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Let H = `2(N), S the unilateral shift, Q = B(H)/K (H), and
π : B(H)→ Q the quotient map.

Question (BDF, 1970’s)

Is there an automorphism of Q which sends π(S) to π(S)∗?
(Equivalently, an automorphism of Q which induces the
automorphism n 7→ −n of K1(Q) = Z.)

Note that inner automorphisms of Q preserve Fredholm index, so
such an automorphism would have to be outer.

Question (BDF)

Is there an outer automorphism of Q?
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Theorem (Phillips-Weaver, 2007)

Assume the Continuum Hypothesis (CH). Then there is an outer
automorphism of Q.

Theorem (Farah, 2011)

Assume the Open Coloring Axiom (OCA). Then every
automorphism of Q is inner.

It’s still unknown whether there can be an automorphism of Q
which sends π(S) to π(S∗), in any model of set theory.
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The Continuum Hypothesis states that 2ℵ0 = ℵ1, or in other
words, every A ⊆ R satisfies either |A| ≤ |N| or |A| = |R|.

Notation: given a set X we write [X ]2 for the set of unordered
pairs {x , y} of elements of X .

The Open Coloring Axiom states that for every X ⊆ R and every
partition [X ]2 = R ∪ B into symmetric sets R and B, where R is
relatively open in [X ]2 (identified with X × X minus the diagonal),
either

there is an uncountable A ⊆ X such that [A]2 ⊆ R, or

there is a partition X =
⋃∞

n=1 Yn such that for all n,
[Yn]2 ⊆ B.
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OCA is just one combinatorial consequence of a more complicated
axiom, the Proper Forcing Axiom (PFA).

Where CH often implies that uncountable structures are wild and
pathological, PFA often implies a strong rigidity on these
uncountable structures. For instance:

Theorem (Moore, 2006)

Assume PFA. Then there is a list of five canonical uncountable
linear orders L1, . . . , L5 such that every uncountable linear order
contains an isomorphic copy of one of L1, . . . , L5. (A 5-element
basis.)

Theorem (Sierpinski, 1932)

Assume CH. Then the minimal size of a basis for the uncountable
linear orders is 22ℵ0 .
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The history of CH and PFA with C*-algebras was already there
before Phillips-Weaver and Farah:

Theorem (W. Rudin, 1950’s)

Assume CH. Then there is an automorphism of βN \ N which is
not induced by a function N→ N.

Theorem (Shelah, 1980’s)

Assume PFA. Then every automorphism of βN \ N is induced by a
function N→ N.
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So assuming PFA,

every automorphism of B(H)/K (H) is inner, and

every automorphism of C (βN \ N) ' `∞/c0 is induced by a
function N→ N.

Each of B(H)/K (H) and `∞/c0 is a corona algebra, M(A)/A.

Question

What is the common element to these proofs? What can we say
about a general corona algebra M(A)/A?
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Question

What is the common element to these proofs? What can we say
about a general corona algebra M(A)/A?

For this we’ll need a definition:

Definition

Given C*-algebras A and B and a function
ϕ : M(A)/A→ M(B)/B, the graph of ϕ is

Γϕ = {(a, b) ∈ M(A)×M(B) | ϕ([a]) = [b]}

Recall that the strict topology on M(A) is generated by the
seminorms x 7→ ‖xa‖ and x 7→ ‖ax‖, where a ranges over A.

If A is separable then M(A)1 is Polish in its strict topology.
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Definition

Γϕ = {(a, b) ∈ M(A)×M(B) | ϕ([a]) = [b]}

ϕ ∈ Aut(`∞/c0) ϕ ∈ Aut(B(H)/K (H))

Γϕ is Borel

ϕ is induced by a
function N→ N

ϕ is inner

PFA PFA

ZFC ZFC
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Conjecture (Coskey-Farah)

Let A be a separable C*-algebra.

1 Assume CH. Then there is an automorphism of M(A)/A
whose graph is not Borel.

2 Assume PFA. Then every automorphism of M(A)/A has Borel
graph.

Theorem (Coskey-Farah)

Assume CH. Let A be a separable C*-algebra which is either simple
or stable. Then M(A)/A has 22ℵ0 -many automorphisms. (And
only 2ℵ0-many of them can have Borel graphs.)
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Let’s sketch this in an easy case. Say A =
⊕

n M2∞ . Then

M(A)/A =
∏
n

M2∞/
⊕
n

M2∞

For every function f : N→ N, M(A)/A contains a unital copy of

Df =
∏

M2f (n)(C)/
⊕

M2f (n)(C)

Moreover, M(A)/A =
⋃

f Df .

