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ABSTRACT. Abstract: The additive commutators of operators belonging to two-sided
ideals of B(H) are characterized. For ideals I and J, the space, [I, J |, of all finite sums of
(I, J )-commutators is characterized and found to equal [IJ, B(H)]. An historical survey
of this subject will be presented along with open problems and some recent progress.
Time permitting I will discuss recent work on the subideal structure of B(H), that is,
ideals inside the compacts K(H), and on B(H)-semigroup ideals on a problem of Radjavi
concerning semigroups with automatic selfadjoint ideals.

1. ANCIENT HISTORY

Commutators: operators of the form AB— BA: A,B € B(H),
C(a class) := {AB — BA| A, B € that class}

E.g., a mathematical formulation of Heisenberg’s Uncertainty Principle;
The product rule for (zf) = xf' + f reframed: I = %Mm — Mm%
where the operators act on the class of differentiable functions.

C(B(H))
I ¢ C(B(H)) Wintner/Wielandt 47/49 different proofs.
Pf. I=AB—BA=1=A(B+nl)—(B+nl)AVn. .. S = B+nl invertible for some n.
Then [ = AS—SA= AS=1+ SA=0(AS) =1+ 0(SA) (Spectral Mapping Th).

But similarity SA = S(AS)S™! = AS, SA have same spectrum.
Recall now: All B(H) operators have nonempty compact spectrum.
Then x € 0(AS) = 14+2x€0(AS)=2+z€d(AS)=---,

so spectrum o(AS) is unbounded, a contradiction to compactness.

Characterization of C(B(H)) (Arlen Brown-Carl Pearcy 69, major contribution):
All B(H) except the thin operators are NOT, i.e., A + K(H) with A # 0.
(K(H) = the compacts.)
I # AB — BA applied to Calkin algebra B(H)/K(H) = thin ops are not commutators.
Brown-Pearcy proved all others are.
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Commutators, ideals and traces
[B(H), B(H)] = B(H) (Halmos 52/547)

Commutator ideal [/, I] denotes the linear span of C'(I) for any two-sided ideal.
[1, J] denotes the linear span of {AB — BA| A€ I,B € J} for any two-sided ideal pair.

Motivation for studying [, J]: Traces can act only on ideals. Why?
A linear functional on an ideal I is a trace (i.e., invariant under unitary equivalence)
if and only if it vanishes on [/, B(H)].
< T-UTU =[U*,UT —TU] € [I,B(H)]. =: [A, B] = Z4uw[A,U;] and AU, = U;A.

Important traces today: the standard trace on the trace class, various Dixmier traces,
positive traces, continuous traces on Banach ideals.
Some current and recent researchers: Sukochev, Zanin, Dykema, Kalton

And each trace is cannonically a linear complex map on the algebraic quo-
tient //[I, B(H)]. So ideal I has no traces if and only if I = [/, B(H)]. When true?
So back to the study of [/, J].

Pearcy-Topping 71
For compacts, [K(H), K(H)] = K(H); & Schatten p-classes, [Cap, Coy| = C, Vp > 1.

4 Seminal Questions:
1. IsC(K(H))=K(H)?
Test Question:
Their key idea for [K(H), K(H)] = K(H) was to prove

the rank one projection P € [K(H), K(H)]. (P = )

So they asked: is P € C(K(H))? (Turned out very hard. More to come on this.)

* O =
* O O

* % ¥

2. Is C(Cyy) = C, Vp > 1.

Trace obstruction: Recall products of Hilbert-Schmidt operators (Cy operators) are trace
class (Cy operators) with trAB = trBA. So C(Cy) C CY (trace zero trace class operators)
and consequently so also [Cy, Cs] C CY.

3. Is C(C;) = C9?
4. If not, what about [C,, C3] = C9?
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Progress to date
1. C(K(H)) = K(H)? Still open but
a) P € C(K(H)) with consequence C(K(H),B(H)) = K(H) (J. Anderson 77)

b) 70’s open problem: C'(K(H)) contains some strictly positive compact operators.
(2006 Davidson-Marcoux-Radjavi-unpublished, and independently Patnaik-W 2012)

c¢) Nilpotent compact ops € C(K(H)) (2017 Dykema-Amudhan Krishnaswamy-Usha)
2. C(Cyy) = Cp, p > 1 still open.

