

# Rigidity of corona algebras

Paul McKenney  
Miami University  
Joint work with Alessandro Vignati

OHIO 2018

Let  $H = \ell^2(\mathbb{N})$ ,  $S$  the unilateral shift,  $Q = B(H)/K(H)$ , and  $\pi : B(H) \rightarrow Q$  the quotient map.

### Question (BDF, 1970's)

*Is there an automorphism of  $Q$  which sends  $\pi(S)$  to  $\pi(S)^*$ ?  
(Equivalently, an automorphism of  $Q$  which induces the  
automorphism  $n \mapsto -n$  of  $K_1(Q) = \mathbb{Z}$ .)*

Note that inner automorphisms of  $Q$  preserve Fredholm index, so such an automorphism would have to be outer.

### Question (BDF)

*Is there an outer automorphism of  $Q$ ?*

### Theorem (Phillips-Weaver, 2007)

*Assume the Continuum Hypothesis (CH). Then there is an outer automorphism of  $Q$ .*

### Theorem (Farah, 2011)

*Assume the Open Coloring Axiom (OCA). Then every automorphism of  $Q$  is inner.*

It's still unknown whether there can be an automorphism of  $Q$  which sends  $\pi(S)$  to  $\pi(S^*)$ , in any model of set theory.

The *Continuum Hypothesis* states that  $2^{\aleph_0} = \aleph_1$ , or in other words, every  $A \subseteq \mathbb{R}$  satisfies either  $|A| \leq |\mathbb{N}|$  or  $|A| = |\mathbb{R}|$ .

Notation: given a set  $X$  we write  $[X]^2$  for the set of unordered pairs  $\{x, y\}$  of elements of  $X$ .

The *Open Coloring Axiom* states that for every  $X \subseteq \mathbb{R}$  and every partition  $[X]^2 = R \cup B$  into symmetric sets  $R$  and  $B$ , where  $R$  is relatively open in  $[X]^2$  (identified with  $X \times X$  minus the diagonal), either

- there is an uncountable  $A \subseteq X$  such that  $[A]^2 \subseteq R$ , or
- there is a partition  $X = \bigcup_{n=1}^{\infty} Y_n$  such that for all  $n$ ,  $[Y_n]^2 \subseteq B$ .

OCA is just one combinatorial consequence of a more complicated axiom, the *Proper Forcing Axiom* (PFA).

Where CH often implies that uncountable structures are wild and pathological, PFA often implies a strong rigidity on these uncountable structures. For instance:

### Theorem (Moore, 2006)

*Assume PFA. Then there is a list of five canonical uncountable linear orders  $L_1, \dots, L_5$  such that every uncountable linear order contains an isomorphic copy of one of  $L_1, \dots, L_5$ . (A 5-element basis.)*

### Theorem (Sierpinski, 1932)

*Assume CH. Then the minimal size of a basis for the uncountable linear orders is  $2^{2^{\aleph_0}}$ .*

The history of CH and PFA with  $C^*$ -algebras was already there before Phillips-Weaver and Farah:

**Theorem (W. Rudin, 1950's)**

*Assume CH. Then there is an automorphism of  $\beta\mathbb{N} \setminus \mathbb{N}$  which is not induced by a function  $\mathbb{N} \rightarrow \mathbb{N}$ .*

**Theorem (Shelah, 1980's)**

*Assume PFA. Then every automorphism of  $\beta\mathbb{N} \setminus \mathbb{N}$  is induced by a function  $\mathbb{N} \rightarrow \mathbb{N}$ .*

So assuming PFA,

- every automorphism of  $B(H)/K(H)$  is inner, and
- every automorphism of  $C(\beta\mathbb{N} \setminus \mathbb{N}) \simeq \ell^\infty/c_0$  is induced by a function  $\mathbb{N} \rightarrow \mathbb{N}$ .

Each of  $B(H)/K(H)$  and  $\ell^\infty/c_0$  is a *corona algebra*,  $M(A)/A$ .

