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Abstract. Abstract: The additive commutators of operators belonging to two-sided
ideals of B(H) are characterized. For ideals I and J, the space, [I, J ], of all finite sums of
(I, J )-commutators is characterized and found to equal [IJ, B(H)]. An historical survey
of this subject will be presented along with open problems and some recent progress.
Time permitting I will discuss recent work on the subideal structure of B(H), that is,
ideals inside the compacts K(H), and on B(H)-semigroup ideals on a problem of Radjavi
concerning semigroups with automatic selfadjoint ideals.

1. Ancient history

Commutators: operators of the form AB − BA : A, B ∈ B(H),

C(a class) := {AB − BA | A, B ∈ that class}

E.g., a mathematical formulation of Heisenberg’s Uncertainty Principle;
The product rule for (xf)′ = xf ′ + f reframed: I = d

dx
Mx − Mx

d
dx

where the operators act on the class of differentiable functions.

C(B(H))
I /∈ C(B(H)) Wintner/Wielandt 47/49 different proofs.
Pf. I = AB−BA ⇒ I = A(B +nI)− (B +nI)A ∀n. ∴ S = B +nI invertible for some n.
Then I = AS − SA ⇒ AS = I + SA ⇒ σ(AS) = 1 + σ(SA) (Spectral Mapping Th).

But similarity SA = S(AS)S−1 ⇒ AS, SA have same spectrum.
Recall now: All B(H) operators have nonempty compact spectrum.
Then x ∈ σ(AS) ⇒ 1 + x ∈ σ(AS) ⇒ 2 + x ∈ σ(AS) ⇒ · · · ,
so spectrum σ(AS) is unbounded, a contradiction to compactness.

Characterization of C(B(H)) (Arlen Brown-Carl Pearcy 69, major contribution):
All B(H) except the thin operators are NOT, i.e., λ + K(H) with λ 6= 0.
(K(H) = the compacts.)
I 6= AB − BA applied to Calkin algebra B(H)/K(H) ⇒ thin ops are not commutators.
Brown-Pearcy proved all others are.
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Commutators, ideals and traces

[B(H), B(H)] = B(H) (Halmos 52/54?)

Commutator ideal [I, I ] denotes the linear span of C(I) for any two-sided ideal.
[I, J ] denotes the linear span of {AB − BA | A ∈ I, B ∈ J} for any two-sided ideal pair.

Motivation for studying [I, J ]: Traces can act only on ideals. Why?
A linear functional on an ideal I is a trace (i.e., invariant under unitary equivalence)

if and only if it vanishes on [I, B(H)].
⇐: T − U∗TU = [U∗, UT − TU ] ∈ [I, B(H)]. ⇒: [A, B] = Σ4ui[A, Ui] and AUi

∼= UiA.

Important traces today: the standard trace on the trace class, various Dixmier traces,
positive traces, continuous traces on Banach ideals.
Some current and recent researchers: Sukochev, Zanin, Dykema, Kalton

And each trace is cannonically a linear complex map on the algebraic quo-

tient I/[I, B(H)]. So ideal I has no traces if and only if I = [I, B(H)]. When true?
So back to the study of [I, J ].

Pearcy-Topping 71
For compacts, [K(H), K(H)] = K(H); & Schatten p-classes, [C2p, C2p] = Cp ∀p > 1.

4 Seminal Questions:

1. Is C(K(H)) = K(H)?
Test Question:
Their key idea for [K(H), K(H)] = K(H) was to prove

the rank one projection P ∈ [K(H), K(H)]. (P =





1 0 ∗
0 0 ∗
∗ ∗ ∗



)

So they asked: is P ∈ C(K(H))? (Turned out very hard. More to come on this.)

2. Is C(C2p) = Cp ∀p > 1.

Trace obstruction: Recall products of Hilbert-Schmidt operators (C2 operators) are trace
class (C1 operators) with trAB = trBA. So C(C2) ⊂ Co

1 (trace zero trace class operators)
and consequently so also [C2, C2] ⊂ Co

1 .

3. Is C(C2) = Co

1
?