3 & 4. NO and the beginning of a long investigation involving commutators and traces,
the main object of this talk. 1973-2004

2. MY BEGINNING

Evolving commutator matrix constructions & their solution operators norm bounds sug-
gested ”extremal” test question: diag(— > " dn,d1,ds,...) = AB— BA, minimizing equal
A,B Hilbert-Schmidt norm. Natural to focus on finite case, and extremal among these
(i.e., maximizing known Hilbert-Schmidt norm bounds) are diag(—1,1/N,...,1/N).

Necessary bound: [|A[|g, > 1:

2 AlE, = 2llAlle, 1 Blle, = |ABllcy + | BAlle, > |AB — BA||c, =2

Among diag(—1,1/N,...,1/N): diag(—1,1/2,1/2) nontrivally had minimum precisely 1,
and so the minimum question for N = 3 sat from 1973-1976.

Computer simulations indicated otherwise.

Whether or not min [|A||¢, — o0 as N — oo in 73 turned out an essential test question.
For me, the solution showcases the birth of staircase forms and block tridiagonal forms.

Compute the Hilbert-Schmidt norm minimum over A € M,(C)

-1 0 0
0 1/3 0

0

. 0
mln{”AHCz | AB — BA = 0 0 1/3 0 }

/

o 0 0 1/3

subject to scalar normalizing to insure ||A|lc, = || B]|c,-
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Theorem 2.1 (W 1980).

4
min{||A||l¢, | AB — BA = diag(—1,1/3,1/3,1/3)} = 5

The minimum 1s attained:
0 00 —1 0 vV2 00

1

_ 1 1v2 00 0 wnd B L |0 0 10
V3o 10 0 V3o 0o 0o
0 00 0 1 0 00

Proof that \/g is a lower bound was the breakthrough and will be given shortly.

This led to NO for 3 & 4 by determining which among this somewhat general class
of diagonal trace class operators (diag(— > 7" dn, d1,ds,...)) are commutators of Hilbert-
Schmidt operators or finite linear combinations.

Theorem 2.2 (W 73, 80, 86). The following are equivalent.
(1) dlag(— 2(1)0 dp,dy,ds, . .. ) S [02, 02]
(11) dlag(— 2(1)0 dp,dy,ds, . .. ) S [01, B(H)]
(iii) Y277 dylogn < .
In particular, if (d,,) = (@% then

diag(— Y _ dn,dr, ds,...) € C7 \ [Ca, Cy).
1

Culminated years later into a totally general characterization of [I, J]:

Theorem 2.3 (Dykema, Figiel, Wodzicki, W, Advances 2004, announced PNAS 02).
If I,J are two arbitrary B(H)-ideals, at least one proper, and T = T* € IJ, then

T € [1,J] if and only if diag AN(T'), € IJ.

(AT, denotes the arithmetic mean sequence formed from the eigenvalue sequence of T,
arranged in order of decreasing moduli, counting multiplicities and when finite rank, ending
in infinitely many zeros.)

Consequently, [I,J] = [IJ, B(H)].

This characterizes all [I, J] because it clearly is selfadjoint since ideals are selfadjoint
by the polar decomposition, and so characterizing the real and imaginary parts of its
commutators suffices for a characterization of [/, .J].
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Proof of the “%” Theorem introducing also staircase forms.

Proof. Assume

AB — BA = diag(—1,1/3,1/3,1/3) (2.1)
Solvable since finite matrix with trace 0.
WLOG normalizing by scalars: ||A|lc, = ||Blc,-
The sequence e, Aei, A*eq, e, e3, €4 spans C,
and the Gram-Schmidt process yields another basis for C* with associated unitary U
that fixes e; and for which Ady leaves invariant diag(—1,1/3,1/3,1/3).
that is, U*diag(—1,1/3,1/3,1/3)U = diag(—1,1/3,1/3,1/3) (equivalently, this diagonal
remains the same under this basis change).

