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Abstract

Planar structure for inclusions of finite von Neumann algebras
by
David Signorielli Penneys
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Vaughan F. R. Jones, Chair

This dissertation consists of three self-contained papers from my graduate work at UC
Berkeley. The chapters increase in complexity from the annular Temperley-Lieb category to
strongly Markov inclusions of finite von Neumann algebras to infinite index I;-subfactors.

In Chapter 2, we discuss how two copies of the cyclic category generate the annular
Temperley-Lieb category. In the process, we give a presentation of the annular Temperley-
Lieb category via generators and relations, and we see the cyclic category evolve from the
simplicial and semi-simplicial categories.

Chapter 3 is joint work with Vaughan F. R. Jones. First, we define a canonical planar
x-algebra associated to a strongly Markov inclusion of finite von Neumann algebras (the
notion of such an inclusion is defined within). Second, we show for an inclusion of finite
dimensional C*-algebras with the Markov trace, the canonical planar algebra is isomorphic
to the graph planar algebra of the Bratteli diagram of the inclusion. We use this fact to
show that a subfactor planar algebra embeds into the graph planar algebra of its principal
graph.

In Chapter 4, we expand upon Burns’ work on rotations for infinite index I[;-subfactors.
We start with a I1;-factor bimodule, and we construct a tower of centralizer algebras and a
sequence of central L2-vectors. In the finite index setting, the centralizer algebras and central
L2-vectors agree, but in the infinite index setting, these spaces can differ dramatically. We
develop planar calculi for both sequences which are compatible. Interestingly, we obtain
planar structure without Jones’ basic construction or the resulting Jones projections! We
also generalize Burns work on extremality and the existence of rotations to the bimodule
setting, and we recover his main theorem. Along the way, we prove some results about
relative tensor products of extended positive cones, and we give an example of an infinite
index subfactor with finite dimensional higher relative commutants.



Contents

Contents i
1 Introduction 1
1.1 Chapter synopses . . . . . . . . . . . e 3
2 A cyclic approach to the annular Temperley-Lieb category 4
2.1 Introduction . . . . . . .. L 4
2.2 The Category Atl . . . . . . . . 6
2.3 The Category aA . . . . . . e 21
2.4 The Isomorphism of Categories aA = Atl . . . . .. ... .. ... ... ... 27
2.5 The Annular Category from Two Cyclic Categories . . . . . ... ... ... 29
2.6 Annular Objects . . . . . . . . 37
3 The embedding theorem for finite depth subfactor planar algebras 43
3.1 Introduction . . . . . . . .. 43

3.2 The canonical planar x-algebra of a strongly Markov inclusion of finite von
Neumann algebras . . . . . . . .. . L o 45
3.3 The planar algebra isomorphism for finite dimensional C*-algebras . . . . . . 62
3.4 The Embedding Theorem . . . . . . . .. .. ... ... 73
4 A planar calculus for infinite index subfactors 76
4.1 Introduction . . . . . . . .. 76
4.2 Preliminaries . . . . . . . .. 80
4.3 Planar calculus for bimodules . . . . . ... .. 00000 90
4.4  Extremality and rotations . . . . .. ... oo oL 101
4.5 Examples . . . .. 110
4.6 Relative tensor products of extended positive cones . . . . . . .. ... ... 115
4.7 The action of BP is well-defined . . . . . . . ... ... ... ... ...... 124
4.8 Extended positive cones . . . . .. ..o 131

Bibliography 135



i

Acknowledgments

Vaughan F. R. Jones, thank you for your guidance, support, and inspiration during my
time at Berkeley. You are incredibly generous with your invaluable ideas. Thank you not
only for advising me, but also for investing in my mathematical career by funding trips to
Chennai, Paris, and Maui. Thanks for the pizza and beer and the various subfactor retreats
at Bodega Bay and Tahoe. I'm sorry we lost your kite(s?).

Thank you to the subfactor community for conferences, discussions, papers, seminars,
and workshops, as well as many good times together. In particular, thank you to Scott
Morrison, Emily Peters, Noah Snyder, Arnaud Brothier, Mike Hartglass, and James Tener;
Stephen Bigelow and Dietmar Bisch; Ved Gupta, Vijay Kodiayalam, and V. S. Sunder; and
Yasuyuki Kawahigashi, Maskai Izumi, and Yasuo Watatani.

Thank you to my other mathematics colleagues for good math discussions and good times,
including Marc A. Rieffel, Per-Olof Persson, and Jesse Peterson; Stephen Curran, Stephen
Deprez, J. Owen Sizemore, and Thomas Sinclair; Masato Mimura and Makoto Yamashita;
and Patrick Barrow, Ryan Hynd, Cody Mitchell, and Matthew Tucker-Simmons.

Thank you to my friends in the bay area who have added great depth and richness to my
life over the past seven years, including Mark Adam, Adam Gomolin, Radu Mihaescu, and
Susannah Ragab; Cal Triathlon, especially John Dahlz, Melissa Peabody, Tom Reynolds, and
Steve Sexton; and Team Fuego, especially Ian Bannister, Johan Steiner, and Jon Wilkening.

I would like to thank my family. Nancy Signorielli and Robert Penneys, thank you for
always stressing the importance of education and supporting me in all my endeavors. Laura
Jane Penneys, thank you for being a wonderful sister.

Finally, Liz Kirby, I could not ask for a better partner. Thank you for your unending
love and support.



Chapter 1

Introduction

Finite index subfactors

Mathematicians are taxonomists; we classify species of mathematical objects into types.
Herein, the species are factors, von Neumann algebras with trivial centers, first defined by
von Neumann in his study of quantum mechanics. Murray and von Neumann classified
factors into three types, and constructed examples of each. All factors in this subsection are
type 11;.

Sometimes distinct species share common traits. Fields and I[;-factors are algebraically
simple, so we study maps in these categories by studying inclusions, i.e., subfields or subfac-
tors. Nakamura and Takeda strengthened this connection with their Galois correspondence
for the intermediate subfactor lattice for M C M x G for a finite group G [NT60a, NT60b].
Hence some refer to subfactor theory as “noncommutative Galois theory.”

In his pioneering paper [Jon83|, Jones defined an index for a subfactor My C M, showed

[M;: My) € {4cos®(m/n)|n =3,4,5,... } U4, 00,

and constructed an example with each allowed index. To do so, he used the “basic construc-
tion” which constructs a tower of factors My C My C My C M3z C --- . The subfactors in this
subsection are assumed to be finite index.

Just as topologists study a complicated topological space by its homology groups, we
study a subfactor by its standard invariant, two sequences of finite dimensional C*-algebras
P,+ = M,NM,and P,_ = M{N M, [Jon83, Jon86]. The standard invariant has been
axiomatized in three similar ways, each emphasizing slightly different structure: Ocneanu’s
paragroups [Ocn88, EK98|, Popa’s A-lattices [Pop95], and Jones’ planar algebras [Jon99].
Given a standard invariant P,, one can construct a subfactor whose standard invariant is P,
[Pop95, GJSO7].

The rich structure of a planar algebra provides connections between subfactor theory,
combinatorics, quantum algebra, and tensor categories. Given a subfactor N C M, its pla-
nar algebra P, encodes two simpler invariants: the index, and the principal graphs, which
are bipartite induction-restriction graphs associated to the representation theory of the sub-




CHAPTER 1. INTRODUCTION 2

factor. The two “even parts” of P, form two C*-tensor categories of N — N bimodules and
M — M bimodules respectively. If there are only finitely many isomorphism classes of such
bimodules, the subfactor is called finite depth, and the “even parts” are fusion categories
[ENOO5]. In this case, the two fusion categories are Morita equivalent [Miig03] via the two
“odd parts” of P,, which are module categories of N — M and M — N bimodules.
Subfactors and groups also share traits. For an outer action of a finite group G on a
factor M and a subgroup H C G, the planar algebra of the fixed point subfactor M% c MH¥
encodes the induction-restriction data of H C G. If H is trivial, one “even part” of P, is the
fusion category of representations of G'. This also works for actions of quantum groups.
Jones proved that every finite group has a unique outer action on the hyperfinite I1;-
factor R [Jon80]. Popa extended this result in his classification of amenable subfactors
[Pop94] where he shows that each amenable standard invariant has a unique “action” on R.

Infinite index subfactors

Some finite index results generalize to infinite index subfactors, such as discrete, irre-
ducible, “depth 2” subfactors correspond to outer (cocycle) actions of Kac algebras [HO89,
ENO96], and the classical Galois correspondence still holds for outer actions of infinite discrete
groups and minimal actions of compact groups [ILP98]. We ask:

Question. What is a suitable standard invariant for infinite index subfactors?

There are several candidates for the standard invariant, each with its pros and cons. For
example, we could take the towers P, 1+ as in the introduction since Enock and Nest showed

MO M; = M, , N M, for all 4,5 >0

in [EN96]. In his Ph.D. thesis [Bur03], Burns studied rotations and extremality for infinite
index subfactors, and he initiated the search for planar structure. He crucially observed that
for finite index, the centralizer algebras M N M,, and the central L*-vectors

My N LA(M,) = {¢ € L*(M,)|x€ = € for all x € My}

coincide. As this is no longer true for infinite index, he focused on the spaces M} N L?(M,,),
and he showed M, C M, is (approximately) extremal if and only if a (non-)unitary rotation
operator exists on the M} N L?(M,,).
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1.1 Chapter synopses

This dissertation consists of three self-contained papers from my graduate work at UC
Berkeley. The chapters increase in complexity from the annular Temperley-Lieb category to
inclusions of finite von Neumann algebras to infinite index I [;-subfactors.

Chapter 2: A cyclic approach to the annular Temperley-Lieb category
This paper was published in J. Knot Theory and its Ramifications [Pen12a]. Its abstract
is as follows:

In [Jon00], Jones found two copies of the cyclic category cA in the annular Temperley-
Lieb category Atl. We give an abstract presentation of Atl to discuss how these two copies
of cA generate Atl together with the coupling constants and the coupling relations. We then
discuss modules over the annular category and homologies of such modules, the latter of
which arises from the cyclic viewpoint.

Chapter 3: The embedding theorem for finite depth subfactor planar algebras
This joint paper with Vaughan F. R. Jones was published in Quantum Topology [JP11].
Its abstract is as follows:

We define a canonical planar *-algebra from a strongly Markov inclusion of finite von
Neumann algebras. In the case of a connected unital inclusion of finite dimensional C*-
algebras with the Markov trace, we show this planar algebra is isomorphic to the bipartite
graph planar algebra of the Bratteli diagram of the inclusion. Finally, we show that a finite
depth subfactor planar algebra is a planar subalgebra of the bipartite graph planar algebra
of its principal graph.

Chapter 4: A planar calculus for infinite index subfactors
This paper was accepted to Communications in Mathematical Physics on May 8, 2012; it
can be found at arXiv:1110.3504 [Penl2b]. Its abstract is as follows:

We develop an analog of Jones’ planar calculus for I[;-factor bimodules with arbitrary
left and right von Neumann dimension. We generalize to bimodules Burns’ results on rota-
tions and extremality for infinite index subfactors. These results are obtained without Jones’
basic construction and the resulting Jones projections.


http://arxiv.org/abs/1110.3504

Chapter 2

A cyclic approach to the annular
Temperley-Lieb category

2.1 Introduction

The Temperley-Lieb algebras have been studied extensively beginning with Temperley
and Lieb’s first paper in statistical mechanics regarding hydrogen bonds in ice-type lattices
[TL71]. Since, these algebras have been instrumental in many areas of mathematics, includ-
ing subfactors [Jon83] and knot theory [Jon85]. The well known diagrammatic representation
of these algebras was introduced by Kauffman in [Kau87] in his skein theoretic definition
of the Jones polynomial. From these diagrams, we get the Temperley-Lieb category whose
objects are n points on a line, morphisms are diagrams with non-intersecting strings, and
composition is stacking tangles vertically (we read bottom to top).

Historically, the (affine/annular) Temperley-Lieb algebras have been presented as quo-
tients of the (affine) Hecke algegras [Jon94]. Graham and Lehrer define cellular structures for
these algebras in [GLI6|, and they give the representation theory for affine Temperley-Lieb
in [GL98]. Jones’ definition of the annular Temperley-Lieb category (see [Jon99], [Jon01]),
which we will denote Atl, differs slightly Graham and Lehrer’s. First, Atl-tangles have a
checkerboard shading, so each disk has an even number of boundary points. Second, the
rotation is periodic in Atl, similar to the rotation in Connes’ cyclic category cA, studied by
Connes [Con83], [Con94], Loday and Quillen [LQ83], [Lod98], and Tsygan [Tsy83]. Jones
found a connection between Atl and cA in [Jon00], and raised the question we now address:
how does Atl arise from the interaction of two copies of the cyclic category?

In answering this question, we see Atl evolve from simple categories. The opposite of the
simplicial category sA (see 2.5.4) has a well known pictorial representation much like the
Temperley-Lieb category: objects are 2n + 2 points on a line, morphisms are rectangular
planar tangles with only shaded caps and unshaded cups, and composition is stacking. In
fact, these diagrams closely resemble the string diagrams arising from an adjoint functor
pair.
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Figure 2.1: Face maps dy, dy,dy: [2] — [1]
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Figure 2.2: Degeneracies s, s1, $2: [2] — [3]

An asymmetry is present in the above tangles: all shaded regions can be “capped” by
applying a face map, but not every unshaded region can be “cupped” by applying a degen-
eracy. This asymmetry can be corrected by closing the rectangular tangles into annuli, still
enforcing the same shading requirements. Jones showed the resulting category is isomorphic
to cA°? in [Jon00]. Of course the category with the reverse shading is also isomorphic to cA
(and cA°P), and these two subcategories generate Atl.

N

(0
R

LN [

Figure 2.3: Closing up rectangular tangles into annuli

Outline

In Section 2.2, we will define Atl and offer candidates for generators and relations. We
will then prove some uniqueness results which will be crucial to our approach. In Section 2.3,
we will take these candidates and define an abstract category a/A, the annular category, via
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generators and relations. We then prove existence of a standard form for words. In Section
2.4, we prove Theorem 2.4.8, which says there is an isomorphism of involutive categories
Atl = aA (the isomorphism preserves an involution).

After we have our description of Atl in terms of abstract generators and relations, we
recover the result of Jones in [Jon00] in 2.5, i.e. two isomorphisms from cA°? to subcategories
cAtl® of Atl. After a note on augmentation of the cyclic category in 2.5, we prove the
main result of the paper, Theorem 2.5.27, which shows Atl is a quotient of the pushout of
augmented copies of cA and cA°P over a groupoid T of finite cyclic groups:

T—cA®

L

cA ——PO

N

Atl.

In Section 2.6, we define the notion of an annular object in a category C. As cA°P lives
inside aA (in two ways), we will have notions of Hochschild and cyclic homology of annular
objects in abelian categories. We define these notions and give some easy results in 2.6.

Acknowledgements

The author would like to acknowledge and thank Vaughan Jones for his guidance and
advice, Vijay Kodiyalam and V. S. Sunder for discussing the problem at length and for their
hospitality at IMSc, Ved Gupta for proofreading and correcting an error in the first draft,
and Emily Peters for her support and her help on drawing planar tangles (in fact, all tangles
shown are adapted from [Pet10]). The author was partially supported by NSF grant DMS
0401734.

2.2 The Category Atl

Notation 2.2.1. All categories will be denoted by capital letters in the following sans-serif
font: ABC... The categories we discuss will be small, and we will write X € A to denote
that X € Ob(A), the set of objects of A. We will write A(X,Y) to denote the set of
morphisms ¢: X — Y where X,Y € A, and we will write Mor(A) to denote the collection
of all morphisms in A. In the sequel, objects of our categories will be the symbols [n] for
n € Z>oJU{0£,+}. For simplicity and aesthetics, we will write A(m, n) instead of A([m], [n]).

Definition 2.2.2. A category A is called involutive if for all X,Y € A, there is a map
x: A(X,Y) = A(Y, X) called the involution such that

(1) idy =idx for all X € A,



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 7

(2) (T*)*=Tforall T € A(X,Y), and
(3) forall X,Y,Z € Aand all T € A(X,Y) and S € A(Y, Z), (S o T)* = T* 0 S*.

In other words, there is a contravariant functor *: A — A of period two which fixes all
objects.

Definition 2.2.3. Suppose A and B are categories and F': A — B is a functor.

(1) F is called an isomorphism of categories if there is a functor G: B — A such that
F oG =1idg and G o F = ida, the identity functors. In this case, we say categories A
and B are isomorphic, denoted A = B.

(2) If A and B are involutive, we say F' is involutive if it preserves the involution, i.e.
F(o*) = ¢* for all p € A(X,Y) for all X,Y € A.

(3) An isomorphism of involutive categories is an involutive isomorphism of said categories.

Remark 2.2.4. It is clear that if A is involutive, then A = AP,

Annular Tangles

We provide a definition of an annular (m,n)-tangle which is a fusion of the ideas in
[Jon99] and [KS04].

Definition 2.2.5. An annular (m,n)-pretangle for m,n € Z-( consists of the following data:
(1) The closed unit disk D in C,
(2) The skeleton of T', denoted S(7'), consisting of:

(a) the boundary of D, denoted Dy(T),
(b) the closed disk Dy of radius 1/4 in C, whose boundary is denoted D;(T),

(¢) 2m, respectively 2n, distinct marked points on D;(T'), respectively Do(T'), called
the boundary points of D;(T) for ¢ = 0,1. Usually we will call the boundary
points of Dy(T') external boundary points of 7" and the boundary points of D;(7T)
internal boundary points.

(d) inside D, but outside Dy, there is a finite set of disjointly smoothly embedded
curves called strings which are either closed curves, called loops, or whose bound-
aries are marked points of the D;(T)’s and the strings meet each D;(T') transver-
sally, i = 0, 1. Each marked point on D;(T), i = 0,1 meets exactly one string.

(3) The connected components of D\ S(T') are called the regions of T" and are either shaded
or unshaded so that regions whose closures meet have different shadings.
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Definition: If there are boundary points of D;(T"), then an interval of D;(T), i = 0,1,

is a connected arc on D;(7T") between two boundary points of D;(7). A simple interval
of Di(T), i = 0,1, is an interval of D;(T) in T which touches only two (adjacent)
boundary points. If there are no boundary points of D;(7"), then a (simple) interval of
D;(T) is Dy(T) itself.

For each D;(T"), i = 0,1, there is a distinguished simple interval of D;(T") denoted *;(7")
whose interior meets an unshaded region. Starting at *;(7") on D;(T"), we order the
marked points of D;(T") clockwise. This numbering, along with the shading, induces
an orientation on the pre-tangle.

(%)
GBI

Figure 2.4: An example of an annular tangle

Remarks 2.2.6. (1) If m = 0, there are two kinds of annular (0, n)-pretangles depending

(2)

on whether the region meeting D;(7") is unshaded or shaded. If the region meeting
D+ (T) is unshaded, we call T an annular (0+, n)-pretangle, and if the region is shaded,
we call T an annular (0—,n)-pretangle. Likewise, when n = 0, there are two kinds
of annular (m, 0)-pretangles. If the region meeting Dy(7") is unshaded, we call 7" an
annular (m, 0+)-pretangle, and if the region is shaded, we call 7" an annular (m,0—)-
pretangle. Additionally, we have annular (0+,0+)-pretangles and annular (04, 0F)-
pretangles.

Loops may be shaded or unshaded.

Definition 2.2.7. An annular (m,n)-tangle is an orientation-preserving diffeomorphism
class of an annular (m,n)-pretangle for m,n € NU {0+}. The diffeomorphisms preserve
(but do not necessarily fix!) Dy and D;.

Definition 2.2.8. Given an annular (m,n)-tangle T, and an annular (I, m)-tangle S, we
define the annular (I, m)-tangle T o S by isotoping S so that Dy(S), the marked points of
Dy(5), and *¢(S), coincide with D;(T"), the marked points of D;(T"), and *,(7T") respectively.
The strings may then be joined at D;(7T") and smoothed, and D;(T) is removed to obtain
T o S whose diffeomorphism class only depends on those of 7" and S.
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Figure 2.5: An example of composition of annular tangles

Definition 2.2.9. If 7' is an annular (m, n)-tangle, we define T* to be the annular (n,m)-
tangle obtained by reflecting 7" about the circle of radius 3/4, which switches D;(T") and
%;(T),1=0,1. Clearly (T*)* =T and (T o S)* = S* o T* for composable S and T'.

Figure 2.6: An example of the adjoint of an annular tangle

Definition 2.2.10. Let 7' be an annular (m,n)-tangle.

Caps: A cap of T is a string that connects two internal boundary points. The set of caps of
T will be denoted caps(T).

OA: If A € caps(T), there is a unique interval of D;(T"), denoted A, such that A UOJA is a
closed loop (which is not smooth at two points) which does not contain D; in its interior.
Using 0A, the cap A inherits an orientation as Dy(7") is oriented clockwise. Denote this
orientation by an arrow on A.

Index: We define the cap index of A, denoted ind(A), to be the number of the marked point
to which the arrow points. The set of cap indices of T forms an increasing sequence, which
we denote capind (7).

B(A): For A € caps(T), we let B(A) = {A’ € caps(T)|OA’ C A}, and we say an element
A" € B(A) is bounded by A or that A bounds A’.

Definition 2.2.11. Let 7' be an annular (m,n)-tangle.

Cups: A cup V of T is a string that connects two external boundary points. The set of cups
of T will be denoted cups(T).
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capind ={1,4,7}

Figure 2.7: An example of cap indices

OV: If V € cups(T), there is a unique interval of Dy(7T"), denoted 9V, such that V U 9V is
a closed loop (which is not smooth at two points) which does not contain D; in its interior.
Using 0V, the cup V inherits an orientation as Dy(7T") is oriented clockwise. Denote this
orientation by an arrow on V.

Index: We define the cup index of V| denoted ind(V), to be the number of the marked point
to which the arrow points. The set of cup indices of T" forms an increasing sequence, which
we denote cupind(7T).

B(V): For V € cups(T'), we let B(V) = {V’ € cups(T")|0V’' C 0V}, and we say an element
V"€ B(V) is bounded by V or that V bounds V".

Remark 2.2.12. Note capind(7") = cupind(7™) for all annular tangles 7T'.

Definition 2.2.13. Suppose 7' is an annular (m, n)-tangle.

ts(7'): A through string is a string of 7" which connects an internal boundary point of T to
an external boundary point of T. The set of through strings is denoted ts(T"). Note that
| ts(T")| € 2Z>¢. We order ts(T') clockwise starting at #(7"), so each through string of 7" has
a number.

tso(7): Suppose T has a through string. Using %((7") as our reference, we go counterclockwise
along Dy(T") to the first through string, which is denoted tso(7"). Note the number of tsy(7')
is | ts(T)].

ts1(T"): Suppose T has a through string. Using %;(7") as our reference, we go counterclockwise
along D;(T') to the first through string, which is denoted ts;(7"). We denote the number of
ts1 (1) by # ts1(T).

rel,(T'): We define the relative star position of 7', denoted rel,(T"), as follows:

(1) Suppose T has an odd number k of non-contractible loops. Then there is a unique
region R which touches both a non-contractible loop and Dy (7). If R is unshaded, we
define rel,(7T") to be the symbol £(k), and if R is shaded, we define rel.(7") to be the
symbol F(k). This notation signifies the shading switches from unshaded to shaded,
respectively shaded to unshaded, as we read T from D;(T') to Dy(T).
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(2) Suppose T has an even number k of non-contractible loops. If k£ = 0, then there is a
unique region R which touches both Do(T") and Dy (7). If k > 1, then there is a unique
region R which touches both a non-contractible loop and Dy (7). If R is unshaded, we
define rel,(7T") to be the symbol +(k), and if R is shaded, we define rel,(7T") to be the
symbol —(k).

(3) Suppose T has a through string. We define

rel,(T) = {#tsTl(T)J mod (|tSéT)!) c {0,1,..., (T 1}.

rel, =2

Figure 2.8: An example of relative star position

“Generators and Relations” of Atl

Definition 2.2.14. Suppose T is an annular tangle. A loop of T is called contractible if it
is contractible in D\ D;. Otherwise it is called non-contractible.

Definition 2.2.15 (Atl Tangle). An annular (m,n)-tangle T is called an Atl (m,n)-tangle
if T has no contractible loops.

Definition 2.2.16. Let Atl be the following small category:
Objects: [n] for n € NU {0+£}

Morphisms: Given m,n € NU {0+}, Atl(m,n) is the set of all triples (T, cy,c_) where T is
an Atl (m,n)-tangle and ¢, c_ € Z>y.

Composition: Given (S, a;,a_) € Atl(m,n) and (T,by,b_) € Atl(l,m), we define (S, a,,a_)o
(T,by,b_) € Atl(l,n) to be the triple (R, cy,c_) obtained as follows: let Ry be the annular
(I,n)-tangle S o T'. Let d,, respectively d_, be the number of shaded, respectively un-
shaded, contractible loops. Let R be the Atl (I, n)-tangle obtained from Ry by removing all
contractible loops, and set ¢y = a4 + by + d.
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Remark 2.2.17. For simplicity and aesthetics, we write T for the morphism (7,0,0) €
Mor(Atl).

*

@) )00 O-|F -0 o

Figure 2.9: An example of composition in Atl

Definition 2.2.18. We give the following names to the following distinguished Atl (n,m)-
tangles:

(A) Let a; be the only Atl (1,0+)-tangle with no loops, and let ay be the only Atl (1,0—)-
tangle with no loops. For n > 2 and i € {1,...,2n}, let a; be the Atl (n,n — 1)-tangle

Figure 2.10: a; € Atl(1,0+) and ay € Atl(1,0-)

whose i and (i +1)™ (modulo 2n) internal boundary point are joined by a string and
all other internal boundary points are connected to external boundary points such that

(i) If i = 1, then the first external point is connected to the third internal point.
(i) If 1 <7 < 2n, then the first external point is connected to the first internal point.

(iii) If 4 = 2n, then the first external point is connected to the (2n — 1) internal
point.

(B) Let by be the only Atl (0+, 1)-tangle with no loops, and let by be the only Atl (0—,1)-
tangle with no loops. Forn > landi € {1,...,2n+2}, let b; be the Atl (n, n+1)-tangle
whose i and (i + 1) (modulo 2n + 2) external boundary point are joined by a string
and all other internal boundary points are connected to external boundary points such
that
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Figure 2.11: aq,az, - ,as, € Atl(n,n — 1). (without the dots, n = 3)

Figure 2.12: b; € Atl(0+, 1) and by € Atl(0—,1)

(i) If i = 1, then the third external point is connected to the first internal point.
(ii) If 1 < ¢, then the first external point is connected to the first internal point.

(iii) If i = 2n + 2, then the first internal point is connected to the (2n + 1)™ external
point.

Figure 2.13: by, by, -+ ,bopio € Atl(n,n + 1) (without the dots, n = 3)

(T) For n =1, let ¢ be the identity (1,1)-tangle. For n > 2, let t be the Atl (n,n)-tangle
where all internal points are connected to external point such that the third external
point is connected to the first internal point.

Theorem 2.2.19. The following relations hold in Atl:
(1) aiaj = aj_sa; fori < j—1 and (i,7) # (1,2n),
(2) bzb] = bj+2bi fOTi S] and (Z,]) 7é (1,2n + 2),
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Figure 2.14: ¢ € Atl(n,n) (without the dots, n = 3)

(3) 1" = idp,,
(4) ait =ta;_5 fori >3,
(5) blt = tbz‘,g fOTi Z 3,

(6) (ld[o_,_],l,()) = a1b1 S At/<0+,0+> and (1d[0+],0,1) = agbg S At/(O-,O—) [f (libj S
Atl(n,n) with n > 1, then

t if (i,5) = (1,2n+2)
bj_2a; ifi<j—1,0i,5) # (1,2n +2)
idy) ifi=j—1

o ) d,1,0)if i = and i is odd

Y (idj),0,1)  if i =j and i is even
idy) ifi=j+1
bjdti-2 if i>j41,0,5) # (2n+2,1)
(! if (i,7) = (2n+2,1)

(7) (idpy, 1,0) and (idp,, 0,1) commute with all (T, cy,c—) € Atl(n,n) where n € NU{0%}.

Proof. These relations can be easily verified by drawing pictures. O

Involution and Tangle Type

Proposition 2.2.20. The map x: Atl — Atl given by [n]* = [n] for alln € NU {0+} and
(T, e )= (T* cyyc) defines an involution on Atl.

Corollary 2.2.21. We have an isomorphism of categories Atl = Atl°P.

Proposition 2.2.22. The involution on Atl satisfies
A/B: af = b; fori = 1,2 if ay € Atl(1,04) and ay € Atl(1,0—). Forn > 2 and a; €

Atlln,n — 1), soie {1,...,2n}, af =b; € Atlln — 1,n).
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T: ForneN andt € Atl(n,n), t* =t
D: Forn € NU{0£}, (i}, 1,0)* = (idpy, 1,0) and (idp,, 0,1)* = (idp, 0, 1).
Proof. Obvious. m

Definition 2.2.23. An Atl (m,n)-tangle T is said to be of

Type I: if T is either idp, for some n € NU{£0}, or 7" has no cups, at least one cap, and no
non-contractible loops, with the limitation on %¢(7") that exactly one of the following occurs:

I-1: There are no through strings, so #(7") is uniquely determined. Note that if n = 0—,
then there is no xo(7).

1-2: There are through strings. Using x;(7") as our reference, we go counterclockwise to
the first through string, and travel outward until we reach a marked point p of Dy(T).
The simple interval meeting p whose interior touches an unshaded region is o(7").

Type II: if T has no cups or caps, so T is a power of the rotation (including the identity
tangle) or an annular (0, 0)-tangle with & non-contractible loops (here we do not specify 0+).

Type IIL: if T is either idp, for some n € NU {£0}, or 7" has no caps, at least one cup, and
no non-contractible loops, with the limitation on *;(7"), that exactly one of the following
occurs:

[II-1: There are no through strings, so *1(7") is uniquely determined. Note that if
m = 0—, then there is no % (7).

I11-2: There are through strings. Using *o(7") as our reference, we go counterclockwise
to the first through string, and travel outward until we reach a marked point p of
D1(T). The simple interval meeting p whose interior touches an unshaded region is

x1(T).

Denote the set of all tangles of Type i by 7;, and denote the set of all (m, n)-tangles of Type
i by Ti(m,n) for i € {I,1I,1I1}.

Remark 2.2.24. Note that
(1) the a;’s are all Type I, and
(2) the b;’s are all Type III

Notation 2.2.25. We will use the notation s, = asb; € Atl(0+,0—) and s_ = a1by €
Atl(0—,0+).
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Figure 2.15: Examples of tangles of Types I and III
*
’ *

Figure 2.16: Type II tangles s, ,s_

Remark 2.2.26. For the case a;b;: [0] — [0] (where we do not specify %), a suitable version
of relation (6) reads

5 if (i,7) =(1,2)

(idp4,1,0) fi=j=1

(idjp—,0,1) ifi=j=2

54 if (4,7) = (2,1).

Note that we replace t*! with s, which supports Graham and Lehrer’s reasoning that the
rotation converges to the non-contractible loop as n — 0 in [GLIS].

aibj =

Lemma 2.2.27. Let m,n € NU{0+}. Types are related to the involution as follows:
(1) T € Tr(m,n) if and only if T* € Trrr(m,n), and
(2) If T € Tri(n,n), then T* € Trr(n,n).
Proof. Obvious. O]

Proposition 2.2.28. Let m,n € NU {0£}.
Type I: Any T € Ti(m,n) is uniquetly determined by capind(T"). Moreover, rel.(T') €

{0, +(0), =(0)}-
Type II: Suppose m =n € N orm,n € {0+,0—}. Any T € Tr1(m,n) is uniquely determined
by rel (T).
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Type II: Any T € Trir(m,n) is uniquely determined by cupind(T). Moreover, rel,(T) €

{0,+(0), =(0)}-
Proof.