We have Df ⊆ Dg if and only if ∃n0 ∀n ≥ n0 f (n) ≤ g(n) (written
f ≤∗ g).
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Assuming CH, we can build a sequence fα (α < ω1) such that
α < β implies fα ≤∗ fβ, and

M(A)/A =
⋃
α

Dfα

Now build unitaries uα ∈ Dfα such that u∗αuβ ∈ D ′fβ ∩ Dfα for all

β < α. This determines an automorphism ϕ~u of M(A)/A.

At every stage α, there are at least two choices for uα. Hence
there are at least 2ℵ1-many distinct automorphisms ϕ~u.
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Theorem (M.-Vignati)

Assume PFA and let A and B be separable C*-algebras which
satisfy the Metric Approximation Property and have an increasing
approximate identity of projections. Then every isomorphism
M(A)/A→ M(B)/B has a Borel graph.

A Banach space X has the (Metric) Approximation Property if for
every finite F ⊆ X and ε > 0, there is a continuous linear
T : X → X with finite rank such that for all x ∈ F ,

‖T (x)− x‖ < ε

(and ‖T‖ ≤ 1.)
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To give you some context:

Nuclear C*-algebras have the MAP.

C ∗r (Fn) has the MAP. (Haagerup)

B(H) does not have the AP. (Szankowski)

There is a separable C*-algebra without the AP. (Szankowski)

It is not known whether C ∗(F2) has the AP or MAP.
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Theorem (M.-Vignati)

Assume PFA and let A and B be separable C*-algebras which
satisfy the Metric Approximation Property and have an increasing
approximate identity of projections. Then every isomorphism
M(A)/A→ M(B)/B has a Borel graph.

This proves the second Coskey-Farah conjecture for a large class of
C*-algebras.

Now what can we say about the structure of isomorphisms with a
Borel graph?
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Theorem (M.-Vignati)

Assume PFA. Suppose An, Bn are separable, unital C*-algebras
with the MAP, which have no nontrivial central projections. Then
the following are equivalent.

1
∏

An/
⊕

An '
∏

Bn/
⊕

Bn.

2 Up to a permutation of the indices, An is ε-∗-isomorphic to
Bn, where ε→ 0 as n→∞.
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Definition

Let A and B be C*-algebras. An ε-∗-isomorphism is a map
α : A→ B which satisfies all of the properties of a ∗-isomorphism,
up to ε:

∀x , y ∈ A1, |λ|, |µ| ≤ 1 ‖α(λx + µy)− λα(x)− µα(y)‖ ≤ ε
∀x , y ∈ A1 ‖α(xy)− α(x)α(y)‖ ≤ ε
∀x ∈ A1 ‖α(x∗)− α(x)∗‖ ≤ ε
∀x ∈ A1

∣∣‖α(x)‖ − ‖x‖
∣∣ ≤ ε

∀y ∈ B1 ∃x ∈ A1 ‖α(x)− y‖ ≤ ε

(α might not be linear or continuous or even measurable...)
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Question

Suppose ε is small and A and B are ε-∗-isomorphic. Does it follow
that A and B must be isomorphic? What if A and B are simple,
separable, nuclear, etc?

This kind of question is well-studied in certain nice cases, in
particular when

the ε-∗-isomorphism is already linear, or

A and B are subalgebras of B(H) which are close in the
Kadison-Kastler metric.
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Theorem (M.-Vignati)

There is a universal constant K such that if A is finite-dimensional,
B is any C*-algebra, and φ : A→ B is an ε-∗-homomorphism, then
there is a ∗-homomorphism ψ : A→ B with

‖φ− ψ‖ < K
√
ε

Theorem (M.-Vignati)

There is an ε > 0 such that if A is unital, separable and AF, and B
is any C*-algebra ε-∗-isomorphic to A, then A and B are
∗-isomorphic.

Proposition (M.-Vignati)

There is an ε > 0 such that if A and B are unital, purely infinite
and simple, and A and B are ε-∗-isomorphic, then K∗(A) ' K∗(B).
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Corollary

Assume PFA. Suppose that
∏

An/
⊕

An is isomorphic to∏
Bn/

⊕
Bn, where none of the An’s or Bn’s has a nontrivial

central projection, and either

1 each An and Bn is a UCT Kirchberg algebra, or

2 each An is separable, unital and AF, and Bn is separable and
unital.

Then up to a permutation of the indices, An ' Bn for large enough
n.
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Thank you!
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