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Abstract

Planar structure for inclusions of finite von Neumann algebras

by

David Signorielli Penneys

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vaughan F. R. Jones, Chair

This dissertation consists of three self-contained papers from my graduate work at UC
Berkeley. The chapters increase in complexity from the annular Temperley-Lieb category to
strongly Markov inclusions of finite von Neumann algebras to infinite index II1-subfactors.

In Chapter 2, we discuss how two copies of the cyclic category generate the annular
Temperley-Lieb category. In the process, we give a presentation of the annular Temperley-
Lieb category via generators and relations, and we see the cyclic category evolve from the
simplicial and semi-simplicial categories.

Chapter 3 is joint work with Vaughan F. R. Jones. First, we define a canonical planar
∗-algebra associated to a strongly Markov inclusion of finite von Neumann algebras (the
notion of such an inclusion is defined within). Second, we show for an inclusion of finite
dimensional C∗-algebras with the Markov trace, the canonical planar algebra is isomorphic
to the graph planar algebra of the Bratteli diagram of the inclusion. We use this fact to
show that a subfactor planar algebra embeds into the graph planar algebra of its principal
graph.

In Chapter 4, we expand upon Burns’ work on rotations for infinite index II1-subfactors.
We start with a II1-factor bimodule, and we construct a tower of centralizer algebras and a
sequence of central L2-vectors. In the finite index setting, the centralizer algebras and central
L2-vectors agree, but in the infinite index setting, these spaces can differ dramatically. We
develop planar calculi for both sequences which are compatible. Interestingly, we obtain
planar structure without Jones’ basic construction or the resulting Jones projections! We
also generalize Burns work on extremality and the existence of rotations to the bimodule
setting, and we recover his main theorem. Along the way, we prove some results about
relative tensor products of extended positive cones, and we give an example of an infinite
index subfactor with finite dimensional higher relative commutants.
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Chapter 1

Introduction

Finite index subfactors

Mathematicians are taxonomists; we classify species of mathematical objects into types.
Herein, the species are factors, von Neumann algebras with trivial centers, first defined by
von Neumann in his study of quantum mechanics. Murray and von Neumann classified
factors into three types, and constructed examples of each. All factors in this subsection are
type II1.

Sometimes distinct species share common traits. Fields and II1-factors are algebraically
simple, so we study maps in these categories by studying inclusions, i.e., subfields or subfac-
tors. Nakamura and Takeda strengthened this connection with their Galois correspondence
for the intermediate subfactor lattice for M ⊂M oG for a finite group G [NT60a, NT60b].
Hence some refer to subfactor theory as “noncommutative Galois theory.”

In his pioneering paper [Jon83], Jones defined an index for a subfactor M0 ⊂M1, showed

[M1 : M0] ∈
{

4 cos2(π/n)
∣∣n = 3, 4, 5, . . .

}
∪ [4,∞],

and constructed an example with each allowed index. To do so, he used the “basic construc-
tion” which constructs a tower of factors M0 ⊂M1 ⊂M2 ⊂M3 ⊂ · · · .The subfactors in this
subsection are assumed to be finite index.

Just as topologists study a complicated topological space by its homology groups, we
study a subfactor by its standard invariant, two sequences of finite dimensional C∗-algebras
Pn,+ = M ′

0 ∩Mn and Pn,− = M ′
1 ∩Mn+1 [Jon83, Jon86]. The standard invariant has been

axiomatized in three similar ways, each emphasizing slightly different structure: Ocneanu’s
paragroups [Ocn88, EK98], Popa’s λ-lattices [Pop95], and Jones’ planar algebras [Jon99].
Given a standard invariant P•, one can construct a subfactor whose standard invariant is P•
[Pop95, GJS07].

The rich structure of a planar algebra provides connections between subfactor theory,
combinatorics, quantum algebra, and tensor categories. Given a subfactor N ⊂ M , its pla-
nar algebra P• encodes two simpler invariants: the index, and the principal graphs, which
are bipartite induction-restriction graphs associated to the representation theory of the sub-



CHAPTER 1. INTRODUCTION 2

factor. The two “even parts” of P• form two C∗-tensor categories of N −N bimodules and
M −M bimodules respectively. If there are only finitely many isomorphism classes of such
bimodules, the subfactor is called finite depth, and the “even parts” are fusion categories
[ENO05]. In this case, the two fusion categories are Morita equivalent [Müg03] via the two
“odd parts” of P•, which are module categories of N −M and M −N bimodules.

Subfactors and groups also share traits. For an outer action of a finite group G on a
factor M and a subgroup H ⊂ G, the planar algebra of the fixed point subfactor MG ⊂MH

encodes the induction-restriction data of H ⊂ G. If H is trivial, one “even part” of P• is the
fusion category of representations of G. This also works for actions of quantum groups.