Type I: Suppose 11,72 € Ti(m,n) with capind(7;) = capind(7y). If A; € caps(T;) for
i = 1,2 with ind(A;) = ind(A3), note that |B(Ay)| = |B(A3)|, so the A;’s must end at the
same points. Hence all caps of T; start and end at the same points for « = 1, 2. Now note that
all other points on D (7;) for i = 1,2 (if there are any) are connected to through strings, and
recall *o(7;) is uniquely determined by *;(7;) for i = 1,2. Hence T; = T5. The statement
about rel,(T") follows immediately from conditions (I-1) and (I-2).

Type II: Note that exactly one of the following occurs:
(1) m =n and T = idp,, in which case rel,(T") € {0,+(0),—(0)},
(2) m =n and T = t* where 0 < k < n, in which case rel,(T) = k,
(3) m=n=0+% and T = (sxs4+)" for some k € N, in which case rel,(T) = +(2k), or
(4)

4) m = 0+ and n = 0F and T = (s1s+)"sy for some k € Zs, in which case rel.(T') =
+(2k + 1).
Type III: This follows immediately from the Type I case and Lemma 2.2.27. m

Lemma 2.2.29. Tangle type is preserved under tangle composition for tangles.

Proof.

Type I Suppose S,T € T; such that R = S o T makes sense. Certainly R has no cups or
loops. It remains to verify that #o(R) is in the right place. A problem could only arise in
the case where both S and T have through strings, but we see that if S and 7" both satisty
condition (I-2), then so does R.

Type II: Obvious.

Type III: Suppose S, T € T;;; such that R = S oT makes sense. Then by Lemma 2.2.27, we
have T*,5* € T; and R* = T* o S* makes sense, so by the Type I case, R* € T;, and once
more by 2.2.27, R € Trz;. O

Corollary 2.2.30. By 2.2.2/ and Proposition 2.2.29,
(1) any composite of a;’s is in T, and

(2) any composite of b;’s is in Tryy.
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Unique Tangle Decompositions
For this section, we use the convention that if n = 04+ and z € Z, then n + z = z.

Definition 2.2.31. A tangle T € 77 is called irreducible if there is at most one cap bounding
x1(T"), and if there is a cap A bounding #;(7"), then all other caps of T" are bounded by A.

Remark 2.2.32. If T' € T;(m,n) for m > 11isirreducible, then T has a unique representation
as follows:

Case 1: if there is no cap bounding #;(7), then T' = a;, ---a;, with 4; > ;4 for all j €
{1,...)k—=1}and i; <2(m—j)+2forall j € {1,... k}.

Case 2: If there is a cap bounding #;(7’), then T = aqa;, - - - a;,a;, - - - aj, where k,1 > 0 and
(i) ¢ =2n+ 2,
(ii) iy > dpyq forall r € {1,...,k — 1}, 4y < jj, and js > jsq for all s € {1,...,1— 1}, and
(ili) ¢ <2(k—r)+1forall re{1,...,k} and js > 2(m —s) +1forall s € {1,...,1}.
Uniqueness follows by looking at the cap indices which are given as follows:
Case 1: If there is no cap bounding *;(7), then capind(7T") = {iy, -+ ,i1}.
Case 2: If there is a cap A bounding *;(7), then ind(A) = 2(m — [) and capind(7) =
{ig, -+ 1, 2(m =), i, -+t

Remarks 2.2.33. Suppose T € T;(m,n — 1) with m > n — 1 > 1 is irreducible such
that #;(7) is bounded. Let T' = aqa;, - - - a;,aj, - - - a;, be the representation afforded by
the above remark. If S € T;(n — 1,p) and R = S o T, then

(1) there is a cap A of R bounding *;(R), of index 2(m — ). All other caps of R bounding
1(R) have smaller index than A.

(2) |BA)|=k+1+1.
(3) capind(R) = {ig, -+ ,i1,¢1, - ,¢s,2(m — 1), ji, ..., 71} for some ¢y,...,¢s € N and
s=m-—-p—k—1—1.

Lemma 2.2.34. Suppose T} € T(m,m—u—1) and Ty € Tr(m,m—v—1) withm—u, m—v >
2 are irreducible and each has one cap bounding ;. Suppose S; € Tr(m —u — 1,w) and
Sy € Tr(m —v — 1,w) such that Sy o Ty = Sy 0Ty. Then Ty = Ts.

Proof. Set R = S1 0Ty = Sy oTy. We have that *;(R) is bounded by a cap A with index
2(m —u) = 2(m —v), so u = v. Now we have unique irreducible decompositions

T, = apa;, - - a; a4 -+ -a; and

T2 — aqagT oo aglahs e ah17
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Figure 2.17: R = S o T, zoomed in near *;(R) where T' = a9, 1201020402, —1 € Tr(m,n) is
irreducible

and as the cap indices of R are unique, we have
Caplnd(R) = {Zlm ailacb“' 7csa2<m_u)7jl"' 7j1}
= {g'ra"' 791,017"'aCS72(m_U)7h87"' 7h1}-

Hence we must have equality of the two sequences:

{lka ,i1,2(m—U),jl"' 7j1} - {g’r‘v"' 79172<m_v)7h87"' 7h1}7
and 177 = Ty by Proposition 2.2.28. ]

Proposition 2.2.35. Each T' € Ti(m,n) where m € N and n € NU {0+} has a unique
decomposition T = W,.--- Wy such that W; is wrreducible for all 1 =1,...,r.

Proof.

Existence: The existence of such a decomposition will follow from Algorithm 3.2 below.

Uniqueness: We induct on . Suppose » = 1. Then uniqueness follows from Remark 2.2.32.
Suppose now that » > 1 and the result holds for all concatenations of fewer irreducible words.
Suppose we have another decomposition

T=W,---W,=U,---Uj.

Then by the induction hypothesis, we must have s > r. As W and U; are irreducible, we
apply Lemma 2.2.34 with

(1) Ty =Wj and Sy = W, --- Wy, and
(2) T2:U1 andSQZUS"'UQ

to see that W, = U;. We may now apply appropriate b;’s to 7" (on the right) to get rid of
W1 = U1 to get
W =W, - Wy=U,--Us.

where W' is equal to a concatenation of fewer irreducible words. By the induction hypothesis,
we can conclude r = s and U; = W, for all e = 2,...,r. We are finished. O
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Algorithm 2.2.36. The following algorithm expresses a Type I tangle T' € T;(m,n) where
m € N and n € NU {04} as a composite of @;’s in the form required by Proposition 2.2.35.
Set Ty =T, mg=m, and r = 1.

Step 1: Let S; = {A € caps(Tp)|*1(To) C OA and ind(A) € 2N}. Let Sy be the set of all
caps that are not in B(A) for some A € S;. If S} = (), proceed to Step 4.

Step 2: Suppose |S1| > 1. Select the cap A € S; with the largest index. There are two cases:
Case 1: B(A) = {A}. Set W, = cinq(a). Proceed to Step 3.

Case 2: B(A)\ {A} # (0. List the cap indices for all caps A’ € B(A)\ {A} in decreasing
order from right to left, 4y, --- ,4; where ¢; > ;4 for all j € {1,...,k — 1}. where
k= |B(A)\ {A}|. Set ¢ =ind(A) — 2k and W, = aqa,, - - a;,.

Step 3: Note that W, is irreducible. Move x1(Tj) counterclockwise to the closest simple
interval outside of A whose interior touches an unshaded region (which is necessarily 2
regions counterclockwise), and remove all caps in B(A) from Tj to get a new tangle, called
Ti. Note that Ty = T1W,.. Set m; equal to half the number of internal boundary points of
Ti, and set r; = r. Now set 1o = 11, mg = mq, and r = r{ + 1. Go back to Step 1.

Step 4: List the cap indices for all caps A € Sy in decreasing order from right to left, 45, - - - , 73
where i; > 7,41 for all j € {1,...,k — 1}. There are two cases:

(i) There are fewer than mg caps. Set W, = a;, ---a;,. Note that W, is irreducible and
Ty = W,. We are finished.

(ii) There are mg caps. Proceed to Step 5.
Step 5: There are two cases:

(i) If the region touching Dy(7p) is unshaded, set W, = aya;,_, ---a;,. Note that W, is
irreducible and Ty = W,.. We are finished.

(ii) If the region touching Dy(7p) is shaded, set W, = asa;,_, ---a;,. Note that W, is
irreducible and Ty, = W,.. We are finished.

Note that T = W,. - - - W satisfies the conditions of Proposition 2.2.35.
The following Theorem is merely a strengthening of Corollary 1.16 in [Jon94].

Theorem 2.2.37 (Atl Tangle Decomposition). Each Atl (m,n)-tangle T can be written
uniquely as a composite T = Tyyr o Typ o Ty where T; € T; for alli € {I,II,111}.

Proof. We begin by proving the uniqueness of such a decomposition as it will tell us how to
find such a decomposition.
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Uniqueness: Suppose we have a decomposition 7" = Ty; o Ty; o 17 where T € Tr(m, 1),
Tir € Tir(L k), and Trrp € Trrr(k,n) for some [,k € NU{0£}. Note that [, k are uniquely
determined by |ts(7')| and the shading of T. Note further that capind(7;) = capind(T),
rel,(Tr;) = rel(T), and cupind(7y;;) = cupind(7). Hence 7; is uniquely determined for
i€ {I,II, 11T} by Proposition 2.2.28.

Existence: Let [ = k be the number of through strings of 7. If | = k = 0, set | = 0+,
respectively | = 0— if the region meeting D;(7T) is unshaded, respectively shaded, and set
k = 0+, respectively k = 0— if the region meeting Dy(7T) is unshaded, respectively shaded.
Let T; € T;(m, 1) be the unique tangle with capind(7;) = capind(7T). Let T7; € T1;(1, k) be
the unique tangle with rel,(77;) = rel,(T'). Let Ty;; € Ti11(k,n) be the unique tangle with
cupind(7y;r) = cupind(7’). It is now obvious that T' = Ty o Ty o T7. O

SIS VN

Figure 2.18: Decomposition of an ATL tangle into T7;; 0 Ty o T}

2.3 The Category aA

Generators and Relations

Definition 2.3.1. Let aA, the annular category, be the following small category:
Objects: [n] for n € NU {0£}, and



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 29

Morphisms: generated by

]
a;: [n] — [n—1] for i=1,...,2n and n > 2;
B1: [0+] = [1], B2: [0—] — [1], and
Bi:n] — [n+1] fori=1,...,2n+2 and n > 1;
7: [n] — [n] for all n € N; and
d1: [n] — [n] for all n € NU{0+}

subject to the following relations:
1) a0 = ajsq; for i < j —1 and (4,7) # (1, 2n),
2 ﬁzﬁ] ﬁ]+2ﬁz for i < ] and (Z ]) 7£ (1,271 + 2)7
3

7" = idp,,

(

(2)

(3)

(4) ;7 = Toy_o for i > 3,
(5)

(6)

5) BiT = 1f;_9 for i > 3,
6) 0+ = a1 € aA(0+,0+) and J_ = ayfs € aA(0—,0—). If a;5;: [n] — [n] with n > 1,
then
(71 if (i,5) = (1,2n +2)
Bj—oai ifi<j—1,(4,7) # (1,2n +2)
idp  ifi=j—1
0y if 1 =4 and 7 is odd
Oéiﬁj = o . ..
0_ if =4 and 7 is even
idp,) iti=7+1
Boiss ifi>j+1,(6,5) # (2n +2,1)
LT if (4,j) = (2n+2,1)

(7) 0+ commutes with all other generators (including ).

Involution and Word Type

Definition 2.3.2. A morphism h € Mor(aA) will be called primitive if A is equal to «;, 5;,
t, 04, or id, for n € NU{0£}. A word on aA is a sequence h, - - - hy with 7 > 1 of primitive
morphisms in aA. We say the length of such a word is r € N. By convention, we will say a
word has length zero if and only if r = 1 and hy = idp, for some n € NU {0+}.

Definition 2.3.3. We define a map * on Ob(aA) and on primitive morphisms in Mor(aA):



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 23

(Ob) For n € NU{0+£}, define [n]* = [n].
(I) For all n € NU{0%}, define idp, = id},.

(A) For oy € aA(1,0+), define of = f; € aA(0+,1). For ap € aA(1,0—), define o =
Po € aA(0—,1). For n > 2 and «; € aA(n,n—1),s01 € {1,...,2n}, define of = f5; €
aA(n —1,n).

(B) For 51 € aA(0+,1), define g = ay € aA(1,0+). For 5y € aA(0—,1), define g5 =
ay € aA(1,0—). Forn > 1 and 3; € aA(n,n + 1), so i € {1,...,2n + 2}, define
Bf = a; € aA(n+1,n).

(T) For n € N and 7 € aA(n,n), define 7* = 771
(D) For n €e NU{0+} and d1 € aA(n,n), define 0§ = 0.
Proposition 2.3.4. The following extension of x to Mor(aA) is well defined:
o [fh,---hy is a word on aA, then we define (h,---hy)* = hi---h.
Hence x extends uniquely to an involution on aA.

Proof. We must check that * preserves the relations of aA. Note that relations (3), (6), and
(7) are preserved by #, and the following pairs are switched: (1) & (2) and (4) & (5). O

Corollary 2.3.5. We have an isomorphism of categories aA = aA°P.
Proposition 2.3.6. The following additional relations hold in aA:

(1) onT = ag,1 and aeT = Qg

(2) TBoni1 = B1, TBany2 = P, and

(3) BT = 7%B2n_1 and o = T2Po,.
Proof. (1) By relations (4) and (5), we have

Qop_1 = Qop_1T" = TQgp_3T" ' = - = 7" lagT = "1 = .
The proof of the other relation is similar.
(2) These relations are merely * applied to (1).

(3) By relations (4) and (6), we have

T2Bon-1 = T Bon 17" = 727 Poy st ' = = 2" 1B = 7" BT = BT

The proof of the other relation is similar.
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Notation 2.3.7. (1) If h € Mor(aA), we write h € Ay if h = a; € aA(1,0+) where
i € {1,2}. We write h € A, where n > 2 if h = «; € aA(n,n — 1) for some
ie{l,...,2n}. We write h € A if h € A, for some n > 1. Similarly we define B,, for
n € NU{0£} and B.

(2) For convenience, we will use the notation oy = a8 € aA(0+,0—) and 0_ = a1 5 €
aA(0—,0+).

Definition 2.3.8. A word w = h, --- hy on aA is called

Type I: if w has length zero or if h; € A for alli e {1,...,r}.
Type II: if either

(1) w has length zero,
(2) r>0and h; =7 foralli € {1,...,r}, or
(3) r = 2s for some s > 0 and h;h; 11 = o+ for all odd i so that

{(0':|:U:F)k0'i if s =2k +11is odd, or
w =

(oro+)k if s = 2k is even.

Type III: if w has length zero or if h; € B for all ¢ € {1,...,7}.

Denote the set of all words of Type i by W;, and denote the set of all words of Type i with
domain [m] and codomain [n] by W;(m,n) for i € {I,11,111}.

Lemma 2.3.9. Let m,n € NU{0+}. Types are related to the involution as follows:
(1) w € Wr(m,n) if and only if w* € Wyrr(n,m), and
(2) If w € Wyr(n,n), then w* € Wyr(n,n).
Proof. Obvious. O

Standard Forms

Notation 2.3.10. if we replace j with j + 2 in the statement of relation (1), we get the
equivalent relation

(1) oy = gy for all j >4 with (j,4) # (2n, 1)
as maps [n+ 1] — [n — 1].
Definition 2.3.11. A word w € W;(m,n) with m > 1 is called irreducible if either

(1) w=ay, - where i, > i, forallr e {1,...,k—1} and i, < 2(m —r) + 2 for all
r € {1,...,k}, in which case we also say w is ordered, or
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(2) w=aya;, - -a;,a - a; € Wi(m,n) where m > 1 and [, k > 0 such that

(i) ¢=2n+2,

(ii) 4, > dpyq forall re {1,...,k—1}, 4 < ji, and js > joyq forall s € {1,...,1—1},
and

(iii) i, <2(k—r)+1forallr € {1,...,k} and js > 2(m—s)+1forall s € {1,...,1}.

Remark 2.3.12. If oy, - - - a4, - - - o, 1s irreducible as in (2) of 2.3.11, then so are

g0y, - - 0, - and ooy, - g

forall r € {1,...,l} and s € {1,...,k}. In particular, if [ > 0, then j; = 2(m — ) + 1, and
if £ > 0, then 7, = 1.

Algorithm 2.3.13. Suppose w = «;, ---a;, € Wi(m,n — 1) is ordered where n — 1 > 0.
The following algorithm gives words uy, us where u; is irreducible and ag,w = usuy. Set
uy = agpw and uz = idp,_y).

Step 1: If uy is irreducible, set uy = uz. We are finished. Otherwise, proceed to Step 2.

Step 2: Thereis a j € {1,...,k} such that 2(k —j) +1 < i; < 2(m —j) + 1. Pick j minimal
with this property. Use relation (1) to push oy, ---a;,,, past a;, to get

W = ConQ;—2(k—j)+20,_q " " Qg Oy w0 s Oy
Note that
1<ij—2k—j)<2(m—j)+1-2k—yj)=2(m—k)+1=2n+1,
as m — k = n, so we may use relation (1’) to get
O, —2(k—7) Xon42®iy,_q =" Qjp1Q5—1 =« = Oy
Set ug = v, a(k—j)+2u3. Now set uz = uy. Set
Uy = Qop42QG;, | - QO - Q.
Go back to Step 1.

Proof. We need only prove the above algorithm terminates. Note one of the «;’s increases
in index each iteration, which cannot happen indefinitely. O]

Proposition 2.3.14. Suppose m € N and n € NU {0+}. FEach w € Wi(m,n) has a
decomposition w = w, - - -wy where each w; € Wy is irreducible. Such a decomposition of w
15 called a standard decomposition of w.
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Proof. We induct on the length of w. If the length of w is 1, then we are finished. Suppose
w has length greater than 1 and the result holds for all words of shorter length. Use relation
(1’) to get w' = w, ---wy where each w; is ordered and for each s € {1,...,r —1}. If w, =
a;, oy and wepy = ay, - - @y, then i, = 1, ji = 2k, so aj,q;, = agray € aA(k+1,k—1)
for some k£ > 2. There are two cases.

Case 1: r = 1. Then w = wy is ordered, hence irreducible, and we are finished.

Case 2: Suppose r > 1. As wy = «y, ---«a; where o, = g € aA(k,k — 1), we apply
Algorithm 2.3.13 to the word asgiw; to obtain wuy, us with u; irreducible such that usu; =
aorwy. We now note that w = w'u; where

wl :wr...w3aia...ai2
is a word of strictly smaller length. Applying the induction hypothesis to w’ gives us the
desired result. O

Theorem 2.3.15 (Standard Forms). Suppose w = h,.---hy is a word on aA in aA(m,n)
for m,n € NU{0+}. Then there is a decomposition w = 650 wrrwrrw; where w; € W;
for all i € {I,11,111}, cx > 0, and w; and w};; are in the form afforded by Proposition
2.3.14.

Proof. Note that it suffices to find v; € W; for ¢ € {I,II,IIT1} and cy > 0 such that
w = 5i+ci‘v1nv”v], as we may then set w;; = v;; and apply Proposition 2.3.14 to vy and
vy to get wy and wj;; respectively. We induct on r. The case r = 1 is trivial. Suppose
r > 1 and the result holds for all words of shorter length. Apply the induction hypothesis
tow = h,_1---hy to get

w’ = (Sf:(Si_U]UU]]U].
There are 4 cases.

(D) Suppose h, = 0+. Set cx =y +1, cz =, and v; = u; for all i € {I,II,I1T}. We
are finished.

(B) Suppose h, € B. Set ¢ = ¢, and v; = u; for ¢ € {I,11,111}. We are finished.

(T) Suppose h, = 7. Set cx = L and w;y = u;. As we push 7 right using relation (5) and
Proposition 2.3.6, only two extraordinary possibilities occur:

Case 1: T meets B9,11 Or Ponyo in aA(n,n+1), so T disappears when using Propo-
sition 2.3.6, or

Case 2: 7 meets 1 € aA(0+,1) or 5, € aA(0—, 1), so 7 disappears as idjy =7 €
aA(1,1).

Hence we get that w = v}, 7% where v;;; € Wiy and s € {0,1}. If s = 0, set v;; = uyy,
and if s = 1, set v;; = Tuy;. We are finished.
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(A) Suppose h, = o, for some ¢ € N. Use relation (6) to push «, to the right of the f’s.
There are five cases.
Case 1: We use the relation a;8; = 7. Arguing as in Case (T) we are finished.

Case 2: We use the relation ;5,11 = idpy for some k € NU{0=£}, so aqurrr = virr
for some v € Wypy. Set ex = ¢, and v; = u; for ¢ € {I,11}. We are finished.

Case 3: We use the relation o;8; = 1, so agurr = drvppr for some vrrr € Wiyr.
Set cx =y + 1, ¢z = ¢, and v; = u; for i € {I,I1}. We are finished.

Case 4: oy can be pushed all the way to the right of u;;; to obtain agurrr = vy,
for some p € N and vy;; € Wyrr. Then necessarily u;; = 7° for some s € Z>, so
we use relation (4) and 2.3.6 to push «, to the right of the 7’s. Hence we obtain
ayurr = vray for some k € N and v € Wy, Set ¢ = ¢, and v; = aguy. We
are finished.

Case 5: a4 can be pushed all the way to the right except for the last 3;. This
means o = Vi3 for some v € Wrpr where o;8; = o4, Set v = oxuyy,
cy =y, and vy = u;. We are finished.

]

Definition 2.3.16. If w € Mor(aA), a decomposition of w as in Theorem 2.3.15 is called a
standard form of w.

Remark 2.3.17. It will be a consequence of Theorem 2.4.8 that a word w € aA has a
unique standard form.

2.4 The Isomorphism of Categories aA = Atl

Proposition 2.4.1. The following defines an involutive functor F': aA — Atl:
Objects: F([n]) = [n] for alln € NU{0+},
Morphisms:

(A) Set F(a;) = aj,
(B) Set F(B;) = b,
(T) Set F (1) =1, and

(D) Set F(6; € aA(n,n)) = (idp),1,0) and F(0- € aA(n,n)) = (idy,),0,1) for n €
NuU {0+}.

Proof. We must check that F(idp,)) = idj, for all n € N U {0£} and that F' preserves
composition, but both these conditions follow from Theorem 2.2.19. It is clear % preserves
the involution by Proposition 2.2.22. O]
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Remark 2.4.2. We construct a functor G: Atl — aA as follows: we create a function
G: Atl — aA taking objects to objects (this part is easy as objects in both categories have
the same names) and Atl(m,n) — aA(m,n) bijectively such that F'oG = iday. It will follow
immediately that G is a functor and G o I’ = id,a.

Theorem 2.4.3. Let m,n € NU{0£}. Then F; = Flw,inn: Wi(m,n) — Ti(m,n) is
bijective for all i € {I, 11,111}, i.e. there is a bijective correspondence between words of
Type i and Atl tangles of Type i for alli € {I,11,111}.

Proof.

Type I: Note that im(F;) C T;(m,n). We construct the inverse G; for F;. Note that by
Proposition 2.2.35, each T' € T;(m, n) can be written uniquely as "= W,. - - - Wj, which can
further be expanded as

T:aip..'a/ila’jq.”a/jl."a/kr”'a/kl
W Wa Wy

satisfying 2.2.35. Set

G[(T) — aip .. 'Oéil .. .Oé]'q .. .Oéjlakr . 'ak1'
It follows F; o G; = id. Now by Proposition 2.3.14, every word of Type I can be written in
this form. Hence we see (G; is in fact the inverse of F}

Type II: Obvious.

Type III:. From the Type I case and the involutions in aA and Atl, we have the following
bijections:
Trrr(m,n) <— Tr(n,m) «— Wr(n,m) <— Wy(m,n).

Definition 2.4.4. We define G: Atl — aA as follows:
Objects: G([n]) = [n] for all n € NU {0+£}.

Morphisms: First define G(T',0,0) for aT' € T; fori € {I, 11,11} by the bijective correspon-
dences given in Theorem 2.4.3. Then for an arbitrary Atl (m,n)-tangle T, define G(T,0,0)
by

G(T, O, 0) = G(T[[[, 0, O) o G(T][, O, 0) o G(T], 0, O)

where T; for i € {I,II,III} is defined for T as in the Atl Decomposition Theorem 2.2.37.
Finally, define G(T,cy,c_) = 67765 G(T,0,0) for an arbitrary morphism (T,ci,c_) €
Mor(Atl). Note that G is well defined by the uniqueness part of 2.2.37.

Proposition 2.4.5. If T is an Atl (m,n)-tangle of Type i for i € {I,1I, 111}, then F o
G(T)=T.

Proof. This is immediate from the definition of G and Theorem 2.4.3. O]



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 29

Corollary 2.4.6. F o G = iday, so G restricted to Atl(m,n) is injective into aA(m,n) for
all m,n € NU{0+}.

Proof. This follows immediately from Theorem 2.2.37 and the definition of G as F is a
functor. O

Proposition 2.4.7. G restricted to Atl(m,n) is surjective onto aA(m,n).

Proof. We have that every word w € Mor(aA) is equal to a word 65" 0% w;ywyyw; in standard
form where w; is of Type i for ¢ € {I,I1,111}. By 2.4.3 there are unique Atl tangles T; of
Type ¢ such that w; = G(T;) for all ¢ € {I, 11, 111}. Set T = Ty;; o Ty o Ty, and note this
decomposition into a composite of Atl tangles of Types I, I, and III is unique by 2.2.37. It
follows that

G(T,cq,c_) =070 wiwiwr = w

by the definition of G. O

Theorem 2.4.8. F': aA — Atl is an isomorphism of involutive categories. Hence aA is a
presentation of Atl via generators and relations.

Proof. Obvious from Corollary 2.4.6 and Proposition 2.4.7. m
Corollary 2.4.9. Each word w € Mor(aA) has a unique standard form.

Proof. Each Atl tangle has a unique decomposition as 177 0Ty oTy. Note T7;; and T have
unique decompositions as in Proposition 2.2.35 which correspond under the isomorphism of
categories to decompositions as in Proposition 2.3.14. We are finished. O

2.5 The Annular Category from Two Cyclic
Categories

The Cyclic Category

In this subsection, we recover Jones’ result in [Jon00] that there are two copies of (the
opposite of) the cyclic category cA°? in aA = Atl. We will recycle the notation ¢ from Section
1. The definitions from this section are adapted from [Lod98].

Definition 2.5.1. Let cAtl™ be the subcategory of Atl with objects [n] for n € N such that
for m,n € N, cAtl(m, n) is the set of annular (m, n)-tangles with no loops, only shaded caps,
and only unshaded cups. Let cAtl™ be the image of cAtl™ under the involution of Atl, i.e.
cAtl™ (m,n) is the set of annular (m, n)-tangles with no loops, only unshaded caps, and only
shaded cups.

Remark 2.5.2. Clearly cAtlt = cAtl™.
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Figure 2.19: Examples of morphisms in cAtl™ and cAtl™ respectively.

Definition 2.5.3. The opposite of the cyclic category cA° is given by
Objects: [n] for n € Z>( and
Morphisms: generated by

di:[n] — [n—1] for t =0,...,n where n > 1
si: [n] — [n+1] for i=0,...,n where n >0
t: [n] — [n] where n >0

subject to the relations
(1) dldj = dj—ldi for i < j
(2) sis; = sj118; for i < j,

ijldi if 4 <j
dez'—l if 7 > ] + 17

(4) = id[n},
(5) dit = td;_q for 1 <i <n, and
(6) sit =ts;_q for 1 <i<n.

Remark 2.5.4. The opposite of the simplicial category sA°P is the subcategory of cA°P
generated by the d;’s and the s;’s subject to relations (1)-(3).

Remark 2.5.5. Similar to Proposition 2.3.6, we have the additional relations in cA°? that
dot = d,, and sot = t%s,,.

Definition 2.5.6. For n € Zs(, we define s_;: [n] — [n + 1] by s_; = ts,. This map is
called the extra degeneracy.
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Remark 2.5.7. In [Lod98], Loday names this map s, ;. However, we will use the name s_4
considering Proposition 2.5.8, Corollary 2.5.16, and the fact that if R is a unital commutative
ring, A is a unital R-algebra, and C, is the cyclic R-module (see Section 2.6) arising from
the Hochschild complex with coefficients in A, then C,, = A®"*! and

s (a0 @ ®a,) =1®ag® - Q ap,
$i(ap® - Ray)=a® ;1 Ra 1 Q- Ra, for 0<i<n-—1, and
Sn(a0®...®an>:a0®...®an®1.

Proposition 2.5.8. The following additional relations hold for s_1 € cA%(n,n + 1):

(1) s_18; = Six15_1 for alli >0,

id if i=0
(2) dz‘Sfl = Sfldifl Zf 1 S ) S n

t if i =n+1and
(3) S()t = t8_1.

Proof. (1) Using relations (2) and (6), we get
S_18; = tSp118i = 18iSp = Siy1lSn = Sit15-1-

(2) Using Remark 2.5.5, we have dys_ = dots, = dns, = idp,). If 1 < i < n, then using
relations (3) and (5), we have

diS_l = dZtSn = tdi_lsn = tSn_le'_l = S—Idi—l-
FinallYa dn—i—ls—l = dn+1t3n = tdnsn - tld[n] =t.

(3) Using Remark 2.5.5, we have sot = t%s,, = ts_i.
[

Remark 2.5.9. We may now add s_; to the list of generators of cA°? after appropriately
altering relations (3) and (6).

Proposition 2.5.10. Suppose w = h,. - - - hy is a word on cA% in cA(m,n) form,n € Z>g.
Then there is a decomposition w = wrrrwrrwy such that

(D) ’U)]:dia"'dil with ij >’ij+1 fO’I” allj € {1,...,&—1}.
(T) wir = t* for some k >0, and

(S) wrrr = siy -+ 8y, withi; <ijeq forall j €{1,...,b—1},
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Proof. The proof is similar to Theorem 2.3.15, but much easier. We proceed by induction on
r. If r =1, the result is trivial. Suppose r > 1 and the result holds for all words of shorter
length. Apply the induction hypothesis to w’ = h,_1 - - - h; to get

w' = urrrurrug
satisfying (1)-(3). There are three cases.

(T) Suppose h, =t. Set w; = u;. Use relation (6) and Remark 2.5.5 to push ¢ to the right
of the s;’s. Either it makes it all the way, or it disappears in the process. Define wy;
accordingly. Order the s;’s using relation (2) to get w;;;. We are finished.

(D) Suppose h, = d;. Use relation (3) to push d; to the right of the s;’s. One of three
possibilities occurs:

(1) We only use the relation d;s; = spd;. Thus we can push d; all the way to the
right. Now push d; right of the ¢’s using relation (5) and Remark 2.5.5. Order
the s,’s using relation (2) to get wy;s, define wy; in the obvious way, and reorder
the d,’s using relation (1) to get w;. We are finished.

(2) We use the relation d;s; = id, and d; disappears. Set w; = u; for i € {I, 11}, and
order the s;’s using relation (2) to get wy;;. We are finished.

(3) We use the relation d,,1s_1 = t. We are now argue as in Case (T). We are
finished.

(S) Suppose h, = s;. Order s;us; using relation (2) to get wyr, and set w; = wu; for
i€ {I,1I}. We are finished.