4. If not, what about [C2,C2] = Co

1
?
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Progress to date

1. C(K(H)) = K(H)? Still open but

a) P ∈ C(K(H)) with consequence C(K(H), B(H)) = K(H) (J. Anderson 77)

b) 70’s open problem: C(K(H)) contains some strictly positive compact operators.
(2006 Davidson-Marcoux-Radjavi-unpublished, and independently Patnaik-W 2012)

c) Nilpotent compact ops ∈ C(K(H)) (2017 Dykema-Amudhan Krishnaswamy-Usha)

2. C(C2p) = Cp, p > 1 still open.

3 & 4. NO and the beginning of a long investigation involving commutators and traces,
the main object of this talk. 1973-2004

2. My beginning

Evolving commutator matrix constructions & their solution operators norm bounds sug-
gested ”extremal” test question: diag(−∑∞

1
dn, d1, d2, . . . ) = AB−BA, minimizing equal

A,B Hilbert-Schmidt norm. Natural to focus on finite case, and extremal among these
(i.e., maximizing known Hilbert-Schmidt norm bounds) are diag(−1, 1/N, . . . , 1/N).

Necessary bound: ‖A‖2
C2

≥ 1:

2‖A‖2
C2

= 2‖A‖C2
‖B‖C2

≥ ‖AB‖C1
+ ‖BA‖C1

≥ ‖AB − BA‖C1
= 2

Among diag(−1, 1/N, . . . , 1/N): diag(−1, 1/2, 1/2) nontrivally had minimum precisely 1,
and so the minimum question for N = 3 sat from 1973–1976.

Computer simulations indicated otherwise.

Whether or not min ‖A‖C2
→ ∞ as N → ∞ in 73 turned out an essential test question.

For me, the solution showcases the birth of staircase forms and block tridiagonal forms.

Compute the Hilbert-Schmidt norm minimum over A ∈ M4(C)

min{‖A‖C2
| AB − BA =









−1 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1/3









}

subject to scalar normalizing to insure ‖A‖C2
= ‖B‖C2

.
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Theorem 2.1 (W 1980).

min{‖A‖C2
| AB −BA = diag(−1, 1/3, 1/3, 1/3)} =

√

4

3
.

The minimum is attained:

A =
1√
3









0 0 0 −1√
2 0 0 0

0 1 0 0
0 0 0 0









and B =
1√
3









0
√

2 0 0
0 0 1 0
0 0 0 0
1 0 0 0









Proof that
√

4

3
is a lower bound was the breakthrough and will be given shortly.

This led to NO for 3 & 4 by determining which among this somewhat general class
of diagonal trace class operators (diag(−

∑∞
1 dn, d1, d2, . . . )) are commutators of Hilbert-

Schmidt operators or finite linear combinations.

Theorem 2.2 (W 73, 80, 86). The following are equivalent.

(i) diag(−∑∞
1

dn, d1, d2, . . . ) ∈ [C2, C2]
(ii) diag(−∑∞

1
dn, d1, d2, . . . ) ∈ [C1, B(H)]

(iii)
∑∞

1 dn log n < ∞.

In particular, if 〈dn〉 = 〈 1

n log2 n
〉, then

diag(−
∞

∑

1

dn, d1, d2, . . . ) ∈ Co
1 \ [C2, C2].

Culminated years later into a totally general characterization of [I,J]:

Theorem 2.3 (Dykema, Figiel, Wodzicki, W, Advances 2004, announced PNAS 02).
If I, J are two arbitrary B(H)-ideals, at least one proper, and T = T∗ ∈ IJ , then

T ∈ [I, J ] if and only if diag λ(T )a ∈ IJ.

(λ(T )a denotes the arithmetic mean sequence formed from the eigenvalue sequence of T ,
arranged in order of decreasing moduli, counting multiplicities and when finite rank, ending
in infinitely many zeros.)

Consequently, [I, J ] = [IJ, B(H)].

This characterizes all [I, J ] because it clearly is selfadjoint since ideals are selfadjoint
by the polar decomposition, and so characterizing the real and imaginary parts of its
commutators suffices for a characterization of [I, J ].
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Proof of the “4

3
” Theorem introducing also staircase forms.

Proof. Assume
AB − BA = diag(−1, 1/3, 1/3, 1/3) (2.1)

Solvable since finite matrix with trace 0.
WLOG normalizing by scalars: ‖A‖C2

= ‖B‖C2
.

The sequence e1, Ae1, A
∗e1, e2, e3, e4 spans C4,

and the Gram-Schmidt process yields another basis for C4 with associated unitary U
that fixes e1 and for which AdU leaves invariant diag(−1, 1/3, 1/3, 1/3).
that is, U∗diag(−1, 1/3, 1/3, 1/3)U = diag(−1, 1/3, 1/3, 1/3) (equivalently, this diagonal
remains the same under this basis change).

