
Generalized gauge actions, KMS states, and
Hausdorff dimension for higher-rank graphs

Elizabeth Gillaspy
University of Montana

joint with C. Farsi, S. Kang, N. Larsen, J. Packer

OHIO Workshop, 28 April 2018

Elizabeth Gillaspy University of Montana Gen. gauge actions, KMS states, Hausdorff dim. for k-graphs



Graph C ∗-algebras

From a directed graph E = (E 0,E 1, r , s), get a C ∗-algebra C ∗(E ):

C ∗(E ) = 〈{te , tv : v ∈ E 0, e ∈ E 1}〉, where

te is a partial isometry; tv is a projection;

t∗e te = ts(e);

for any v ∈ E 0, tv =
∑

e:r(e)=v tet
∗
e .

It then follows that tetf = 0 unless s(e) = r(f ).

C ∗(E ) is universal for representations of {te , tv}v∈E0,e∈E1 ; any
collection of partial isometries and projections {se , sv}v ,e ⊆ B(H)
satisfying the above conditions generates a quotient of C ∗(E ).
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Graph C ∗-algebras

Many structural aspects of C ∗(E ) (ideals, unit, K -theory) are
visible in E .
[KPR98] If C ∗(E ) is simple and unital, it is either AF or
purely infinite.

[Dri00] For any AF algebra A, there exists a graph E with
A⊗K ∼= C ∗(E )⊗K. However, [EKRT14] the question
A ∼= C ∗(E ) is more complicated.
[KPRR97] C ∗(E ) ∼= C ∗(GE ) is also a groupoid C ∗-algebra:
writing E∞ = {(en)n∈N ⊆ E 1 : s(ei ) = r(ei+1) ∀ i} and
σ : E∞ → E∞ given by σ((en)n) = (en+1)n,

GE = {(x , j − k , y) ∈ E∞ × Z× E∞ : σj(x) = σk(y)}.

E∞ is a Cantor set; [IK13] connection between KMS states on
C ∗(E ) and Hausdorff structures on E∞.
[ERRS16] C ∗(E )⊗K ∼= C ∗(F )⊗K iff a finite number of
moves will convert E into F .
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Higher-rank graphs

Higher-rank graphs (k-graphs) Λ are a k-dimensional
generalization of directed graphs.

Introduced by [KP00] to give examples of combinatorial,
computable C ∗-algebras, more general than C ∗(E ).

Paths in E  k-dimensional rectangles in Λ; degree functor
d : Λ→ Nk tells us the size of the “path.”

C ∗(Λ) ∼= C ∗(GΛ); Unit space G(0)
Λ
∼= Λ∞ is a Cantor set.

C ∗(Λ) has more flexible structure than C ∗(E ); more options than
AF/purely infinite for simple algebras, more varied K -theory
[Eva08], etc.
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Higher-rank graphs

Definition

A k-graph is a countable category Λ with a degree map
d : Λ→ Nk such that, if d(λ) = m + n ∈ Nk , there exist unique
morphisms µ, ν ∈ Λ with d(µ) = m, d(ν) = n, and λ = µν.

...
...

...
...

...

. . .

. . .

. . .

. . .

Elizabeth Gillaspy University of Montana Gen. gauge actions, KMS states, Hausdorff dim. for k-graphs



Higher-rank graphs

Definition

A k-graph is a countable category Λ with a degree map
d : Λ→ Nk such that, if d(λ) = m + n ∈ Nk , there exist unique
morphisms µ, ν ∈ Λ with d(µ) = m, d(ν) = n, and λ = µν.

...
...

...
...

...

. . .

. . .

. . .

. . .

Elizabeth Gillaspy University of Montana Gen. gauge actions, KMS states, Hausdorff dim. for k-graphs



Higher-rank graphs

Definition

A k-graph is a countable category Λ with a degree map
d : Λ→ Nk such that, if d(λ) = m + n ∈ Nk , there exist unique
morphisms µ, ν ∈ Λ with d(µ) = m, d(ν) = n, and λ = µν.

...
...

...
...

...

. . .

. . .

. . .

. . .

Elizabeth Gillaspy University of Montana Gen. gauge actions, KMS states, Hausdorff dim. for k-graphs



Higher-rank graphs

Definition

A k-graph is a countable category Λ with a degree map
d : Λ→ Nk such that, if d(λ) = m + n ∈ Nk , there exist unique
morphisms µ, ν ∈ Λ with d(µ) = m, d(ν) = n, and λ = µν.

...
...

...
...

...

. . .

. . .

. . .

. . .

Elizabeth Gillaspy University of Montana Gen. gauge actions, KMS states, Hausdorff dim. for k-graphs



Higher-rank graphs

...
...

...
...

...

. . .

. . .

. . .

. . .

In our example,

d(λ) = (3, 2) = (0, 2) + (3, 0) = (2, 0) + (0, 1) + (1, 0) + (0, 1),

so each of these possible factorizations must give us the same
element λ.
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Examples of k-graphs

A directed graph E is a k-graph:

k = 1
More precisely, the category of paths in E is a 1-graph.
d(λ) = |λ| is the number of edges in λ.