]

Theorem 2.5.11. The following defines an injective functor H': cA% — aA:
Objects: H*([n]) = [n+ 1] for n € Z>, and
Morphisms: Let n € Z.

(D) Ford; € cA%(n,n—1), set H(d;) = agj11 € aA(n+1,n).
(T) Fort e cA%(n,n), set Ht(t) =7 € aA(n+ 1,n+1).
(S) For s; € cA%®(n,n+ 1), set H(s;) = Pajr2 € aA(n+ 1,n + 2).

Proof. Clearly H™ is a functor as the relations are satisfied. Injectivity follows immediately
from Corollary 2.4.9 and Proposition 2.5.10. O]

Remark 2.5.12. Note that H*(s_1) = H" (ts,) = H(t)H'(s,) = Tfan+2 = PoniaT.
Corollary 2.5.13. The image of F'o HT: cA®? — Atl is cAtl". Hence cA° = cAtl".
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Proof. Tt is clear F o HT is injective and lands in cAtlt as all generators of cA°P land in
cAtlt. Surjectivity follows from Theorem 2.2.37. O

Corollary 2.5.14. A decomposition w = wrywrrwy as in Proposition 2.5.10 is unique.

Theorem 2.5.15. The following defines an injective functor H~: cA%? — aA:
Objects: H([n]) = [n+ 1] for n € Z>o, and
Wsms: Let n € Z>y.

(D) For d; € cA®(n,n—1), set H (d;) = agji2 € aA(n+ 1,n).

(T) Fort € cA%(n,n), set H-(t) =7 € aA([n+ 1], [n + 1]).

(S) For s; € cA%®(n,n+1), set H (sj) = Pajrs € aA(n+1,n+2).

Proof. Clearly H™ is a functor as the relations are satisfied. Injectivity follows immediately
from Corollary 2.4.9 and Proposition 2.5.10. O

Remark 2.5.16. Note that H (s_1) = H (ts,) = H (t)H (sn) = Tfan+3 = P1.
Corollary 2.5.17. The image of F o H™: cA°? — Atl is cAtl. Hence cA°° = cAtl .

Remark 2.5.18. cAtl™ and cAtl™ are exactly the two copies of cA°? in Atl found by Jones
in [Jon00].

Corollary 2.5.19. There is an isomorphism cA = cAP.

Proof. We have cAtl~ = cA° = cAtl*. Note the involution in Atl is an isomorphism cAtl™ =
(cAtl™)°P. The result follows. O

Augmenting the Cyclic Category

Recall from algebraic topology that the reduced (singular, simplicial, cellular) homology
of a space X is obtained by inserting an augmentation map ¢: Co(X) — Z where Cy(X)
denotes the appropriate zero chains. In the language of the semi-simplicial category, we see
that this is the same thing as looking at an augmented semi-simplicial abelian group, i.e.,
a functor from the opposite of the augmented semi-simplicial category, which is obtained
from the opposite of the semi-simplicial category (see 2.5.4) by adding an object [—1] and
the generator dy: [0] — [—1] subject to the relation d;d; = d;_1d; for i < j.

do,d1,d2,ds

do,dy [1] do,d1,d2

(1] ~—2——[0] 2]

This immediately raises the question of how one should augment the opposite of the cyclic
category. The surprising answer comes from the symmetry arising from the extra degeneracy
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s_1. We should add two objects, [+] and [—], and maps dy: [0] — [+] and s_1: [-] — [0]
subject to the relations d;d; = d;_1d; for i < j and s;s; = s;415; for i < j:

do
do,dy do,d1,d2 do,d1,d2,ds

$—1,50 5—-1,50,51 §-1,50,51,52

Ast: [0] — [0] is the identity, we need not worry about the other relations. Under the isomor-
phism cA° 2 cAtl" described in the previous subsection, these maps should be represented
by the following diagrams:

Figure 2.20: Maps dy: [0] = [+] and s_1: [—] — [0]

Note that these morphisms satisfy the shading convention of cAtl™ once we add [04] to
the objects of cAtlt. We cannot use just one object as we would then violate the shading
convention and closed loops would arise. We will denote the augmented opposite of the

cyclic category by cA®. For our main result, we ¥ will also need to consider the augmented
cyclic category CA which is just the category cA® with the arrows switched.

Pushouts of Small Categories

Let Cat be the category of small categories. Note that pushouts exist in Cat.

Definition 2.5.20. Suppose A, By, By are small categories and F;: A — B, for ¢« = 1,2 are
functors. Then the pushout of the diagram

AL B,
N
B,

is the small category C defined as follows:
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Objects: Ob(C) is the pushout in Set of the diagram

Ob(A) —> Ob(B;)
F2j Gl
v

OB(By) ;> Ob(C)

This defines maps G;: Ob(B;) — Ob(C) for i = 1,2.
Morphisms: For XY € Ob(C), Mor(X,Y) is the set of all words of the form ¢, o--- 0 ¢y
such that
(1) ¢; € Mor(By) UMor(By) foralli =1,...,n,
(2) the source of ¢ is in G7'(X) UG5 ' (X) and the target of ¢, is in G7'(Y) UG5 (Y),
(3) foralli=1,...,n— 1, either

(i) the target of ¢; is the source of ¢;,1, or
(ii) the target of ¢; is Z; € im(F;) C B; for some j € {1, 2}, and the source of ¢, is
in Fy,(F; ' (Z;)) where k # j.
subject to the relation Fj(¢) = Fy(¢) for every morphism 1) € Mor(A).

Notation 2.5.21. In the sequel, we will need to discuss CAA/, the augmented cyclic category.
In order that no confusion can arise, we will add a * to morphisms to emphasize the fact
that they compose in the opposite order. For example, we have generators d; satisfying the
relation d;d} = djd;_, for i < j.

Definition 2.5.22. Define the small category/groupoid T by

Objects: [n] for n € Zso U {£}

Morphisms: Generated by t: [n] — [n] subject to the relation t"*! = idy, for n € Zx.

Definition 2.5.23. Let PO be the pushout in Cat of the following diagram:

P =

T ——=CcA®P

.

cA
where Fj([n]) = [n] for n € Zsq U [%] for i = 1,2 and Fy(t) =t and Fy(t) = (t*)~' = (¢71)*.
Note that if cA°P has generators d;, s;,t and cA has generators d}, si,t*, then PO is the

category given by
Objects: [n] for n € Z>o U {£} and
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Morphisms: generated by

do: [0] = [+] and s*,: [0] — []
st [+] = [0] and dy: [=] — [0]
diysi_y:[n] — [n—1] for i =0,...,n where n > 1
s, dy 11 [n] — [n+1] for i = —1,...,n where n >0
t: [n] — [n] where n >0

subject to the relations
(1) did; = d;j1d; and s7s} = sj_ s} for i < j,

(2) sisj = sjp18; and did; = d;,d; for i < j,

ijldi if 4 <j d;,13;,1 if i < j —1
(3) diSj = ld[n] ifi=3,7+1 and S;-kfld; = ld[n] ifi=yj,7+1
dei—l if ¢ > J+1 d;fs;-k_z if ¢ > J+1,

(4) tntl = id [,
(5) dit =td;—y for 1 <i <nand sit =ts; , for 0 <i <n, and
(6) s;it =ts;—1 for 0 <i<nanddft=td ,forl<i<n.

Note that ¢ = (t*)~! as PO is the pushout, so t* does not appear in the above list.

36

Remark 2.5.24. Note that PO is involutive using the obvious involution as hinted by the

*-notation.

Definition 2.5.25. Let PO(d,,0_) be the small category obtained from PO by adding
generating morphisms d+: [n] — [n] for all n € Z>o U {£} which commute with all other

morphisms. The maps . are called the coupling constants.

Remark 2.5.26. Note that PO(d,0_) is involutive if we define (64)* = 0.

Theorem 2.5.27. aA is isomorphic to the category Q obtained from PO(d.,d_) with the

additional relations

(1) dist = 4% i<
o sy, if j>i

9 ;= { St i<
I o ifi=j
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Sj_ls;!< Zf 1< ]

(3) stj:{5+ iz

Proof. Define a map ¥: aA — Q by
Objects: Define U([0£]) = [£]. For n > 1, define ¥([n]) = [n — 1].
Morphisms: We define ¥ on primitive morphisms:

(A) Define ¥(ay € aA(1,0+4)) = dy € Q(0,4) and ¥(ay € aA(1,0-)) = s*; € Q(0,—).

For n > 2, define
W(ay € alA(m.n — 1)) = S(i_g)2 € An—1,n—2) 1fz %s odd
dii—2)2 € Qn —1,n—2) ifiis even.
(B) Define ¥ (5 € aA(0+,1)) = s_; € Q(—,0) and ¥(f; € aA(0—,1)) = df € Q(+,0).
For n > 1, define

5i-3)2 € Qn —1,n) if 7 is odd
dj;_g)2 € Qn —1,n) if i is even.

V(5 € aA(n,n+1)) = {

(T) For n > 1, define ¥(7 € aA(n,n)) =t € Q(n —1,n —1).

(D) Define ¥(d4) = 0.
One checks W is a well defined isomorphism by showing the relations match up. O]
Remarks 2.5.28. (1) The above relations are called the coupling relations.

(2) Usually we study representations of cA and aA in abelian categories and the coupling
constants are multiplication by scalars. These scalars can be built into the coupling
relations in our abelian category without first defining PO(d,,d_). Hence an annular
object in an abelian category (see Section 2.6) is obtained from the pushout of two
cyclic objects over a T-object and then quotienting out by the coupling relations.

(3) Another way to skip passing to PO(d4,d_) is to take the linearization of all our cate-
gories over some unital commutative ring R (make the morphism sets R-modules) and
choose scalars ¢4 for the coupling relations.

2.6 Annular Objects

Definition 2.6.1. An annular object in an arbitrary category C is a functor aA — C. A
cyclic object is a functor cA°® — C. If C is an abelian category and X, is an annular,
respectively cyclic, object, we replace X,(7 € aA(n,n)) with (—=1)""*X,(7), respectively we
replace X (t € cA°®(n,n)) with (—1)"X,(t), to account for the sign of the cyclic permutation.
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Remarks 2.6.2. Each annular object has two restrictions to cyclic objects.

Notation 2.6.3. Usually such a functor is denoted with a bullet subscript, e.g. X,. If X,
is such a functor, we will use the following standard notation:

(1) Xo([n]) = X, for n € Zsy and X,([0£]) = X1 where applicable.

(2) Xo(p) = ¢, i.e. we will use the same notation for the images of the morphisms in the
category C.

Note 2.6.4. For an annular object in an abelian category, relations (4), (5), and (6) become
(4") a;7 = —Tay_o for i > 3,
(5") Bit = —7f;_o for i > 3, and

(6") if a,;B;: [n] — [n] with n > 2 and (i,7) = (1,2n + 2),(2n + 2,1), then a;fo,10 =
(=)'t and ag,af = (—1)" 7.

Proposition 2.3.6 becomes
(1) a7 = (=1)" g, and ao = (—1)"tay,
(27) 7B2nt1 = (=1)"B1, TB2nt2 = (—1)"Ba, and
(37) Bt = (—1)71_17'252%1 and 1 = (_1)n_17'252n-
Note 2.6.5. For a cyclic object in an abelian category, relations (5) and (6) become
(57) dit = —td;—y for i > 1 and
(67) sit = —ts;—q for i > 1.
Following Remark 2.5.5, we have
(i) dot = (—1)"d,, and
(i) sot = (—1)"t2s,,.
Definition 2.5.6 becomes s_; = (—1)""ts,. Parts (2) and (3) of Proposition 2.5.8 become
(2") dpi15-1 = (—1)"t and
(3") sot = —ts_;.

Remark 2.6.6. The necessity of this sign convention becomes apparent in calculations with
Connes’ boundary map (see 2.6.19 and 2.6.20).

Definition 2.6.7. Let C be an involutive category and suppose X,: aA — C is an annular
object in C. Then X}: aA — C is also an annular object in C where
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Objects: X ([n]) = X,, for all n € NU {0+}, and

Morphisms: X} (w) = Xe(w*)* for all w € Mor(aA).

If C is abelian, then X still satisfies the sign convention.

Remark 2.6.8. The representation theory of Atl was studied extensively by Graham and
Lehrer in [GL98] and Jones in [JonO1]. In Definition/Theorem 2.2 in [Pet10], Peters gives a

good summary of the case of an annular C*-Hilbert module where ¢ is given by multipli-
cation by 6 > 2.

Homologies of Annular Modules

As the semi-simplicial, simiplicial, and cyclic categories live inside aA, we can define
Hochschild and cyclic homologies of annular objects in abelian categories. We will focus on
annular modules and leave the generalization to an arbitrary abelian category to the reader.
Fix a unital commutative ring R.

Definition 2.6.9. Given a semi-simplicial R-module M,, define the Hochschild boundary
b: M, — M,_, forn > 1 by

n

b= (-1)d;.

i=0
The Hochscild homology of M, is

HH,(M,,b) = ker(b)/im(b)
for n > 0, where we set M_; =0, and b: My — M_; is the zero map.

Remark 2.6.10. As an annular R-module is a semi-simplicial R-module in two ways, we
will have two Hochschild boundaries.

Definition 2.6.11. Suppose X, is an annular R-module. Let XF be the cyclic object
obtained from X, by restricting X, to G(cAtl¥). For n > 1, define

HH;(X,) = HH,  (X{).

Remark 2.6.12. The Hochschild boundaries of X for n > 2 are

n—1 n—1
by = Z(_l)ia%-u and b_ = Z(_1>ia2i+2~
=0 i=0

Definition 2.6.13. The above definition does not take into account Xy. We may define
the reduced Hochschild homology by looking at the corresponding augmented cyclic objects
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(see Subsection 2.5). Define by: X7 — Xy by by =a1: Xj — Xy and b = ag: X — X_.
Define the reduced Hochschild homology of X, as follows:

HH. (X.) = HH*(X,) for n > 2,

—

HH, (X,) = ker(by)/im(by), and

—+

HH, (X,) = coker(by)
Remark 2.6.14. The content of the next proposition was found by Jones in [Jon00].
Proposition 2.6.15. Let X, be an annular R-module. Then for alln > 1,

Biby + by py =04 idx, and
Bob_ +b_[y = d_1idy,,,
and when n = =+,
by = 04idyx, and
b_fBy=0_idx_.

Proof. This follows immediately from relation 6. O

Corollary 2.6.16. If i is multiplication by an element of R*, the group of units of R, then
— +
HH, (X,) =0 for alln > 0.

Corollary 2.6.17. Let N C M be an extremal, finite index I11-subfactor, and let X, be the
annular C-module given by its tower of relative commutants (see [Jon99], [Jon01]). Then

—
HH, (X,) =0 for alln > 0.

Example 2.6.18 (T'L,(Z,0)). When 6, ¢ R*, we can have non-trivial homology. For
example, for n € N U {0+}, let TL,(Z,0) be the set of Z-linear combinations of planar
n-tangles with no input disks and no loops (adjust the definition of an annular n-tangle so
that there is no D;). The action of T' € aA(m,n) on S € TL,,(Z,0) is given by tangle
composition F(T') o S with the additional requirement that if there are any closed loops, we
get zero. We then extend this action Z-linearly. Then HHZ(TL4(Z,0)) # 0 for all n > 0.
In fact, the class of the planar n-tangle with only shaded, respectively unshaded, cups is a
nontrivial element in HHZ(T L4(Z,0)) respectively. Clearly all such tangles are in ker(b..).
However, it is only possible to get an even multiple of this tangle in im(by). If a shaded
region is capped off by an «; to make a cup, there must be two ways of doing so. Using
MAGMA [BCP97], the author has calculated the first few (4) reduced Hochschild homology
groups of T'Le(Z,0) to be

HH, = HH, =1,

HH} = HH; = 7,)2,
HH; = HHS =7/6, and
HHf = HHf =7Z/2&Z)2.
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Figure 2.21: Representative for a nontrivial element in HH, (T'L.(7Z,0))

For n > 2, the class of the tangle described above contributes a copy of Z/2Z. The question
still remains whether this parity continues.

Definition 2.6.19. Given a cyclic R-module C,, define the cyclic bicomplex BC.,.(C,) be
the bicomplex

b b bl bL
Cy 2= Cy <2 O <2y
b b b
02<—0th0

b b

<2,

b

Co

where b is the Hochschild boundary obtained by looking at the corresponding semi-simplicial
R-module, B = (1 —1t)s_1N: C, — C,1 is Connes’ boundary map, and

N = it
=0

Recall s | = (—1)""lts, is the extra degeneracy. The cyclic homology of C, is given by
HC,(Cy) = H,(Tot(BC..(Cy))).

Remark 2.6.20. In order for BC,.(C,) to be a bicomplex, we need b?, B2, and bB + Bb to
equal zero. While the first two are trivial, we must use Loday’s sign convention to get the
third. Setting

n—1
W => (=1)'d;: C,, = Cpuy,

=0



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 49

we have b(1 —¢) = (1 — )V, b's_1 + s_10' =id, and ¥’ N = Nb, so
bB + Bb = b(l — t)S_lN + (1 - t)S_le = (1 - t)(b/S_l + S_lb/)N = (]_ - t)N = 0.
Without this sign convention, we no longer have bB + Bb = 0.

Definition 2.6.21. Suppose X, is an annular R-module. Then X, becomes a cyclic module
in two ways, so we have two cyclic homologies to study. For n > 1, define HC*(X,) =
HC, (XF).

Remark 2.6.22. For n > 1, B.: X,, — X, 41 is given by

By = (=1)"(1 = 7)(7B2n) p_ 7" = (=1)"(1 = 7)(Pans27) p 7'
=0 =0
= (=1)"(1 = 7)Bans2 ¥ 7" and
1=0
B_=(-1)"1-7) > 7
=0

as the two extra degeneracies for G(cAtl¥) are (—1)"78,, and (—1)"3; respectively.

Corollary 2.6.23. If i1 is multiplication by an element of R*, the group of units of R, then
HC*(X,) = R for all odd n > 1 and HCE(X,) =0 for all even n > 2.

Corollary 2.6.24. Let N C M be an extremal, finite index I11-subfactor, and let X, be the
annular C-module given by its tower of relative commutants. Then HCF(X,) = C for all
oddn > 1 and HCE(X,) =0 for all even n > 2.

Example 2.6.25. Once again using MAGMA [BCP97], the author has calculated the first
few (+) cyclic homology groups of T'Le(Z,0) to be

HCf =7

HCY =17/2

HCY =Z)207Z
HCH=Z/2®7/6

HCS =Z/2®Z/6 D Z, and
HCY =720 Z/20Z/2®7Z/6.
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Chapter 3

The embedding theorem for finite
depth subfactor planar algebras

3.1 Introduction

A powerful method of construction of subfactors is the use of commuting squares, which
are systems of four finite dimensional von Neumann algebras

Ao C Ay
U U
Ao C Ao

included as above, with a faithful trace on A;; so that A,y and Ao, are orthogonal modulo
their intersection Ag .

One iterates the basic construction of [Jon83| for the inclusions A;; C A; ;41 and A, ; C
Aiy1; to obtain a tower of inclusions Ay, C A;,. By a lovely compactness argument
of Ocneanu [JS97],[EK98], the standard invariant, or higher relative commutants, of the
inductive limit inclusion Ag C Aj o are the algebras Ay, N Ano. Thus once bases have
been chosen, the calculation of the relative commutants is a matter of elementary linear
algebra.

It was to formalise this calculation that planar algebras were first introduced [Jon99].
Finite dimensional inclusions are given by certain graphs (Bratteli diagrams), and in [Jon00],
a planar algebra associated purely combinatorially to a bipartite graph was introduced so
that it is rather obviously the tower of relative commutants for an inclusion By C By having
the graph as its Bratteli diagram. But because Ocneanu’s notion of connection was never
completely formalised in [Jon99], it was NOT proved that the planar algebra coming from
a commuting square via Ocneanu compactness is a planar subalgebra of the one defined in
[Jon00] for the graph of the inclusion Agy C Aj .

Meanwhile the theory of planar algebras grew in its own right and a new method of
constructing subfactors evolved by looking at planar subalgebras of a given planar algebra
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[Pet10],[BMPS09]. Now if a subfactor is of finite depth, then by [Pop90], there is a commut-
ing square that constructs a hyperfinite model of it. Moreover the inclusion Ayy C A; for
this canonical commuting square has Bratteli diagram given by the so-called principal graph,
which is a powerful subfactor invariant. Thus if the the result of the previous paragraph had
been proved, it would have implied the following theorem, which is the main result of this

paper:

Theorem. A finite depth subfactor planar algebra is a planar subalgebra of the bipartite
graph planar algebra of its principal graph.

(See [MPS10] for the definition of the principal graph of a planar algebra.)

We prove this result with the interesting twist of not using connections. In particular,
our proof does not invoke the dual principal graph, which is perhaps rather surprising.

There are three steps to our proof. The first step, Section 3.2, is to define a canonical
planar x-algebra structure on the tower of relative commutants from a connected unital
inclusion of finite dimensional C*-algebras whose Bratteli diagram is a given graph. We call
this the canonical planar x-algebra associated to the inclusion. We do this in more generality,
replacing finite dimensionality by a strong Markov property (see Definition 3.2.8), because
it is no harder and should have applications.

The second step, Section 3.3, is to identify the canonical planar x-algebra with the bi-
partite graph planar algebra of [Jon00] in the finite dimensional case. Loops on the Bratteli
diagram for the inclusion give bases for the relative commutants, so the isomorphism is
constructed by choosing bases for the vector spaces in the canonical planar x-algebra.

Finally, in Section 3.4, we construct the embedding map as follows: given a finite depth
subfactor planar algebra ()., pick 27 suitably large so that the inclusion Q2,1+ C Q2r41,+ C
(Qar+2.+, €2,11) is standard, i.e., isomorphic to the basic construction. Set My = Qo+ and
M, = Q241+, and let P, be the canonical planar *-algebra P, associated to the inclusion
My C M;. We prove in Theorem 3.4.1 that the map Q) — P, given by adding 2r or 2r + 1
strings on the left, depending on whether we are in @), 1 or @), _ respectively, is an inclusion
of planar algebras.

x T
-~ ~~ ~~
n 2r n

While this paper was being written, Morrison and Walker in [MW10] produced a totally
different proof which constructs an embedding directly from the planar algebra )4 without
the use of algebra towers and centralisers. Their method also has the advantage that it
applies to infinite depth subfactor planar algebras without alteration!
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3.2 The canonical planar x-algebra of a strongly
Markov inclusion of finite von Neumann algebras

After defining the notion of a strongly Markov inclusion of finite von Neumann algebras,
we show the basic construction is also strongly Markov with the same (Watatani) index. We
then define the canonical planar %-algebra associated to a strongly Markov inclusion.

Many results of this section can be found in [Jon83], [PP86], [Wat90], [Jol90], [Pop94],
[Bis97], and [Bur03], but our treatment differs slightly, so we provide some proofs for the
reader’s convenience.

Bases, traces, and strongly Markov inclusions

Notation 3.2.1. Throughout this paper, a trace on a finite von Neumann algebra means
a faithful, normal, tracial state unless otherwise specified. We will write My C (M, try) to
mean M, C M is an inclusion of finite von Neumann algebras where tr; is a trace on M;.
We set trg = try |-

Let My C (My,try). Let My = (My,e;) = JM}J C B(L*(M,,tr;)) be the basic con-
struction, where e; is the Jones projection with range L?(My,trg), and J: L2(My, try) —
L?*(Mjy, try) is the antilinear unitary given by the antilinear extension of zQ) — 2*Q, where
Q € L?>(Mjy,tr;) is the image of 1 € M;.

Recall that there is a unique trace-preserving conditional expectation Fy,: My — M,
determined by try(zy) = tro(Ey, (2)y) for all x € My and y € My, i.e., Eyy is the (Banach)
adjoint of the inclusion of preduals (My). — (M), [Tak02]. The conditional expectation
satisfies e1(zQ)) = Eyy, (2)Q for all z € M.

The following proposition is straightforward:

Proposition 3.2.2. The following are equivalent for a finite subset B = {b} C M:

(i) 1= beb*,

beB

(ii) v = ZbEMO(b*:E) for all x € My, and

beB
(iii) x = ZEMO(a:b)b* for all x € M.
beB

Definition 3.2.3. A Pimsner-Popa basis for M; over M, is a finite subset B = {b} C M,
for which the conditions in Proposition 3.2.2 hold.
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We refer the reader to [Wat90] for the proof of the following:
Proposition 3.2.4. The following are equivalent:
(i) There is a Pimsner-Popa basis for My over My,
(ii) My @p, My — My by x @ y — xeyy is an My — My bimodule isomorphism, and
(111) My = Myei M.

Remark 3.2.5. M; ®);, M; is a x-algebra with multiplication (x; ® y1)(x2 ® y2) = 71 ®
En, (y122)y2 and adjoint (x ® y)* = y* @ x*. If there is a Pimsner-Popa basis for M; over
My, the sum b ® b* is independent of the choice of Pimsner-Popa basis B, as it is the
identity. (We will renormalize in Proposition 3.2.25.)

Definition 3.2.6 ([Wat90]). If there is a Pimsner-Popa basis B = {b} for M; over M,, then
we define the (Watatani) index

(M2 M) = bb*,

beB

which is independent of the choice of basis.

Definition 3.2.7. Recall from [Pop94] that M, has a canonical faithful, normal, semifinite
trace Try which is the extension of the map zey +— try(zy) for z,y € M;.

Definition 3.2.8. An inclusion My C (M, try) of finite von Neumann algebras is called
Markov if it satisfies the Markov property:

(1) Try is finite with Try(1)™! Try |pr, = try.

A Markov inclusion is called strongly Markov if

(2) there is a Pimsner-Popa basis for M; over M.

Remark 3.2.9. Markov inclusions have been studied by Jolissaint [Jol90], Pimsner, Popa
[PP86], [Pop94], and more. In [Jol90], Jolissaint showed that condition (1) implies condition
(2) when the centers are atomic and the inclusion is connected, i.e., Z(My)NZ (M) = M{NM,
is one dimensional. It is unknown to the authors at this point whether condition (1) implies
condition (2) for connected inclusions with diffuse centers.

The adjective “strongly” in the term “strongly Markov” comes from Definition 3.6 in
[BDHS8S]|, where they define the notion of “fortement d’indice fini” for a conditional expec-
tation. This notion translates as the existence of a finite Pimsner-Popa basis.

Remark 3.2.10. Recall from [Pop94] that Tra(1)~! Try extends try if and only if Try(1) =
[My: M) € [1,00).

Examples 3.2.11. (1) A finite Jones index inclusion of /7;-factors with the unique trace
is strongly Markov, and the Watatani index is equal to the Jones index.
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(2) A connected, unital inclusion of finite dimensional C*-algebras with the Markov trace
is strongly Markov, and the index is equal to ||[ATA|| where A is the bipartite adjacency
matrix for the Bratteli diagram of the inclusion.

Suppose My C (M, try) is strongly Markov. Then M, is finite and tro = [M;: My] ™! Try
extends tr;, so we may iterate the basic construction for M; C (Ms,try). Let My =
(My, e5) C B(L*(Msy,try)), where ey is the Jones projection with range L?(My,try). Let
Trs be the canonical faithful, normal, semifinite trace on Mj (see Definition 3.2.7). The
following lemma is straightforward:

Lemma 3.2.12. (1) The conditional expectation Eyy, : My — My is given by Eyy, (zery) =
LY,

(2) erese; = [My: My|™tey and esereq = [My: My| es, and

(3) if B is a Pimsner-Popa basis for My over My, then {[Mi: My)"/?be;|b € B} is a
Pimsner-Popa basis for My over M.

Theorem 3.2.13. M; C (M, try) is strongly Markov and [My: My] = [My: Mp).

Proof. Note M3 = Mse;Ms by Proposition 3.2.4 and Lemma 3.2.12, so the canonical trace
Tr3 on Mj is finite. By Definition 3.2.7 and Lemma 3.2.12, if x € M,

Trs(z) = [M1: M) ZTrg(mbelegelb*) = [M;: My] Ztrg(xbelb*) = [M7: Mp]tra(z).
beB beB

Hence [My: M| = Trs(1) = [My: M|, and trs = [My: My]~* Trs extends tra. O

Definition 3.2.14. Suppose P C B(L?(Mj,try)) is a von Neumann algebra containing
M, trp is a trace on P extending try, and p is a projection in P. We say the inclusion
My C M, C (P, trp,p) is standard if there is an isomorphism of von Neumann algebras
p: P — M, such that ¢|y, =idyy,, trp = tragop, and ¢(p) = e;.

The following lemma, which is an alteration of Lemma 5.8 of [Jol90] and uses ideas from
Lemma 5.3.1 in [JS97], allows us to identify when inclusions are standard:

Lemma 3.2.15. Suppose My C My C (P,trp,p) such that
(1) pmp = Ep,(m)p for all m € My, and
(2) Ew,(p) = [Mi: M|~

Then : My @p, My — MipM; by x @y — xpy is an M -bilinear isomorphism of x-algebras.
Hence p: Myiey My — MipM, by xery — xpy is an isomorphism of x-algebras. Moreover, if

(3) P = Mlle,
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then My C My C (P, trp,p) is standard via p. Conversely, if My C M; C (P,trp,p) is
standard, then (1), (2), and (3) hold.

Proof. First, note that pr = xp for all x € My by (1), and the map M; — Mip by y — yp
is injective by (2). Clearly 1 is surjective and preserves the #-algebra structure. Suppose

k k
(0 (Z% ® yi) = Z%‘pyi =0.
=1 =1

Then for all x,y € My,

k k k
px (Z xiP?Ji) yp = (Z E, (mz‘)EMo(yiy)> p=0= Eu,(zzi)En,(yiy) = 0.

=1 i=1 i=1

If B = {b} is a Pimsner-Popa basis for M; over My, by Remark 3.2.5,

k k k
in®yi = Za@a* (in@)yi) Zb@b* = Z Za@EMO(a*xi)EMO(yib)b* =0.
i=1 i=1

a€B beB a,beB i=1

The remaining claims follow as in [Jol90]. O

The Jones tower and tensor products

We give the background necessary to define the canonical planar x-algebra associated
to a Markov inclusion and to prove its uniqueness. Many facts stated without proof in
Subsection 3.2 rely on the results of this subsection. In particular, the multistep basic
construction described in this subsection helps us understand tangles which cap off on the
left (see Proposition 3.2.47), which are crucial to the proof of Theorem 3.4.1, the main result
of this paper.

For the rest of this section, let My C (M, tr;) be a strongly Markov inclusion of finite
von Neumann algebras, and set d = [M;: My]'/?. For n € N, inductively define the basic
construction

M1 = (M,,e,) = Mye,M, = J,M! _|J, C B(L*(M,,tr,))

with canonical trace tr,; extending tr, and satisfying tr,(ze,) = d 2 tr,(x) for all x € M,
where e, € B(L?*(M,,tr,)) is the Jones projection with range L*(M, _1,tr,_1). For n € N,
set E,, = de,.

Fact 3.2.16. The FE;’s satisfy the Temperley-Lieb relations:
(i) E? = dE; = dE},
(ZZ) EZE] = E]EZ for |l —]| > 1, and
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Proposition 3.2.17. Suppose N C (M, try) and M C (P,trp) such that trp |y = tryy.
Suppose A = {a} is a Pimsner-Popa basis for P over M and B = {b} is a Pimsner-Popa
basis for M over N. Then

(1) AB = {abla € A and b € B} is a Pimsner-Popa basis for P over N,
(2) [P: N|=[P: M|[M: N}, and
(3) 3 belb* = el € B(L*(P,trp)), where e is the projection L*(P,trp) — L*(N, try)
Zerfd ely is the projection L?(P,trp) — L*(M, tryy).
Proof. (1) For all z € P,

Z abEL (b*a*z) = ZabE%(Eﬂ(b*a*x)) = ZabEN (b*EL(a* ) ZaEM (a*z) = x.
abeAB a,b a,b

(2) Immediate from (1).