This new basis puts A into “staircase” form: U∗AU =









∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









Computing the diagonal entries of the commutator AB −BA in terms of A = (aij) and
B = (bij) one obtains the 4 equations:

−1 = a12b21 − b12a21 + a13b31 − b13a31

1

3
= a21b12 − b21a12 + a23b32 − b23a32 + a24b42 − b24a42

1

3
= a31b13 − b31a13 + a32b23 − b32a23 + a34b43 − b34a43

1

3
= a42b24 − b42a24 + a43b34 − b43a34

Summing the first 3 equations and taking the first equation yields the 2 equations:

−1 = a12b21 − b12a21 + a13b31 − b13a31

1

3
= a42b24 − b42a24 + a43b34 − b43a34

Subtracting:

−4

3
= a12b21 − b12a21 + a13b31 − b13a31 − (a42b24 − b42a24 + a43b34 − b43a34)

Apply triangle then Hölder inequalities:

4

3
≤ |a12||b21| + |b12||a21| + |a13b31| + |b13||a31|

+ |a42||b24| + |b42||a24| + |a43||b34| + |b43||a34|
≤

√

|a12|2 + |a21|2 + |a13|2 + |a31|2 + |a42|2 + |a24|2 + |a43|2 + |a34|2

×
√

|b21|2 + |b12|2 + |b31|2 + |b13|2 + |b24|2 + |b42|2 + |b34|2 + |b43|2

≤ ‖A‖C2
‖B‖C2

= ‖A‖2
C2

.
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The last inequality arises from observing that each aij, bij appears no more than once each
in the first inequality, and some appear not at all. The last equality follows from the
assumed scalar normalization to make ‖A‖C2

= ‖B‖C2
in the equation (2.1). Without this

normalization one has in general that ‖A‖C2
‖B‖C2

≥ 4

3
. �

This motivated the general staircase form result needed for Theorem 2.2 above and re-
framed can be stated as a block-tridiagonal form:

Corollary 2.4. If A1, . . . , AN denotes any finite collection of operators in B(H), then
there exists a unitary operator U fixing e1 so that A1, . . . , AN transform simultaneously
matrices with their nth row and column nonzero in at most the first n(2N + 1) entries.
If they are selfadjoint, then they are thinner-as above but nonzero for at most n(N + 1)
entries.

For a single selfadjoint matrix, this form with inducing change of basis unitary is:

U∗AU =





























∗ ∗ ∗ 3 0 0 0 0 · · ·
∗ ∗ ∗ ∗ ∗ ∗ 6 0 · · ·
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 6 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 0 ∗ ∗ ∗ ∗ ∗ ∗ · · ·

...




























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3. P = a single commutator of compact operators (J. Anderson 79)

Seminal unparalled contribution to the field:

[C, Z] = P =





1 0 . . .
0 0
...

. . .





in terms of block tri-diagonal matrices

C =











0 A1

B1 0 A2

B2 0
. . .

. . .
. . .











and Z =











0 X1

Y1 0 X2

Y2 0
. . .

. . .
. . .











where An and Xn are the n × (n + 1) matrices of norm 1√
n

An =
1

n











√
n 0√

n − 1 0
. . .

. . .√
1 0











and Xn =
1

n











0
√

1

0
√

2
. . .

. . .

0
√

n











while Bn and Yn are the (n + 1) × n matrices of norm
√

n

n+1

Bn = − 1

n + 1















0√
1 0

√
2

. . .

. . . 0√
n















and Yn =
1

n + 1















√
n

0
√

n − 1

0
. . .
. . .

√
1

0















.
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4. Impact and an introduction to my work of the last decade

1. DFWW gave birth to arithmetic mean ideals Ia, aI and combinations like a(Ia) and Ia2

and to diagonal invariance:
Which ideals have all their operators’ diagonals (in all bases) back in the ideal?

Yes: Trace class, Hilbert-Schmidts, compacts.
No: Finite rank operators-consider any nonzero entry rank one infinite matrix (aibj).

Characterization: the arithmetic mean closed ideals, i.e., a(Ia) = I . Kaftal-W 2011, IUMJ

This got Kaftal and me interested in the general question of diagonals of operators, in
particular the classical works of Schur-Horn and recent works of Arveson, Kadison and
others on diagonals of operators.