Jones proved that every finite group has a unique outer action on the hyperfinite II1-
factor R [Jon80]. Popa extended this result in his classification of amenable subfactors
[Pop94] where he shows that each amenable standard invariant has a unique “action” on R.

Infinite index subfactors

Some finite index results generalize to infinite index subfactors, such as discrete, irre-
ducible, “depth 2” subfactors correspond to outer (cocycle) actions of Kac algebras [HO89,
EN96], and the classical Galois correspondence still holds for outer actions of infinite discrete
groups and minimal actions of compact groups [ILP98]. We ask:

Question. What is a suitable standard invariant for infinite index subfactors?

There are several candidates for the standard invariant, each with its pros and cons. For
example, we could take the towers Pn,± as in the introduction since Enock and Nest showed

M ′
i ∩Mj

∼= M ′
i+2 ∩Mj+2 for all i, j ≥ 0

in [EN96]. In his Ph.D. thesis [Bur03], Burns studied rotations and extremality for infinite
index subfactors, and he initiated the search for planar structure. He crucially observed that
for finite index, the centralizer algebras M ′

0 ∩Mn and the central L2-vectors

M ′
0 ∩ L2(Mn) =

{
ξ ∈ L2(Mn)

∣∣xξ = ξx for all x ∈M0

}
coincide. As this is no longer true for infinite index, he focused on the spaces M ′

0 ∩L2(Mn),
and he showed M0 ⊂M1 is (approximately) extremal if and only if a (non-)unitary rotation
operator exists on the M ′

0 ∩ L2(Mn).
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1.1 Chapter synopses

This dissertation consists of three self-contained papers from my graduate work at UC
Berkeley. The chapters increase in complexity from the annular Temperley-Lieb category to
inclusions of finite von Neumann algebras to infinite index II1-subfactors.

Chapter 2: A cyclic approach to the annular Temperley-Lieb category
This paper was published in J. Knot Theory and its Ramifications [Pen12a]. Its abstract

is as follows:
In [Jon00], Jones found two copies of the cyclic category c∆ in the annular Temperley-

Lieb category Atl. We give an abstract presentation of Atl to discuss how these two copies
of c∆ generate Atl together with the coupling constants and the coupling relations. We then
discuss modules over the annular category and homologies of such modules, the latter of
which arises from the cyclic viewpoint.

Chapter 3: The embedding theorem for finite depth subfactor planar algebras
This joint paper with Vaughan F. R. Jones was published in Quantum Topology [JP11].

Its abstract is as follows:
We define a canonical planar ∗-algebra from a strongly Markov inclusion of finite von

Neumann algebras. In the case of a connected unital inclusion of finite dimensional C∗-
algebras with the Markov trace, we show this planar algebra is isomorphic to the bipartite
graph planar algebra of the Bratteli diagram of the inclusion. Finally, we show that a finite
depth subfactor planar algebra is a planar subalgebra of the bipartite graph planar algebra
of its principal graph.

Chapter 4: A planar calculus for infinite index subfactors
This paper was accepted to Communications in Mathematical Physics on May 8, 2012; it

can be found at arXiv:1110.3504 [Pen12b]. Its abstract is as follows:
We develop an analog of Jones’ planar calculus for II1-factor bimodules with arbitrary

left and right von Neumann dimension. We generalize to bimodules Burns’ results on rota-
tions and extremality for infinite index subfactors. These results are obtained without Jones’
basic construction and the resulting Jones projections.

http://arxiv.org/abs/1110.3504
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Chapter 2

A cyclic approach to the annular
Temperley-Lieb category

2.1 Introduction

The Temperley-Lieb algebras have been studied extensively beginning with Temperley
and Lieb’s first paper in statistical mechanics regarding hydrogen bonds in ice-type lattices
[TL71]. Since, these algebras have been instrumental in many areas of mathematics, includ-
ing subfactors [Jon83] and knot theory [Jon85]. The well known diagrammatic representation
of these algebras was introduced by Kauffman in [Kau87] in his skein theoretic definition
of the Jones polynomial. From these diagrams, we get the Temperley-Lieb category whose
objects are n points on a line, morphisms are diagrams with non-intersecting strings, and
composition is stacking tangles vertically (we read bottom to top).