(3) If pe P and Q € L?*(P,trp) is the image of 1 € P, then

D beRb =Y bER(p)Q =Y bEN (b (Ey(p)Q = Ef(p)Q = efipS.

beB beB beB

Corollary 3.2.18. My C (M, tr,) is strongly Markov for all 0 < k < n.

The following technical lemma will be used to define the multistep basic construction in
Proposition 3.2.20.

Lemma 3.2.19. For all 0 < k <n, let

gfk = dk(kil) (enenfl e enfk+1)(en+1en e enkarQ) T <€n+k71€n+k72 e en) S MnJrk-

If0<j <k <nand B is a Pimsner-Popa basis for M,_; over M,_j, then Y, .z bfy_,b* =
n—j-*

Proof. For j +1 < i < k, let A; be a Pimsner-Popa basis for M,, ;.1 over M, ;. Then
A=A+ Ay is a Pimsner-Popa basis for M,,_; over M,,_; by Proposition 3.2.17, and

E Qi1 Qg fy_pay - (i = E Ajy1 - Q1 Sy 101 @jy1
a;EA; a;€A;
j+1<i<k jH1<i<k—1

_ _ ) n * )
== § : a1 frj 1001 = fay

aj+1€4;+1
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For B another Pimsner-Popa basis for M,_; over M, _;, define U € Mata|x|p/(Mn—r) by

Usp = Eﬁ::i(a*b). If we consider A as a row vector in Mat . a/(M,—;), then B = AU and
A = BU*. For ¢ € N, let F; = fI' . I, € Matyu (M, 1), i.e., Fy is the £ x ¢ diagonal matrix
with all diagonal entries equal to f' ,. Then since f” , commutes with M, _;, we have

> bfp bt = BFpB* = AUF|pU*A* = AUU*Fl4 A" = AF 0 A" =Y af) 0" = fl_;.
beB a€A

Forms of the next proposition appear in [PP88], [Jol90], and [Bis97].
Proposition 3.2.20 (Multistep Basic Construction). The inclusion
M, C M, C (Myyg, tTha, 7 4)
is standard. (See Remark 3.2.45).
Proof. Let B be a Pimsner-Popa basis for M,, over M,,_;. Then by Lemma 3.2.19,

Z bfgfkb* = 17

beB

so My fr M, = M, It is straightforward to check f ,xf" , = Ey, _, (x)fr_, for all
x € M, and Ey, (f* ;) =d=2, and the result follows by Lemma 3.2.15. O

Remark 3.2.21. Note that L?(M,, tr,) has left and right actions of My, ..., Ms,, where as
usual, the right action of M; is the left action of J,, M;J,, = M;®. Note that M = J, Moy, Jy,,
so we define a canonical trace on M} N B(L*(M,,tr,)) by tri(z) = tre, ;(J,x*J,) for all
x € M! N B(L*(M,,tr,)).

Proposition 3.2.22 (Shifts). For all 0 < k < n, there is a canonical isomorphism M} N
M, = M/, O My,

Proof. On B(L*(M,,tr,)), the map = ~ J,z*J, gives an anti-isomorphism M; N M, =
M! N My, . On B(L*(M,11,tr,11)), the map y > J,11y*Js1 gives an anti-isomorphism
M! O My, = My 0 My o, O

Proposition 3.2.23. The canonical trace-preserving conditional expectation M, — My k_;
is gwen by xf]_,y — d_%xf,’;_kﬁy where x,y € M,. The canonical trace-preserving con-
ditional expectation M) _, = J, M,y — JoMyyp—in = M)_, .. is given by the same
formula, only with x,y € M} = J,M,J,.

Proof. We prove the first statement, as the second is similar. By the Markov property, for
all v,y € M,

k(T fr_py) = d=?* tr, (zy) = d=* ki (T g—kﬂ‘?/),

so the map is trace-preserving. Now M, ,_,-bilinearity follows from the following two facts:
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(i) forall 1 <@ <k, My, C My_pqi, 50 frr poifm o = fry, and

33 My, n —2i fn
(ii) EMnI:,i( ny) =d 2 fn—k-i—i'
]

We can now strengthen Proposition 2.7 from [Bis97], versions of which also appear in
[Bur03]. This is the main proposition describing left-capping tangles.

Proposition 3.2.24. Let 0 < k < ¢ < n, and let B be a Pimsner-Popa basis for M, over Mj,.
The conditional expectation Eﬁf (M} N B(L*(M,, try,)), tr},) — (M, N B(L*(M,,, tr,)), tr})
15 given by
M! 1 .
beB

In particular, this map is independent of n and the choice of basis.

Proof. The result follows from Lemma 3.2.19 and Proposition 3.2.23, since for z,y € J,M,.J,, C
My,

D _befiybt =) wbf{by =z fiy.

beB beB

]

To define our planar *-algebra in Subsection 3.2, we need the following fact, which follows
from Proposition 3.2.4 and a simple induction argument.

Proposition 3.2.25. For k € N, let v, = ExEy_1--- FEy. For all n € N, there are isomor-
phisms of My — My bimodules

n
On: Q) My — M, by
Mo
T1 Q-+ Q Xy —> L1V TV * * Up—1Tp,.

Remark 3.2.26. Recall that L?(M,,, tr,,) is the completion of M,, with inner product (z,y) =
tr, (y*x). As usual, 6, gives an isomorphism of Hilbert-bimodules

Q) L*(My, try) — L (M, tr,,)
My

where the tensor product on the left is Connes’ relative tensor product with inner product
given inductively by

<IL’1 X u, U1 X U>n = <EM0 (yfxl)'l% U>n—1
<u ® Tp, V& yn>n = <u, vEp, (ynxz»n—l‘
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The following operators will be useful in the definition of the rotation operators in Sub-
sections 3.2 and 3.2.

Definition 3.2.27. Given x € M, we get
(1) left and right multiplication operators
L(z), R(x): Q) L*(My, try) — Q) L*(M;, try)
MO MO
by L(z)(v) = xv and R(z)(v) = vz, and

(2) left and right creation operators

n n+1
Ly, Ryt Q) L*(My, tr1) — Q) L* (M, try)
My Mo

by L.(v) =2 ®v and R,(v) = v ® x.
Fact 3.2.28. For x € My, we have

Lir @+ @ Yns1) = Eag (2" 11)y2 @ -+ @ Ypyq and
Ri(y1 @ @ Ynt1) =1 @ -+ @ YnEngy (Ynt12").

The following lemma will be instrumental in defining the action of tangles.

Lemma 3.2.29. If A is a C-algebra, V1 is a right A-module, V3 is an A — A bimodule, and
V3 is a left A-module, then for each A-invariant vy € Vs, the map

V1 ® V3 — V1 @ V2 @ U3

defines a linear map ¢y,: Vi @4 Vs — Vi ®a4 Vo ®4 V3. Moreover, the map v — ¢, on
A'NVy={v e Wav =va for all a € A} is C-linear.
Proof. Middle A-linearity is satisfied as vy is A-invariant. m

Remark 3.2.30. This lemma gives an alternate proof that the map Eﬁé is well defined

in Proposition 3.2.24. By Remark 3.2.5, d—2 > pep b ® b is independent of the choice of
Pimsner-Popa basis B, so the composite map

T by — Oy <d‘22b®b*> =d?) b@reb —d ) bab”

beB beB beB

on M} N B(L*(M,,tr,)) is independent of the choice. Moreover, the result is M;j-invariant,
since for any unitary u € M, {ublb € B} is another Pimsner-Popa basis for M; over M.
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Definition of the canonical planar x-algebra

The definition of a planar x-algebra has evolved since its inception in [Jon99]. We use
the definition of [Jon10] (see also [Pet10]), but we do not reproduce it here.

In [Jon99], it was shown how to endow the tower of relative commutants of an extremal,
finite index [ -subfactor with the structure of a subfactor planar algebra, i.e., a planar
x-algebra Qe = {Qn +} with dim(Q),, +) < oo for all n > 0 which is

e Spherical: dim(Qp 1) = 1 and any fully labelled O-tangle is invariant under spherical
isotopy. This implies shaded and unshaded contractible loops count for the same
multiplicative factor of d, called the modulus of @),.

e Positive-definite: The bilinear form on @, 4+ given by (a,b) = d " tr(b*a) is positive
definite.

The only essential ingredient to the construction of [Jon99] is a Pimsner-Popa basis, so
the same construction applies to a strongly Markov inclusion My C (M, tr;). As we do
not require the algebras to be factors or the inclusion to be extremal, the resulting planar
algebra need not be spherical nor positive-definite nor have finite dimensional n-box spaces.

Below, we define a planar x-algebra structure on the vector spaces P, + (n > 0) given by
P,y =0Y(M\nM,) and P,_ = 0, '(M{ N M,y1). This planar algebra is independent of
any choices, so we call it the canonical planar *x-algebra associated to My C (M, try).

We define the action of a planar tangle in standard form:

(1) all the input and output disks are horizontal rectangles with all strings (that are not
closed loops) emanating from the top edges of the rectangles,

(2) all the input disks are in disjoint horizontal bands and all maxima and minima of
strings are at different vertical levels, and not in the horizonal bands defined by the
input disks, and

(3) the distinguished (starred) intervals of all the disks are at the left edges of the rectan-
gles. (In the sequel, we will assume this convention and omit the x’s.)

We do not provide the proof of isotopy invariance, i.e., that the action is independent of the
choice of standard form, as this proof is identical to that in [Jon99]. However, in Subsection
3.2, we provide Burns’ elegant proof that the rotation operator is well-defined.

Suppose we have a (k, £)-tangle T in standard form with s input rectangles, and input
rectangle j has 2r; strings emanating from the top. We define the action of 7" on an s-tuple
§= (&, &) where ; € P, 4, and £; = % if the region just below input rectangle j is
unshaded or shaded respectively.

We read the action of T on £ by sliding a horizontal line through the tangle from bottom
to top. For a fixed vertical y-value, off the input disks’ horizontal bands and away from the
relative extrema of the strings, the horizontal line will meet n, shaded regions from left to
right. One should think of the shaded regions along this line as elements of M; and the
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unshaded regions between shaded regions as the symbols ®,;,. Near the top, the line will
meet k or k + 1 shaded regions depending on whether the left-most region of 7" is unshaded
or shaded respectively. We illustrate a typical (3,+)-tangle with the horizontal line about
half way through its travel:

For each y coordinate of the horizontal line, one reads off an M;-invariant element 7, €
X}’O M, where i = 0 if T is a (k, +)-tangle and ¢ = 1 if T is a (k, —)-tangle.

The element 7, begins as 1 € M; near the bottom, and it remains constant as long as the
horizontal line meets neither maxima, minima, nor rectangles. If the horizontal line passes
input rectangle j for which exactly ¢ shaded regions sit to the left, then we insert &; into 7,
as in Figure 3.1 by applying Lemma 3.2.29 with vy = &,

ny—t

t
Vi=@ M, Vo= P, and Vs = (K) M.
MO MO

Note that Vi, V3 are considered as M;-modules and P, +, is an M, — M, bimodule, where
¢ =0if £; = + and ¢ = 1 if &; = —. Note that inserting {; into 7, gives an M;-invariant
vector.

As the horizontal line passes a maximum or minimum, 7, changes according to Figure
3.2 where the changes indicated on the tensors are to be inserted into the position indicated
by the shaded regions on the horizontal (dashed) line. With the exception of one case, each
of these maps is an M; — M; bimodule map, so it will preserve M;-invariant elements. The
remaining case to consider is when the left-most or right-most shaded region is capped off by
applying the third map pictured above, which is an My — My bimodule map. But this will
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Figure 3.1: Inserting central vectors

U —>U TRQUYUr— TR®1RyY

U %'U' de*be@b*:d*Zb@b*x

I i beB beB

— m TRY®zr+— drEy,(y) ® 2 = de ® Ey,(y)z

.
A-TF ——

Figure 3.2: Reading maxima and minima of planar tangles in standard form

only occur when the distinguished (starred) interval of the external disk meets an unshaded
region, so ¢ would have to be 0 from the beginning.

The action of the tangle on £ is the element 7, € P 1 read for horizontal lines sufficiently
close to the top. The *-structure is the same as that of [Jon99].

Example 3.2.31. To calculate ¢ for

k
=D i@, €0, (MjnM,),
=1
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we first isotope the tangle into a standard form. The horizontal line travels upward as shown:

which we read as:

k
Il ly = d ) @b —d ) betab »d ) > borie- e @b
beB beB beB i=1

=Y D bR @ @, By (2,0,
the last line giving the output of the tangle applied to &.

Burns’ treatment of the rotation operator on P,

The key to showing that the P, ’s define a planar algebra is isotopy invariance, which
relies on the existence of the rotation on P, +. A particularly elegant treatment of this is
due to Michael Burns, but it only appears in his thesis [Bur03], so we include a proof below
for the reader’s convenience.

Definition 3.2.32. Let B be a Pimsner-Popa basis of M; over M. For

r=1® @, € Q) M,
Mo

define p(z) = Z LyR;(z) = Z bRx1 @ Q1 By (2,0%) (see Example 3.2.31).

beB beB

Proposition 3.2.33. The map p preserves P, ., and its restriction to P, 1 is independent
of the choice of B.

Proof. Middle linearity is respected by p, so it is well defined, though it may depend on B.
By Lemma 3.2.29 and Remark 3.2.5, for My-invariant z, the sum

Zb@x@b*

beB

is independent of B. We obtain p by applying an My — M, bilinear map which does not
involve B, so the restriction of p is My-invariant and independent of B. O
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Theorem 3.2.34 ([Bur03|). For x € P, . and v, ...,y, € M,
(p(@), ) ® - @yn) = (2,52® - @Yo @ y1),
so p" =id on P, ;.

Proof. As p(x) = LyR;(x), we have
b

beB

<p(1’)7y1 @ ®yn> = Z<LbRZ£B,y1 ® - ®yn> = Z<m7RbLzy1 & ®yn>

beB beB

= (@ Buy(0'yn)ge @ - Qyn @) = Y (Bary (0°51) 2,92 @ - - @ g @ b)
beB beB
beB beB

= (T, Y2 @ @ Yn QY1).

Corollary 3.2.35. The rotation on P, + is well defined.

The rotation on P, _
We mimic Burns’ treatment of the rotation on P, ; to define the rotation on P, _.

Definition 3.2.36. Let B be a Pimsner-Popa basis of M; over M. For

n+1
$:x1®---®xn+1€®M1,

My

define o(x) = ZR(b*)RTLb(x) = Zb R ® - @ Epgy (n41)b"

beB beB

Proposition 3.2.37. The map o preserves P, _, and its restriction to P, _ is independent
of the choice of B.

Proof. Similar to Proposition 3.2.33. m

Theorem 3.2.38. Forx € P, and y1,...,Yn41 € M,

(0(2), 1 @ @ Yny1) = (T, 92 Q@ @ Yn Q Ypt1th @ 1).
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Proof. Similar to Theorem 3.2.34. [
Corollary 3.2.39. 0" =id on P, _.

Proof. As o preserves P, _, we repeatedly apply Theorem 3.2.38 for x € P, _ to get

<O-n(x)7y1 Q& yn+1> = <Jn71(x)7y2 @ QYn QYn+1Y1 @ 1>
= (0" (1), Y3 @ D Yn @ Y191 D Y2 @ 1)
— . — <x7yn+1y1®y2®®yn®1>

We then invoke Burns’ trick again to get

(T Y1 @Y @ QY ®1) = (Yp 1T, 1 @ Y, ® 1)
= (Y 1 Q@ Ry, ®1)
= (T, 11 @ @ UYn ® Ynt1)-

Corollary 3.2.40. The rotation on P, _ is well defined.

Uniqueness of the canonical planar x-algebra

We have the following facts whose proofs are similar to those in [Jon99] and will be
omitted (they are straightforward from the results in Subsections 3.2 and 3.2). We shade
tangles as much as possible, but sometimes we will not have enough information.

Proposition 3.2.41 (Multiplication). Suppose x,y € M, such that
0 (x) =21 @ @, and 6, (Y) =) @+ @ Y
Then

n ® 2k = 2
X Qi) . ® Ik;-{- EMO (xk-}-QE]\rjO (-rk—‘rg(' . )yk 1 )yk)yl 1 GQ ® y E n 2]{,’ + ]

Remark 3.2.42. If x,y as above are in M/ N M,, where i € {0,1}, then
L[ [
1 ® e ® T
0. (zy) = T - [ |Wwhere the shading depends on i and the parity of n.

y1®"'®yn
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Proposition 3.2.43 (x-Structure). Suppose x € M,, such that 0" (z) = 21 ®---Qz,. Then
O (z*) =2/ Q- ® x}.

Proposition 3.2.44 (Jones Projections). (1) Forn > 1, the Jones projection E,, € P11

N
is gien by | L
S W
N
(2) Forn > 2, the Jones projection E,, € P, _ is given by
S

Remark 3.2.45. The multistep basic construction projection of Proposition 3.2.20 is given

n—k| :
N
Proposition 3.2.46 (Inclusions). (1) Let i,: M{ N M, — M) N M, be the inclusion.

by fry=d*

Then the inclusion 9,;{1 0100, Pyt — Ppy1 1 15 given by

(2) If x € P, _, then z =x € P14

Proposition 3.2.47 (Conditional Expectations). (1) The conditional expectation 6, ', o

Enr, ,00n: Poy — P14 is given by d™' - ]

T
(2) The conditional expectation 0, ' o Eﬁf 06,: P,+ — P,_1_ (see Proposition 3.2.24) is

given by d=* - E
]

Notation 3.2.48. We use the notation from [Penl2al:

(1) Denote the annular capping maps P, y — FP,_1 4+ by «; as shown:
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i.e., numbering the boundary points clockwise from x, the 7" and (i+ 1) (modulo 2n)
internal boundary points are joined by a string and all other internal boundary points
are connected to external boundary points such that

(i) If i = 1, then the first external point is connected to the third internal point.
(i) If 1 < i < 2n, then the first external point is connected to the first internal point.

(iii) If 4 = 2n, then the first external point is connected to the (2n — 1)™ internal
point.

(2) Denote the annular cupping maps P,y — P, 1 by f; as shown:

i.e., B; is a; turned inside out.
The following lemma is similar to a result in [KS04]:

Lemma 3.2.49. Suppose P, is a planar x-algebra with modulus d # 0 and Q, + C P, + are
x-subalgebras which are closed under the following operations:

N
(1) left and right multiplication by tangles E, = - € Py 4 forneN;
S
(2) The maps from P, . as follows:
X RN
Q= ] Py — P g, Brt1 = Py — Py,
[ --- ] [ [ - \
Nt = E Py — Py and
| \
| e ‘
(8) the map i, = : Py — Py

]
Then the Qn + define a planar x-subalgebra Qe C P,.




CHAPTER 3. THE EMBEDDING THEOREM FOR FINITE DEPTH SUBFACTOR
PLANAR ALGEBRAS 61

Proof. As @, 1 is closed under multiplication and *, it suffices to show @), is closed under
all annular maps. To show this, it suffices to show all «;’s, all §;’s, and both rotations by 1
preserve (),.

First, note that the maps v, : P, — P,_14+ and i : P, . — P,1_ given by

M| 1
’71:(1‘) = X = Ean-l-?(EnEn—l T El : 6n+2(lq:x)) ’ E1E2 o En) and

in(z) = T = Yoi2(E1Ey - - En) - Buyofuii(2) - (Bpi1 By - - - En))

preserve (),.
We show all «;’s preserve Q.. For j <mn and z € @,

05(1) = S0 (BuF1 - By) - Buia(w) - ().

The case n < j < 2n is similar. It is clear ao,(z) = ag,—1(7,_1 (75 (2))).
We show all 3,’s preserve (. If j <n + 1, we have

Bi(r) = (E;Ej1-- Ey) - Bay1(2).

The case n+ 1 < j < 2n 4+ 2 is similar. It is clear fa,42(2) = a2y, 17,1 (7).
We show both rotations by 1 preserve (),. We have

[ [~ 1, o
x = g 1%t 2ty o Bnt1(z) and
] [ |
| | L
T = Oén+15n+2042n+1in (35)
~ ] | |

]

Theorem 3.2.50. Given a strongly Markov inclusion My C (M, try), there is a unique
planar *-algebra P, of modulus d = [My: M)'/? where

Po. =0 (M, M,) and P, = Q;il(M{ N Mpi1)
such that the multiplication is given by Remark 3.2./2,

(0) for all tangles T with n input disks, T(&5, -+ ,&8) = T*(&, -+, &))" where for & €
P, 1., & 1is as in Proposition 3.2.45 and T™ s the mirror image of T';
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.« .. U
(1) fO’/’TL S N; ETL il RN ” S Pn—i—l,—‘,—;'

S e
(2) for x € P, and B a Pimsner-Popa basis for My over M,

| | | Ll -~ |
- 3 =dEy, ,(x), x =2 € P14, and

| ... ‘ ,
C - = dE,$(x) =d™" Y " bab*; and

| ‘ beB

(3) forxz e P, _, - =2 € P+

Proof. Uniqueness follows from Lemma 3.2.49. Existence follows from the existence of the
canonical planar x-algebra associated to My C (M, try). O

Corollary 3.2.51. The canonical planar x-algebra associated to an extremal, finite index
I1;-subfactor is the subfactor planar algebra constructed in [Jon99].

3.3 The planar algebra isomorphism for finite
dimensional C*-algebras

We now restrict our attention to a connected unital inclusion My C M; of finite dimen-
sional C*-algebras with the Markov trace. We show that in this case, the canonical planar
x-algebra of Theorem 3.2.50 is isomorphic to the bipartite graph planar algebra [Jon00] of
the Bratteli diagram.

Many of the results in this section can be found in [GAIHJ89],[JS97],[EK98], but we
present them here for completeness and for the reader’s convenience.

Loop algebras

We define loop algebras in the spirit of [Jon00] which are another description of Evans,
Ocneanu, and Sunder’s path algebras [GdIHJ89],[JS97],[EK98|, with a more GNS (rather
than spatial) flavor.

Notation 3.3.1. For this section, let I' be a finite, connected, bipartite multi-graph. Let
V. denote the set of even/odd vertices of I', and let £ denote the edge set of I'. Usually
we will denote edges by ¢ and £. All edges will be directed from even to odd vertices, so
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we have source and target functions s: &€ — V, and ¢t: &€ — V_. We will write €* to denote
an edge ¢ traversed from an odd vertex to an even vertex, and we define source and target
functions s: £* = {e*le € £} - V_ and t: £ — V, by s(e*) = t(e) and t(¢*) = s(e). Let
my: V4 — N be a dimension (row) vector for the even vertices. For v € V_, define the
dimension (row) vector for the odd vertices by

m_() = 3 m(s(e)).

t(e)=v

Let A be the bipartite adjacency matrix for I' (A;; is the number of times the i"* vertex in
V, is connected to the j' vertex in V_).

Remark 3.3.2. Given (I';m,), we can associate a connected unital inclusion of finite di-
mensional C*-algebras My C M;. We set

My = €P My, ()(C) and M, = @ M,,_(C),

veEVL veEV_

and the inclusion is such that I' is the Bratteli diagram for the inclusion, and A is the inclusion
matrix (A;; is the number of times the i** simple summand of M, is contained in the j%
simple summand of Mj). Conversely, given such an inclusion, we get a finite, connected,
bipartite multi-graph (the Bratteli diagram) and a dimension vector m (corresponding to
the simple summands of Mp).

Definition 3.3.3. Let G4 be the complex vector space with basis V. respectively. For
n € N, G, + will denote the complex vector space with basis loops of length 2n on I' based
at a vertex in V. respectively.

We discuss the vector spaces Gy, +. The spaces GG, _ are similar, and it is clear what the
corresponding notation should be and how they will behave.

Notation 3.3.4. Loops in G, ; will be denoted [g1€5 - - - £2,-1€5,]. Any time we write such
a loop, it is implied that

(i) t(ei) = s(ejy1) = t(€i1) for all odd 7 < 2n,
(i) t(ef) = s(e;) = s(ei41) for all even i < 2n, and

(iil) t(e3,) = s(e2n) = s(e1).

For a loop £ = [g1e5 -+ - €9p-165,] € Gy and 1 < k < 2n, we define the following paths in ¢:
€165 - €p—1€;,  k even
by = .
€165 -€5_1€k Kk odd

* *
’ ) ErEri1 €216y, kodd
[k,2n] — N * L
ER€k+1 " " E2n—1E9, even.
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Definition 3.3.5. Define an antilinear map * on G, by the antilinear extension of the
map

(€165 -+ Eon_165,]" = [EanEa,_1 - - - €261
There is also an obvious notion of taking * of a path 7} (¢) for a loop ¢ € Gy, . We define
a multiplication on G, ;+ by

Oy - by = O, (€)1 (1) [1,0) (€2) 1,20 -

[n+1,2n]’

It is clear that * is an involution, i.e., an anti-automorphism of period 2, for G, under this
multiplication.

Remark 3.3.6. We can think of a loop in G,, + as a path up and down the multi-graph I',
corresponding to the Bratteli diagram for the inclusions

MyCc M, C---C M,,

which is obtained by reflecting I' a total of n—1 times, as the inclusion matrix of M; C M,
is given by A or AT if j is even or odd, respectively [Jon83].

Definition 3.3.7. Let I be the augmentation of the bipartite graph I' by adding a distin-
guished vertex x which is connected to each v € V, by m, (v) distinct edges. These edges
are oriented so they begin at x. We will denote these added edges by n's (and (’s and k’s
when necessary).

Definition 3.3.8. For n € Z>, let A,, be the algebra defined as follows: a basis of A, will
consist of loops of length 2n + 2 on I' of the form

* * *
[meies - - - €2n165,75)

i.e., the loops start and end at x, but remain in I" otherwise. Note that we have an obvious
x-structure on each A,,. Multiplication will be given as follows: if one defines the similar
path notation as in Notation 3.3.4, then we have

Gl = 00y, o () sy () 1411 (2) o 2.2m 2]

Remark 3.3.9. We can think of a loop in A,, as a path up and down the multi-graph T,
corresponding to the Bratteli diagram for the inclusions

CcMycM cC---CM,.

Definition 3.3.10 (Inclusions). The inclusion A, — A, is given by the linear extension
of

* * * * *
E [meies - eree’enit - €an165,M5] M even
* * K s(e)=s(en)
[meiey - - - con183,1] — . " e
E [Theies - eneeey 1 - - Eom_165,15] 1 odd.
s(e)=t(en)

We identify A,, with its image in A, ;.
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Remark 3.3.11. The inclusion identifications allow us to define a multiplication A,, x A,, —
Anax{mn} by including A,,, A, into A axfm,n) and using the regular multiplication. Explicitly,
if /1 € A,, and {5 € A,, with m < n, then

Uy -y = () ) romsny [ (E0) (Lm0 (€2) et 2,249 |-

[m+2,2m+2]’

The case m > n is similar.

Towers of loop algebras

We provide an isomorphism of the tower (M,,),>o coming from a connected unital inclu-
sion of finite dimensional C*-algebras with the Markov trace and the corresponding tower
(An)n>o of loop algebras. Assume the notation of Subsection 3.3.

For n > 0, if S; is the i*" simple summand of of M,,, then loops ¢ in A,, for which U1 nt)
ends at the corresponding vertex of T, form a system of matrix units for a simple algebra
isomorphic to S;. Hence for n € Zsg, there is a x-algebra isomorphism A, = M, and
dim(A,,) = dim(M,,).

At this point, we only choose such isomorphisms ¢,: A, — M, for n = 0,1 which
respects the inclusion given in Definition 3.3.10. In Proposition 3.3.17, we will inductively
define isomorphisms ¢,,: A, — M, for n > 2 to identify the Jones projections.

Definition 3.3.12. Following [Jon83], let A\; be the Markov trace (column) vector for M;
for i = 0,1 such that
m+)\0 =1= m_)\l,

so \; gives the traces of minimal projections in the simple summands of M; for ¢ = 0,1. In
order for the trace on M; to restrict to the trace on My, we must have A\; = .

Recall that the inclusion matrix for M,, C M, ; is given by A if n is even and AT if
n is odd. This means that to extend the trace, we must have AAT\y = d72)\g, ATAN, =
d=2)\1, and N\, = d2\,_, for all n > 2, where \, is the Markov trace vector for M, and

d = /|[ATA] = /[|AAT]]

0 A
Definition 3.3.13. Let A = ° , & Frobenius-Perron eigenvector for
dA\; AT 0

Definition 3.3.14 (Traces). We define a trace on Ay by
At = Aot if g =
txo(mns]) = { (tm) = Xo(t(m)) iy =,
0 else.
Suppose { = [mees -+ can_165,1m5] € A, with n > 1. We define a trace on A, by

d"A(s(en)) ifniseven and ¢ = ¢*
tr,(0) = < d"A(t(en)) ifnisodd and £ = ¢*
0 if 0 £ 0%,
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Remark 3.3.15. The isomorphisms ¢,, for n = 0, 1 preserve the trace. Moreover, tr, 1 |4, =
tr, for all n € N as A is a Frobenius-Perron eigenvector.

Proposition 3.3.16 (Conditional Expectations). If ¢ = [meieh - - can_163,175] € An, the
conditional expectation A, — A,_1 is given by

A(s(en
d_ldsmanﬂ % [1erey - En-1En42 " “Ean-1€5,15] M even
EA 71(6) = )\ n
" — t En * * * *
d 155n75n+1 —/\((S((fnii [1ME1€5 - € 1Ent2 - E2n—1E5,7) N odd.

Proof. We consider the case n even. The case n odd is similar. We must show tr,(zy) =
tr,—1(Ea, ,(z)y) for all z € A,, and y € A,,_;. It suffices to check when z,y are loops. If

r = [meiey - - ean-185,15) and y = (036185 -+ San—383, 974,
using the formula above, we have

As(en))

1,0 %[0 12 2m 4 2] WEZ)) trn—1 ([77151 ~en—1§58n41 557172771])

1) . A(s(en)) = trp(zy).

1,n] 7rr71,+2,271,+2] EnsEnt1 72,0 Y 41 20 —2)

trn—l(EAn71 (x)y) = d_165'1L757L+16y[
— s,
]

Definition 3.3.17 (Jones Projections). For n € N, define distinguished elements of A, 4
as follows: if n is odd, define

A0 ) A (Eipya))] . . . . -
Fo=Y" Y 3 - MEi€ly " €11 EinCi Cins1Cinps Cinn " " Ein€iy M|
i tm=s(ei)

where the sum is taken over all vectors i = (41,79, ..,0n+1) such that

*

* * *
[gilg ’ ginflginginginJrlginJrlginfl U 6i26i1] € Gn+1,+

R
If n is even, then define

F= 3 A(s(ei, ))A(5(E4, 1))

* * * * k%
[M€ii€l, ** Ein_1€4,€inChp 1 Cint1Ein_y =" Eia€iyN']

with a similar limitation on the vectors i = (11,09, ns1)-
Lemma 3.3.18. (1) F,zF, =dFE,, ,(x)F, for all z € A, and
(2) trpp1(xF,) = d e, (z) for allx € A, ie., Ea, (F,) =d".

