Cycric HomoLoGcy HanDoOUT Dave Penneys
Quantum Geometry Seminar 4/28/08

Most of the following information comes from Loday’s Cyclic Homology.

I. The Cyclic, Simplicial, and Semi-Simplicial Categories

The Cyclic Category. The category cA has the following presentation:

Objects: [n]={0<1<---<n}forneN
Morphisms: composites of

di: [n] — n+1] for 0 <i<n+1,
oj: [n—1] — [n] for 0 <j <n, and
7: [n] — [n]
such that the following relations hold:
(1) 6]51 = (51'(5]',1 for ¢ < 7,
(11) 0j0; = 00541 for ¢ < j,
(51‘0']‘_1 for i < j
(iii) 0']'51' == 1d[n] for i = j,] +1
(51;10']' for i > j+1,
(iv) 7" =idy,,

; <3 <
(v) 70; = {(er for 1<i<n

On for ¢ =0,
(vi) o7 for 1<i<n
vi) To; =
! T2 for i =0.

We can take ¢; to be the strictly increasing injection that skips 4, o; the increasing surjection such
that j,j + 1+ j, and 7 the cyclic permutation such that 7(k) = k+1 mod (n+1) for 0 < k <n.

The Simplicial Category. The category sA is the subcategory of cA generated by the §;’s
and the o;’s.

The Semi-Simplicial Category. The category ssA is the subcategory of cA (or sA) gener-
ated by the 9;’s.

II. Cyclic, Simplicial, and Semi-Simplicial Objects
Definition: A cyclic (respectively simplicial, semi-simplicial) object in a category A is a functor
Xo: cAP — A
(respectively sA°P, ssA°P). Denote the category of cyclic (respectively simplicial, semisimplicial)
A-objects by cA (respectively sA, ssA), and note that cA = Fun(cA°P,A), the category of functors
from cA°P to A (respectively sA = Fun(sA°P A), ssA = Fun(ssA°P, A)).
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Usually we write X, = X¢([n]), di = Xo(d;), s; = Xe(0;), and t = Xo(7). Note that
di: Xp — Xp_q for 0<i<n, n>1
sj: Xp — Xpqq for 0 <5 <n, and

t: X, — X,
We have the following relations among these maps:
(i) didj = d;j_1d; for i < j,
(ii) sis5 = sj418; for i < j,
Sj_ldi ifi<y
(iii) djsj = < id ite=y4,j+1
sjdi—1 ifi>j54+1
(iv) ! =id,
tdi_1 for 1 <i<n
dp, for i =0,

(vi) sit {tsi_l for1<i<n
V1) S;l =

(V) dit =

t2s,, for i = 0.

From this point on, k will be a commutative ring. Note that if Cy: cA°® — MOD, the category of
left k-modules, we set t = (—1)"C4(7) to satisfy Loday’s sign convention, which accounts for the
sign of the cyclic permutation in S,41. Hence (v) and (vi) above are replaced with:

(v) dit —td;—1 for 1<i<n and
V) dit = .
(-1)"d, fori=0

(vi) sit —t8;_1 for 1<i<n
vi) s;t =
‘ (—1)"t?s,  for i =0.

III. Various Categories and Functors

Given a category A, we will write a € A to mean a € Ob(A) and f € A(a,b) if f: a — b for a,b € A.

We already know about the categories ssA, sA, and cA; ssA, sA, and cA for a given category
A; and the category Fun(A,B) for given categories A and B.

Definition: Categories will be denoted by the sans-serif font: ABC, etc.

(1) Grp is the category of groups, and AB is the category of abelian groups, which will sometimes
be referred to as Z-modules since the term “cyclic abelian group” would be ambiguous.

(2) Set is category of sets.

(3) Top is the category of topological spaces with continuous maps.

(4) xMOD (respectively MODy,) is the category of left (respectively right) k-modules.

(5) CPLX will denote the category of chain complexes of abelian groups, and ;CPLX (respec-
tively CPLXy) will denote the category of chain complexes in tMOD (respectively MODy,).

(6) xALG is the category of k-algebras.

(7) Cat is the category of small categories.

Sometimes we add a subscript to the category to denote certain properties.
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Definition: U will denote the forgetful functor. We have obvious forgetful functors

ssA v sA U cA.

In fact, there are left adjoints to these functors.

Definition: The functor F' = FREE: Set — AB is given by X +— Z(X), the free abelian group
on the elements of X.

F extends to a functor F': ssSet — ssAB by F(X,,) = Z(X,) and extending the maps Z-linearly.
Similarly, we can look at the functor F': ssSet — ssMOD. We can also replace ss with s or ¢ in the
above discussion.

F is left adjoint to U: AB — Set.

Definition: The functor ALT: sszMOD — ;CPLX is given by C, +— (Cy,b) where C), is the
same as before, and b is the alternating sum of the d;’s:

b= (~1)'d;.

i=0
Once again, we can replace ss with s or c in the above discussion.