Historically, the (affine/annular) Temperley-Lieb algebras have been presented as quo-
tients of the (affine) Hecke algegras [Jon94]. Graham and Lehrer define cellular structures for
these algebras in [GL96], and they give the representation theory for affine Temperley-Lieb
in [GL98]. Jones’ definition of the annular Temperley-Lieb category (see [Jon99], [Jon01]),
which we will denote Atl, differs slightly Graham and Lehrer’s. First, Atl-tangles have a
checkerboard shading, so each disk has an even number of boundary points. Second, the
rotation is periodic in Atl, similar to the rotation in Connes’ cyclic category c∆, studied by
Connes [Con83], [Con94], Loday and Quillen [LQ83], [Lod98], and Tsygan [Tsy83]. Jones
found a connection between Atl and c∆ in [Jon00], and raised the question we now address:
how does Atl arise from the interaction of two copies of the cyclic category?

In answering this question, we see Atl evolve from simple categories. The opposite of the
simplicial category s∆op (see 2.5.4) has a well known pictorial representation much like the
Temperley-Lieb category: objects are 2n + 2 points on a line, morphisms are rectangular
planar tangles with only shaded caps and unshaded cups, and composition is stacking. In
fact, these diagrams closely resemble the string diagrams arising from an adjoint functor
pair.
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, ,

Figure 2.1: Face maps d0, d1, d2 : [2]→ [1]

, ,

Figure 2.2: Degeneracies s0, s1, s2 : [2]→ [3]

An asymmetry is present in the above tangles: all shaded regions can be “capped” by
applying a face map, but not every unshaded region can be “cupped” by applying a degen-
eracy. This asymmetry can be corrected by closing the rectangular tangles into annuli, still
enforcing the same shading requirements. Jones showed the resulting category is isomorphic
to c∆op in [Jon00]. Of course the category with the reverse shading is also isomorphic to c∆
(and c∆op), and these two subcategories generate Atl.

−→

∗
∗

Figure 2.3: Closing up rectangular tangles into annuli

Outline

In Section 2.2, we will define Atl and offer candidates for generators and relations. We
will then prove some uniqueness results which will be crucial to our approach. In Section 2.3,
we will take these candidates and define an abstract category a∆, the annular category, via
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generators and relations. We then prove existence of a standard form for words. In Section
2.4, we prove Theorem 2.4.8, which says there is an isomorphism of involutive categories
Atl ∼= a∆ (the isomorphism preserves an involution).

After we have our description of Atl in terms of abstract generators and relations, we
recover the result of Jones in [Jon00] in 2.5, i.e. two isomorphisms from c∆op to subcategories
cAtl± of Atl. After a note on augmentation of the cyclic category in 2.5, we prove the
main result of the paper, Theorem 2.5.27, which shows Atl is a quotient of the pushout of
augmented copies of c∆ and c∆op over a groupoid T of finite cyclic groups:

T //

��

c̃∆op

��
c̃∆ // PO

##
Atl.

In Section 2.6, we define the notion of an annular object in a category C. As c∆op lives
inside a∆ (in two ways), we will have notions of Hochschild and cyclic homology of annular
objects in abelian categories. We define these notions and give some easy results in 2.6.

Acknowledgements

The author would like to acknowledge and thank Vaughan Jones for his guidance and
advice, Vijay Kodiyalam and V. S. Sunder for discussing the problem at length and for their
hospitality at IMSc, Ved Gupta for proofreading and correcting an error in the first draft,
and Emily Peters for her support and her help on drawing planar tangles (in fact, all tangles
shown are adapted from [Pet10]). The author was partially supported by NSF grant DMS
0401734.

2.2 The Category Atl

Notation 2.2.1. All categories will be denoted by capital letters in the following sans-serif
font: ABC... The categories we discuss will be small, and we will write X ∈ A to denote
that X ∈ Ob(A), the set of objects of A. We will write A(X, Y ) to denote the set of
morphisms ϕ : X → Y where X, Y ∈ A, and we will write Mor(A) to denote the collection
of all morphisms in A. In the sequel, objects of our categories will be the symbols [n] for
n ∈ Z≥0∪{0±,±}. For simplicity and aesthetics, we will write A(m,n) instead of A([m], [n]).

Definition 2.2.2. A category A is called involutive if for all X, Y ∈ A, there is a map
∗ : A(X, Y )→ A(Y,X) called the involution such that

(1) id∗X = idX for all X ∈ A,
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(2) (T ∗)∗ = T for all T ∈ A(X, Y ), and

(3) for all X, Y, Z ∈ A and all T ∈ A(X, Y ) and S ∈ A(Y, Z), (S ◦ T )∗ = T ∗ ◦ S∗.

In other words, there is a contravariant functor ∗ : A → A of period two which fixes all
objects.

Definition 2.2.3. Suppose A and B are categories and F : A→ B is a functor.

(1) F is called an isomorphism of categories if there is a functor G : B → A such that
F ◦ G = idB and G ◦ F = idA, the identity functors. In this case, we say categories A
and B are isomorphic, denoted A ∼= B.