Proof. We prove the case n odd. The case n even is similar.
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(1) If o =[G&E &by - En185,65] € An, then

At (e ) At (Ei,00))] . s . . -
anFn = Z Z )\(8(6 ))+1 [775i15i2 e Ein,lginEingin+1€in+1€in71 €46 ]X
7 tm=s(eiy) "

[A(t(e5,))A(t(Ej,,0))]H . . . . .
xz}:tm)—zs%sjl) J )‘(s(5jnj)) e
A A n 1/2
-y PUORESI g6 et 165
s(§)=s(fn-1)
Z: Z A (63"3\)(8((€§ij)’3+ )] [/ﬁsjlsjg € 1€5nE] Ehnt1€niaCinot €4 K ]

At(En)) 3 (DA

)\(5(5)) [lelgs e 627155*55*5714-2 e an—lé—;nC;]

(2) Another straightforward calculation.

Proposition 3.3.19 (Basic Construction). For n € N, the inclusion
An,1 C An - (An+17 trn+17 dian)

is standard. Hence for all k > 0, there are isomorphisms ¢y : Ay — My preserving the trace
such that pri1|a, = v and @ (F,) = E, for all m > n.

Proof. We construct the isomorphisms ¢,, for n > 1 by induction on n. The base case is
finished. Suppose we have constructed ¢, for n > 1. We know that M, ., = M,FE,M,
and A, =& M, via ¢,. By Lemmata 3.2.15 and 3.3.18, there is an algebra isomorphism
hpi1: Mpyw = MuE, M, — A,F,A, C A, such that E, — F,. But dim(M,.;) =
dim(A,41), so Apy1 = ApFLA,, and we set ¢, 11 = h;il, which extends ¢,. Finally, note
the ¢,,’s preserve the trace by construction and the uniqueness of the Markov trace. O]

Relative commutants are isomorphic to loop algebras

We provide isomorphisms between the relative commutants of the tower (A, ),>0 and the
spaces G, 1.

Proposition 3.3.20 (Central Vectors). A basis for the central vectors Ay N A, is given by

Son = Z (ne1ey -+ - ean—165,1°] € Anlleres - - €an165,] € Gut
t(n)=s(e1)
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A basis for the central vectors A} N A, is given by

* * * ok * *
Stint1 = E [neejen - - €5, 1620 "] € Apia|lele2 " €5, 180n] € G-

t(n)=s(e)
t(e)=t(e1)

Proof. Note that if [(;(}] € Ao, then we have

(GGT Y. eags-camags,n 1= D S mlGiereh - e 185,17
t(n)=s(e1) t(n)=s(e1)
= [Geres - can1€5, G5l = D Sncilneres - ean185,G3)

t(m)=s(e1)

( > [775153"'5271—153“77*])'[C1C§]

t(n)=s(e1)

Hence Sy, C Ay N A,. Similarly, S1,+1 C A1 NA,.
Suppose now that = € Ay N A,. Then since 14, = > [nn*], we have

T = (Z[mf]) T = (Z[nn*] : [7777"]) z =Y [’z "] € span(Son)-

" 7 "
Similarly, A} N A,11 C span(Si n+1). O
Corollary 3.3.21. There are x-algebra isomorphisms

¢n,+: Gn7+ — A6 N An and
¢n,—: Gm_ — All N An+1-

If n =0, the isomorphisms are given by

Gor(vi)= D [l and go_(v-)= Y [neety’].
(ol

Hn)=vs Hn)=s()st(e)=v—

For n € N, the isomorphisms are given by
P+ (€165 - - - E2p-185,]) = Z [ne1es -+ - eap—1e5,n"] and
t(m)=s(e1)
O ([Eiea--e5uro]) = ) [necien -5, 1200,
t(n)=s(e)

t(e)=t(e1)

It will be helpful to have an explicit Pimsner-Popa basis for A; over Ag:
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Proposition 3.3.22 (Pimsner-Popa Bases). For each vy € Vi, pick a distinguished n,,
with t(ny, ) = vy. Set

69

d)\(s(eg)))l/
B, = { (=222 > 1eq d
1 (A(t(sz)) PSTRE sty

 dA(s(z)\ .
By = {(W) [7718182775(52)]

Then B = By 11 By is a Pimsner-Popa basis for Ay over Ag.

s(er) # 5(52)} :

Proof. Suppose © = [GEEG] € Ar
Case 1: Suppose that s(&) = s(&), so [&1&] € G4 If b € By, then E4 (b*z) = 0 as the
formula will have delta functions o, ., for ¢ = 1,2. Hence we have

SO bE, (00 2) = 3 b, () = df(i((f)))) S ey (Ceaeic) - [G6163G3))
t(n)=s(e1)

t(Q)=s(e1)

d/\(S(&Q)) . s
At(=2) t(n)z;(qf@vcé&m e B (C2265G2)
)

dX\(s

)\((t(SQ))) Y. & Eay ([Greal3))
beB: 2 m=s(e)
=Y Y beabaan] GG = a6 =

bEB1 t(n)=s(£1)

beB beB; €B:

be B

Case 2: Suppose that s(&;) # s(&2). If b € By, then similarly, F4,(b*z) = 0. Hence

S0 070) = 3 b0 = 3 T e JEa (e zaein] (06 66)

beB beB>y beB>

= [G161&3M5ey)) - Ms(62) ] = [G161&5C] = 2

Remark 3.3.23. One could also take

B R YCICY) B R
"o {<m+<s<ez>>A<t<@>>> e

Corollary 3.3.24 (Commutant Conditional Expectations). If

r= Y (& En16,C] € AN A,
t(¢Q)=s(&1)

s(ey) # 8(82)} )
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the conditional expectation AjN A, — A} N A, is given by

. A
P = (SGey) X et G )
t(C)=s(e)t(e)=t(&2)

Proof. Let B be as in Proposition 3.3.22. By Proposition 3.2.24, we have

PEP () = bab" = bab* + Y bab”,

beB be By be B>

We treat each sum separately:

S =3 (55) X o] 66 6l et

be B, be B, A<t(€2)) t(n)=s(e1)=t(k)
t(Q)=s(&1)

A S| * * k
=d ( (s 2))) Z 577,C5C75652751682752n [77552 b1 K ]
(

NG
sermateny NAEED S S
H()=t(£2) HO)=s(61)

A(s(£1)) . .
=d Z ( ) Oty 62, €65 -+ Ean—16"N"].
t(n)=s(e)=s(&1) A(t(&1))

t(e)=t(&2)

Similarly, we have

S babt=d Y ()\(8(&))) Ocr 600 NEES -+ - Ean1E™ "]

Mt
beBs tn)=s(e)#s(&1) (H&)
t(e)=t(¢2)

Putting these two together, we get the desired formula for B, m

1

The bipartite graph planar algebra and the isomorphism

We refer the reader to [Jon00] for the full definition of the planar algebra of a bipartite
graph.

Let G4 be the planar algebra of the bipartite graph I with spin vector A as in Subsections
3.3 and 3.3. We briefly recall the action of tangles on the G, 1+, and we calculate some
necessary examples.

A state o of a tangle T is a way of assigning the regions and strings of T" with compatible
vertices and edges of I' respectively, i.e., if a string S of T' partitions the unshaded region
R, from the shaded region R_, then for o(S) € &, s(o(S)) = o(R;) € V4 and t(c(S5)) =
o(R-)eV_.

Define the output loop ¢, as the loop obtained by reading clockwise around the outer
boundary of T" once it has been labeled by o.
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Suppose now that 7" has n input disks, and ¢ = /1 ® --- ® £,, is a simple tensor of loops
where ¢; is a loop in G, +,. Then the action of 1" on ¢ is given by

T) = Z c(o,0)l,,

states o

where ¢(0, () is a correction factor defined as follows:

(1) First, label the regions and strings of 7" adjacent to the input disks with the edges and
vertices which compose the ¢;’s. If the labeling contradicts o, then (o, ¢) = 0.

(2) If the labels agree, put the tangle in a standard form similar to Section 3.2, where the
only difference is that the half the strings emanate from the top of the input rectangles,
and half the strings emanate down, but the * is still on the left side. Let E(T') be the set
of local extrema of the strings of the standard form of the tangle. For each e € E(T),
let conv(e) be the vertex assigned by o to the convex region of the extrema, and let
conc(e) be the vertex assigned to the concave region. Set

o A(conv(e))
“ [ Mconc(e))
Below is an example of an extrema e on a string S with ¢(S) = £, connecting vertices
w, v
concave
v
Aw)
g W — ke == )\(U> .
convex

Note that conv(e) may be in either V, or V_. Finally, set

c(o,l) = H k.

ecE(T)

The *-structure on the bipartite graph planar algebra is given as follows: if T', £ are as above,
then

T - 0)=T"l;® - ®,)"
where T* is the mirror image of T', and the adjoint of a loop is the loop traversed backwards
as in Definition 3.3.5.

Remark 3.3.25. Contractible loops are traded for a multiplicative factor of d as A is a
Frobenius-Perron eigenvector (see Definition 3.3.13).

Remark 3.3.26. Note from Corollary 3.3.21 that there is a natural inclusion identification
Grn,— — Gpy1+ given by

* * * * *
[elea- - €5, 1€20)] ” E [eeter - -~ €5, 182nE"].
t(e)=s(e1)
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Examples 3.3.27. (0) If 41,0, € G, 4+, then 4 - {y = T - [T | the shading

depending on n, +.
(1) For n € N odd,

- - Z [)\(t(gin))/\(t(gin+1))]1/2[ P Lok * ) *]
vl B - )\(8(51- )) 621 Ei”*l€Z"€iyzgzn+1€in+162n_l gil ,
S ‘
where the sum is taken over all vectors 7 = (i1,42, . .. ,ins1) such that

* * * * *
[€i15i2 U 6in,1€in€in6in+1€in+1ginfl e €i25i1] E Gn+1,+‘
There is a similar formula for n even. (Compare with Definition 3.3.17.)
(2) Suppose £ = [£16} - an-155,] € Gy

(i) If n is even, then

[ \ As(e,
/ 3 = 5sn,sn+lﬁ[€1€§ e '€n7152+252n—1 €],

with a similar formula for n odd. (Compare with Proposition 3.3.16.)

(ii) If n is even, then

/ = [e185 - erec™en 1 Ean_1E5,),
T - ] s(e)=s(en)

with a similar formula for n odd. (Compare with Definition 3.3.10.)

| A(s(e1)
(iii) E ¢ = 551,e2nm[€§€3 "+ E3p_a€on—1]-
(Compare with Proposition 3.3.24 and Remark 3.3.26.)

(3) If ¢ = [efeq---€5,_1€2n) € G —, then

* * *
E [ecleg - €5, 1EanE],
)=s(e1)

] ] t(e)=s

which may be identified with ¢ € G,,+1 + by Remark 3.3.26.
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Theorem 3.3.28. The canonical planar x-algebra P, associated to My C (M, try) is iso-
morphic to the bipartite graph planar x-algebra G4 of the Bratteli diagram U for the inclusion.

Proof. To show that the x-algebra isomorphisms

G\ bt A NA, enlagnan MM, GEIIM(/)mMn -
b entilarna, 0,1 JYASTYA
G — AN A M N M, P,_
give an isomorphism of planar x-algebras G, — P,, we must check that
(1) they map Jones projections in G, to those in P,, and
(2) they preserve the action of annular tangles.
Both follow immediately from Examples 3.3.27 and the proof of Lemma 3.2.49. O

3.4 The Embedding Theorem

Let Qo be a finite depth subfactor planar algebra of modulus d. Pick r > 0 minimal
such that Qa1+ C Q211+ C (Q2r12+,€2.41) is standard (with the usual trace). Note this
is possible if and only if @), has finite depth. In fact, Qr+ C Qi1+ C (Qri2+,€k41) I8
standard for all & > 2r. For n > 0, set M,, = Qa4n+ and F,11 = Eo 441 (shifted Jones
projections). Let P, be the canonical planar *-algebra associated to the inclusion My C M,
ie.,

Py = Myn M, =5, N Qaryn . and
Pn,f = M{ N Mn+1 = Q/2r+1,+ N Q2r+n+l,+a
where we suppress the isomorphisms ¢,, with the tensor products of Q2,41 4+ over Qo 4.

Theorem 3.4.1. Define ®: Q¢ — P, by adding 2r strings to the left for x € Q4+ and
adding 2r + 1 strings to the left for v € Q.

v~ v~
n

34

Then ® s an inclusion of planar x-algebras.

Proof. We use Lemma 3.2.49. Note that ®(z*) = &(z)* and ®(zy) = ¢(x)P(y) for all
X,y S Qn,:t'
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(1) Since ®(E;) = Eoy; = Fj for all j € N, we have ®(E;z) = F;®(z) and ®(zE;) =
O(z)Fj for all x € @y, + and all j € N.

(2) Note that
(i) Forn e N, ®(Eqg,_, . (r)) = Ep,_, . (®(x)) since

EQ2r+n71,+|QIQT7+0Q27‘+R,+ = EQ2r+n71,+ P7L,+ = EPnfl,ﬁ»

(since Qar+ C Q2p4n—1,+, we have that Eg, ., preserves (g, -central vectors
as it is Qay4n—1.+-bilinear).

(i) ®(But1(z)) = Bus1(P(x)) for all z € Q, + since the inclusion P,y — P, 4 is
the restriction of the inclusion Qa,4pn 4+ — Q2rsnt1,+-

(iii) Let B = {b} be a Pimsner-Popa basis for M; = Q.41+ over My = Qg 4. Since
cach b € Bis an (2r + 1, +)-box in Q241+,

N N B e

* —_—
- 1P2r+2,+

SH R
N
= &
Il
.

~
|
|
|
|
|
|
I
I
I
|
|
|

[ I |

Then by Proposition 3.2.24 and Theorem 3.2.50, for all x € @, +,

HEEEE
b
. 1 . >TIL
@) = 5w =SS T
beB beB = C,
b* "
HEREE
e ] 3
ZEZ | Ul x = 3 il 3 z = O(7,1 ().
beB| | £ | ‘
| b* ! | i
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(3) The inclusion i, : P, — P,11+ is the identity in the canonical planar x-algebra. If
x € @ —, then we have

2r+1

]

Corollary 3.4.2. Let N C M be a finite index, finite depth I1,-subfactor, and let P, be
the associated canonical subfactor planar algebra. Let I' be the principal graph of N C M,
and let Go be the bipartite graph planar algebra of I'. Then there is an embedding of planar
algebras Py — G,.
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Chapter 4

A planar calculus for infinite index
subfactors

4.1 Introduction

Jones initiated the modern theory of subfactors in [Jon83]. Given a finite index II;-
subfactor Ag C A;, he used the basic construction to obtain the Jones tower (A,),>0, ob-
tained iteratively by adding the Jones projections (e,),>1 which satisfy the Temperley-Lieb
relations. Jones used this structure to show the index lies in the range {4 cos?(7/n)|n > 3}U
[4,00), and he found an example for each value.

Much initial subfactor research classified hyperfinite subfactors of small index ([A1: Ag] <
4) by studying the standard invariant, i.e., the two towers of higher relative commutants
(AN A))iz01>0 [Ocn88, GAIHJS9, Izu9l, Pop94]. This combinatorial data was axiomatized
in three slightly different structures: paragroups [Ocn88], A-lattices [Pop95], and planar
algebras [Jon99]. When combined, these viewpoints produce strong results, e.g., standard
invariants with index in (4, 5) are completely classified, excluding the A, standard invariant
at each index value [Pop93| (see [MS11, MPPS12, IJMS11, PT12] for more details).

Some finite index results generalize to infinite index subfactors, such as discrete, irre-
ducible, “depth 2” subfactors correspond to outer (cocylce) actions of Kac algebras [HO89,
EN96], and the classical Galois correspondence still holds for outer actions of infinite discrete
groups and minimal actions of compact groups [ILP98].

In his Ph.D. thesis [Bur03], Burns studied rotations and extremality for infinite index,
since the key to isotopy invariance of Jones’ planar calculus in [Jon99] is the rotation operator
(also known to Ocneanu). Burns’ essential observation for finite index was that the centralizer
algebras A) N A, coincide with the central L?-vectors:

AGNL*(A,) = {¢ € L*(Ay)|a¢ = Cafor all a € Ap} .
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Burns found an elegant formula for the rotation on P, y = Ay N @'’ L*(A;):
p= LsRj
B

where {£} is a Pimsner-Popa basis for A; over Ay, Lg is the left creation operator, and Rj
is the right annihilation operator (see Definition 4.2.4). This approach was generalized in
[JP11] to define a canonical planar *-algebra associated to a strongly Markov inclusion of
finite von Neumann algebras. Burns adapted his formula to infinite index, and he showed
existence of the rotation on the central L?-vectors is equivalent to approximate extremality
of the subfactor.

In infinite index, Ay N A,, and Ay N L*(A,) do not coincide. One naturally asks:

Question 4.1.1. What is a suitable standard invariant for infinite index subfactors?

A definitive answer to Question 4.1.1 is not yet known. On one hand, we have the
two towers of centralizer algebras (A} N A;)i—0 1,50 in which we can multiply (the shift
isomorphisms A} N A; =2 A}, N Aj still hold by [EN96]). On the other hand, we have the
central L2-vectors on which we have Burns’ rotation (in the approximately extremal case)
and graded multiplication in the sense of [GJS10] (tensoring of central vectors). However,
the operator valued weights which replace the conditional expectations do not preserve these

spaces and may not be well-defined. All this structure is necessary for a good planar calculus.
We ask:

Question 4.1.2. What is the strongest planar calculus we can define for infinite index
subfactors?

In this paper, we propose an answer to Question 4.1.2 using both centralizer algebras
and central L?-vectors. We do so in more generality, starting with a bimodule 4H,4 over
a II-factor A (one recovers the subfactor case when A = Ay and H = L?(A;)). First,
we set H" = Q4 H, Q, = A' N (A°®) N B(H™) (the centralizer algebras), and P, = A'N
H" = {¢ € H"|a¢ = Ca for all a € A} (the central L*-vectors). As mentioned above, the P,’s
naturally form a graded algebra P, in the sense of [GJS10] under relative tensor product.
We represent central vectors in P, as in [GJS10] by boxes with n strings emanating from the
top, and we denote graded multiplication (relative tensor product) of ¢,, € P,, and (, € P,
by

| LCR

Cm & gn = Cm Cn c Pm+n.

We represent elements of (),, as boxes with strings emanating from top and bottom. For
¢ € P,, note that the creation-annihilation operator L(¢)L(¢)* = R({)R({)* lies in Q,,
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which we represent as

LOLQ = 7] €@

[~

Theorem 4.1.3. The extended positive cones 6/2;* (in the sense of [Haa79]) naturally form
an algebra QF over the operad BIP generated by the oriented tangles

[ [ = _In
n 9 3/7 ‘E 9 I 9 I Y and
I [ nn m e

form,n >0 up to planar isotopy. (We suppress external disks, draw one thick string labelled
n for n individual strings, and orient all strings upward unless otherwise specified.)

Moreover, the BP-algebra é} and graded algebra P, are compatible: if z € @% and ¢ € P,

then
)

2(we) = = Tro (L(C)L(C)" - 2)

¢
¢
I
z

7 N " R N S N
|

-/

where Tr, is the canonical trace on Q, coming from the right A-action on H™. (Note that
the multiplication tangle only makes sense once we take the trace by [Haa79]. See Theorem
4.2.14 for more details.)

We generalize to bimodules Burns’ work on rotations: an operator p on the central
L2-vectors P, is a Burns rotation if for all left and right bounded vectors by, ...,b, € H,
(omitting the subscript A on the tensors,)

(p(Q), b1 ® - ®@by) = ((, by @+ @b, @ by).

Note this equation implies the uniqueness and periodicity of p if it exists. We generalize
Burns’ notion of (approximate) extremality, and we prove the following theorem:

Theorem 4.1.4. Consider the following statements (include all or none of the parenthetical
statements):

(1) H™ is (approximately) extremal for some n > 1,
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(2) H™ is (approzimately) extremal for alln > 1,
(3) The (possibly non-)unitary p exists on Py, for alln > 1, and
(4) The (possibly non-)unitary p exists on Py, for some n > 1.

Then (1) = (2) = (3) = (4). If H is symmetric, then (4) = (1).
When p exists, we represent it diagrammatically by

m |n

pm<C) - C fOT‘C € Pm+n7

(well-defined by Corollary 4.4.16) and these diagrams are compatible with the diagrams above
in the sense of Theorem j.4.17.

Interestingly, we find our planar structure without the use of Jones’ basic construction
and resulting Jones projections!

Outline:

In Section 4.2, we give a brief introduction to modules, the relative tensor product,
extended positive cones, and operator valued weights. Subsections 4.2 and 4.2 provide some
helpful, well-known results for the convenience of the reader.

In Subsection 4.3, starting with our A — A bimodule H, we introduce H" along with two
towers of algebras C),, CP, a tower of centralizer algebras ), = C,, N C;P, and the central
L?-vectors P,. We then compute formulas for the various canonical maps associated with
these towers. In Subsection 4.3, we show the extended positive cones (in the sense of [Haa79])
of the centralizer algebras @% naturally form an algebra over an operad BP (we use positive
cones so we can “conditionally expect” using operator valued weights). In Subsection 4.3,
we show that the vectors in P, are left and right A-bounded and form a graded algebra in
the sense of [GJS10]. We then show the compatibility of Q¢ and P, in Subsection 4.3.

Subsection 4.4 defines extremality for bimodules and Burns rotations. In Subsection 4.4,
we show how the Burns rotation fits in our planar calculus, and in Subsection 4.4, we show
that (approximate) extremality implies the existence of the Burns rotation (Theorem 4.4.20).
A converse of this theorem for symmetric bimodules is obtained in Subsection 4.4, which
finishes the proof of Theorem 4.1.4.

Subsection 4.5 discusses centralizer algebras @), and central L?-vectors P, for some basic
examples, including the infinite index group-subgroup subfactor, and Subsection 4.5 deter-
mines if the examples are (approximately) extremal. In particular, Corollaries 4.5.9, 4.5.11,
and 4.5.20 give an extremal infinite index subfactor for which dim(@,,) < oo and dim(FP,) =1
for all n € N. This example contrasts Burns’ example of an infinite index subfactor with a
type I11 summand in a higher relative commutant [Bur03].

Throughout the paper, we need some technical results which have been included in the
last few sections. Section 4.6 shows that the relative tensor product of extended positive



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 80

cones is well-defined and associative, which is necessary for our planar calculus. Section 4.7
discusses the operad BP which acts on the positive cones @)}, including results on generating
sets of tangles, standard form of tangles, and that the action is well-defined. In Section 4.8,
we axiomatize the notion of extended positive cone to make rigorous the idea of a planar
algebra over such objects. The main intricacy is that we must make multiplication by ocog
well-defined.

Future research:

The annular Temperley-Lieb category, especially the rotation, played an important role in
the construction of certain exotic finite index subfactors [Pet10, BMPS09]. In a future paper
with Jones, we will incorporate the odd Jones projections for infinite index (see [Bur03]) into
the planar calculus, and we will give the analog of the annular Tempeley-Lieb category for
infinite index. We hope this viewpoint will be as fruitful as in the finite index case.

The results of this paper should generalize to bimodules over an arbitrary finite von
Neumann algebra. As it requires substantial calculations while obscuring the main new
ideas presented here, this generalization will appear in a future paper.

Finally, it would be interesting to try to connect Connes’ results on self-dual positive
cones [ConT74] to the extended positive cones axiomatized in Section 4.8.
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4.2 Preliminaries

Notation 4.2.1. e Throughout this paper, a trace on a finite von Neumann algebra
means a faithful, normal, tracial state unless otherwise specified.

o A will always denote a finite von Neumann algebra with trace tr4.

e We use the notation @ to denote the image of a € A in L*(A,tr,).
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e For a semifinite von Neumann algebra M with normal, faithful, semifinite (n.f.s.) trace
Trys, we write

ny,, = {r € M|Try(z"x) < oo} and

My, = Wy, Moy, = span{z*y|r,y € nq,, |

Modules and the relative tensor product

This exposition follows [Con80, Sau83, Pop94, EN96, Bis97, EV00, Bur03].

Definition 4.2.2 (Left modules). If 4K is a left Hilbert A-module, then the set of left
A-bounded vectors is given by

D(uK) = {n € Kl||lan|2 < Al|a||z for some A > 0},

and each n € D(4K) gives a bounded map R(n): L*(A) — H by the extension of @ + an.
For ny,m9 € D(4K), we have an A-valued inner product given by

aln,m2) = JR(m) R(nz)J € A
satisfying
(1) alam +n2,18) = aaln, 1) + a2, 73),
(2) a{m,n2)* = a(n2,m), and
(3) alzm,me) = a(na"n)
foralla € A, x € AN B(K), and ny,m2,n3 € D(4K) (note zn; € D(4K)).

An 4K-basis is a set of vectors {a} C D(4K) such that

ZR(@)R(@)* = lg <— ZA<77,04>04 = for all n € D(4K).

4K -bases exist by [Con80].

The canonical trace on A’ N B(K) is given by Tranp)(z) = >, (re, a) where {a} is
any 4/ basis.

It n € D(4K), then Tranp(x) (R(n)R(n)*) = tra(a(n,m) = [nl3.

Definition 4.2.3 (Right modules). A right Hilbert A-module is the same as a left Hilbert
A°P-module. If Hj, is a right Hilbert A-module, we write £a for a°P¢ for all a®® € A°P. We
get parallel definitions:

The set of right A-bounded vectors is given by

D(Ha) = {£ € H|||&all2 < Alla]|2 for some A > 0} .
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Each £ € D(H,) defines a bounded map L(£): L?(A) — H by the extension of @ — £a.
For &1,& € D(Ha), we have an A-valued inner product given by

(&il&2)a = L(&)"L(&) € A
satisfying
(1) (&léea + &)a = (&1l&) aa + (&11€3) a,
(2) (€ul&2)a = (&2[€1)a, and
(3) (&il€2)a = (&1]x7E2)a
foralla € A, x € (A®) N B(H), and &1,£,&3 € D(H,) (note x&; € D(Hjy)).
An H.-basis is a set of vectors {3} C D(Hy) such that

S LBLB) = 1p <= Y _ B{BIE)a =& for all € € D(Ha).
B B

H s-bases exist by [Con80].

The canonical trace on on (A°)'N B(H) is given by Tr(aeeynp()(z) = 5z, B) where
{B} is any H, basis.

If € € D(H.z), then Traowynpn (L) L)) = tra((€]€)a) = lI€]15-

Definition 4.2.4 (Relative tensor product). The relative tensor product H ®4 K is given
by one of the three equivalent definitions:

(1) the completion of the algebraic tensor product D(H,4) ®4 K under the pseudo-norm
induced by the sesquilinear form (§1 © 71, & © 12) = {((&2/€1) a1, 72),

(2) the completion of the algebraic tensor product H ®4 D(4K) under the pseudo-norm
induced by the sesquilinear form (§; © 11, & © n2) = (§1.4(M,12), &2) 1, OF

(3) the completion of the algebraic tensor product D(Ha) ©®4 D(4K) under the pseudo-
norm induced by the sesquilinear form

(610N, & O n) = (E1a(m,n2), §2) i = ((§21€1) an1, m2) k-

The image of £ ® 7 in H ® 4 K is denoted £ ® . (This notation avoids confusion with the
operators r ® 4 y as in Lemma 4.6.4.)

Given { € D(H,) and 7 € D(4K), we get bounded creation operators Lg: K — H ®4 K
by ' —= £®n and R,;: H - H ®4 K by £ — £ ®n, whose adjoints are the annihilation
operators given by Li(&' @ ') = (€|¢')an’ and Ry (& @) = &4l ).
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Definition 4.2.5 (Fiber product, [Sau85, EV00]). Suppose A°® C M; C B(H) and A C
M, C B(K). Then we define

M, @4 My ={z®@4ylz e M| and y € M}} C B(H®4 K)

(see Section 4.6 and Lemma 4.6.4), and the fiber product of M; and M, over A is given by
My %4 My = (M| ®4 M))'. The fiber product satisfies:

° (Ml * A Mz)m(Nl * A NQ)I<M1QN1) *A (MQQNQ) and
L] M1 *A A= ((A0p>/ N Ml) XA 1K and A°P *A M2 = 1H ®A (A/ N Mg)
In particular,

(B(H) *A A), = ((AOP), XA 1}()/ = AP *A B(K) = 1H XA A,.

Some easy facts about the relative tensor product

The following are well-known to experts, but we reproduce them here for the sake of
completeness and the reader’s convenience. For this subsection, H, is a right Hilbert A-
module, and 4K is a left Hilbert A-module unless otherwise stated.

Lemma 4.2.6. Suppose {8} is an Ha-basis. Then if u € U((A®)NB(H)), {uB} is another
Hy-basis. Ifv e U(A), then {Bv} is also an Hs-basis. A similar result holds for left modules.

Proof. For u € (A°®?)' N B(H), L(uf)L(up)* = ul(B)L(B)*u*. Thus

> Lwh)L(up) =u (Z L(6>L(B)*> =1y,
uf B

= L(B)L
Lemma 4.2.7. Let &, € D(Ha) and n1,m2 € D(aK). Then L Lg, € B(K) is left
multiplication by (€1|2) 4 and Ry Ry, € B(H) is right multiplication by 4(n,n2).

If v e U(A), then L(Bv)L(Bv*) = L(B)vv*L(5)* JL(B)*, and the result follows. O

Proof. (Lf, Leym, m2) = (S @ mi, & @ ma) = ((§1]€2) am1, m2)- The other is as trivial. ]

Lemma 4.2.8. If {8} is an Ha-basis, then ) 5 LgLy = lpg, k. Similarly, if {a} is an
aH-basis, then )" R R = lpg, k.

Proof. We prove the first statement. Suppose £ € D(H,) and € D(4K). Then

S LsLi€@n) = La(LiLan=> BB a@n=E@.
B B B
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Lemma 4.2.9. Supposen € oK andn' € D(4K). Then there is a unique 4(n',n) € L*(A) C
L'(A) such that (an,n')x = {a, a(n',n)) 120y for all a € A. A similar result holds for right
modules.

Proof. 1If € € D(4K), this is just the usual Radon-Nikodym derivative, and

A 2= sup (@ a(0,n) Vrzw) =  sup  tr(a(n,n)a)
a€A,ljall2<1 acA,|a]2<1

= sup |<cm,77/>z<|§( sup Ha*n’l|2> [[1ll2 < Allnll
a€A,|[all2<1 a€A,|[all2<1

for some A > 0 depending only on 1’ as ' € D(4K). Now if n ¢ D(4K), take n, € D(4K)
with 7, = nin || - ||2, and define

Al n) = 1i7gnA<77’, M)

which exists by the above estimate. Now (an,n')x = (@, a(n',n))r2(a) for all a € A by
construction. O

Corollary 4.2.10. Each n € 4K gives a closable operator R(n)°: A= K by a — an. A
similar result holds for right modules.

Proof. We need only show its adjoint is densely defined. If ' € D(4K), then

(R()%a, 1"y i = {an,n' )k = (A, a0/, 1)) 12(a)
by Lemma 4.2.9, and the result follows as D(4K) is dense in K. O

Corollary 4.2.11. Fachn € s K gives a closable unbounded operator Rg: D(Hy) - HRa K
by £ — £ ®n. A similar result holds for each & € H 4.

Proof. Once again, we show its adjoint is densely defined. If ¢ € D(H,) and ' € D(4K),
then by Lemma 4.2.9,

(1€ as a0 1) Di12(a)

(Ry6, & @1 na,k = (€0, @0 upax = (E1E)an, 1)k =
Daln'sm) du

= <L(§/>*§7 A<7],7 T]>A>L2(A) = <§) L
The result now follows as D(H4) ®4 D(4K) is dense in H ®4 K. O

Haagerup’s extended positive cones and operator valued weights

For this subsection, M is a von Neumann algebra acting on a Hilbert space H.

