

Most of the following information comes from Loday's *Cyclic Homology*.

I. The Cyclic, Simplicial, and Semi-Simplicial Categories

The Cyclic Category. The category $c\Delta$ has the following presentation:

Objects: $[n] = \{0 < 1 < \dots < n\}$ for $n \in \mathbb{N}$.

Morphisms: composites of

$$\begin{aligned} \delta_i: [n] &\longrightarrow [n+1] \text{ for } 0 \leq i \leq n+1, \\ \sigma_j: [n-1] &\longrightarrow [n] \text{ for } 0 \leq j \leq n, \text{ and} \\ \tau: [n] &\longrightarrow [n] \end{aligned}$$

such that the following relations hold:

- (i) $\delta_j \delta_i = \delta_i \delta_{j-1}$ for $i < j$,
- (ii) $\sigma_j \sigma_i = \sigma_i \sigma_{j+1}$ for $i \leq j$,
- (iii) $\sigma_j \delta_i = \begin{cases} \delta_i \sigma_{j-1} & \text{for } i < j \\ \text{id}_{[n]} & \text{for } i = j, j+1 \\ \delta_{i-1} \sigma_j & \text{for } i > j+1, \end{cases}$
- (iv) $\tau^{n+1} = \text{id}_{[n]}$,
- (v) $\tau \delta_i = \begin{cases} \delta_{i-1} \tau & \text{for } 1 \leq i \leq n \\ \delta_n & \text{for } i = 0, \end{cases}$
- (vi) $\tau \sigma_i = \begin{cases} \sigma_{i-1} \tau & \text{for } 1 \leq i \leq n \\ \sigma_n \tau^2 & \text{for } i = 0. \end{cases}$

We can take δ_i to be the strictly increasing injection that skips i , σ_j the increasing surjection such that $j, j+1 \mapsto j$, and τ the cyclic permutation such that $\tau(k) = k+1 \pmod{n+1}$ for $0 \leq k \leq n$.

The Simplicial Category. The category $s\Delta$ is the subcategory of $c\Delta$ generated by the δ_i 's and the σ_j 's.

The Semi-Simplicial Category. The category $ss\Delta$ is the subcategory of $c\Delta$ (or $s\Delta$) generated by the δ_i 's.

II. Cyclic, Simplicial, and Semi-Simplicial Objects

Definition: A cyclic (respectively simplicial, semi-simplicial) object in a category A is a functor

$$X_\bullet: c\Delta^{\text{op}} \rightarrow A$$

(respectively $s\Delta^{\text{op}}$, $ss\Delta^{\text{op}}$). Denote the category of cyclic (respectively simplicial, semisimplicial) A -objects by cA (respectively sA , ssA), and note that $cA = \text{Fun}(c\Delta^{\text{op}}, A)$, the category of functors from $c\Delta^{\text{op}}$ to A (respectively $sA = \text{Fun}(s\Delta^{\text{op}}, A)$, $ssA = \text{Fun}(ss\Delta^{\text{op}}, A)$).

Usually we write $X_n = X_\bullet([n])$, $d_i = X_\bullet(\delta_i)$, $s_j = X_\bullet(\sigma_j)$, and $t = X_\bullet(\tau)$. Note that

$$\begin{aligned} d_i: X_n &\longrightarrow X_{n-1} \text{ for } 0 \leq i \leq n, \quad n > 1 \\ s_j: X_n &\longrightarrow X_{n+1} \text{ for } 0 \leq j \leq n, \text{ and} \\ t: X_n &\longrightarrow X_n. \end{aligned}$$

We have the following relations among these maps:

- (i) $d_i d_j = d_{j-1} d_i$ for $i < j$,
- (ii) $s_i s_j = s_{j+1} s_i$ for $i \leq j$,
- (iii) $d_i s_j = \begin{cases} s_{j-1} d_i & \text{if } i < j \\ \text{id} & \text{if } i = j, j+1 \\ s_j d_{i-1} & \text{if } i > j+1 \end{cases}$
- (iv) $t_n^{n+1} = \text{id}$,
- (v) $d_i t = \begin{cases} t d_{i-1} & \text{for } 1 \leq i \leq n \\ d_n & \text{for } i = 0, \end{cases}$
- (vi) $s_i t = \begin{cases} t s_{i-1} & \text{for } 1 \leq i \leq n \\ t^2 s_n & \text{for } i = 0. \end{cases}$

From this point on, k will be a commutative ring. Note that if $C_\bullet: c\Delta^{\text{op}} \rightarrow {}_k\text{MOD}$, the category of left k -modules, we set $t = (-1)^n C_\bullet(\tau)$ to satisfy Loday's sign convention, which accounts for the sign of the cyclic permutation in S_{n+1} . Hence (v) and (vi) above are replaced with:

$$\begin{aligned} (v) \quad d_i t &= \begin{cases} -t d_{i-1} & \text{for } 1 \leq i \leq n \\ (-1)^n d_n & \text{for } i = 0 \end{cases} \quad \text{and} \\ (vi) \quad s_i t &= \begin{cases} -t s_{i-1} & \text{for } 1 \leq i \leq n \\ (-1)^n t^2 s_n & \text{for } i = 0. \end{cases} \end{aligned}$$

III. Various Categories and Functors

Given a category \mathbf{A} , we will write $a \in \mathbf{A}$ to mean $a \in \text{Ob}(\mathbf{A})$ and $f \in \mathbf{A}(a, b)$ if $f: a \rightarrow b$ for $a, b \in \mathbf{A}$.

We already know about the categories $\text{ss}\Delta$, $\text{s}\Delta$, and $\text{c}\Delta$; $\text{ss}\mathbf{A}$, $\text{s}\mathbf{A}$, and $\text{c}\mathbf{A}$ for a given category \mathbf{A} ; and the category $\text{Fun}(\mathbf{A}, \mathbf{B})$ for given categories \mathbf{A} and \mathbf{B} .

Definition: Categories will be denoted by the sans-serif font: ABC , etc.

- (1) Grp is the category of groups, and \mathbf{AB} is the category of abelian groups, which will sometimes be referred to as \mathbb{Z} -modules since the term "cyclic abelian group" would be ambiguous.
- (2) Set is category of sets.
- (3) Top is the category of topological spaces with continuous maps.
- (4) ${}_k\text{MOD}$ (respectively MOD_k) is the category of left (respectively right) k -modules.
- (5) CPLX will denote the category of chain complexes of abelian groups, and ${}_k\text{CPLX}$ (respectively CPLX_k) will denote the category of chain complexes in ${}_k\text{MOD}$ (respectively MOD_k).
- (6) ${}_k\text{ALG}$ is the category of k -algebras.
- (7) Cat is the category of small categories.

Sometimes we add a subscript to the category to denote certain properties.

Definition: U will denote the forgetful functor. We have obvious forgetful functors

$$\mathbf{ssA} \xleftarrow{U} \mathbf{sA} \xleftarrow{U} \mathbf{cA}.$$

In fact, there are left adjoints to these functors.

Definition: The functor $F = \text{FREE}: \mathbf{Set} \rightarrow \mathbf{AB}$ is given by $X \mapsto \mathbb{Z}\langle X \rangle$, the free abelian group on the elements of X .

F extends to a functor $F: \mathbf{ssSet} \rightarrow \mathbf{ssAB}$ by $F(X_n) = \mathbb{Z}\langle X_n \rangle$ and extending the maps \mathbb{Z} -linearly. Similarly, we can look at the functor $F: \mathbf{ssSet} \rightarrow \mathbf{ss}_k\mathbf{MOD}$. We can also replace \mathbf{ss} with \mathbf{s} or \mathbf{c} in the above discussion.