Nk is a k-graph: d = id . Think of Nk as a category with one
object.

One can also think of a k-graph as a (quotient of a) directed
graph, with k different colors of edges.
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Strongly connected k-graphs

A (higher-rank) graph is strongly connected if vΛw 6= ∅ for all
v ,w ∈ Λ0.

Theorem ([HLRS15])

If Λ is finite and strongly connected, then the adjacency matrices
{Ai : 1 ≤ i ≤ k} ⊆ MΛ0(N),

Ai (v ,w) = |vΛeiw | = #{edges of color i from w to v}

share a unique positive eigenvector (xΛ
v )v∈Λ0 of `1-norm 1.

In fact, [HLRS15] a finite Λ is strongly connected iff there is a
finite sum of finite products of {Ai}1≤i≤k which is irreducible.

Note that AiAj = AjAi ∀ i , j by the factorization rule.
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Infinite paths and Cantor sets

An infinite path in a k-graph Λ is (the equivalence class of) an
infinite string of composable edges (range but no source) which
contains infinitely many edges of any color.

If |vΛei | > 2 for at least one i , the space Λ∞ of infinite paths in Λ
is naturally a Cantor set – compact, perfect, totally disconnected.

The collection of sets

Z (λ) = {x ∈ Λ∞ : x = λy},

where λ ∈ Λ is a finite path (morphism) in Λ, is a compact open
basis for the topology on Λ∞ making Λ∞ into a Cantor set.
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Hausdorff structure on Λ∞

There are many ways to metrize the cylinder set topology on Λ∞.

For many choices of metric, we get the same (nontrivial) Hausdorff
measure on Λ∞.

Definition

For (X , d) a metric space and s ∈ R≥0, the Hausdorff measure of
dimension s of a compact subset Z of X is

Hs(Z ) = lim
ε→0

inf

∑
Ui∈F

(diam Ui )
s : |F | <∞,

⋃
i

Ui = Z , diam Ui < ε ∀i

}
.

Moreover, ∃! s ∈ R : t < s ⇒ Ht(X ) =∞ and t > s ⇒ Ht(X ) = 0.

We call s the Hausdorff dimension of X .
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R+-functors

We study metrics on Λ∞ which arise from putting “weights” on Λ.

Definition ([McN15])

Let Λ be a higher-rank graph. An R+-functor on Λ is a function
y : Λ→ R≥0 such that

y(λν) = y(λ) + y(ν).

Note that this forces y(v) = 0 for all vertices v .

Proposition (Farsi-G-Kang-Larsen-Packer)

For any weight functor y on a strongly connected finite k-graph Λ,
and any β ≥ 0, the matrices {Bi (y , β)}1≤i≤k ∈ MΛ0 given by

Bi (y , β)v ,w =
∑

λ∈vΛeiw

e−βy(λ)

have a unique positive common eigenvector ξy ,β of `1-norm 1.
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Examples and Notation for R+-functors

The function y : Λ→ R≥0 given by y(λ) = 0 ∀ λ is a R+-functor.

In fact, in this case, Bi (y , β) = Ai for all β.

Define

ρ(B(y , β)) := (ρ(B1(y , β)), ρ(B2(y , β)), . . . , ρ(Bk(y , β))).

Then, for n = (n1, . . . , nk) ∈ Nk , define

ρ(B(y , β))n := ρ(B1(y , β))n1 · ρ(B2(y , β))n2 · · · · · ρ(Bk(y , β))nk .
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Hausdorff structure and R+-functors

Theorem (Farsi-G-Kang-Larsen-Packer)

Let Λ be a strongly connected finite k-graph, with an R+-functor y
and β ∈ R>0. For any λ ∈ Λ, define

wy ,β(λ) = e−y(λ)
(
ρ(B(y , β))−d(λ)ξy ,βs(λ)

)1/β
.

Suppose moreover that ρ(Bi (y , β)) > maxv ,w{Bi (y , β)v ,w} for at
least one i .

Then,

dy ,β(x , z) := wy ,β(x ∧ z), where x ∧ z = max{λ : x , z ∈ Z (λ)},

is an ultrametric on Λ∞ which metrizes the cylinder set topology.
Also, (Λ∞, dy ,β) has Hausdorff dimension β and Hausdorff measure

µy ,β(Z (λ)) = Hβ(Z (λ)) = wy ,β(λ)β = e−βy(λ)ρ(B(y , β))−d(λ)ξy ,βs(λ).
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Corollary

For strongly connected finite k-graphs, the authors of [HLRS15]
described a measure M on Λ∞:

M(Z (λ)) = ρ(Λ)−d(λ)xΛ
s(λ),

where ρ(Λ) = (ρ(A1), ρ(A2), . . . , ρ(Ak)), and xΛ is the common
Perron–Frobenius eigenvector of A1, . . . ,Ak .