Definition 4.2.12 (Section 1 of [Haa79]). The extended positive cone of M, denoted M,
is the set of weights on the predual of M, i.e., maps m: M — [0, 00| such that
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(1) m(Ap+ ) = dm(¢) +m(¢) for all A > 0 and ¢,9 € M, and
(2) m is lower semicontinuous.
The extended positive cone has additional structure:

e There is a natural inclusion M+ — MT by m — (¢ — ¢d(m)).

° FormG]\//[:andaeM, Wedeﬁnea*maemby

a*ma(@) = m(aga®) = m(d(a” - a)).
We write Am for \/2mAY2 for A\ > 0.

e There is a natural partial ordering on M* given by my < mq if my(¢) < my(o) for all
¢ e M.

e If I is a directed set, we say (m;)ie; C MT increases to m € M* if i < j implies
m; < my; and sup, m;(¢) = m(¢) for all ¢ € M. Hence we can define the sum of
elements of M+ pointwise.

e Each ¢ € M7 extends uniquely to a map M+ — [0, 00] by ¢(m) = m(p).
Remark 4.2.13 (Section 1 of [Haa79]). There are equivalent definitions of M+

e Given a projection p € P(M) and a densely-defined positive, self-adjoint operator S
in K = pH affiliated with M, we can define

ISY2€) if € € D(SY?)

00 else

mk.s)(we) = { (4.1)

where we = (-§,§). Conversely, given m € ]\//[TF, there are unique (K, S) such that
Equation (4.1) holds. In the sequel, we will write m = (K,S) when we use this
bijective correspondence.

e Fach m € M* has a unique spectral resolution

m($) = /0 " Add(ex) + 50(p)

where {e)}ico,00) are increasing family of projections in M such that:

(1) A e, is strongly continuous from the right, and

(2) p=1-—1lim)_, €
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Moreover,

eo =0 <= m(¢) >0 for all p € M\ {0}
p=0<+= {¢ € M |m(¢) < oo} is dense in M.

e Every m € M+ is a pointwise limit of an increasing sequence of operators in M™.

o M is the set of all m € .B/(_[{\>+ affiliated to M (umu* = m for all u € U(M")).

Theorem 4.2.14 ([Haa79], Proposition 1.11, Theorem 1.12). Suppose M is a semifinite von
Neumann algebra with n.f.s. trace Try;. For x,y € M7, let Tryf(z - y) = Trpp (2 2yal/?).
Then the map (z,y) — Try(z - y) has a unique extension to M+ x M+ such that

o Try(z-y)=Try(y-z) for all z,y € ]\//[\*,
e Try; us additive and homogeneous in both variables,
o if (z;),(y;) C M* with z; /' x and yj Ay, then Try(z; - y;) / Try(z - y), and
o Try((a*za) - y) = Try(x - (aya®)) for all z,y € M+ anda € M.
Moreover

o The map x — Tr(x-) is a homogeneous, additive bijection from M* onto the set of
normal weights of M,

o 1 <y<=Tr(z-)<Tr(y-) and z; /v <= Tr(x;-) S Tr(x-), and

o [fx = fooo Adey + oop, then Tr(z-) is faithful if and only if eg = 0 and semifinite if
and only if p = 0.

Definition 4.2.15 ([Haa79], Definitions 2.1 and 2.2). Let M and N be von Neumann
algebras N C M. An operator valued weight from M — N is a map T: M+t — N+ which
satisfies the following conditions:

(1) T\x+y) =T (x)+T(y) for all A > 0 and z,y € M™*, and
(2) T(a*za) = a*T(x)a for all z € M* and a € N.
As in the case of ordinary weights, we set

ny = {z € M|T(z*z) € N*} and

my = npngy = span {z*y|zr,y € np}.

Moreover, we say T is:
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e normal if z; M = T(x;) /T (x) for all z;,z € MT,
e faithful if 7'(z*z) =0 =2 =0 for all x € M*, and
e semifinite if ny is o-weakly dense in M.
We will abbreviate normal, faithful, semifinite by the acronym n.f.s.

Remarks 4.2.16. (1) 7 is a conditional expectation if and only if 7'(1) = 1.

(2) If T is normal, it has a unique extension to M+ satisfying (1) and (2).

(3) nris aleft-ideal and ny, my are algebraic N — N bimodules. By polarization, T" extends
to a map T: my — N, and T'(azb) = aT'(x)b for all x € my and a,b € N.

Theorem 4.2.17 ([Haa79], Theorem 2.7). Given an inclusion N C M of semifinite von
Neumann algebras with n.f.s. traces Try, Tryr respectively. Then there is a unique n.f.s.
trace-preserving operator valued weight T: M+ — N+. Moreover, if x € M™*, T(x) is the

unique element ofﬁi such that
Tra(y - z) = Tey(y - T(z)) for ally € N*© (4.2)

(where we also write Try for the unique extension of Try to N:)
Definition 4.2.18. For N C M an inclusion of von Neumann algebras, we write
e P(M, N) for the set of n.f.s. operator valued weights M+ — N:, and

o Py(M,N) C P(M,N) for the set of operator valued weights whose restriction to N'NM
is semifinite.

Lemma 4.2.19 ([ILP98], Lemma 2.5 and Proposition 2.8, [Yam94], Corollary 28). Let
N C M be an inclusion of semifinite von Neumann algebras.

(1) There is a unique central projection z € N' N M such that
e Po(pMp,pN) =10 forallpe NNNM, p<(1-=2) and
e Po(zMz,zN)=P(zMz,zN).
Moreover, for allT € P(M,N),
o (1—z)(N'NnM)nmy={0}, and
o T|.(nnmy s semifinite.

(2) If Po(M,N) # 0 and Po(N',M") # 0, then N' N M is a direct sum of type I factors,
and pN C pMp has finite index for every finite rank p € N' N M.
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Useful lemmata on extended positive cones

For this subsection, M is a von Neumann algebra acting on a Hilbert space H.
Lemma 4.2.20. For m € M+ and n,& € H, the parallelogram identity holds:
m(wye¢) + m(wy—¢) = 2m(wy) + 2m(we).

Proof. Take (x;) C M™ with z; increasing to m. Then
i)+ my-0) = sup (i) + 250 )
i.j

< sup ( sup (xk(wn+£) + xk(%é)))

4,Jj \k2>i,j

= sup ( sup (ka(wn) + 2$k(w5))>

uj N\ k=i

< sup (Qxi/ (wy) + 2z (wg)) =2m(wy,) + 2m(we).

i/7j/
The other inequality is proved similarly. O]
Lemma 4.2.21. (1) my < my if and only if my(we) < mao(we) for all § € H.

(2) (m;)ier increases to m if and only if i < j implies m; < m; and sup; m;(we) = m(we)

forall £ € H.
(3) If (m;)ier increases to m and a € M, then a*m;a increases to a*ma.

Proof. First, note every ¢ € M is a sum of functionals we, = (- &, &) for & € H.

(1) Follows immediately by lower semicontinuity of m € M+,

(2) Suppose ¢ = ), we,. By lower semicontinuity,

m(¢) = Zm(wék) = ngp mi(we,)

> sup Z m;(wg,) = sup m; (Z wk) = sup m;(¢).

There are two cases:

Case 1: Suppose m(¢) = oo. Then there is a ¢ > 0 such that sup, m;(we,) > € for
infinitely many k, say (k,). Let N > 0, and let M > 0 such that Me > N. Choose
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j1 € I such that ¢ > j; implies m;(wy,) > €. For n = 2,..., M, inductively choose
Jn > Jn—1 such that i > j, implies m;(wg,) > €. Then for all i > j,,

M M
Zmi(wgk) > Zmi(wgkn) > Ze = Me > N.
k n=1

n=1

Since N was arbitrary, we must have

sup m;(¢) = sup m; (wx) = sup Z m;(wy) = o00.
(2 7 k

7

Case 2: Suppose m(¢) < oo. Let € > 0. Then there is an N € N such that
Y ken M(we,) < €. Now as in the proof of Lemma 4.2.20,

N N

m(p) —e < Z sup m; (we, ) = sup Z mi(wg,) < sup Z m;(wk) = supm;(e),
K3 k:l K3 k K3

k=1 °
and the result follows as € was arbitrary.
(3) We use (2). Let £ € H.

a*mia(we) = mi(wae) < mj(wee) = a*mja(we) for all ¢ < j and

sup a"m;a(weg) = sup m;(wae) = m(wae) = a*ma(we).
7 (2

]

Remark 4.2.22. Suppose (2;)ier, (yi)ier C M™T are directed families and A > 0. Then by
Lemma 4.2.21 and techniques similar to those used in the proof of Lemma 4.2.20,

sup(Az; + y;) = Asup x; + sup y;.
A 1 J

Lemma 4.2.23. Suppose F' C M+ is a directed famaly, i.e., ifv,y € F, then thereis a z € F

with z > x and z > y. Then there is a unique mp = (Kp, Sp) € M+ with Kp = Dom(S;/z)
such that

mp(we) = (S%€, 5}1%€) = sup (we) for al
Te

£ € Dom(S}ﬂ) = {§ €eH

sup z(we) < oo} .
zeF

We denote mp by supycp .
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Proof. As in [Haa79, Con80, Tak03], one checks that the extended quadratic form sp: H —
[Or, cor] given by sp(€) = sup,cp x(we) satisfies

(1) sp(AE) = [A[sr (&),

(2) sp(n+&)+ sp(n—&) =2sp(n) + 2sr(§),
(3) sp is lower semicontinuous, and

(4) sp(u€) = sp(€) for all u € M.

(1) and (4) are trivial. (3) follows as sups of lower semicontinuous maps are lower semicon-
tinuous. (2) is similar to the proof of Lemma 4.2.20. O

Definition 4.2.24. Suppose M is a semifinite von Neumann algebra with n.f.s. trace Try,
acting on the right of H. Let £ € D(Hy,), and suppose (z;) € (M'NB(H))" with z; S« €
(M’ ﬂ/l3\(H))+. Then each L(§)*z;L(§) € M™ as it commutes with the right M-action on
L*(M, Tryy), so we define

L(&)*xL(€) = sup L(€)*x;L(€) € M.
Note that if k € L?(M, Trys), then

(£072(©) ) ) = sup L 0:L(6) ) ) = sup1(s0r) = ko),

7

which is independent of the choice of (z;). Hence L(&)*xL(&) is well-defined by Lemma
4.2.21. Similarly, we may define operators of the form R(n)*yR(n), LirL¢, and RyyR,.

4.3 Planar calculus for bimodules

For this section, let A be a II;-factor, and let 4H4 be an A — A Hilbert bimodule, i.e.,
H has commuting actions of A and A°P.

Centralizer algebras, central L?-vectors, and canonical maps

Definition 4.3.1. For an A — A bimodule K (algebraic or Hilbert), we define
ANK={{eKl|a=E&aforalac A}.
Notation 4.3.2. For n > 0, let

e H" =", H, with the convention that H" = L*(A),
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e B" = D(4H")ND(H?), which is dense in H™ by Lemma 1.2.2 of [Pop86]. We also use
the convention B = B'. Note B? = A.

e {a} C B be an 4H basis (possible due to the density of B in H), with
{a"}={a® - ®@ay|la; €{a} foralli=1,...,n} C B"

the corresponding 4 H" basis (as Ra,@--0a, = Ray -+ Ra, ). Welet {$} C B be an Hy
basis, with {#"} C B" the corresponding H’; basis.

e (central L%-vectors) P, = A'N H". Note Py = A’ N L*(A) = C1.

o (), = (A®)' N B(H™) (the commutant of the right A-action on H") with canonical
trace Tr, = > 5.(- 8", 8"),

o C? = A'N B(H™) with canonical trace Tr)? =" _.(- o™, a"),

(centralizer algebras) @, = C,, N C2P.
Remark 4.3.3. Note that A C C,, and A°® C C}P.

Definition 4.3.4. H is called symmetric if there is a conjugate-linear isomorphism J: H —
H such that J(a&b) = b*(J€)a* for all a,b € A and £ € H and J? = idy.

Remark 4.3.5. If H is symmetric, then for n > 1, H" is symmetric with conjugate-linear
isomorphism J,,: H" — H" given by the extension of

Jn<§1®"'®€n) = (Jfl) @ (an)
for ¢ € B for all i. Note that J,AJ, = A°®, J,C,J, = C® and J,B" = B". On B(H"),

we define j, by jn(z) = J,x*J,. Note that j2 = id and Tr, = Tr°? oj,.
If H is not symmetric, then in general, C)P is not the opposite algebra of C,, e.g.
ro1L?(R ® R)per where R is the hyperfinite I1;-factor.

Remark 4.3.6. It is clear that B" is an A — A bimodule. If n € B" and ¢ € C,, then
c& € D(H?), but in general, ¢€ ¢ D(4H"). However, if ¢ € Q,, then clearly ¢ € B™.

Proposition 4.3.7. We have natural inclusions:

in:Cp—=>Chipbyr—2®4idg=MRE— (xn) ®E forn € B" and £ € B) and
i G = Oy by y = idg @4y = (@0 & (yn) for § € B and n € B").

Both maps include Q,, — Qpni1.
Proof. 1f z € Q,, then i,(z) € Q,41 as for all a,b € A,
(2 ®aidp)[a(§ ® n)b] = (2(ag)) ® (nb) = (a(2€)) ® (nb) = a[(zn) ® &]b.

The result is similar for oP. ]
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Proposition 4.3.8. If v € C,, then i,(z) = >, RoxR;. Ify € CP, then itP(y) =
> s LsyLy.
Proof. We prove the first statement. If &,...,&,.1 € B, we have

(Z RafL‘R:;> £®---Q& = Z Rox(§ @ @ &1, @)
= Z (:v(&l K- ® 6n—1A<£mOé>) ® O{)
— Z (26 @ ®&1)) ® al&n, )

= [x(fl @ ®€n*1)] R & = Zn('T)(gl X gn)

Remark 4.3.9. By Definition 4.2.5, (Cy ®4 id,,—x)' N B(H") = id; ®4C" ...

Lemma 4.3.10. Suppose { € H" and y € (C)R,)". Recall the operator R}: B — H"t' by
n—n®E s closable by Corollary 4.2.11. Then yl/QRgz B — H"! s also closable.

Proof. Let p be the range/kernel perp projection of y'/2. By the spectral theorem, there
are projections py € Cpb; such that y'/?p, = pyy'/? is invertible on pyH"*! and py 7 p
(strongly). Fix k > 0. Vectors of the form ( = Zgzl 0; ® k; € ppH" ™ where 01,...,0, € B
and K1, ...,k; € B" are dense in pp H"™! by the density of B®4 B™ C H™"'. Then for such
( and all n € B,
J J J
<y1/2R2777 yfl/kaQ = Z(U ® 57 T; & Ki) = Z<777 L0i<A<Hi7 €>)> = <777 Z LU'L (A<’Lii7 §>)>
i=1 i=1 i=1

(see Corollary 4.2.11). Finally, the span of vectors of the form 3~'/?p,¢ where  is as above

and k£ > 0 is dense in pH™ . O

The following proposition and its proof are similar to Theorem 3.2.26 and Proposition
3.2.27 of [Bur03].

Proposition 4.3.11. Recall from Proposition 4.3.7 that i,(Cy,) C Cpy1 and i?(CP) C
C2 .. The unique trace-preserving operator valued weight

Toir: (G, Trpg) — (C/’T\T,Trn) is given by x +— ZREQ}RB.
B

The unique trace-preserving operator valued weight

—

T (Ch )T, TR) — ((CSP)J“,Trzp) is given by y ZLZyLa.

In particular, T,yq and T,%, are independent of the choice of basis.
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Proof. We prove the result for the second statement.
Suppose y € (CPh,)" and £ € H". By Lemma 4.3.10, y1/2R0 is closable7 so we set

S = (y*RY)y 1/2R0 which is affiliated with C7P, and define mg € (CY p) as in Equation
(4.1) by
|SY2q|| ifne D(SY?) D> B
ms(wy) =

00 else.

Now we calculate that

Tr\" (ms) st wa) = ) I15"2all; = Iy Riall3
—Z (@®E), (a®¢) H"+1:<<ZL ) > = T,%1 (y) (we)-

Hn

As all elements of B(H); are sums ) . w,, T),", is well-defined and independent of the choice
of {a}.
Note that 7.7, ((CrR)1) C (CRP)*t asify € (Coh)T, £ € H", and u € U(A), then

> LiyLo(we) = Z<y<a ® uf), a0 @ uf) = Z< (ou® ), 0u®E)
= Z Ly Lo (we) Z LY yLg(we)

as {au} is another 4H basis by Lemma 4.2.6.
Finally, if x € (C?)" and y € (C’ZL)*, then

Tr;)zz-l ([ ( 1/2)]y 1/2 Z < Op 1/2 (xl/Q)]anJrl’OénJrl
= (yla® @), (a® (/%))

- (St e
= TeP (' 2T32, (y)'?) |
so 1,7, is the unique trace-preserving operator valued weight by Equation (4.2) in Theorem
4.2.17. O
Remark 4.3.12. If z € Q;f, |, then .} (2) € C/ZE asif £ € H" and u € U(A),
Z L’ 2L, (wey) = Z(z(a ®&u),a® Eu) = Z((z(a ®E&))uu',a®E) = Z L’ 2L (we).

« o

A similar result holds for 7}, ;.
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Corollary 4.3.13. If z € Qf, then Y. L(a)*zL(a) = Tr{"(2)11204).
Similarly, Y R(B)*zR(B) = Tri1(2)112a)

o~

Proof. We prove the first formula. First, Y L(a)*zL(a) € Qf = [0,00]. Now

(Z L(a)*zL(a)) (wp) = Y (L(a)2L(a)1,1) =) (20, @) = TrP(2).

Proposition 4.3.14. The unique trace-preserving operator valued weight

Tr : Q1 Trpg) — (z’flp(@%),Trn) is given by x ZLZ@L/;.
B

The unique trace-preserving operator valued weight

T;fil' (Q)f 1, Tk ) — (in(@),Trpr> is given by y — ZRZyR

In particular, f;:l and TP, na1 are independent of the choice of basis.

Proof. Similar to the proof of Proposition 4.3.11 using Remark 4.3.12. Note that if u € U(A),
then {ua}, {fu} are also 4 H, H s-bases respectively by Lemma 4.2.6. O

Planar algebra over extended positive cones of centralizer algebras

In this subsection, we define an operad BP, and describe a BP-algebra of extended positive
cones Q+ The proof that the action is well-defined is deferred to Section 4.7 as it is quite
technical. The relations given in the next theorem will be important in our approach.

Theorem 4.3.15. The following relations hold among the maps i, i, T, T ® 4, Tr,,, TroP
form,n > 1 (compare with Theorem 4.7.2, Remark 4.7.8, and the proof of Theorem 4.7.13):

(1) T, T8 (2) = TPTh41(2) for all z € Q:Lrﬂf
(2) 21 @4 (22 ®a 23) = (21 ®a 22) ®4 23 for all z; € Qn ,i=1,2,3,

(3) m+n(21 ® 29) = 21 @4 (Thza) and Ty, (21 @ 22) = (TSP21) @4 22 for all z, € é;ﬁ and
29 € Q

(4) Trp(z1 - 2z2) = Trp(29 - 21) for all 21,25 € 6/21, and similarly for TSP, and

(5) Trpi1(2z1 - in(22)) = Trp(Thia(21) - 22) for all z; € Qn+l and zy € Q+ and a similar
statement holds with °P.
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Proof. (1) For all £ € H" and z € Cj:{:,

(T, T, () (ZRﬂ (ZL*ZL> )( e) = > (R5L%2LaRg)(we)

a7ﬂ

—Z 2(Wamens) (ZL* (ZR,BZR5> a)( ¢)
= (Tn Tra(2)) (we).

(2) This is Corollary 4.6.14.

(3) Suppose 21 ; € Q;} increases to z; and 2o € @, increases to z;. Then

Tern(ZLj XA 227]@) = Z R;(Zl,j XA Zng)RB = Z 21,5 XA (Rzzszﬁ)
B B

= 21,5 ®A <Z REZQ,]CR/j) = 21,5 ®A (Tan,k)'

B

Now T,z increases to 71,2, and we are finished by Theorem 4.6.16. The other
equality is similar.

(4) This is Theorem 4.2.14.

(5) This is Proposition 4.8.11.

Corollary 4.3.16. The following relations also hold:
(1) iny1iP(2) = i yin(2) for all z € Q.
(2) iman(21 @4 2n) = 21 @4 in(22) and i), (21 @4 29) = 1%(21) @4 22 for all z; € Cj,?;l and
Zg € Qﬁ;

(3) 0,2\ T (2) = Tri112P(2) and i,_1TSP(2) = Tk 1in(2) for all z € C/Q\;t,

n

(4) (Thi1 0 -0 Tin)(21 ®a 20) = Trp(22)z1 for all z; € Q+ and zy € Q+ and a similar
statement holds with °®. In particular, Tty in(21®22) = Trp(21) Try(22) and Tr,y (1@
29) = TriP(2z1) TryP(29).

(5) Trpin((21®422) (23®424)) = Trp(21-23) Trp(22-24) for all 21, 23 € é,?,g and zy, 24 € @F
A similar statement holds for Tr)P
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Definition 4.3.17. The bimodule planar operad BIP is the operad of oriented, unshaded
planar tangles (up to planar isotopy) generated by

[~ [~ [~ _|I»
n 9 3/7 \E 9 I I I I &Ild
I I In In

for m,n > 0 up to planar isotopy. (We draw all disks as boxes, suppress external disks,
draw one thick string labelled n for n individual strings, and orient all strings upward unless
otherwise specified.) A topological characterization of BP tangles is given in Theorem 4.7.9.

A BP-algebra (of extended positive cones) V, is a sequence {V}, },>0 of extended positive
cones (defined in Section 4.8) and an action by multilinear maps

Z: BP — ML{V,}

(Z is the partition function) which is well-behaved under composition.
A BP-algebra is called:

e central if Vj = [Or, oog],
e normal if Z(7) is normal for all 7 € BP, and

e self-dual if V,, is self-dual for all n, and for all annular tangles 7 € BP, flipping it inside
out gives the adjoint map (see Definitions 4.8.8 and 4.8.10).

Theorem 4.3.18. Given an A — A bimodule H, the extended positive cones C/Q\;LL form a
central, normal, self-dual BP-algebra QF such that:

(1) idgn =idp, = |,

| [ —
(2) Thi1(z) = 2 3/ and T\0,(2) = ﬂ 2 for all z € Q)+,

(3) 1 ®az0= | 2 29 (defined in Section 4.6) for all z; € @L and zy € @ZF, and
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21 21
(4) Trp(z1 - 22) = | and TroP(z1 - z9) = | for all zy, 20 € Q.
29 )

Moreover, the following hold:

I I __
(5) in(z) = | 2 and iP(z) = || o | forall z€ Q} and
I I

(6) dim_4(H) = Ty(1) = 10 and dim,_(H) = TP(1) = @1.

Note that for Z to be well-defined, any closed diagram must count for a multiplicative factor
m Q(J)r = Z(A)Jr = [OR, OOR].
We call @} the canonical BP-algebra associated to H.

Proof. We will show (1)-(4) uniquely determine the action of any BP-tangle. We defer this
technical proof to Section 4.7 (Theorem 4.7.13), which uses the important relations given in

Theorem 4.3.15 and Corollary 4.3.16. Note that @} is central since Q = mr = [Og, ooR],
normal by Theorem 4.2.14 and Remark 4.8.7, and self-dual by Proposition 4.8.11. O]

Remark 4.3.19. Given some operad P of (shaded, unshaded, oriented, disoriented, etc.)
planar tangles, it is not always possible to define an (extended) positive cone planar algebra
over P. For example, the rotation does not always map positive elements to positive elements
in a subfactor planar algebra.

Graded algebra of central L?-vectors
In this subsection, we define a graded algebra P, of central L?-vectors.
Lemma 4.3.20. Suppose K is a Hilbert A — A bimodule. Then AANK C D(4K)ND(K4).

Proof. Suppose ¢ € AA\NK, ( # 0. Define p: A, — C by a — (a(, (). Note that ¢ is traicial
as

p(a*a) = (a*a(, () = (a"Ca, () = (a’(,(a") = (a"(,a"() = (aa”(, () = p(aa®).
Hence there is a A > 0 such that ¢ = Atr, by the uniqueness of the trace on a II-factor.
Now for all a € A,

lacllz = lICallz = ¢(a*a) = Atra(a”a) = Alall2,

and ( is left and right A-bounded. m
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Remark 4.3.21. In the sequel, we will confuse elements ( € P, and the operators L(({) =
R(¢): L*(A) — H™. We will omit R({) and only write L(().

Definition 4.3.22. We represent elements ( € P, by boxes with n strings emanating from
the top

Cor L) = _In
¢

By Lemma 4.3.20, the P,’s form a graded algebra P, in the sense of [GJS10] where the
graded multiplication is given by relative tensor product (over A) of central vectors. We
denote the product of (,, € P,, and ¢, € P, by

I~ _In

Cm ® <n - Cm Cn < Pm+"'

If z € @, and ¢ € P,, then z( € P,, which we denote as:

|
z
Cor L(z)= ]
¢
The reflections of these diagrams denote the functionals (-, () or adjoints L(()* = | ¢
|
¢
The inner product (-, -): P, x P — Cis given by (£, () = [ (see Lemma 4.3.23 (2)).
£

Compatibility
We now show how the BP-algebra C/Q} and the graded algebra P, are compatible.
Lemma 4.3.23. (1) If( € P, and £ € B", then 4((,&) = (€|() a.

(2) If €, § € P, a((,€) = (€10 a = (C, §)112(a) € Clpzay.
(8) For ¢ € P,, L(QOL({)* = R(Q)R(C)* € Q;r. We denote the common operator as:

|

€ Q.
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(4) If ¢ € P, and ||C||2 = 1, L(Q)L({)*|p, = p¢, the projection onto CC.
Proof. (1) Suppose aj,as € A. Then

(¢, )@, @) = (JR(O)*R(€)Jar, @) = (a3, R(C)*R(E)at) = (a5, alé)
= (Ca3, ai€) = (ai(, Eas) = (Car, Eas) = (L(Q)ar, L(€)a)
= ((€]C) adi, @)

(2) Since (,& € P,, for all a,b,ay,aq € A,

((€]¢)alaarb), az) = (Caarb,§as) = (Car, §aazb®)
= ((§]€)aa1, a”azb") = (a((€]¢)adr)b, az),

so (€|C)a € Z(A) = Cls. Now setting a = b = a1 = ay = 14 gives the result.
(3) For & € B™, by (1),
L(O)L(C)"E = ¢{Cl&)a = (Cl€) aC = a{&, Q)¢ = R(Q)R(¢)7E,
so the two are equal on H". We have C, > L(¢)L(¢)* = R(Q)R(¢)*
L(Q)L(C)" € @
(4) Trivial from (2) and (3).

Theorem 4.3.24. Suppose ( € P, and z € 6/2;{

(1) L(¢)*2L(C) = 2z(w¢)1r2(a)y = R(C)*2R(C). We denote this diagrammatically by

(2) In the notation of Theorem 4.2.14,
z2(we) = tra(L(¢)"zL(C)
(

= trao (R(()*2R
) M
¢ ¢ ¢
|
In diagrams, p = ¢ = ¢
L v v
I z z
¢ o U

N ]

99

€ C°. so

n ?
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Proof. (1) We show the first equality. If z € @, this is just (2) of Lemma 4.3.23 with
(1 = (= 2Y2¢. Now for z € Q:F, pick (2,,) C QF with 2, / z to get
L(C)*ZL(C) = nll_rgo L(C)*ZmL(C) = Trlzl—>H<1>o Zm(OJC)lLZ(A) = Z(W()le(A).

The second equality is similar.

(2) We show the second equality. We may assume z € @}, after which we may take sups
to get the full result. Then as z'/2¢ € P,, we have

Tro(z - L(C)L(¢)") = Tro(z"2L(C) L(¢)"2"/?) = Trn(L(2"*¢) L(z'/2¢)")
= tra(L(z"/2)* L(2"7%¢)) = tra(L(¢)*2L(C)).

The other equality is similar.

Remark 4.3.25. If a € Q,,, z € C/Q\,:f, and ¢ € P,,

¢ ag
| |
a*za| — (a*za)(we) = 2(wag) = z
| |
¢ ag

Corollary 4.3.26. If (; € P,,, (o € Py, z1 € Q) and z, € Q;}, then

m?’

€1 ® G G G2

| | |
@4zl = (21 ®a 22) (G ® (), (G ® (o)) = (21C1, 1) {220, () = | 29

| | |
C1® G G G2

—

For z1 € Q, and 2z € QF, taking sups gives

C1® G Gi G2
| | |

@4z = (2104 2)(Waee) = 21w )W) = | 24 Z

| | |
C1 ® G G G2
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Theorem 4.3.27 (P, acts on C/Q}) Given a tangle T € BP with 2n boundary points and a
¢ € P,, we have

= evy o 1 Vi x - x Vi — [0, oog].

N Y

In this sense, we say P, acts as weights on C/Q} By Theorems 4.5.15 and 4.3.24 and Corollary
4.8.20, we may remove closed subdiagrams and multiply by the appropriate scalar in [Og, oog].

Remark 4.3.28. If A C (B, trg) is an inclusion of II;-factors and H = L*(B), then one can
also define a shaded bimodule planar operad which works similarly to the above construction.
This will be explored in a future paper.

4.4 Extremality and rotations

For this section, A is a [[;-factor. Assume the notation of the last section.

Extremality

Definition 4.4.1. H is approximately extremal with constant A > 1 if on Q7,

AT < Trf? < ATy .
H is extremal if Tr; = Tr{® on Q7.
The following proposition is almost identical to Proposition 2.8 in [ILP9S].
Proposition 4.4.2 (Structure of @,,). Q, = a,, ® b,, b & ¢, such that

e a, is a direct sum of type I factors, and for each finite rank p € a,, pA C pCpp has
finite index.

o Tr, |a,e0, and TrP |, apor are semifinite,
o b? ® ¢, Nmy, = {0} = b, ®c, Nmper, and

o [f H™ is symmetric, then j, fixes a,,c¢, and j,(b,) = bP.
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Proof. By Lemma 4.2.19, let z,, 2,? € ), be the unique central projections corresponding
to A C C, and A°® C C¢P. Set

a, = anszn bn = Zn(l - ng)Qn
bP = (1 — 2,)2PQ,, = (1—2,)(1 = 2P)Qp,
and the rest follows immediately. O]

Proposition 4.4.3. Let Q1 = a; & by ® b & ¢y as in Proposition 4.4.2. The following are
equivalent:

(1) H is approximately extremal with constant A > 1, and
(2) by = b = {0} and there is a A > 1 such that on Qf Nay, A7' Try < Trf® < ATy .
A similar result holds for the extremal case.

Proof.

(1) = (2): Suppose H is approximately extremal. We show b; = {0}. As Try|q a6, 18
semifinite by Proposition 4.4.2, we choose z € by such that z > 0 and z € my,. Then
z € myyoe, but by Nmyer = {0}, Similarly bY* = {0}

(2) = (1) Trl |C10Q-1‘— = Tr(;p ‘ClﬂQi‘— = 00. D

Corollary 4.4.4. H is extremal if and only if for each Hilbert A — A bimodule K C H, the
left and right von Neumann dimensions agree.

Remark 4.4.5. If H has a two-sided basis {7}, then H is extremal as

Try = (-7,7) = Te{,

Y

Remark 4.4.6. If H is approximately extremal, then there is a A\ > 1 such that for all

VS é},
A ZZ(Wﬁ) < Zz(wa) < )\Zz(wg).
B a B

If H is extremal, then A = 1 works.

Theorem 4.4.7. (1) If H is (approzimately) extremal (with constant A > 1), then H™ is
(approximately) extremal for all n > 1 (with constant \").