F is left adjoint to $U: \mathbf{AB} \rightarrow \mathbf{Set}$.

Definition: The functor $ALT: \mathbf{ss}_k\mathbf{MOD} \rightarrow {}_k\mathbf{CPLX}$ is given by $C_\bullet \mapsto (C_*, b)$ where C_n is the same as before, and b is the alternating sum of the d_i 's:

$$b = \sum_{i=0}^n (-1)^i d_i.$$

Once again, we can replace \mathbf{ss} with \mathbf{s} or \mathbf{c} in the above discussion.

IV. Examples

(1) **Singular Homology.** Let X be a topological space, and let $\Delta^n = \text{co}\{e_0, \dots, e_n\} \subset \mathbb{R}^{n+1}$ be the standard n -simplex. For $0 \leq i \leq n+1$, define

$$\delta_i: \Delta^n \longrightarrow \Delta^{n+1} \text{ by}$$

$$\sum_{j=0}^n \alpha_j e_j \longmapsto \sum_{j=0}^n \alpha_j e_{\delta_i(j)}$$

where $\alpha_0, \dots, \alpha_n \in [0, 1]$ with $\alpha_0 + \dots + \alpha_n = 1$. Define the semi-simplicial set

$$\Delta_\bullet(X): \mathbf{ss}\Delta \rightarrow \mathbf{SET}$$

by $S_n(X) = \{\text{continuous } f: \Delta^n \rightarrow X\}$ and $d_i = \Delta_\bullet(\delta_i) = \delta_i^*$, i.e. $d_i(f) = f \circ \delta_i$:

$$X \xleftarrow{f} \Delta^{n+1} \xleftarrow{\delta_i} \Delta^n.$$

Applying the functor $F: \mathbf{ssSET} \rightarrow \mathbf{ssAB}$, we have a semi-simplicial \mathbb{Z} -module $S_\bullet(X) = F(\Delta_\bullet(X))$. Now applying the functor $ALT: \mathbf{ssAB} \rightarrow \mathbf{CPLX}$ and the functor $H_n: \mathbf{CPLX} \rightarrow \mathbf{AB}$ gives the n^{th} singular homology of X . Hence, singular homology is the composite of the following functors:

$$\mathbf{AB} \xleftarrow{H_n} \mathbf{CPLX} \xleftarrow{ALT} \mathbf{ssAB} \xleftarrow{F} \mathbf{ssSET} \xleftarrow{\Delta_\bullet} \mathbf{Top}.$$

(2) **Group Homology.** Let \mathbf{A} be a small category.

Definition: The nerve of \mathbf{A} is the simplicial set $N_\bullet(\mathbf{A})$ is given by

$$\begin{aligned} N_0(\mathbf{A}) &= \text{Ob}(\mathbf{A}), \\ N_1(\mathbf{A}) &= \left\{ b \xleftarrow{f} a \mid a, b \in \mathbf{A} \right\}, \\ N_2(\mathbf{A}) &= \left\{ c \xleftarrow{g} b \xleftarrow{f} a \mid a, b, c \in \mathbf{A} \right\}, \end{aligned}$$

and so forth. The maps d_i are given by deleting the i^{th} object, e.g.

$$\begin{aligned} d_0 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= c \xleftarrow{g} b, \\ d_1 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= c \xleftarrow{g \circ f} a, \text{ and} \\ d_2 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= b \xleftarrow{f} a. \end{aligned}$$

The maps s_j are given by adding the identity morphism for the j^{th} object, e.g.

$$\begin{aligned} s_0 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= c \xleftarrow{g} b \xleftarrow{f} a \xleftarrow{\text{id}_a} a, \\ s_1 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= c \xleftarrow{g} b \xleftarrow{\text{id}_b} b \xleftarrow{f} a, \text{ and} \\ s_2 \left(c \xleftarrow{g} b \xleftarrow{f} a \right) &= c \xleftarrow{\text{id}_c} c \xleftarrow{g} b \xleftarrow{f} a. \end{aligned}$$