Back to this shortly.

2. B(H)-Subideals (characterize ideals inside ideals I , starting with K(H))

Observe all B(H)-ideals inside I are automatically subideals of I .
Hence the question: Which subideals of I are not B(H)-ideals?

Fong-Radjavi 83: principal ideals in K(H) exist that are not B(H) ideals.
The K(H)-principal ideal generated by diag < 1

n
> is not a B(H)-ideal.

Patnaik-W 2012-13 IEOT, JOT: Characterizations for principal, finitely generated,
and certain infinitely generated subideals depending on the continuum hypothesis.

Notable: When is a subideal J of a B(H)-ideal I itself a B(H)-ideal?

Answer: When J is I-soft, i.e., when J ⊂ I and IJ = J .
Subject to constraint: I is generated by a set of cardinality < c.
(Without this constraint, question is open.)

(Softness was introduced by Mityagin-Pietsch but was unbeknownst to us.)
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3. Diagonality and Schur-Horn theorems
(with Loreaux, Jasper, Patnaik, Kaftal - JFA, IUMJ, JOT, ...)

Diagonality:
Characterize the diagonals of operator A in all bases, i.e., diagonals of unitary orbit of A.
Or a class of operators A.

The classical Schur-Horn theorem, early in the last millenium:
Sequence y = < yj > (1 ≤ j ≤ n) is the diagonal of a normal n × n operator A with
eigenvalues x = < xj > arranged in order of decreasing moduli if and only if

k
∑

1

yj ≤
k

∑

1

xj, 1 ≤ k < n with
n

∑

1

yj =
n

∑

1

xj

(a step function area comparison commonly known as Hardy-Littlewood majorization).

Recent infinite dimensional investigations focused on positive compact operators.
Some contributors last 20 years: Arveson, Kadison (his Pythagorean papers for projec-
tions), Gohberg, Marcus, Neumann. All proved approximate Schur-Horn theorems.

And recently for von Neumann algebra analogs, Ravishandran and Skoufranis et al.

Exact Schur-Horn theorem, Kaftal-W 2011 JFA:
if A > 0, then for A trace class, Schur-Horn holds true for n = ∞, and for A compact but
not trace class, the same but without equality at end. E.g., for non-trace class case:

Theorem 4.1 (Kaftal-W). Let A ∈ K(H)+ with RA = I. Then

E(U(A)) = {B ∈ D | s(B) ≺ s(A), with RB = I}.
Loreaux-W 2015 JFA, for dim kerA = ∞, the characterization of eigenvalues of B involves
an infinite ladder of majorization analogs, e.g.,

∑k+p
1 yj ≤

∑k
1 xj.

Case: 1 ≤ dim ker A < ∞ remains open. Unexpectedly harder than the i∞ case.

Loreaux-Jasper-W 2017 IUMJ A Thompson type Schur-Horn theorem + a characteri-
zation of the diagonals of the full class of unitaries.
I.e., Schur-Horn majorization theorem with added singular value constraints;
and for diagonals of the class of unitaries:

x is bounded & 2(1 − inf|xj|) ≤
∑

(1 − |xj|))
(reminiscent of Kadison’s diagonals of projection condition and an infinite dimensional
analog of Thompson).

Loreaux-W 2016 JOT Diagonals of idempotents. Motivated by Kadison’s proj work.
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4. Automatic selfadjoint semigroup ideals (ASI) on a B(H) problem of Radjavi,
with S. Patnaik.

B(H) semigroups are simply classes closed under products.
And their ideals are subsets closed under products from inside and outside,
analogous to two-sided ring ideals.

Radjavi’s question: characterize those semigroups possessing only selfadjoint ideals.

B(H) semigroups with ASI must themselves be selfadjoint,
and semigroups are built from their singly generated semigroups.

So main focus: Which S(T, T ∗) have ASI?
(the singly generated selfadjoint semigroups generated by T ).

For T rank 1,
NASC for S(T, T ∗) having all its ideals s.a: the trace-norm condition

(trT )n(trT )
m||T ||2p = 1, for some n, m, p ≥ 1.

In most cases S(T, T ∗) is simple, i.e., no proper ideals.

For normal ops N : S(N, N∗) is ASI if and only if N ∼= unitary ⊕ 0.
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