(2) If H" is (approzimately) extremal for some n > 1, then H is (approximately) extremal.

Proof. We prove the extremal case, and the approximately extremal case is similar.
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(1) We use strong induction on n. Suppose H' and H" are extremal. If z € Q;f,,,

Trp(z) = | 2 = @ = CZ 3/ = G =Tr% (2).
" " n+1

n+1
Hence H™t! is extremal.

(2) Suppose H™ is extremal and z € Q. Then 2 ®4 --- ®4 z € Q;7. By the bimodule
planar calculus,

T [ ®a - ®a 2

- 2 QA Raz —

In equations:
Tri(2)" =Tr,(2 @4 Q4 2) =TrP(2 Q4 ®a2) = TrP(2)".
Taking n'® roots gives the desired result.
0

Proposition 4.4.8. If H is extremal and z € @\;t, then Y 5 R3zRg = . Ri2R, and
Yoo lizla =) 5 LzLg.
Proof. Immediate from Propositions 4.3.11 and 4.3.14. O

Rotations

Definition 4.4.9 (Inspired by [Bur03]). A Burns rotation is a map p: P, — P, such that
for all ( € P, and by,...,b, € B,

An opposite Burns rotation is defined similarly:

<pop(C)7bl K- & bn> = <Ca bn ® bl R R bn71>'
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Remark 4.4.10. Note that if such a p exists, it is unique, and p"” = idp,. In this case,
pop — pfl.

Theorem 4.4.11 (Essentially due to [Bur03]). If p = > 5 LgRj converges strongly on P,,
then p is a Burns rotation. Similarly, if p®® =) R.L}, converges strongly on P,, then p°®
18 an opposite Burns rotation.

Proof. We must show that p preserves P, and that p satisfies Equation (4.3). The latter
follows from:

(P(C) b1 ® @by =Y (¢ RLi(b1 @+ @ by))
— i@, (Blb1) aby @ -+ @ b, @ B)
— Zﬁj«mblm,@ ® - ®b, ® B)
— £<g<ﬁ|b1>;,b2 ®:-- b, ® )

B
= (b ®-- @b, @ B(BIb1)a)
B

Now p is independent of the choice of {8}. In particular, for any v € U(A), {uf} is an
H 4-basis, and

up(Q)u* = u (Z LBR};C> w =" LusRi¢ = plC) € P
B B

Diagrammatic representation of the Burns rotation

For this section, we assume the Burns rotation p exists on P, for all n > 0. Recall for all
k>0, p7" = (pP)".

Notation 4.4.12. For ¢ € P,,,, we denote p™(¢) = (p°)"*(() € Pp1n by moving m strings
around the bottom counterclockwise or by moving n strings around the bottom clockwise:

m |n |m n

¢ = p"(Q) = ()" (¢) = ¢
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Proposition 4.4.13. Ifn € P,, and £ € P,, then p"(n® &) =@ n:

[n_Im

Proof. Suppose a« € B™ and € B™. Then by (1) of Lemma 4.3.23,

(P"m@&),fea)=mneadpb)=(ana B) = €aln, a),6) = (@0, @ a).
[l

Definition 4.4.14. For 0 < j < m, define u;: P,, X P, = Py by p15(n,€) = p77 (07 (n) QE).
We represent p; diagrammatically as follows:

|n

gl

Ui

i (n, &) =

That this diagram is well-defined relies on the following proposition.

Proposition 4.4.15. The p;’s are associative, i.e., if o0 € P, n € Py, and £ € P,, and
1</, 5 <m, then
pi (s 115 (0, €)) = v (pi(,m), €).-

Proof. Suppose a € B, 3 € B™" 7, yv€ B",§ € B, and ¢ € B'. Then

(pi(ky i (0,6)), 0@ BRYRS®e) = (p~ Z(p (i () ®€)), 0@ BRYRIDE)
={'(®) e ( i) @E),e@a®BRYRE)
=(r~ ](p ®€),(p'(k)le)aa ® B ® 8)

<](77)®E 5®< "(B)le)ac @B @)

= (P’ (1,6 @ (p'(K)|e) a ® Ba(7.€))

= (n,{p'(x |E Aa®ﬁA<vé ® 0)

= (p'(r) @M e@a®Ba(v,£) ® )

= (P (P () @n),d@e@a®Ba(y,€))

=P (p'(r)®n) ®ETReRA®BEY)

=(p (P (T (P () @) ©E),avBRyRIDE)

=

pitj(pi(K, 1), €), 0@ BRYRI®e).
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Corollary 4.4.16. P, naturally forms an algebra over the operad generated by the unshaded,
oriented tangles

Jm |n 7 In

for m,n >0 up to planar isotopy.

The Burns rotation is also compatible with the BP-algebra C/Q}
Theorem 4.4.17.

(1) For all ( € Ppip and x € Qp, and y € Q,, p"((xr ®4 y)() =
(y ®ax)p"(C):

(2) If p is unitary, then for all ( € Py, and x € @, and y € C/Q\j[, (y ®a ) (wpn¢) =
(z ®ay)(we):

¢ ¢ ¢
| m | 2 In n [
Y T T |z Y11= 1Y T
|n m [ In n m

¢ ¢ ¢

Proof. (1) Forn € B™ and £ € B™,

(P"(r@2ay)0),n®&) =((r@ay)(,E@n) = (¢, (2" @ay")(E®n))
= (¢, (" @ (y™n)) = (p"(Q), (y"n) ® (z7E))
=((y@a2)p"((),n®E).

(2) Pick (z;) C Q) and (y;) C Q;F with z; / x and y;  y. Then by (1), for all 4,

1/2 1/2y n ne /2 1/2
(y; ®a ) (@pnc) = 155" @a 2)p"Cl13 = 10" (@ @4 4")O 13

1 ]
1/2 1/2
= (2, @4 y)*)CI2 = (i @a y5) (we).

We are finished by Theorem 4.6.13, since z; ®4y; /v ®ay and y; @4 x; 'y Qa4 .
]

Remark 4.4.18. When the operads for P, and C/Q} interact as in Theorem 4.3.27, we may

remove closed subdiagrams and multiply by the appropriate scalar in [Og, oog| by Corollary
4.4.16 and Theorem 4.4.17.
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Extremality implies the existence of the Burns rotation

We will show in the next lemma and theorem that (approximate) extremality implies the
existence of the Burns rotation. The intuition comes from the bimodule planar calculus. In
diagrams, for the extremal case, we have:

3
I
—
N
3

.

Although these diagrams are not yet well-defined, they tell us how to proceed. They become
well-defined after the Burns rotation exists by Theorems 4.3.24 and 4.4.17.

Lemma 4.4.19. Let p, be the projection in B(H™) with range P,.

(1) If H is approzimately extremal with constant X > 1, then

<anRBRan> < )\n—lpn and (anLaLan> < )\nflpn.

B

(2) If H is extremal, then on Py, Y5 ppnRRipn = pn = >, PaLaLypn.

Proof. (1) We prove the first inequality. Note that R5( € D(4H"™'), and R(R() =
R5R(C): L*(A) — H™'. Since H is (approximately) extremal, so is H"~' with con-
stant A"~ !, and

< (anRBR;pn> ¢, <> = IIR5Cl5 =D " tra (a(R5¢, RAC))
B p, B B
=Y T2, (RER(QR(Q) Rs) = T2 T 1 (R(QR(C))
B

<A Ty Tt (L(OL(C)) = A T (L(O) L))
= A"HICIE = (A" )¢ O

< (anRﬁREpn> ¢ C> = (¢, ()
B

for all ¢ € P,, and the result follows from polarization.

(2) As A =1, by (1),
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Theorem 4.4.20. Suppose H 1is approrimately extremal. Then p = Zﬁ LgRj5 converges
strongly on P,. Moreover if H is extremal, p is unitary. A similar result holds for p°® =

Yoo RaLy.

Proof. We begin as in the proof of Proposition 3.3.19 of [Bur03], but as we do not have Jones
projections, we use Lemma 4.4.19.
Suppose ¢ € P,, and enumerate {5} = {f;}ien. We will show

2
— 0 asr,s — oo.
2

Z Ls, R (¢

First note that the infinite matrix (ng Lg,) is a projection, so it is dominated by 1 = §;, ;.
Hence each corner (Lj Lg,);;_, is dominated by 1 =4

§ir and

INE

S

2 s
= > (L L) Ry By C) < D(REC RAQ).
2

i,J=r i=r

We need to show that the right hand side tends to zero, which is certainly true if the infinite
sum ;| R5C|3 converges. But this follows immediately from Lemma 4.4.19. Hence p

converges and ||p|| < VA"~ (where X is the approximate extremality constant). If A = 1,
then ||p|| <1 and p™ =idp,, so p is necessarily isometric and thus unitary. O

Symmetric bimodules and a converse of Theorem 4.4.20
We prove a converse of Theorem 4.4.20, with some additional structure on H.

Remark 4.4.21. For the rest of this section, we assume H is symmetric (see Remark 4.3.5).

Lemma 4.4.22. For alln,& € B", (n|§)a = a(Jn, JE).

Proof. Suppose ay,as € A. Then

(aln, JE)a@r, @) = (JR(Jn) R(JE)Ja, @) = (a3, R(Jn)*R(J§)ai) = (a3.Jn, a}JE)
= (J(naz), J(§ar)) = (€ar,naz) = ((nl§) adr, @z).

O

Definition 4.4.23. Using Lemma 4.4.22, we define an algebra structure on B" ® 4 B" as
follows: if ny,19,&1,& € B™, then

(1 ® &) (2 @ &) = m(J&|m2)a @ & = mal&y, Jn2) ® o

Proposition 4.4.24 ([Sau83, HO89]). The map B" ®4 B" — C,, by n ® J,& — L(n)L(§)*
gives a x-algebra isomorphism onto its image, and it extends to a C,, — C,, bimodule isomor-
phism 0,,: H** — L*(C,,Tr,,). The same result holds swapping °P.
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Proof. The map is well defined as it is A-middle linear:

04 ® Jo€ = Lna)L(€)* = L(n)aL(€)" = L(n)L(¢a")" and
0 ® auf = L(n)L(Ju(an€))" = L) L(a")"

The map clearly preserves the multiplicative structure and is isometric by construction. If
M,M2,&1,62 € B", then

(L(m)L(&)", L(n2) L(&2)") 2(Co 1) = Trn (L(€2) L(n2)" L () L(
= Try (L(&){n2lm)aL(&)"
= Try (L(&2(m2lm)a) L(&1)

= (&a(m2lm) a, &) mn

= (Jn&1, Jn(E2{m2|m) a)) Em

= (Ju&1, (mIm2) aJna) mn

= (1 @ Ju&1,m2 @ Jna) mon.

1)")

*

§
)
)

Hence it clearly extends to a C,, — C,, bilinear bimodule isomorphism. O

Corollary 4.4.25. C,,_;, C C,, C C,.x is standard (isomorphic to the basic construction)
for alln,k > 0.

Proof. By Remark 4.3.9 and Proposition 4.4.24,

JQn(Cn k ®A 1dn+k> J2n - J2n<1dn k ®AC +k)=]2n — YUn+k ®A 1dn k -
O

Lemma 4.4.26 ([Bur03], Theorem 3.3.13). Let N be a von Neumann subalgebra of a semifi-
nite von Neumann algebra M with n.f.s. trace Try;. Then
(1) N'OIA(M) = N g,

(2) (N' A L2(M)* = [N npy ]

, the closure of the span of the commutators in L*(M).
Remark 4.4.27. By Proposition 4.4.24 and Lemma 4.4.26, 6,, yields an isomorphsim

Py = A'OVH™ 2 A' 0 IA(C,, Tr,) = A gy, 2 = CP Ay,

= L2(Qna Tr,)
of @, — @, bimodules. A similar result holds swapping °P.

Theorem 4.4.28. If p exists on Ps,, then H™ is approximately extremal. If p is unitary,
then H™ 1is extremal.

Proof. The main step is to show the following lemma, whose proof is essentially the same as
in [Bur03].
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Lemma 4.4.29 (3.3.21.(ii) of [Bur03]). If p exists on Pa,, then for all x € C® Nuny,,,
pM(0,1(Z)) = 6, (jn(2)) € CP Nnyy,. In particular, CP N, = npee Ny, A similar
result holds swapping °P.

Using this lemma, Burns’ proof shows TP < ||p"|| Tr,, on Q. Suppose z € Q,.
Tr,(2*2z) = oo, we are finished. Otherwise, z € C2® N np,, = nper Ny, and

TrP(2"2) = T 0 (2"2) = Tra(ja(2)jn(2)) = <m’m>mmm>

= (0" G2, 021 Gul2)), = (0" (62 ), 0" (67" D),
= llo"(6," (2 >>||Pn < ||p e >upn - Hp || 12122 @0
= [lo" | Tra(="2).

Similarly Tr, < [[p"|> Tt on Q;, and H™ is approximately extremal. In particular, if
lpll = 1, H™ is extremal. O

Remark 4.4.30. Theorem 4.1.4 now follows immediately from Theorems 4.4.7, 4.4.20, and
4.4.28.

4.5 Examples

Centralizer algebras and central L’-vectors

Example 4.5.1 (Bifinite bimodules). In the case that H is a symmetric, bifinite A — A
bimodule, then the BP-algebra structure encodes the C*-tensor category whose objects are
the sub-bimodules of H™ for some n and whose morphisms are intertwiners.

Example 4.5.2. Suppose A9 = A C B = A; is an infinite index inclusion of II;-factors.
Then H = L?*(B) gives an A — A bimodule. In this case, letting A, be the n'" iterated
basic construction of A,,_; C A,,, we have

o H" >~ [2(A,,Tr,),
e C,,C° is the left,right action respectively of A,,, and
o Q, = AN Ay,.
Theorem 4.1.4 was proven for this case by [Bur03].
Example 4.5.3. Suppose A is a II;-factor, and o € Aut(A). Define H, = 4L*(A)y4) by

abe = c%(\c) for all a,b,c, e A. Suppose that o is outer and not periodic, and ¢” is outer
for all n € N. Then H? = H,» is extremal and P, = (0) for all n > 1.
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Example 4.5.4 (Group actions). Suppose G is a countable i.c.c. group, and 7: G — U(K)
is a unitary representation. We can define two bimodules:

(1) H = K ®c (*(G) where the left action is given by the diagonal action 7 ® A and the
right action is given by 1 ® p where A, p are the left right regular representation of G
on ¢*(G). Hence K ®c ?(G) gives an A — A bimodule where A = LG. Then we may
identify

H" = K" @c *(G)
where we write K™ = K® and the left action is the diagonal action 7™ ® A and
the right action is 1, ® p. It is clear that projections in @), correspond to LG — LG
invariant subspaces of H". Every G-invariant subspace of K" yields such a subspace,
but in general, they do not exhaust all possible subspaces.

(2) To fix this problem, we use an idea of Richard Burstein and add a copy of the hyperfinite
Il -factor R. Suppose a: G — Aut(R) is an outer action, so A = Rx,G is a I [-factor.
Set H =K ®c L*(R) ®c ¢*(G), and consider the left and right actions where

—

ri(k ® Ty ® 0g)rs = k @ 117ra04(13) @ J
g1 (k RXIF® (592)93 = (7Tgl k) X Qg (T) ® 5919293

for r,r; € Rand g,¢; € G for i = 1,2,3. Hence g € G acts on the left by 7, ® oy ® A,
and on the right by 1 ® 1 ® p,. Then similarly we may identify

H" = K" ®@¢ L*(R) ®c (*(G).

Theorem 4.5.5. For A = R X, G and H" as above, A — A invariant subspaces of H™
correspond to G-invariant subspaces of K.

Proof. First, if Ly C K™ is a G-invariant subspace, then Ly ® L*(A) is an A — A invariant
subspace of H™.
Now suppose L C H" is an A — A invariant subspace, and let p € (),, be the projection

onto L. Note that
/ /
pe <1K"®R) N (]_Kn®A0p)

= (B(K”) ® (R'N B(LQ(A)))) N (B(K”) ®A)
= B(K")® (R'NA) = B(K") ® 112(a).

Hence there is a ¢ € B(K™) such that p = ¢ ® 1;2(4). But since ¢ commutes with the left
G-action on H", we have ¢ € n(G)' N B(K™"). O

Corollary 4.5.6. A — A invariant vectors of H" correspond to G-invariant vectors of K™.
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Example 4.5.7 (Group-subgroup). Suppose Gy C G is an inclusion of countable i.c.c.
groups, and let K = (?(G1/Gy). As in Example 4.5.4, we consider two cases:

(1) AO = LGo, Al = LGl, and H = K ®(C KQ(Gl)
(2) AO =R X Go, Al =R X G17 and H = K@(C L2<R) ®€2(G1>

Note that in either case, H" = L*(A, ), where A, = J, A’ _,J, is the basic construction
of A,y C A,. As in the usual subfactor treatment, we can consider H" as an A; — A;
bimodule for 7,5 € {0,1}.

Theorem 4.5.8. Let G1 = Sw, the group of finite permutations of N, and let Gy = Stab(1)
be the permutations which fix 1. Let Ay = R X Gg and A1 = R x G1, and let H = K ®¢
L*(R) ® (?(Gy) as in (2) of Example 4.5.7. Then considering H" as an Ay — Ao or as an
Ay — Aq bimodule, we have that dim(Q,,) < oo for all n € N.

Proof. Since AN A; = Al , N Aj, for all i,5 > 0 by [EN9G], it suffices to show that

(]

dim (A} N Ag,p1) < oo for all n > 0. Also by [EN96],
All N A2n+1 = EndAl—A1 (LQ(AR-H)) = EndA1—A1 (Hn)

By Theorem 4.5.5, A; — Ay invariant subspaces of H" correspond to (Gi-invariant subspaces
of K™. The result now follows by [Lie72]. O

Corollary 4.5.9. The infinite index 11;-subfactor R x Gy C R x Gy for Gy = Stab(1) C
Soo = G has finite dimensional higher relative commutants.

Theorem 4.5.10. Suppose Gy C Gy and K are as in Example /.5.7 such that [G1: G| = 0o
and #Go\G1/Go = 2. Then

(1) the space of Gy-invariant vectors in K™ is one dimensional, and
(2) zero is the only Gi-invariant vector in K™.

Proof. Let {g;}i>0 be a set of coset representatives for G1 /Gy with gy = e. Since #Go\G1/Go =
2, for 4,7 > 1, there are h; ; € Gy such that h; ;6:Go = g;Go.

(1) Suppose
§= Z Y in(sgilGo - ® (59inGo € K"
i1 yeensin
is Gp-invariant. Then since 7y, £ = £ for all 7,7 > 1, we must have A; . ;, = 0 unless
i; = 0 for all j = 1,...,n. (Otherwise, there would be infinitely many coefficients
which would be nonzero and equal, a contradiction to £ € K™ =2 (*((G1/Gy)"™).) Hence
¢ € span{ig, @ -+ ® g, }-

(2) Since dg, ® -+ ® O, is not Gi-invariant, the result follows from (1).
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]

Corollary 4.5.11. Let Gy = Stab(1) C S, = Gy. Let A, = R x G; fori = 0,1, and let
K = 1*(G1/Gy).

(1) When we consider H = K @c L*(R) ®c (*(G1) as an Ay — Ay bimodule, P, = (0).
(2) When we consider H = L*(A;) = L*(R) ®c (*(G1) as an Ay — Ay bimodule,
H" = [*(A,) =2 K" ' ®c L*(R) ®c *(Gy),

and for all n > 0, P, is one-dimensional and spanned by

1@ @1e QL (A) =L (A,).
Ao

In joint work with Steven Deprez, we have shown an even stronger result:

Theorem 4.5.12. The algebras Q,, for the bimodules in (1) and (2) in Example 4.5.7 are
finite dimensional, and the dimensions grow super-factorially.

Corollary 4.5.13. The infinite index I1,-subfactor LGy C LGy where Gy = Stab(1l) C
Soo = G1 has finite dimensional higher relative commutants.

(Approximate) Extremality

Example 4.5.14. If 4H4 is a bifinite bimodule (e.g., as in Example 4.5.1), then dim(Q;) <
oo by [Jon83]. Since any two faithful traces on a finite dimensional von Neumann algebra
are comparable, H is approximately extremal.

In the case that H = L?(A;) and A = Ay where Ay C A is a finite index (not necessarily
extremal) I-subfactor, rotations for H" were constructed in [JP11].

Example 4.5.15. To get an example of an infinite index approximately extremal bimodule,
take any bifinite bimodule 4H4 and tensor it with ¢? over C.

In the subfactor setting, this is equivalent to looking at the infinite index subfactor
Ag®1 C Ay ® R where Ag C A, is finite index. To get an example which is approximately
extremal and not extremal, just take Ag C A; non-extremal (such examples with principal
graph A_ ~ are given in [Jon83)).

Example 4.5.16. The bimodules in Example 4.5.3 and Theorem 4.5.10 (2) are trivially
extremal, and the rotation is trivial.

We will now derive necessary and sufficient conditions for the (approximate) extremality
for the infinite index group-subgroup subfactor as in Example 4.5.7. For the rest of this
subsection, Suppose Gy C G is an inclusion of countable groups with [G: Ggy] = oo, and
a: Gy — Aut(R) is an outer action. Set Ag = R X, Gy C R x, Gy = Ay and H = L?*(A,),
and note that Ay C A; is an irreducible inclusion of I[;-factors, i.e., AjNA; = Cl1.
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Example 4.5.17 (Two-sided bases). As stated in Remark 4.4.5, any time H has a two-sided
basis, H is extremal. For example, if Gy = {e} is trivial, then H = L?(A;) = L*(R) @ (*(G1)

is extremal, since {/1\® 59’9 € Gl} is a two-sided basis.

In fact, an H4-basis is obtained from a set of left coset representatives for G1/Gy, and
an 4H-basis is obtained from a set of right coset representatives. Hence if G} has a set of
simultaneous left and right coset representatives, then H is extremal by Remark 4.4.5. For
example, if Gy = Stab(1) C S, = G, then such a set of representatives is given by the
transpositions {(1 n)|n € N}.

Proposition 4.5.18 (Similar to [ILP98|, Example 3.5). For g € Gy, let |Oy¢,| denote the
size of the orbit of gGo in the Go-set G1/Gqy. Then

(1) Q1 = 1>°(Go\G1/Gy), where we denote the minimal projection onto Cogyga, by py for
g < Gl-

(2) Tr1(py) = |Oyco| = [Go: Go N gGog '], and
(5) Since ji(pg) = pg-1,
TP (py) = 10416, = [Go: GoN g Gogl = [9Gog™": Go N gGog ™).
Theorem 4.5.19. Assume the notation of Proposition 4.5.18. Then exactly one of the
following occurs:
(1) |Oyco| = |Og-16,| for all g € Gy and H is extremal, or
(2) there is a g € Gy for which |Oyc,| # |Og-16,|, and H is not approzimately extremal.

Proof. If there is a g € G where exactly one of |Oyq,l, |Oy-1¢,| is finite, then H is not
approximately extremal. Hence we must only consider the case where for all ¢ € G, both
|Ogcol, |Og-16,| are finite or infinite. Recall that the commensurator

CommG1(G0) = {g € GlHOgGoy’ ‘09_100’ < OO}
is a subgroup of i1, and the map ¢: Commg, (Gy) — Qo by

|OgGo |

g
[Og-16|

is a homomorphism. Hence if there is a ¢ € Commg, (Go) with ¢(g) > 1, then for each
n € N, there is a k,, € N such that

|OQkG0| Trl(p kn)
n < (g =pgh) = T = —
Og-tncyl  Tr7"(pgen)

and H is not approximately extremal. O
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Corollary 4.5.20. (1) If H is approximately extremal, then H is extremal.
(2) If #Go\G1/Go = 2, then H is extremal.
(3) If there is a g € Gy such that gGog™' C Gy, then H is not approzimately extremal.

Remark 4.5.21. In [ILP98], Izumi, Longo, and Popa give an example of Gy C G; where
there is a g € Gy such that gGog™' C Gp (s0 |Oy-16,| = 1) and |Oy¢,| = co. Thus they give
an example of an irreducible infinite index subfactor which is not approximately extremal.

Finally, we leave the reader with an open question:

Question 4.5.22. [s there an irreducible infinite index I1,-subfactor which is approximately
extremal and not extremal?

4.6 Relative tensor products of extended positive
cones

Notation 4.6.1. For this section, let H4 be a right Hilbert A-module, 4 Kp be a Hilbert
A — B bimodule, and gL be a left Hilbert B-module where A, B are finite von Neumann
algebras. We write:

o X = (A®Y N B(H),

e /K when we ignore the right B-action,

Yy = A' N B(K),

Y = A'n(B®Y N B(K),

Z =B nB(L),

XYy ={r®1y|lr € X and y € Yp}", and
X®4Y®pZ={z@,y®pzlzc X, y€Y, and z € Z}".

The goal of this section is to define the operator x ® 4 y € (XgA\YO)Jr for z € X+ and

y € Y, such that certain properties, e.g., associativity, are satisfied.
The next three lemmata are straightforward, but we include some proofs for completeness
and for the convenience of the reader.

Lemma 4.6.2. Suppose x € M and (x;)ic; C M™ is a directed net, with x; < x for all
1 € I. The following are equivalent:

(1) x; — x strongly (if and only if o-strongly as ||zi||c < ||Z||eo for all i)
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(2) x; — x weakly (if and only if o-weakly as ||xi||co < ||Z]loo for alli)
(3) i S, ie, xi(we) N w(we) for all{ € H,
(4) vi(we) / x(we) for all € in a dense subspace D of H.

Proof. Clearly (1) = (2) = (3) = (4).

(3) = (1): Suppose (z — x;)(we) — 0 for all £ € H. Then |[\/r — x;{|| = 0, so /x —2; = 0
strongly. Hence x; — x strongly as multiplication is strongly continuous on bounded sets.
(4) = (3): Choose an orthonormal basis {e,, },>1 C D for H. Suppose §{ = > e, € H\{0},
and let € > 0. Then there is an N > 0 such that

2

e
Evi= ) den = I =D Il < ——5 s
o M2 16]]2:[12 [1€[13

n>N n>N
For n =1,..., N, there are 7,, € I such that ¢ > 7,, implies
€
(@ = 7)ha € < e = el lEll < gy
Now choose i’ > i,, for all n = 1,..., N. We calculate that for i > 7/,

(@ — ;) (we) = ((z — )&, §)

IN
==

[{(z = z) Anen, )] + [{(z = 2:)En, €))

<> o + (w6, 1+ i, ©)
n=1

N
£
<Y ot 4 2zllollén 2 lI€ ]
n=1

2n
€ €
<5 2l €l =&
2 Azl €l
As ¢ was arbitrary, we are finished. O

Lemma 4.6.3. If z,y € M™, and (2;)ier, (yj)jes C MT are directed nets of increasing
operators such that

o any two elements in {zx,y} U{z;|i € I} U{y;|j € J} commute and

oz, Swandy; Sy,

then z;y; / xy (and Lemma 4.6.2 applies).
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Lemma 4.6.4. Suppose x € X andy € Yy. Thenx @,y: H®4 K — H ®4 K given by the
unique extension of £ @ n — (x€) @ (yn) where & € D(H4) and n € D(4K) is well-defined
and bounded, and ||z @4 ylloo < ||Z|lcol|ylloo- Hence the x-algebra map x Ocy— @4y is a
binormal representation of X ®O¢ Yy on H @4 K.

Proof. (1) Fix &,...,& € D(Hya) and my,...,m € D(4K), and let & = (&,...,&) and

n=(n...,n). Since the matrices m = (a(yni,yn;))ij.n = ((§5,&)a)i; € Mi(A) are
positive (see Lemma 1.8 of [Bis97]), we have

Z(ﬂffz) @ (ym)|| = Z (&) @ (ymi), (x&5) @ (yn;))
= 2 (@& alyms ym), (26)) = {(@&)n, (€))
= [[(@&)n' |3 = lla(En'?)]3
< JlzllZllEn' 2115 = (212 Z(&Mym,ym),fﬂ
= 202> (& &) alym), (yny)) = (2 lm"*(ym)I13

ij=1

= ||z )2 ly(m' )15 < [z l2 lyll2lm'nll3
k

Zfz X N
i=1

2
= [lzll5 Iyl :
2

(2) That z — x® 41k is a normal representation of X follows from the density of D(H4)® 4
K and (4) of Lemma 4.6.2. Similar for y — 1y ®4 .
[l

Notation 4.6.5. Let B be the Borel g-algebra of subsets of [Og, cor]. For a spectral measure
E: B — P(H), we use the conventions E\ = E([0,]]), so Ex, = 1, and E* = E({o0}) (in
general, our spectral measures on B have non-trivial mass at o).

Lemma 4.6.6. Suppose E: B — P(X) C B(H) is a spectral measure. Suppose f: [0, 00] —
[0,00) is a bounded Borel-measurable function, and (p,) is a sequence of positive simple
functions increasing pointwise to f. Then

| iam = [ onyam,
0 n 0

s well-defined.
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Proof. Suppose £ € H. Then as we is normal, we o ' is a Borel measure, and

| syt =sup [ o3 de(Bs)

is independent of the choice of positive simple functions ¢,, increasing to f. m
Proposition 4.6.7. Suppose

E:B— P(X)C B(Ha) and

F:B — P(Yy) C B(4K)
are spectral measures.

(1) The map E®4 F: BB — P(X ®4Y)) by

(Il,]g) — d(E)\ XA F'u) = E(Il> XA F(Ig)
11><12

extends uniquely to a spectral measure by countable additivity.

(2) If p,7: [0,00] — [0,00) are positive simple functions, then
[ et e = ([ emam) ea ([ v0dr) e xou.

(3) If f,g are bounded, B-measurable functions and (@), (¥,) are sequences of positive
simple functions increasing to f, g, then

swp [ [ enon s oa )= ([T rovas) oa ([ awan,) e x oati

m,n

Proof. (1) One simply needs to check countable additivity (pointwise on H ®4 K), which
follows from countably additivity on products of intervals, which is straightforward.

(2) Obvious.

(3) Immediate from (2) together with Lemmas 4.6.3 and 4.6.6.
O]

Lemma 4.6.8. The relative tensor product of spectral measures as in Proposition 4.6.7 is
associative, i.e., if

E:B— P(X) C B(Hy),
F:B— P(Y) C B(uKp), and
G: B — P(Z) C B(sL)
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are spectral measures on B, then (EQ4F)®QpG = EQA(FRpG). Moreover, if f,g,h: [0, 00] —
[0, 00) are bounded B-measurable functions, and (p.m,), (¥n), (7&) are positive simple functions
increasing to f, g, h respectively, then

sup /000 /Ooo /OOO G N Yn (1) 7e(V) d(Ex @4 F, @5 G,) =

. - (/ooo fN) dEA> ®4 </o 9(w) dFu) ®5 (/000 ") dG”) ShEaress

Proof. Immediate from associativity of the relative tensor product and Proposition 4.6.7. [

Definition 4.6.9. Suppose x € X+ and Yy € }//01 have spectral resolutions
x—/ ANdEy + coE™ andy—/ wdk, + ocoF™
[0,00) [0,00)
(recall Notation 4.6.5). Then
E:B— P(X)C B(H,) and
F:B— P(Yy) C B(4K)

are two spectral measures as in Proposition 4.6.7. For m,n € N, set
xm:/ ANAEy + mE™ andyn:/ pdF, +nkF>.
[0,m] [0,n]

Applying Lemma 4.2.23 to the directed set

F = {2 ®4yalm,n € N} C (X ®4Yp)",
we get a positive, self-adjoint operator affiliated to X ® 4 Yy and densely-defined in an affiliated
subspace of X ®4 Yy. We denote this operator as x ® 4 y.