If \mathbf{A} has only one object, $\text{Ob}(\mathbf{A}) = \{*\}$, then $N_\bullet(\mathbf{A})$ is the cyclic set where the map t is given by the cyclic permutation, e.g.

$$t \left(* \xleftarrow{h} * \xleftarrow{g} * \xleftarrow{f} * \right) = * \xleftarrow{g} * \xleftarrow{f} * \xleftarrow{h} *.$$

Suppose now that \mathbf{A} is a group, i.e. $\text{Ob}(\mathbf{A}) = \{*\}$ and all morphisms are invertible. Then applying the functors U , F , ALT , and H_n , we get group homology. That is, if $G = N_1(\mathbf{A})$, then $H_n(G)$ is given by the following composite of functors:

$$\mathbf{AB} \xleftarrow{H_n} \mathbf{CPLX} \xleftarrow{ALT} \mathbf{cAB} \xleftarrow{F} \mathbf{cSET} \xleftarrow{N_\bullet} \mathbf{Cat}_* \longleftarrow \mathbf{Grp},$$

where \mathbf{Cat}_* is the category of all small categories with one object.

(3) **Hochschild Homology.** Let A be a unital k -algebra, and let M be an $A - A$ -bimodule. Define the simplicial module $C_\bullet(A, M)$ by $C_n(A, M) = M \otimes A^{\otimes n}$ where \otimes means \otimes_k . Define the d_i 's by

$$\begin{aligned} d_0(a_0 \otimes a_1 \otimes a_2 \otimes \cdots \otimes a_n) &= a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_n, \\ d_i(a_0 \otimes \cdots \otimes a_i \otimes a_{i+1} \otimes \cdots \otimes a_n) &= a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \text{ for } 0 < i < n, \text{ and} \\ d_n(a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes a_n) &= a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \end{aligned}$$

for $a_0 \in M$ and $a_1, \dots, a_n \in A$. Define the s_i 's by

$$s_i(a_0 \otimes \cdots \otimes a_i \otimes a_{i+1} \otimes \cdots \otimes a_n) = a_0 \otimes \cdots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n$$

(where $1 \in A$). If $M = A$, then $C_\bullet(A, A)$ is a cyclic module where t is given by

$$t(a_0 \otimes \cdots \otimes a_{n-1} \otimes a_n) = (-1)^n a_n \otimes a_0 \otimes \cdots \otimes a_{n-1}.$$

Taking ALT and H_n gives the n^{th} Hochschild homology $H_n(A, M)$, so Hochschild homology is a composite of the following functors:

$$\mathbf{AB} \xleftarrow{H_n} {}_k\mathbf{CPLX} \xleftarrow{ALT} {}_k\mathbf{MOD} \xleftarrow{C_\bullet(-, M)} {}_k\mathbf{ALG}_{\mathbf{unital}}$$

If $M = A$, we write $HH_n(A) = H_n(A, A)$, and the above sequence is altered by replacing ${}_k\mathbf{MOD}$ with ${}_k\mathbf{cMOD}$.

If $G: {}_k\mathbf{ALG}_{\mathbf{unital}} \rightarrow \mathbf{A}$ is a functor where \mathbf{A} is an abelian category, we can extend G to a functor $\tilde{G}: {}_k\mathbf{ALG} \rightarrow \mathbf{A}$. For $I \in {}_k\mathbf{ALG}$, we can form its unitalization $\tilde{I} = k \oplus I$, and define $\tilde{G}(I) = \text{coker}(G(i))$, where $i: k \rightarrow \tilde{I}$ in the natural inclusion:

$$0 \longleftarrow I \xleftarrow{p} \tilde{I} \xleftarrow{i} k \longleftarrow 0.$$

Hence, Hochschild homology extends to a functor ${}_k\mathbf{ALG} \rightarrow \mathbf{AB}$.