This new basis puts A into “staircase” form: U*AU =

S O % ¥
* % ¥
* K% X ¥
* ¥ O

* *

Computing the diagonal entries of the commutator AB — BA in terms of A = (a;;) and
B = (b;j) one obtains the 4 equations:

—1 = ai2b91 — b12ag; + a13531 - 513031

= ag1bia — baraie + 023532 - 523032 + ag4b42 — bagaqs

= a31b13 — b31a13 + asebas — bsgags + asabaz — basaqs

W= W= W[

= a42b24 — by2a24 + a43b34 — byzazs
Summing the first 3 equations and taking the first equation yields the 2 equations:

—1 = ai2ba; — bi2ag; + a13631 - 513031

= = a42bay — bysagy + a43bs4 - 543034

3
Subtracting:

—g = a12b21 — b12a91 + 013531 - 513031 - (042524 — byoags + 043534 - 543034)

Apply triangle then Holder inequalities:

- < lasllbal + ollan] + lassbsa] + Pl s
+ |as2||baa| + [baz||aza| + |aus||bsa| + |bas||as]
< Vlanal? + lagi? + lars|? + [asi > + [aas|? + [a24]? + [aas]? + [asal?
X /[b21]? + [b1a]? + [b31]? + [b13]? + [b2a]? + [baz]? + [bsal? + [bas|?
<[ AllIBlle, = [ AllZ,.
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The last inequality arises from observing that each a;;, b;; appears no more than once each
in the first inequality, and some appear not at all. The last equality follows from the
assumed scalar normalization to make ||A||¢, = || B]|c, in the equation (2.1). Without this

normalization one has in general that [|Al|c,||B|lc, > 3. O

This motivated the general staircase form result needed for Theorem 2.2 above and re-
framed can be stated as a block-tridiagonal form:

Corollary 2.4. If Ay,..., Ay denotes any finite collection of operators in B(H), then
there exists a unitary operator U fixing e; so that Ay, ..., Ay transform simultaneously
matrices with their n'™ row and column nonzero in at most the first n(2N + 1) entries.
If they are selfadjoint, then they are thinner-as above but nonzero for at most n(N + 1)
entries.

For a single selfadjoint matrix, this form with inducing change of basis unitary is:

300 00

U*AU =

O OO ¥ ¥ Kk X K X
* K K K X X ¥ X
* K X X X X X
* K X X X KX ¥
* K X X X X ¥
* K X ¥ X X O
* ¥ X ¥ X *x O

SO OO W *k * ¥




THE COMMUTATOR STRUCTURE OF OPERATOR IDEALS OHIO CONFERENCE APRIL 28, 20187

3. P = A SINGLE COMMUTATOR OF COMPACT OPERATORS (J. ANDERSON 79)

Seminal unparalled contribution to the field:

1 0
[C,Z]:P: 00

in terms of block tri-diagonal matrices

0 A

0 Xy
Bl 0 A2 Yi 0 X2
C= By 0 . and Z =

Y, O

where A, and X,, are the n x (n + 1) matrices of norm —

n
vn o0 0 V1
1 vn—1 10 1 0 V2
An - . X and Xn = — \/_
V1 0 0 n
while B,, and Y,, are the (n + 1) x n matrices of norm n—‘ﬁ
0 Vvn
v1i 0 0 Vvn-1
1 1
n+1 V2 o n+1
0 V1
vn 0
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4. IMPACT AND AN INTRODUCTION TO MY WORK OF THE LAST DECADE

1. DFWW gave birth to arithmetic mean ideals I,, ,I and combinations like ,(/,) and I,

and to diagonal invariance:
Which ideals have all their operators’ diagonals (in all bases) back in the ideal?

Yes: Trace class, Hilbert-Schmidts, compacts.
No: Finite rank operators-consider any nonzero entry rank one infinite matrix (a;b;).

Characterization: the arithmetic mean closed ideals, i.e., ,(1,) = I. Kaftal-W 2011, I[UMJ
This got Kaftal and me interested in the general question of diagonals of operators, in
particular the classical works of Schur-Horn and recent works of Arveson, Kadison and

others on diagonals of operators.