IV. Examples
(1) Singular Homology. Let X be a topological space, and let A" = co{ey,...,e,} € R**!
be the standard n-simplex. For 0 < i < n + 1, define
81 A" — AL by

n n
E ozjej [— E aje(;i(j)
Jj=0 Jj=0

where ag, ..., ay € [0,1] with ag + - - - + a, = 1. Define the semi-simplicial set
Ag(X):ssA — SET
by Sp(X) = {continuous f: A" — X} and d; = A4(6;) = 97, i.e. di(f) = fod;:

X <;f AL & AP

Applying the functor F': ssSET — ssAB, we have a semi-simplicial Z-module S¢(X) =
F(Ae(X)). Now applying the functor ALT: ssAB — CPLX and the functor H,: CPLX —
AB gives the n'" singular homology of X. Hence, singular homology is the composite of the
following functors:

AB <" cpLx <4

Ao
LT sAB < ssSET <= Top.



(2)

Group Homology. Let A be a small category.

Definition: The nerve of A is the simplicial set Ng(A) is given by

Nl(A):{b<f—a

a,bEA},

Ny(A) = { Cébéa

a,b,c e A} ,
and so forth. The maps d; are given by delting the i*" object, e.g.
d0<C<Lb<La> — C<Lb,

d1<c<g—b<La) = c<ﬂa, and

d2<c<gib<f7a> = béa,

The maps s; are given by adding the identity morphism for the 7' object, e.g.

so<c<g—b<f—a>:c _ ! g <22 a,
id
31<c<g—b<f—a>_c g b=} ! a, and
< g f > ide g f
So| c<=—ph=~——a | = ¢ c b a .

If A has only one object, Ob(A) = {x}, then Ng(A) is the cyclic set where the map ¢ is given
by the cyclic permutation, e.g.

(h g f> g f h
t| * * * *x | = % * * * .

Suppose now that A is a group, i.e. Ob(A) = {*} and all morphisms are invertible. Then
applying the functors U, F, ALT, and H,, we get group homology. That is, if G = Ny(A),
then H,(G) is given by the following composite of functors:

Hy Ne
AB < CPLX <L cAB <E— SET Cat, Grp,

where Cat, is the category of all small categories with one object.

Hochschild Homology. Let A be a unital k-algebra, and let M be an A — A-bimodule.
Define the simplicial module Co(A, M) by Cp,(A, M) = M @ A®™ where ® means ®y. Define
the d;’s by

do(a0®a1®a2®-~®an):aoa1®a2®‘--®an,

di(ap®@ - ®a;Ra41 Q- Ray) =0 Q-+ ®ajai+1 -+ ay for 0 <i<n, and

dn (A ®@a1 @+ ® ap_1 @ ap) = Anao ® a1 @ -+ ® ap_1
for ap € M and ay,...,a, € A. Define the s;’s by

$i(a® Ra;Ra11 @ Rap) =R Ra; V1 Rai41 Q- Qay
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(where 1 € A). If M = A, then C,(A4, A) is a cyclic module where ¢ is given by
t(ap®  Qan—1®ap) =(—1)"a, Qao®@ -+ ® ap_1.

Taking ALT and H,, gives the n'" Hochschild homology H,, (A, M), so Hochschild homology
is a composite of the following functors:

; Co(— M
AB <i kCPLX -ﬂ SkMOD # kALGunitaI

If M = A, we write HH,,(A) = H,(A, A), and the above sequence is altered by replacing
skMOD with ¢,MOD.

If G: gALGynitat — A is a functor where A is an abelian category, we can extend G to
a functor G: ;ALG — A. For I € ALG, we can form its unitalization I =k & I, and define
G(I) = coker(G(i)), where i: k — I in the natural inclusion:

0 I<2F<'k 0.

Hence, Hochschild homology extends to a functor ;ALG — AB.

V. Cyclic Homology

Given a cyclic module Cl, there is a classical complex arising from calculations in group homology:

1-t N 1-t N

Ch Cp Cn

where N =1+t +t2+ .- +t" is the “norm map.” A group action on a space X is a continuous
map

Gx X — X.

We can think of this classical complex “acting” on (Cy,b) = ALT(C,) to get the cyclic bicomplex
CCls:

b - b -
Cy 1—t s N s 1t o) N

b - b —b
Cl I 01 N Cl = Cl N

b - b —b
Co 1—t Co N Co 1—-t Co N

where b' = doy —dy + -+ + (—=1)""'d,,_1. The relations of a cyclic module imply b(1 —t) = (1 — t)b’
and b’ N = Nb, so the bicomplex above is well defined.

Definition: Then n'" cyclic homology of a cyclic module C, is the n'® total homology of the
associated cyclic bicomplex C'Cl,:

HCp(Ca) = Hy(Tot, (CCL)).

Cyclic homology is thus the composite of the following functors:

AB <", BCPLX <— ¢,MOD
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We have an additional method of taking homology of a cyclic module by the functors described
before, which will be denoted by H H,,:

HH,(Cy) = Hy(ALT(Cy)) = Hy(Cy,b).