V. Cyclic Homology

Given a cyclic module C_\bullet , there is a classical complex arising from calculations in group homology:

$$\cdots \xleftarrow{1-t} C_n \xleftarrow{N} C_n \xleftarrow{1-t} C_n \xleftarrow{N} \cdots$$

where $N = 1 + t + t^2 + \cdots + t^n$ is the “norm map.” A group action on a space X is a continuous map

$$G \times X \longrightarrow X.$$

We can think of this classical complex “acting” on $(C_*, b) = ALT(C_\bullet)$ to get the cyclic bicomplex CC_{**} :

$$\begin{array}{ccccccc} & & & & & & \\ & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' \\ C_2 & \xleftarrow{1-t} & C_2 & \xleftarrow{N} & C_2 & \xleftarrow{1-t} & C_2 \xleftarrow{N} \\ & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' \\ C_1 & \xleftarrow{1-t} & C_1 & \xleftarrow{N} & C_1 & \xleftarrow{1-t} & C_1 \xleftarrow{N} \\ & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' & \downarrow b & \downarrow -b' \\ C_0 & \xleftarrow{1-t} & C_0 & \xleftarrow{N} & C_0 & \xleftarrow{1-t} & C_0 \xleftarrow{N} \end{array}$$

where $b' = d_0 - d_1 + \cdots + (-1)^{n-1} d_{n-1}$. The relations of a cyclic module imply $b(1-t) = (1-t)b'$ and $b'N = Nb$, so the bicomplex above is well defined.

Definition: Then n^{th} cyclic homology of a cyclic module C_\bullet is the n^{th} total homology of the associated cyclic bicomplex CC_{**} :

$$HC_n(C_\bullet) = H_n(\text{Tot}_*(CC_{**})).$$

Cyclic homology is thus the composite of the following functors:

$$\mathbf{AB} \xleftarrow{H_n} {}_k\mathbf{BCPLX} \xleftarrow{\quad} {}_k\mathbf{cMOD}$$

We have an additional method of taking homology of a cyclic module by the functors described before, which will be denoted by HH_n :

$$HH_n(C_\bullet) = H_n(ALT(C_\bullet)) = H_n(C_*, b).$$

From this bicomplex construction, we can reconstruct Connes' initial construction of cyclic homology and many of the tools he developed for calculation. First, note that the complex $(C_*, -b')$ is contractible via contraction $-s = -(-1)^n ts_n$. We will need the following lemma:

Killing Contractible Complexes Lemma: Let $(A_* \oplus A'_*, d) \in {}_k\text{CPLX}$

$$\cdots \longleftarrow A_{n-1} \oplus A'_{n-1} \xleftarrow{d = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}} A_n \oplus A'_n \longleftarrow \cdots$$

such that $(A'_*, \delta) \in {}_k\text{CPLX}$ is contractible via contraction h . Then $(A_*, \alpha - \beta h \gamma) \in {}_k\text{CPLX}$, and the inclusion

$$(\text{id}, -h\gamma): (A_*, \alpha - \beta h \gamma) \longrightarrow (A_* \oplus A'_*, d)$$

is a quasi-isomorphism.

(1) **Connes' Periodicity Exact Sequence.** Let CC_{**} be the cyclic bicomplex associated to the cyclic module C_\bullet . Let $CC_{**}^{(2)}$ be the bicomplex obtained from CC_{**} by looking at only the first two columns, and let $CC[2]_{**}$ be the bicomplex obtained from CC_{**} by shifting the bicomplex two columns to the right. We then get an exact sequence of bicomplexes

$$0 \longleftarrow CC[2]_{**} \longleftarrow CC_{**} \longleftarrow CC_{**}^{(2)} \longleftarrow 0$$

which yields an exact sequence in total complexes, which in turn, yields a long exact sequence in homology via the snake lemma:

$$\cdots \longleftarrow HH_{n-1}(C_\bullet) \longleftarrow HC_{n-2}(C_\bullet) \longleftarrow HC_n(C_\bullet) \longleftarrow HH_n(C_\bullet) \longleftarrow HC_{n-1}(C_\bullet) \longleftarrow \cdots.$$

