗ · · · ⊗ an)

= (1− t)(−1)ntsn

n∑
i=0

(−1)ni(ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1)

= (1− t)(−1)nt

n∑
i=0

(−1)ni(ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1 ⊗ 1)

= (1− t)(−1)n(−1)n+1
n∑

i=0

(−1)ni(1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1)

=
n∑

i=0

(−1)ni+1(1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1)

+ (−1)n(i+1)+1(ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−2).

It is clear that HC0(A) = HH0(A). If A = k, Connes’ bicomplex is given by

1
��

0
��

1
��

0
��

k

0
��

k

1
��

−6oo k

0
��

0oo k
−2oo

k

1
��

k
0oo

0
��

k
−2oo

k

0
��

k
−2oo

k

Note that B : C2n → C2n+1 is multiplication by −2(2n + 1) and B : C2n+1 → C2n+2 is
the zero map. Letting dodd denote d : Tot2n+1(BC∗∗) −→ Tot2n(BC∗∗) and deven denote
d : Tot2n(BC∗∗) −→ Tot2n−1(BC∗∗), it is clear that dodd = 0 and deven is onto with kernel
isomorphic to k. Hence

HCn(k) ∼=

{
k for n even
0 for n odd.

Theorem: Hochschild and cyclic homology are Morita invariant, i.e. if A and B are Morita equiv-
alent k-algberas, then HHn(A) ∼= HHn(B) and HCn(A) ∼= HCn(B).

Corollary: HH0(Mn(k)) = k and HHn(k) = 0 for all n > 0, and

HCn(Mn(k)) =

{
k for n even
0 for n odd.
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