Back to this shortly.

2. B(H)-Subideals (characterize ideals inside ideals I, starting with K(H))

Observe all B(H )-ideals inside I are automatically subideals of I.
Hence the question: Which subideals of I are not B(H)-ideals?

Fong-Radjavi 83: principal ideals in K(H) exist that are not B(H) ideals.
The K (H)-principal ideal generated by diag < % > is not a B(H)-ideal.

Patnaik-W 2012-13 IEOT, JOT: Characterizations for principal, finitely generated,
and certain infinitely generated subideals depending on the continuum hypothesis.

Notable: When is a subideal J of a B(H)-ideal I itself a B(H)-ideal?
Answer: When J is I-soft, i.e., when J C I and IJ = J.
Subject to constraint: [ is generated by a set of cardinality < c.

(Without this constraint, question is open.)

(Softness was introduced by Mityagin-Pietsch but was unbeknownst to us.)
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3. Diagonality and Schur-Horn theorems
(with Loreaux, Jasper, Patnaik, Kaftal - JFA, IUMJ, JOT, ...)

Diagonality:
Characterize the diagonals of operator A in all bases, i.e., diagonals of unitary orbit of A.
Or a class of operators A.

The classical Schur-Horn theorem, early in the last millenium:
Sequence y = < y; > (1 < j < n) is the diagonal of a normal n x n operator A with
eigenvalues v = < x; > arranged in order of decreasing moduli if and only if

k k n n
Zyj§Z$j,1§k<n with Zyj:Z:vj
1 1 1 1
(a step function area comparison commonly known as Hardy-Littlewood majorization).

Recent infinite dimensional investigations focused on positive compact operators.
Some contributors last 20 years: Arveson, Kadison (his Pythagorean papers for projec-
tions), Gohberg, Marcus, Neumann. All proved approximate Schur-Horn theorems.

And recently for von Neumann algebra analogs, Ravishandran and Skoufranis et al.

Exact Schur-Horn theorem, Kaftal-W 2011 JFA:
if A > 0, then for A trace class, Schur-Horn holds true for n = co, and for A compact but
not trace class, the same but without equality at end. E.g., for non-trace class case:

Theorem 4.1 (Kaftal-W). Let A € K(H)" with R4 = I. Then
EU(A)={BeD|s(B)<s(A), with Rp=1}.

Loreaux-W 2015 JFA, for dim ker A = oo, the characterization of eigenvalues of B involves

an infinite ladder of majorization analogs, e.g., Z'f” y; < Z'f x;.

Case: 1 < dim ker A < oo remains open. Unexpectedly harder than the ico case.

Loreaux-Jasper-W 2017 IUMJ A Thompson type Schur-Horn theorem + a characteri-
zation of the diagonals of the full class of unitaries.

L.e., Schur-Horn majorization theorem with added singular value constraints;

and for diagonals of the class of unitaries:

zisbounded &  2(1 —inflz;|) < (1 —|ay))

(reminiscent of Kadison’s diagonals of projection condition and an infinite dimensional
analog of Thompson).

Loreaux-W 2016 JOT  Diagonals of idempotents. Motivated by Kadison’s proj work.
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4. Automatic selfadjoint semigroup ideals (ASI) on a B(H) problem of Radjavi,
with S. Patnaik.

B(H) semigroups are simply classes closed under products.
And their ideals are subsets closed under products from inside and outside,
analogous to two-sided ring ideals.

Radjavi’s question: characterize those semigroups possessing only selfadjoint ideals.

B(H) semigroups with ASI must themselves be selfadjoint,
and semigroups are built from their singly generated semigroups.

So main focus: Which S(T',7*) have ASI?
(the singly generated selfadjoint semigroups generated by T').

For T rank 1,
NASC for S(T,T*) having all its ideals s.a: the trace-norm condition
(trT)"(trT) " ||T||?* = 1, for some n,m,p > 1.

In most cases S(T,T*) is simple, i.e., no proper ideals.

For normal ops N: S(N, N*) is ASI if and only if N = unitary & 0.
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