Note that

$$H_n(\text{Tot}_*(CC_{**}^{(2)})) \cong HH_n(C_\bullet) = H_n(C_*, b)$$

by the lemma, and clearly

$$H_n(\text{Tot}_*(CC[2]_{**})) = HC_{n-2}(C_\bullet).$$

(2) **Connes' Bicomplex.** By applying the lemma to the $-b'$ columns of the cyclic bicomplex which are contractible via $-s$, we get Connes' bicomplex BC_{**} where $B = (1-t)sN$:

$$\begin{array}{ccccc} & \downarrow b & \downarrow b & \downarrow b & \\ & C_2 & \xleftarrow{B} & C_1 & \xleftarrow{B} C_0 \\ & \downarrow b & & \downarrow b & \\ & C_1 & \xleftarrow{B} & C_0 & \\ & \downarrow b & & & \\ & C_0 & & & \end{array}$$

(3) **Connes' Complex.** Connes' initial definition of cyclic homology was given as the homology of a complex instead of a total complex of a bicomplex. Since $b(1-t) = (1-t)b'$, we have that b descends to a map

$$\cdots \xleftarrow{\tilde{b}} C_{n-1}^\lambda \xleftarrow{\tilde{b}} C_n^\lambda \xleftarrow{\tilde{b}} C_{n+1}^\lambda \xleftarrow{\tilde{b}} \cdots$$

where $C_n^\lambda = C_n / \text{im}(1-t)$. Define $H_n^\lambda(C_\bullet) = H_n(C_*^\lambda, \tilde{b})$.

Theorem: If $\mathbb{Q} \subseteq k$, there is a canonical isomorphism $H_n^\lambda(C_\bullet) \cong HC_n(C_\bullet)$.

Proof. Let

$$h' = \frac{1}{n+1} \text{id}, \quad h = \frac{-1}{n+1} \sum_{i=1}^n it^i$$

be maps $C_n \rightarrow C_n$:

$$\begin{array}{ccccccc} C_n & \xleftarrow{(1-t)} & C_n & \xleftarrow{N} & C_n & \xleftarrow{(1-t)} & C_n & \xleftarrow{N} \cdots \\ & \searrow h & \downarrow \text{id} & \searrow h' & \downarrow \text{id} & \searrow h & \downarrow \text{id} & \searrow h' & \downarrow \text{id} & \searrow N & \cdots \\ C_n & \xleftarrow{(1-t)} & C_n & \xleftarrow{N} & C_n & \xleftarrow{(1-t)} & C_n & \xleftarrow{N} \cdots \end{array}$$

From the relations of a cyclic module, $h'N + (1-t)h = \text{id}$ and $Nh' + h(1-t) = \text{id}$. Hence, the rows of CC_{**} are acyclic augmented complexes with $H_0 = C_n^\lambda$, and there is a first quadrant spectral sequence ${}^{II}E_{p,q}^0 \Rightarrow HC_{p+q}(C_\bullet)$ with

$$\begin{aligned} {}^{II}E_{p,q}^0 &= CC_{p,q} \text{ and } d^0 = d_h, \\ {}^{II}E_{p,q}^1 &= H(CC_{p,q}, d^h) = \delta_{p,0}C_q^\lambda \text{ and } d^1 = [d^v], \text{ and} \\ {}^{II}E_{p,q}^2 &= {}^{II}E_{p,q}^\infty = H(\delta_{p,0}C_q^\lambda, [d^v]) = \delta_{p,0}H_q(C_*^\lambda, \tilde{b}) \text{ and } d^2 = 0. \end{aligned}$$