### Question

*What is the common element to these proofs? What can we say about a general corona algebra  $M(A)/A$ ?*

## Question

*What is the common element to these proofs? What can we say about a general corona algebra  $M(A)/A$ ?*

For this we'll need a definition:

## Definition

Given  $C^*$ -algebras  $A$  and  $B$  and a function  
 $\varphi : M(A)/A \rightarrow M(B)/B$ , the *graph* of  $\varphi$  is

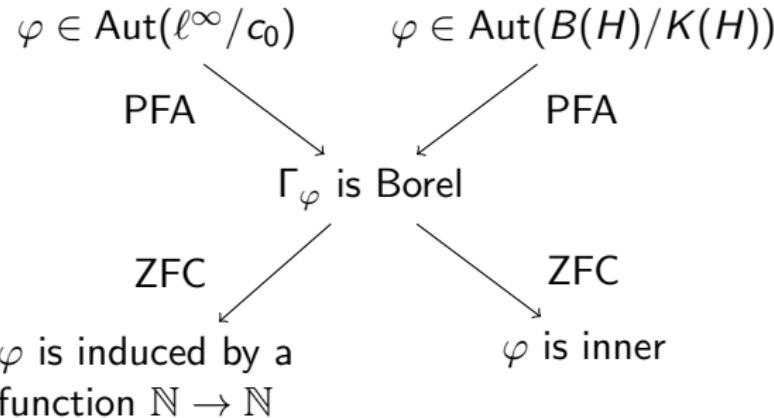
$$\Gamma_\varphi = \{(a, b) \in M(A) \times M(B) \mid \varphi([a]) = [b]\}$$

Recall that the *strict topology* on  $M(A)$  is generated by the seminorms  $x \mapsto \|xa\|$  and  $x \mapsto \|ax\|$ , where  $a$  ranges over  $A$ .

If  $A$  is separable then  $M(A)_1$  is Polish in its strict topology.

## Definition

$$\Gamma_\varphi = \{(a, b) \in M(A) \times M(B) \mid \varphi([a]) = [b]\}$$



## Conjecture (Coskey-Farah)

Let  $A$  be a separable  $C^*$ -algebra.

- 1 Assume CH. Then there is an automorphism of  $M(A)/A$  whose graph is not Borel.
- 2 Assume PFA. Then every automorphism of  $M(A)/A$  has Borel graph.

## Theorem (Coskey-Farah)

Assume CH. Let  $A$  be a separable  $C^*$ -algebra which is either simple or stable. Then  $M(A)/A$  has  $2^{2^{\aleph_0}}$ -many automorphisms. (And only  $2^{\aleph_0}$ -many of them can have Borel graphs.)

Let's sketch this in an easy case. Say  $A = \bigoplus_n M_{2^\infty}$ . Then

$$M(A)/A = \prod_n M_{2^\infty} / \bigoplus_n M_{2^\infty}$$

For every function  $f : \mathbb{N} \rightarrow \mathbb{N}$ ,  $M(A)/A$  contains a unital copy of

$$D_f = \prod M_{2^{f(n)}}(\mathbb{C}) / \bigoplus M_{2^{f(n)}}(\mathbb{C})$$

Moreover,  $M(A)/A = \bigcup_f D_f$ .

We have  $D_f \subseteq D_g$  if and only if  $\exists n_0 \ \forall n \geq n_0 \ f(n) \leq g(n)$  (written  $f \leq^* g$ ).

Assuming CH, we can build a sequence  $f_\alpha$  ( $\alpha < \omega_1$ ) such that  $\alpha < \beta$  implies  $f_\alpha \leq^* f_\beta$ , and

$$M(A)/A = \bigcup_{\alpha} D_{f_\alpha}$$

Now build unitaries  $u_\alpha \in D_{f_\alpha}$  such that  $u_\alpha^* u_\beta \in D'_{f_\beta} \cap D_{f_\alpha}$  for all  $\beta < \alpha$ . This determines an automorphism  $\varphi_{\vec{u}}$  of  $M(A)/A$ .

At every stage  $\alpha$ , there are at least two choices for  $u_\alpha$ . Hence there are at least  $2^{\aleph_1}$ -many distinct automorphisms  $\varphi_{\vec{u}}$ .



## Theorem (M.-Vignati)

Assume PFA and let  $A$  and  $B$  be separable  $C^*$ -algebras which satisfy the Metric Approximation Property and have an increasing approximate identity of projections. Then every isomorphism  $M(A)/A \rightarrow M(B)/B$  has a Borel graph.

A Banach space  $X$  has the (Metric) Approximation Property if for every finite  $F \subseteq X$  and  $\epsilon > 0$ , there is a continuous linear  $T : X \rightarrow X$  with finite rank such that for all  $x \in F$ ,

$$\|T(x) - x\| < \epsilon$$

(and  $\|T\| \leq 1$ .)