Taking y = 0 in the previous Theorem gives:

Corollary (FGKLP)

For any finite strongly connected k-graph, and any β ∈ (0,∞), the
function

dβ(x , z) :=
(
ρ(Λ)−d(x∧z)xΛ

s(λ)

)1/β

is an ultrametric on Λ∞ which metrizes the cylinder set topology.
Moreover, the ultrametric spaces (Λ∞, dβ) all have the same
Hausdorff measure, namely M.
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KMS states for C ∗-algebras

To an action α of R on a C ∗-algebra A, which extends to an
analytic action of C on A ⊆ A, we associate KMS states.

KMS states arose in statistical physics, but have interesting
implications more generally (eg, number theory and operator algs):

Dynamical systems and KMS states for number fields  
Kroneckers Jugendtraum (Hilbert 12) [BC95, CMR05, LLN09]
In particular, the symmetries of the KMSβ states are given by
Galois groups for large β.

A sudden change in the number of KMSt states for (A, α)!
“symmetry breaking”

For graph algebras and related constructions, KMS states for
the gauge action can often be computed by integration against
the Hausdorff measure of Λ∞; cf. [Nes13, Tho14, HLRS15]

Given an R+-functor on Λ, we obtain an associated action on
C ∗(Λ), and compute the associated KMS states.
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Galois groups for large β.

A sudden change in the number of KMSt states for (A, α)!
“symmetry breaking”

For graph algebras and related constructions, KMS states for
the gauge action can often be computed by integration against
the Hausdorff measure of Λ∞; cf. [Nes13, Tho14, HLRS15]

Given an R+-functor on Λ, we obtain an associated action on
C ∗(Λ), and compute the associated KMS states.
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R+-functors, generalized gauge actions, KMS states

C ∗(Λ) is the universal C ∗-algebra generated by partial isometries
{sλ}λ∈Λ satisfying the Cuntz-Krieger relations.

Natural action α (gauge action) of Tk on C ∗(Λ): αz(sλ) = zd(λ)sλ.

From an R+-functor y and β ∈ R>0, get an action of R on C ∗(Λ):

αy ,β
t (sλ) = e ity(λ)

(
ρ(B(y , β))d(λ)

)it/β
sλ.

Generalized gauge actions [Nes13, Tho14, McN15]

Definition

A positive linear map φ : C ∗(Λ)→ C is a KMS state at (inverse)
temperature t for αy ,β if, for all λ, η, ν, ρ ∈ Λ,

φ(sλs
∗
η sνs

∗
ρ) = φ(αy ,β

it (sνs
∗
ρ)sλs

∗
η ).
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KMS states for (C ∗(Λ), αy ,β)

Write Φ : C ∗(Λ)→ C0(Λ∞) for the usual conditional expectation,

Φ(sλs
∗
µ) =

{
χZ(λ), µ = λ

0, else.

(This suffices to define Φ since the Cuntz–Krieger relations imply
that C ∗(Λ) is densely spanned by {sλs∗µ : λ, µ ∈ Λ}.)

Theorem (Farsi-G-Kang-Larsen-Packer, [Tho14])

Let Λ be a strongly connected finite k-graph, with an R+-functor y
and β ∈ R>0. Suppose ρ(Bi (y , β)) > 1 for some 1 ≤ i ≤ k. Then

φ(a) =

∫
Λ∞

Φ(a) dµy ,β

is a KMS state at inverse temperature β for (C ∗(Λ), αy ,β).
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KMS states for (C ∗(Λ), αy ,β)

When Λ is strongly connected, the KMS states of C ∗(Λ) are
closely linked to the periodicity group of Λ:

Per Λ = {m−n ∈ Zk : ∃ µ, ν ∈ Λ s.t.d(µ) = m, d(ν) = n,Z (µ) = Z (ν)}.

Motivation: if λ is a loop without entry, Z (λ) = Z (r(λ)). The
length of the loop is its periodicity.

Theorem (Farsi-G-Kang-Larsen-Packer)

(C ∗(Λ), αy ,β) admits KMS states at inverse temperature t iff
αy ,β = αy ,t . Moreover, the simplex of KMSβ states for αy ,β is
affinely isomorphic to the state space of C ∗(Per Λ): the KMS state

associated to z ∈ ̂C ∗(Per Λ) ⊆ Tk is

φz(sλs
∗
ν ) =

{
0, d(λ)− d(ν) 6∈ Per Λ

zd(λ)−d(ν)µy ,β(Z (λ)), else.
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Connections with the literature

Theorem (Farsi-G-Kang-Larsen-Packer)

(C ∗(Λ), αy ,β) admits KMS states at inverse temperature t iff
αy ,β = αy ,t . Moreover, the simplex of KMSβ states for αy ,β is
affinely isomorphic to the state space of C ∗(Per Λ): the KMS state

associated to z ∈ ̂C ∗(Per Λ) ⊆ Tk is

φz(sλs
∗
ν ) =

{
0, d(λ)− d(ν) 6∈ Per Λ

zd(λ)−d(ν)µy ,β(Z (λ)), else.

For the classical gauge action on strongly connected k-graphs,
[HLRS15] we have the same simplex of KMS states.

McNamara [McN15] studied coordinate-wise irreducible
k-graphs; in this case, φ is the unique KMSβ state.
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