Remark 4.6.10. Assume the notation of Definition 4.6.9. When we work with x ®,4 v, it
helps to consider the following 3 projections:

po=(Ey®alg)V (g ®@ Fy),
P = ((1—E0) ®AFOO> + <EOO®A (1 —Fo)) —|—EOO®AFOO’ and

pr= sup Ehx®uF,=(1—E%)®4(1—-F>),

A, <00
which we should think of as having the following “supports” given by the shaded areas in
[Or, cor]? below:

Do y Poo =

o< = <Y
<
~
I
o< = <Y

I
o< T <Y

0< N <x© 0< N <0 0< N <



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 120

e These three projections commute with x ® 4 y.

e Dom((z ®49)"?) C (1 — poo)(H @4 K), and (2 @4 9)(1 — pso) is densely defined on
(1 — poo)(H ®4 K).

o (T®aY)ps = SUP,, peoo f[O,m] f[o,n] AMd(Ey®4 F)).
* (r®ay)po=0.

Lemma 4.6.11. Let 2 € X+ and Yy e 3//0:, and assume the notation of Definition 4.6.9 and
Remark 4.6.10. Suppose ' € X+, y' € Y,© with 2’ < x and y <y. Then

(1) (2" ®ay)po = po(2' ®ay') =0,
(2) for all§ € H®a K, (1 @4 y)(we) = (2 @4 Y)(Wi—py)e), and
(3) R4y <xR4vy.

Proof. (1) Suppose n € D((EgH)a) and k € D(4K) (recall Ey € X and F> € Yj). Then
since 2/ < x, we must have

||($,)1/277”12L1 = (z'n,m) = 2'(wy) < z(wy) = 2(WEe) = TEo(wy) = 0.
But this implies 'n = 0. Hence we have
(@' @4y )(n® k) =0.

Similarly, for all n € D(H,) and k € D(A(FyK)), (' ®4Y')(n ® k) = 0. By density of
D(Hy) ®4 D(4K), we have (2" ®4%')po = 0. Taking adjoints gives po(2' ®4 ') = 0.

(2) By (1), for all m,n > 0, po(m @4 y) = (2 @4 ya)po = 0, 50

(@ 9. )(e) = SUD(@m 91 9n) ()

= sup ((zm @4 Yn)(Wa—po)e) + ((Tm @4 Yn)Po&, Po§)

m,n

(@ @1 )P0 ) + (e 4 yn>s,pof>)

= SUP(Tm @4 Yn)(Wi—pe)e) = (T @4 Y)(Wa—po)e)-

m,n

(3) By (2), it suffices to show that for all £ € Dom((z ®4 y)'/?) with & = py¢,

(w(x’ ©a y’)pf) () = (' ©a 9/)we) < (2 ®4 9)(we) = (pf(w ©a y)pf) (o)
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Fix such a &, and let € > 0. As E\ ®4 F),, — py strongly as A, u — oo from below,
there is an N > 0 such that for all A\, u > N,

(Pf(w' ®ay )ps — (Ext’'Ex ®4 Fuy/Fu)) (we) < e.

Since ' < x and vy’ <y, we have Eny2'Ey < xEy, Fyy' Fn < yFy by Lemma 4.2.21,
s0 Ent' ENQaFny' Fny < 2ENn®ayFy as all these operators mutually commute. Hence

<pf(x’ ® y’)m) (we) = (po(xm ®a Yn)Po — (Ent'Ex @4 FNy’FN)) (we)
+ (En2'En ®4 FNy,FN)(C%)
<e+ (BN @ayFn)(we) <€+ (2 @ay)(we).

Since £ was arbitrary, the result follows.
O

Lemma 4.6.12. Suppose (7)je; C X+ increases to v € X 7. Suppose p,q € P(X) are
spectral projections of x such that p+q = 1. Then (¥’p€,q§) — 0 for all § € Dom(z'/?).

Proof. For k = 0,1,2,3, p¢ +i*¢¢ € Dom(x'/?) C Dom((x;)l/z) for all j € J. Since
increases to x, by polarization
1g 1
?611}<(37;)1/2pf, () q€) = Lim 7 D i (Wpeinge) = 1 > i (wpeivge)
k=0 k=0

= (z'p€, 2'?q€) = 0

as p, ¢ commute with z'/2. O

Theorem 4.6.13. Let © € X+ and y € Y;", and assume the notation of Definition 4.6.9
and Remark 4.6.10. Suppose there are sequences (x!)) C X+, (y) C Y," which increase to
x,y respectively. Then x, @4y, increases to T Q4 y.

Proof.

Case 1: Suppose ¢ ¢ Dom((z ®4 y)"/?) and M > 0. Since sup,, ,, Tm ®4 Yo = T @4 Y, there
is an Ny € N such that for all m,n > Ny, (2, ®4 yn)(we) > M. Since po€ # £ by Lemma
4.6.11, we must have

(1H ®A (1K - FO))& 7é 0 and ((1[{ - Eo) ®A 1[{)5 7& 0.

Claim: There is an Ny > Ny such that (2], ® 1) # 0 # (1 ®4 y,,)E for all m,n > Nj.
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Proof. We prove the second non-equality. Suppose not. Then for each n > 0, there is an
k > n such that (1 ®4 y,.)¢ = 0. But then

(1r ®a ) (we) < (1a ©a y)(we) = 0,

so (1p®ay,)¢ =0foralln € N. Since (1g®4(1—Fp))€ # 0, and D(Ha)@4D(4((1—Fy)K))
is dense in H ®4 ((1x — Fo)K), there is an n € D(Ha) such that Ly¢ € ((1x — Fo)K) \ {0}
and LnL;‘] < 1y ®4 1g. Now since y/, increases to y, and y(szg) > 0, there is an N’ > 0
such that for all n > N’,

0 <yp(wrze) = (LyynLy)(we) = (LnL?,(lﬂ ®4 y;)) (we) < (L ®a yp)(we) =0,

a contradiction. O

Choose N; as in the claim, and suppose n > N;. Let {a;} C D(4K) be an 4 K-basis,
and let n = (1g ®4 (yn,)/?)€ # 0, and note (vy, ®4 1x)(w,) > M. Then

M < (.77]\71 &® 1[()(0077) = ( TN, @4 1K (Z Ral )) ) = Z(Rai<xN1)RZi)(wﬁ)7

i

so there is an Ny > 0 such that

Now as z, increases to z, there is an N3 > N; such that m > N3 implies

No

M < ix;n(wgm) = Z(RmmmRz (wy) < Z Ra, 2, Ry, ) (wy)

=1

— ( Xa 1K (Z RalR* )) ) (a:;n®yN1)(w§).

Repeating the above argument for y/, yields an N; such that m,n > Ny implies M <
(@}, @4 Yp) (we)-
Case 2: Suppose & € Dom((z ®4y)'/?). Then & = (1 — po)§. We want to show

Sup(,, @4 ) (W) = (¥ @4 y)(we) = sup(@n @4 yn)(we),
so by Lemma 4.6.11, we may assume £ = (1 — pg)&, and thus £ = ps&. Let € > 0. Since

pr(r @ay)py = sup rE\ ®4yF,,
<00
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there is an Ny € N such that for all A\, u > N,

=~ M

(w0 - @B 8avE) )@ <

By Lemma 4.6.11, ), @4y, < x ®4 y for all m,n, so using Lemma 4.2.21, we have

(@:n ©41L) — (Enott Exy) @1 (FNoy;FNO>]) < (<x ©1y) — (tEx, O yFNO>) and

ENoxlmENo ®a FNO'!/:LFNO < xENO XA yFNo

by multiplying on either side by 1y ,x — (En, ®4 Fi,) and En, ® 4 Fi, respectively. Now
since x] .y, increase to x,y respectively, by Lemma 4.2.21, En,x.. En,, Fn,y, Fn, increases
to xEn,, yFn, respectively. Thus En,z) En, ®4 Fn,y, Fn, increases to xFEy, @4 yF, by
Lemma 4.6.3, and there is an N; > N, such that for all m,n > Ny,

NS

((SL’ENO ®ayFn,) — (Engy, Eng ®2 FNoyZFNo)> (we) <

By Lemma 4.6.12, there is an Ny > N; such that for all m,n > N,

’<($;n ® y;)(lH(@AK - ENO ®a FNo)é? (ENO ®a FN0)€>‘ <

1 ™

Now we calculate that for all m,n > Ny,

(T @Ay — 27, @yp)(we) = (1 = Eny ®a FNp ) (@ @4y — 77, @ Yy, )(1 = En, @4 Fg ) (we)
+ (laar — Eng @4 Fno) (@ @4y — 20, @ yp ) (En, @4 Fi,) (we)
+ (En, @4 Fng)(x @4y — 23, @ yp) Lieax — Eny @4 Fi,)(we)
+ (Eny ®a FNo ) (@ @4y — 27, @ Yy, ) (ENy @4 Fiv, ) (we)

< <(x ®ay) — (vEN, ®a yFNo)> (we)

(Mrgax — Eng @4 Fny ) (@), @4 9,)(En, @4 F,)(we)]
(En, @4 Fny) (@, ®@ay,)(1 = En, @4 Fy,)(we)|

!/ !
0 - m n
(xEN, ®a yFN,) — (Eng T ENy @4 gy FN0)>(W5)

O

Corollary 4.6.14. If z € )/(I, y € 17\*, and z € ij, then (z ®4y) ®pz =12 ®4 (y p 2).
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Proof. Take sequences (z,,) C X, (y,) C YT, and (2,) C Z* which increase to z,y, z
respectively. Then

(x®aY) Rp 2= Sup (Tym, @4 Yn) @p 2 = SUP Ty, Q4 (Yn Op 20) =T R4 (Y @p 2).

m,n,l m,n,l

]

Corollary 4.6.15. Ifz,w € XT, y € 3701, and X € [0,00], then (A +w) @4y = Nz R4
y)+ (w®ay).

Proof. Choose Xt 3 z,,,w, / z,w € X+ respectively and }701 Sy Sy € 1//0:. Then
(A, + wy) @4 ye = Mxm @4 ye) + (W, @4 ye), and the result follows by Remark 4.2.22 and
Theorem 4.6.13. ]

By taking sups appropriately, and with a little more care, Lemma 4.6.11 and Theorem
4.6.13 can be generalized to prove:

Theorem 4.6.16. Let z € X+ and y € Y,". Suppose there are nets (x;)icr C X+, (yj)jes C
Yy" which increase to x,y respectively. Then x; @4 y; /T ®a y.

4.7 The action of BP is well-defined

In this section, we show the action of BP is well-defined in Theorem 4.3.18. We do so in
two steps. First, we define a sub-operad BIP; C BIP, define the action of BP; on the extended
positive cones @, and show the action is well-defined. We show that each connected tangle
(see Definition 4.7.1) has a unique standard form (see Algorithm 4.7.4) that behaves well
under composition, analogous to the methods of [Penl2a]. Second, we extend the action
to BIP and show it is well-defined by considering the possibilities that occur when inserting
connected BP;-tangles into the quadratic pairing tangle 7, or 72 (see Definition 4.7.7).

The operad BP,;

Definition 4.7.1. We will define BIP;, an operad of unshaded, oriented tangles up to planar
isotopy. First, we require for tangles 7 € BP;:

(1) 7 has an external disk Dy and internal disks Dy, ..., D, each with an even number
2k; of market boundary points and a distinguished interval marked x. The boundary
points of D; are numbered 1,...,2k; clockwise from *, and and we use the convention
that for 1 < n < 2k;, the —n'" boundary point is the point numbered 2k; — n + 1.

(2) Each boundary point of T is connected to exactly one oriented string. Each oriented
string is either a closed loop, or it is attached to two distinct boundary points.
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(3) For i = 1,...,s, reading counter-clockwise from *, the strings attached to the first
k; boundary points of D; are oriented away from D;, and the second k; strings are
oriented toward D;,

(4) Reading counter-clockwise from *, the strings attached to the first ky boundary points
of Dy are oriented toward Dy, and the second kq strings are oriented away from Dy,

When we draw such a tangle, we draw all disks D; (0 < i < s) as rectangles with k; strings

connected to the top and bottom, we suppress the external disk, we draw one thick string

labelled n for n individual strings, and we orient all strings upward unless otherwise specified.
A tangle with disks {D;};_, and strings {S;}}_, satisfying (1)-(4) is called:

e connected if {D;};_ U {S;}!_; is connected in R?, and

e internally connected if 7" has no external boundary points and {D;};_; U {S;}i_, is
connected in R

Let BPP; be the operad generated by the following tangles:

Temperley-Lieb: For n > 0, the “Temperley-Lieb” tangle 1,, with no inputs and 2n boundary
points:

Note that 1 is the empty tangle.

Partial trace: For n > 0, the tangles t,41,,"; with 2n + 2 internal boundary points and 2n
external boundary points and only one right, left cap respectively:

| |
b1 = 3/ and 1,7, = E 5
B B

Tensoring: For m,n > 0, the tangles ®,,, with internal disks D;, Dy with 2m, 2n internal
boundary points and 2(m + n) external boundary points as follows:

®m,n =

Theorem 4.7.2. The following relations hold in BPy for m,n >0 (compare with (1)-(3) in
Theorem 4.3.15):

(1) tmt?fi—l - t?r?tm—f—l;

(2) ®f,m+n(_a ®m,n(_7 _)) = ®z+m,n(®e7m(—, —), —), and
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(3) tm-&-n(@m,n(_a —-)) = Omm-1(—,ta(=)) and t?r?+n(®m,n(_7 —-)) = ®m—1,n(t?£(_)7 -).
Proof. Clear by drawing pictures. O

Theorem 4.7.3. Suppose T is an unshaded, oriented tangle which satisfies requirements
(1)-(4) in Definition 4.7.1. Then

e (BPO) If boundary points m and n of Dy are connected by a string, then m = —n
(recall the convention —n = 2k; —n+ 1 from (1) of Definition 4.7.1).

The tangle T is in BPy if and only if the following conditions are satisfied:
e (BP1) No string may connect the input disks D; and D; for i # j.

e (BP2) If the string S connects the n' boundary point of D; to the m™ boundary point of
Dy, then there is a string S’ connecting the —n'™ boundary point of D; to the the —m!

boundary point of Dy, and any other string connected to D; must only be connected to
D; or D,.

If (BP1) and (BP2) hold, then the following condition also holds:

e (BP3) If the string S connects boundary points m and n of D;, then m = —n. Such
a string is called an i-cap of T. We call the i-cap a left i-cap if when we connect
boundary points n and —n by an imaginary string S’ inside D;, the loop SUS" contains
the distinguished interval of D;. The i-cap is a right i-cap otherwise.

Proof. (BP0) follows from (1)-(4) in Definition 4.7.1 by a simple counting argument. Sim-
ilarly, (BP3) follows from (BP0)-(BP2). Clearly tangles in BP; satisfy (BP1) and (BP2),
since these properties are preserved under composition of the tangles which generate BIP;.

Now suppose T satisfies (BP0)-(BP3). If 7 is internally connected, then either 7 is a
closed loop, or T has only one input disk D;, and we may write 7 uniquely as

T - tcl)p cet t;pt[_i_ltg_i_g cee tg+r (44)

where ¢ is the number of left caps and 7 is the number of right caps of Dy of 7. Hence, we
may reduce to the case that 7 is connected. Now Algorithm 4.7.4 expresses the connected
tangle 7 in a standard form as a composite of generators of BP;. O]

Algorithm 4.7.4 (Standard form of connected BPP;-tangles). Suppose T satisfies (1)-(4) of
Definition 4.7.1 and (BP1)-(BP3) in Theorem 4.7.3, and suppose 7T is connected. Then we
can use ®,,, to “parenthesize” the D;’s (i > 0) and groups of through strings 1, from right
to left. Before we give the algorithm we give an example:

mi1 p Mo

Z1I I'f'2

_ op op
I = Omy,t+mo (tm1+1 e tm1+g17 ®b,m2(1b7 tmz-l-l o 'tm2+7’2>>‘

The following algorithm expresses T in a standard form as a composite of generators of BP;:
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(0) If 7 is the empty tangle, break.

(1) Start at * on the external boundary. Going clockwise along Dy, denote the strings
oriented toward Dy by Sy,..., Sk, (note kg > 0). Set:

e a = ko (a is the number of strings 51, ..., Sk, remaining to be examined) and

e n =0 (5,41 is the string we are currently examining).
Record a place holder ? to be replaced.

(2) If S,41 connects Dy to Dy, find b maximal such that S,y1,. .., Spye all connect Dy to
Dy. Set a =a —b.

(2a) If a = 0, replace the last ? with 1, and break.

(2b) If @ > 0 and b > 0, replace the last 7 with ®;4(1p,?), where ? will be replaced
later, and set n = n + b.

(3) Now a > 0, and S,,11 is the first string connecting Dy to some input disk D;. Find m;
maximal such that S,y1,...,Sy4m, connect Dy to D;. Set a = a — m;, let ¢; be the
number of left caps of D;, and let r; be the number of right caps of D,.

(3b) If a = 0, replace the last ? with #;7 -+ -7 )t 46,41 tmireir; and break.

(3a) Ifa > 0, replace the last ? with @, o (toy 41ty o tmittit1 -+ - bmirtitrs, 1), Where
? will be replaced later, set n = n + m;, and go to (2).

Definition 4.7.5 (Action of tangles in BP;). We may now describe the action of a tangle
T € BP on a tuple

S
(21,...,25) € HQX
i=1

If 7 is connected, we put 7 in the standard form afforded by Algorithm 4.7.4, label the
inputs with the z;’s, and replace 1,, with idg, ; t,,, 2P with T}, T)P; and ®,,, with ®4.

If 7 is not connected, then there are internally connected subtangles which are either
closed loops, or which can be uniquely written as in Equation (4.4). These subtangles will

act as scalars in Qf = Z(A)* = [Og,o0g], and the order of scalar multiplication does not
matter, so it suffices to define the scalar given by a single internally connected subtangle.
First, closed loops count for a multiplicative factor:

dim_4(H) = T1(1) = 1@ and dim,_(H) = T(1) = @1.

Suppose S is a closed, internally connected subtangle of 7 with only one input disk. Then
we may write S uniquely as in Equation (4.4), label the tangle by z;, and replace t,, t% with
T, TP,
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Theorem 4.7.6. Definition 4.7.5 gives a well-defined action of BP;.

Proof. The methods of [Penl2a] show that the standard forms of connected and internally
connected tangles given in Algorithm 4.7.4 and Equation (4.4) and the maps given in Sub-
section 4.3 behave the same under composition by Theorems 4.3.15 and 4.7.2. We briefly
sketch such an argument.

We need only consider the composites R oS and S o; T where R, S, T € BP; such that
R is internally connected with 1 input disk and S, T are connected. That the action is well-
defined follows from using the relations in Theorems 4.3.15 and 4.7.2 and (4) in Corollary
4.3.16 to get the standard form of the composite from the composite of the standard forms
(push all ®,, ., ®4 as far to the left as possible, and push all left caps t°P, TP to the left of
the right caps ¢, T'). Once again, since internally connected tangles act as scalars in [Og, oog],
the order in which we remove them and multiply by the scalar does not matter. O]

The operad BP

We now include the pairing tangles to get the operad BIP and show its action is well-
defined.

Definition 4.7.7. Let BP be the operad generated by BP; and the following tangles:

Pairing: For n > 1, the tangles 7,,, 7°P with two input disks, each with 2n internal boundary
points, and no external boundary points such that boundary point m of input disk D, is

connected to boundary point 2n — m + 1 of input disk D, for each m = 1,...,2n as follows:

Tn = | and 7P = |

There are similar notions of connectivity and internal connectivity for tangles 7 € BP.

Remark 4.7.8. 7,(7T1(—), Ta(—)) = 7.(T2(—), T1(—)) and similarly for 7P for all 77,75 € BP
up to reindexing internal disks.

Theorem 4.7.9. Suppose T is an unshaded, oriented, internally connected tangle which
satisfies (1)-(4) in Definition 4.7.1. Then T € BP if and only if conditions (BP0), (BP2),
and (BP3) from Theorem 4.7.3 are satisfied (we now exclude (BP1)) along with the following
conditions:

e (BPj4) If the string S connects boundary point m of D; to boundary point n of D; where
1 <1<y <s, then

1) no string of D; or D; connects to Dy, and
9 J



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 129

(11) there is another string S’ connecting boundary points —m of D; and —n of D;.

We call SUS" an i, j-cap of T. In this case, if we connect boundary points m and —m
of D; and boundary points n and 2k; —n + 1 of D; by imaginary strings S;, S; inside
D;, D; respectively, then the loop SUS"US; US; either

1) contains the x’d intervals of D; and D, and the i, j-cap is a left i, j-cap, or
J R

(ii) does not contain the x’d intervals, and the i, j-cap is a right i, j-cap.

e (BP5) The i, j-caps of T are either all right or all left caps, and they form concentric
circles.

Proof. Once again, it is clear that any tangle in BIP satisfies the desired properties, since
these properties are preserved under composition of tangles (the total number of i, j-caps
can only decrease under composition of connected and internally connected tangles), and
the generating tangles satisfy these properties. The other direction follows from Algorithm
4.7.11, which shows how to ‘comb’ the tangle into a unique standard form. O

Example 4.7.10. The tangle on the left is in BP (see Algorithm 4.7.11), but the tangle on
the right is not:

Algorithm 4.7.11. Suppose T is an internally connected tangle which satisfies (1)-(4) of
Definition 4.7.1 and (BP0),(BP2),(BP3) in Theorem 4.7.3 and (BP4),(BP5) in Theorem
4.7.9. Suppose further that 7 has at least two input disks, so there is an 7, j-cap. Let C] be
the outermost 7, j-cap of 7. Then there is a unique smallest n € N and two unique connected
tangles 71,75 € BP; up to swapping such that:

Right: if Cy is a right 4, j-cap, T = 7,,(T1(—), T2(—)), and

Left: if Cy is a left i, j-cap, T = 7*(T1(—), T2(—)).

We give an algorithm for the right-cap case, and the left-cap case is similar. We will build 77
and 7T, by partitioning the internal disks of 7 into two sets U and L, standing for “upper”
and “lower.” All 7, j-caps of 7 will be between a D; € U and a D; € L. We form 7; by

putting a box around the D; € U together with all “contractible” i-caps, and we form 75 by
doing the same to the D; € L.
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Before we describe the algorithm, we give an example:

(1) Start at the % on the external boundary. Set U = L = (). Let ¢ be the number of
1, j-caps of T.

(2) If ¢ =0, then go to (4).
(3) Find the next outermost 7, j-cap C' in T, where ¢ < j. Set ¢ = ¢ — 1.

(3a) If U =L =0, then set U = {D;} and L = {D;}.

(3b) If D; or Dj is not in U U L (note that at least one of D;, D; is in U U L), put the
missing one where the other one is not, e.g., if D; ¢ U U L and D; € L, then set
U =UU{D;}. (There are 4 cases here.)

(3c) Isotope the tangle so that

e all disks in U and L appear on the same horizontal levels, with L below U,

e any string connecting a disk D, € U to a disk D, € L travels upward from
Dy to D,, with no critical points, or travels in a large arc from D, to D, with
only two critical points,

e all k-caps which enclose the i, j-cap C are large arcs with only two critical
points,

e all k-caps for Dy € U U L which do not enclose an a, b-cap are close to Dj.

(3d) Go to (2).

(4) Put boxes around the disks and caps in U, L as desired. We have 7,(71(—), T2(—)) for
some n € N and some connected tangles 71,75 € BP;.

Note that the n is determined by the ¢, j-caps and the k-caps which enclose an 7, j-cap, and
this n is minimal when all other /-caps are contracted so they are close to D,. Moreover, the
only choice we made was the initial choice U = {D;} and L = {D;} with i < j, but if we
swapped U and L, we would have ended up with 7,,(72(—), 71(—)). Hence 71,75 are unique
up to swapping.
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Definition 4.7.12 (Action of tangles in BPP). We extend the action of BP; to an action
of BP. Note that it suffices to define the action of an internally connected tangle with at
least 2 input disks (so there is necessarily an i, j-cap), and any such tangle can be written
uniquely as 7,,(71,72) (or 72P) with n minimal and 77,75 € BP; unique up to swapping by
Algorithm 4.7.11. Simply use the action prescribed by Definition 4.7.5 for 77 and 73, and

then the action of 7, 7°P is given by replacing it with Tr,,, Tr)P.

Theorem 4.7.13. Definition 4.7.12 gives a well-defined action of BP.

Proof. We show that for any connected S1,S8; € BP; and m € N, that the action of the
composite tangle 7,,(S1, Sz) is the same as the composite of the actions of 7, and the actions
of the tangles S;,S; € BPy. A similar result holds for 7P.

First, note that (4) and (5) of Corollary 4.3.16 allow us to reduce to the case where
Tm(S1,S2) is internally connected. If 7,,(S;,Ss2) is internally connected, then Algorithm
4.7.11 gives a standard form 7,,(71, 72) = Tm(S1, S2) where n € N is minimal and 77, 75 € BP;
are unique connected tangles up to swapping. If m > n, then setting b = m — n, we must
have (up to swapping) that Ty = t,41 - tp46(S1) and So = ®,,4(72, 1). A similar statement
holds for 7P using t°P’s and ®g,,,(1p, —).

Now the result follows from (5) in Theorem 4.3.15 (which is also Proposition 4.8.11). O

4.8 Extended positive cones

For the bimodule planar calculus, we need to make multiplication by ocor rigorous. We
do so by generalizing the notion of an extended positive cone.

Definition 4.8.1. An extended positive cone is a set V' together with a partial order <, an
addition +: V x V' — V| and a scalar multiplication -: [Og,cog] X V' — V such that

Additivity axioms:

e (Zero) There is a Oy € V such that Oy +v=v+0y =v forallv e V.
e (Infinity) There is an ooy € V '\ {0} such that v+ coy = ooy +v = ooy for all v € V.

o (Associativity) vy + (v2 + v3) = (v1 + vq) + v3 for all vy, ve,v5 € V.
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(Commutativity) vy + vy = vg + vy for all vy, vy € V.

Multiplicative axioms:

(Unit) 1gp = v for all v € V.
(Associativity) (Au)v = A(pw) for all A, u € [Og, cog] and v € V.
(Zero) Ogv = Oy for all v € V.

(Infinity) Aooy = ooy for all A > Og.

Distributivity:

(Scalars distribute) A(vy 4+ v3) = Avg + Ay for all A € [Og, oog] and vy, v € V.

(V distributes) (A1 + A2)v = A\jv + Ao for all Ay, Ag € [Og, 00g] and v € V.

Partial order axioms:

(Non-degeneracy) Oy <z < ooy for all z € V.

(Linearity) if z; <wy; for i = 0,1 and A € [Og, oogr|, then Azg + 1 < Ay + v1.

Remark 4.8.2. (1) 0y, 00y € V are unique.

(2)

If Ao = 0y, then v = 0y or A = Og.

Examples 4.8.3. (1) The set [Og, ocor] with the usual ordering and the convention that

(2)

(3)

(4)

()

Aoogr = oo\ = oo for all A € Ry and Oroor = ocor0Or = Og is an extended positive
cone.

Let X be a nonempty set. The space of functions {f: X — [Og, cog]} is an extended
positive cone with pointwise addition and scalar multiplication, where f < g if f(z) <
g(x) for all x € X. Similarly, the space of extended positive measurable functions on
a measure space is an extended positive cone.

If M is a von Neumann algebra, w(M), the set of normal weights w: M — [Og, cog],
is an extended positive cone where oo,y is the map which sends 0y to O and all
other elements of M™ to oog, and ¢ < 9 if p(z) < ¢(x) for all z € MT.

If M is a von Neumann algebra, M* is an extended positive cone where oo is the
unbounded operator affiliated to M with domain (0), and m; < mg if my(¢) < may(9)
for all p € M.

If V,W are extended positive cones, then so is V x W where (vy,w;) + (v, wy) =
(v1 4o, w1 +wa), A(vi, wr) = (Avr, Awr), Ovxw = (Ov, Ow ), 0oy xw = (ooy, cow), and
(v, w1) < (vg, ws) if v1 < vy and wy < wo.
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Definition 4.8.4. Let V, W be extended positive cones. A function 7: V' — W is a linear
map (of extended positive cones) if

o T'(Au+wv)=AlTu+ Tv for all u,v € V and X € [0, oor], and
o if u,v € V with u <w, then Tu < Tw.
We define a multi-linear map of extended positive cones Vi x --- x V,, — V; similarly.

Examples 4.8.5. (1) For a fixed scalar A € [Og, oogr], multiplication by A is a map of
extended positive cones.

(2) Suppose w: M+ — [Og, oog] is a normal weight. Then its unique extension to a normal
weight w: M+ — [Og, cog] is a map of extended positive cones.

(3) If m € M, then m: w(M) — [Og,oor] given byp — m(p) is a map of extended
positive cones.

(4) Suppose N C M is an inclusion of von Neumann algebras, i: N+t — M+ is the
inclusion (well-defined by Equation (4.1)), and T: M+ — N+ is the unique extension

of an operator valued weight M+ — N+. Then 1, T are maps of extended positive
cones.

(5) Using the notation of Section 4.6, the map X+ x Y;" — X ®, Y;" given by (z,y) —
x ®4 vy is a multilinear map of extended positive cones by Lemma 4.6.15.

Definition 4.8.6. An increasing net (x;);c; C V converges to € V if x is the unique least
upper bound for (z;);e;. We denote this convergence by sup;c; z; =z or z; /.

e V/ is complete if each increasing net (z;);c; has a unique least upper bound.
e Amap T:V — W is normal if z; / x implies Tx; /~ Tx.
Remark 4.8.7. The maps in Examples 4.8.5 are all normal.

Definition 4.8.8. The dual space of V', denoted V*, is the set of all normal maps V' —
[Og, cog]. Note that V* is a complete extended positive cone with

(1) (Ap +¥)(v) = Ap(v) + ¢¥(v) for all v € V, X € [Og,00r], and ,1 € V*, with the
convention that Og - cor = Og,

(2) Oy~ is the zero map,

0 itv=20

ooy else, and

(3) oov-(v) = {

(4) (supser i) (v) 1= sup;ep pi(v).
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e There is a natural inclusion V' — V** by x — (ev,: ¢ — ().
e The completion of V' is the set of sups of increasing nets in the image of V' in V**.

Theorem 4.8.9. Let M be a semifinite von Neumann algebra with n.f.s. trace Try;. Let
w(M) be the set of normal weights on M.

(1) M+ is the dual extended positive cone of w(M) (the ordering on each is given in
Ezamples 4.8.3).

(2) The map M* 5z Try(z-) € w(M) is a normal isomorphism of extended positive
cones.

Proof. This is a rewording of Theorem 4.2.14 into the language of this subsection. m

Definition 4.8.10. If T: V' — W is a normal map of extended positive cones, we get a map
of dual spaces T*: W* — V* by T*(¢) = ¢poT for all ¢ € W*. We can characterize it as the
unique map satisfying

(T'(v), L)w = 9(T'(v) = (v, T"(@))v
forallv e V and ¢ € W.

Proposition 4.8.11. Suppose N C M s an inclusion of semifinite von Neumann algebras
with n.f.s. traces Try, Tryy respectively. Let i: w(N) N+t — M+ =2 w(M) be the inclusion,

and let T: M+ — N7 be the unique extension to Mt of the unique trace-preserving operator
valued wewght. Then i, T are normal and T = i*, T* = 1.

Proof. Clearly ¢, T are normal. Suppose n € Nt and m € (m)* — M*. Then
(i(n),m)z = Tray(m - n) = Ten(T(m) - n) = (n,T(m)) 5+,

so T'=i*. Since Trp (m -n) = Try(n-m), i =T O
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