From this bicomplex construction, we can reconstruct Connes’ initial construction of cyclic homol-
ogy and many of the tools he developed for calculation. First, note that the complex (Cy, —b) is
contractible via contraction —s = —(—1)"ts,. We will need the following lemma:

Killing Contractible Complexes Lemma: Let (4, ® A/, d) € ,CPLX

v 0

such that (A}, d) € rCPLX is contractible via contraction h. Then (A, « — Bhvy) € xCPLX, and the
inclusion
(ida _hfy): (A*v a — ﬁh')/) - (A* @ Afk’ d)

is a quasi-isomorphism.

(1) Connes’ Periodicity Exact Sequence. Let CC,. be the cyclic bicomplex associated to
the cyclic module C,. Let CCQ be the bicomplex obtained from C'C,, by looking at only
the first two columns, and let CC[2].« be the bicomplex obtained from CC,. by shifting
the bicomplex two columns to the right. We then get an exact sequence of bicomplexes

which yields an exact sequence in total complexes, which in turn, yields a long exact se-
quence in homology via the snake lemma:

- HHn—l(Co) - HCnfz(C.) -~ HCn(C.) -~ HHn(C.) -~ HCn71(C.) - ..

Note that
H,(Tot,(CC'?)) = HH,(C,) = H,(C,,b)
by the lemma, and clearly

H,(Tot, (CC[2]4s)) = HCp_2(Cl).

(2) Connes’ Bicomplex. By applying the lemma to the —b" columns of the cyclic bicomplex
which are contractible via —s, we get Connes’ bicomplex BC., where B = (1 —t)sN:




(3) Connes’ Complex. Connes’ initial definition of cyclic homology was given as the homology
of a complex instead of a total complex of a bicomplex. Since b(1 —t) = (1 — ¢)V/, we have
that b descends to a map

b A b A b A b
“%Cn—l%cn%cn—s—l(i”'

where C} = C,,/im(1 — t). Define H)NC,) = H,(C2,b).
Theorem: If Q C k, there is a canonical isomorphism H))(Cy) = HC,,(Cs).

Proof. Let

1 -1 &
h' = id, h= it
nt1 n‘l-l;z
be maps C,, — Cp:

(1-1) c N C (1-1) C N

id id id
C (1-t) C N c (1) c N

n n n n

From the relations of a cyclic module, ”’'N + (1 —t)h = id and Nh'+ h(1 —t) = id. Hence, the rows
of CC,, are acyclic augmented complexes with Hy = C’;L\, and there is a first quadrant spectral
sequence 1TEY = HC)14(C,) with

HES  =CCpy and d° = dy,
"E) ,=H(CCpgq,d") =6,0C;) and d' = [d"], and
g2 =11 B = H(6,00,[d"]) = 8,0Hy(C2,b) and d* = 0.

VI. Elementary Computations
(1) Hochschild Homology. Let A € yALGypital and M € 4MOD 4. Clearly
Ho(A,M) =My = M/{am — ma),

the module of coinvariants of M by A. If M = A, then HHy(A) = A/[A,A]. If A is
commutative, HHy(A) = A. If A =k, we have the cylic module C,(k) given by Cy (k) =
k®(+1) = k. and each d; is the identity. Hence, the Hochschild complex C. (k) is given by

ALY W Sy AL AR

and we have HHy(k) = k and HH, (k) = 0 for all n > 0.
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(2) Cyclic Homology. We have C,,(A) = A®"*! for A € ALGypital, and Connes’ boundary
map B: A®"H s A®n+2 g given explicitly by

Blag® -+ @ an) = (1 —)(— ”tant ap ® -+ @ ap)

n
=1 =t)(-D)"sn Y (-D)"(@;® - ®a, @ a0 @ - @ a; 1)
=0

=(1=t)(=D)"> (-1)"(a;® - QanDag® - Da; 1 ® 1)
=1-t)(-1)"( ”“Z 1®a;® - Ra,®a® -+ & ai—1)

_Z m+11®az®"‘®an®ao®"'®ai—1)

F (=)D (g, 1 @106 Qa,®ag® - @ aj_2).
It is clear that HCy(A) = HHyp(A). If A =k, Connes’ bicomplex is given by

Note that B: C3, — Ca,41 is multiplication by —2(2n + 1) and B: Co,41 — Caopto is
the zero map. Letting d°d9 denote d: Totg,;1(BCys) — Tota,(BChyy) and de¥*" denote
d: Totg,(BCys) — Tota,_1(BCys), it is clear that d°dd = 0 and d®¥® is onto with kernel
isomorphic to k. Hence

HC (k) = {k: for n even

0 for n odd.

Theorem: Hochschild and cyclic homology are Morita invariant, i.e. if A and B are Morita equiv-
alent k-algberas, then HH, (A) = HH,(B) and HC,,(A) = HC,(B).

Corollary: HHy(My(k)) =k and HH, (k) = 0 for all n > 0, and

k  for n even

HCy(My(k)) = {0 for n odd.