To give you some context:

- Nuclear  $C^*$ -algebras have the MAP.
- $C_r^*(\mathbb{F}_n)$  has the MAP. (Haagerup)
- $B(H)$  does not have the AP. (Szankowski)
- There is a separable  $C^*$ -algebra without the AP. (Szankowski)
- It is not known whether  $C^*(\mathbb{F}_2)$  has the AP or MAP.

## Theorem (M.-Vignati)

*Assume PFA and let  $A$  and  $B$  be separable  $C^*$ -algebras which satisfy the Metric Approximation Property and have an increasing approximate identity of projections. Then every isomorphism  $M(A)/A \rightarrow M(B)/B$  has a Borel graph.*

This proves the second Coskey-Farah conjecture for a large class of  $C^*$ -algebras.

Now what can we say about the structure of isomorphisms with a Borel graph?

## Theorem (M.-Vignati)

Assume PFA. Suppose  $A_n, B_n$  are separable, unital  $C^*$ -algebras with the MAP, which have no nontrivial central projections. Then the following are equivalent.

- ①  $\prod A_n / \bigoplus A_n \simeq \prod B_n / \bigoplus B_n$ .
- ② Up to a permutation of the indices,  $A_n$  is  $\epsilon$ -\*-isomorphic to  $B_n$ , where  $\epsilon \rightarrow 0$  as  $n \rightarrow \infty$ .

## Definition

Let  $A$  and  $B$  be  $C^*$ -algebras. An  $\epsilon$ -\*-isomorphism is a map  $\alpha : A \rightarrow B$  which satisfies all of the properties of a \*-isomorphism, up to  $\epsilon$ :

$$\forall x, y \in A_1, |\lambda|, |\mu| \leq 1 \quad \|\alpha(\lambda x + \mu y) - \lambda\alpha(x) - \mu\alpha(y)\| \leq \epsilon$$

$$\forall x, y \in A_1 \quad \|\alpha(xy) - \alpha(x)\alpha(y)\| \leq \epsilon$$

$$\forall x \in A_1 \quad \|\alpha(x^*) - \alpha(x)^*\| \leq \epsilon$$

$$\forall x \in A_1 \quad \|\|\alpha(x)\| - \|x\|\| \leq \epsilon$$

$$\forall y \in B_1 \quad \exists x \in A_1 \quad \|\alpha(x) - y\| \leq \epsilon$$

( $\alpha$  might not be linear or continuous or even measurable...)

## Question

*Suppose  $\epsilon$  is small and  $A$  and  $B$  are  $\epsilon$ -\*-isomorphic. Does it follow that  $A$  and  $B$  must be isomorphic? What if  $A$  and  $B$  are simple, separable, nuclear, etc?*

This kind of question is well-studied in certain nice cases, in particular when

- the  $\epsilon$ -\*-isomorphism is already linear, or
- $A$  and  $B$  are subalgebras of  $B(H)$  which are close in the Kadison-Kastler metric.

## Theorem (M.-Vignati)

*There is a universal constant  $K$  such that if  $A$  is finite-dimensional,  $B$  is any  $C^*$ -algebra, and  $\phi : A \rightarrow B$  is an  $\epsilon$ -\*-homomorphism, then there is a \*-homomorphism  $\psi : A \rightarrow B$  with*

$$\|\phi - \psi\| < K\sqrt{\epsilon}$$

## Theorem (M.-Vignati)

*There is an  $\epsilon > 0$  such that if  $A$  is unital, separable and AF, and  $B$  is any  $C^*$ -algebra  $\epsilon$ -\*-isomorphic to  $A$ , then  $A$  and  $B$  are \*-isomorphic.*

## Proposition (M.-Vignati)

*There is an  $\epsilon > 0$  such that if  $A$  and  $B$  are unital, purely infinite and simple, and  $A$  and  $B$  are  $\epsilon$ -\*-isomorphic, then  $K_*(A) \simeq K_*(B)$ .*

## Corollary

Assume PFA. Suppose that  $\prod A_n / \bigoplus A_n$  is isomorphic to  $\prod B_n / \bigoplus B_n$ , where none of the  $A_n$ 's or  $B_n$ 's has a nontrivial central projection, and either

- ① each  $A_n$  and  $B_n$  is a UCT Kirchberg algebra, or
- ② each  $A_n$  is separable, unital and AF, and  $B_n$  is separable and unital.

Then up to a permutation of the indices,  $A_n \simeq B_n$  for large enough  $n$ .

Thank you!