□

VI. Elementary Computations

(1) **Hochschild Homology.** Let $A \in {}_k\text{ALG}_{\text{unital}}$ and $M \in {}_A\text{MOD}_A$. Clearly

$$H_0(A, M) = M_A = M / \langle am - ma \rangle,$$

the module of coinvariants of M by A . If $M = A$, then $HH_0(A) = A/[A, A]$. If A is commutative, $HH_0(A) = A$. If $A = k$, we have the cyclic module $C_\bullet(k)$ given by $C_n(k) = k^{\otimes(n+1)} \cong k$, and each d_i is the identity. Hence, the Hochschild complex $C_*(k)$ is given by

$$k \xleftarrow{0} k \xleftarrow{1} k \xleftarrow{0} k \xleftarrow{1} k \xleftarrow{\quad} \cdots$$

and we have $HH_0(k) = k$ and $HH_n(k) = 0$ for all $n > 0$.

(2) **Cyclic Homology.** We have $C_n(A) = A^{\otimes n+1}$ for $A \in {}_k\mathbf{ALG}_{\mathbf{unital}}$, and Connes' boundary map $B: A^{\otimes n+1} \longrightarrow A^{\otimes n+2}$ is given explicitly by

$$\begin{aligned}
B(a_0 \otimes \cdots \otimes a_n) &= (1-t)(-1)^n t s_n \sum_{i=0}^n t^i (a_0 \otimes \cdots \otimes a_n) \\
&= (1-t)(-1)^n t s_n \sum_{i=0}^n (-1)^{ni} (a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-1}) \\
&= (1-t)(-1)^n t \sum_{i=0}^n (-1)^{ni} (a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-1} \otimes 1) \\
&= (1-t)(-1)^n (-1)^{n+1} \sum_{i=0}^n (-1)^{ni} (1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-1}) \\
&= \sum_{i=0}^n (-1)^{ni+1} (1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-1}) \\
&\quad + (-1)^{n(i+1)+1} (a_{i-1} \otimes 1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-2}).
\end{aligned}$$

It is clear that $HC_0(A) = HH_0(A)$. If $A = k$, Connes' bicomplex is given by

$$\begin{array}{ccccc}
& \downarrow 1 & \downarrow 0 & \downarrow 1 & \downarrow 0 \\
& k \xleftarrow{-6} & k \xleftarrow{0} & k \xleftarrow{-2} & k \\
\downarrow 0 & & \downarrow 1 & & \downarrow 0 \\
& k \xleftarrow{0} & k \xleftarrow{-2} & k & \\
\downarrow 1 & & \downarrow 0 & & \\
& k \xleftarrow{-2} & k & & \\
\downarrow 0 & & & & \\
& k & & &
\end{array}$$

Note that $B: C_{2n} \rightarrow C_{2n+1}$ is multiplication by $-2(2n+1)$ and $B: C_{2n+1} \rightarrow C_{2n+2}$ is the zero map. Letting d^{odd} denote $d: \text{Tot}_{2n+1}(BC_{**}) \longrightarrow \text{Tot}_{2n}(BC_{**})$ and d^{even} denote $d: \text{Tot}_{2n}(BC_{**}) \longrightarrow \text{Tot}_{2n-1}(BC_{**})$, it is clear that $d^{\text{odd}} = 0$ and d^{even} is onto with kernel isomorphic to k . Hence

$$HC_n(k) \cong \begin{cases} k & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd.} \end{cases}$$

Theorem: Hochschild and cyclic homology are Morita invariant, i.e. if A and B are Morita equivalent k -algebras, then $HH_n(A) \cong HH_n(B)$ and $HC_n(A) \cong HC_n(B)$.

Corollary: $HH_0(M_n(k)) = k$ and $HH_n(k) = 0$ for all $n > 0$, and

$$HC_n(M_n(k)) = \begin{cases} k & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd.} \end{cases}$$