(2) If A and B are involutive, we say F is involutive if it preserves the involution, i.e.
F (ϕ∗) = ϕ∗ for all ϕ ∈ A(X, Y ) for all X, Y ∈ A.

(3) An isomorphism of involutive categories is an involutive isomorphism of said categories.

Remark 2.2.4. It is clear that if A is involutive, then A ∼= Aop.

Annular Tangles

We provide a definition of an annular (m,n)-tangle which is a fusion of the ideas in
[Jon99] and [KS04].

Definition 2.2.5. An annular (m,n)-pretangle for m,n ∈ Z≥0 consists of the following data:

(1) The closed unit disk D in C,

(2) The skeleton of T , denoted S(T ), consisting of:

(a) the boundary of D, denoted D0(T ),

(b) the closed disk D1 of radius 1/4 in C, whose boundary is denoted D1(T ),

(c) 2m, respectively 2n, distinct marked points on D1(T ), respectively D0(T ), called
the boundary points of Di(T ) for i = 0, 1. Usually we will call the boundary
points of D0(T ) external boundary points of T and the boundary points of D1(T )
internal boundary points.

(d) inside D, but outside D1, there is a finite set of disjointly smoothly embedded
curves called strings which are either closed curves, called loops, or whose bound-
aries are marked points of the Di(T )’s and the strings meet each Di(T ) transver-
sally, i = 0, 1. Each marked point on Di(T ), i = 0, 1 meets exactly one string.

(3) The connected components of D\S(T ) are called the regions of T and are either shaded
or unshaded so that regions whose closures meet have different shadings.
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Definition: If there are boundary points of Di(T ), then an interval of Di(T ), i = 0, 1,
is a connected arc on Di(T ) between two boundary points of Di(T ). A simple interval
of Di(T ), i = 0, 1, is an interval of Di(T ) in T which touches only two (adjacent)
boundary points. If there are no boundary points of Di(T ), then a (simple) interval of
Di(T ) is Di(T ) itself.

(4) For each Di(T ), i = 0, 1, there is a distinguished simple interval of Di(T ) denoted ∗i(T )
whose interior meets an unshaded region. Starting at ∗i(T ) on Di(T ), we order the
marked points of Di(T ) clockwise. This numbering, along with the shading, induces
an orientation on the pre-tangle.

∗

∗

Figure 2.4: An example of an annular tangle

Remarks 2.2.6. (1) If m = 0, there are two kinds of annular (0, n)-pretangles depending
on whether the region meeting D1(T ) is unshaded or shaded. If the region meeting
D1(T ) is unshaded, we call T an annular (0+, n)-pretangle, and if the region is shaded,
we call T an annular (0−, n)-pretangle. Likewise, when n = 0, there are two kinds
of annular (m, 0)-pretangles. If the region meeting D0(T ) is unshaded, we call T an
annular (m, 0+)-pretangle, and if the region is shaded, we call T an annular (m, 0−)-
pretangle. Additionally, we have annular (0±, 0±)-pretangles and annular (0±, 0∓)-
pretangles.

(2) Loops may be shaded or unshaded.

Definition 2.2.7. An annular (m,n)-tangle is an orientation-preserving diffeomorphism
class of an annular (m,n)-pretangle for m,n ∈ N ∪ {0±}. The diffeomorphisms preserve
(but do not necessarily fix!) D0 and D1.

Definition 2.2.8. Given an annular (m,n)-tangle T , and an annular (l,m)-tangle S, we
define the annular (l,m)-tangle T ◦ S by isotoping S so that D0(S), the marked points of
D0(S), and ∗0(S), coincide with D1(T ), the marked points of D1(T ), and ∗1(T ) respectively.
The strings may then be joined at D1(T ) and smoothed, and D1(T ) is removed to obtain
T ◦ S whose diffeomorphism class only depends on those of T and S.
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∗
∗

◦

∗

∗ = ∗
∗

Figure 2.5: An example of composition of annular tangles

Definition 2.2.9. If T is an annular (m,n)-tangle, we define T ∗ to be the annular (n,m)-
tangle obtained by reflecting T about the circle of radius 3/4, which switches Di(T ) and
∗i(T ), i = 0, 1. Clearly (T ∗)∗ = T and (T ◦ S)∗ = S∗ ◦ T ∗ for composable S and T .

∗
∗

∗

=
∗
∗

Figure 2.6: An example of the adjoint of an annular tangle

Definition 2.2.10. Let T be an annular (m,n)-tangle.

Caps: A cap of T is a string that connects two internal boundary points. The set of caps of
T will be denoted caps(T ).

∂Λ: If Λ ∈ caps(T ), there is a unique interval of D1(T ), denoted ∂Λ, such that Λ ∪ ∂Λ is a
closed loop (which is not smooth at two points) which does not contain D1 in its interior.
Using ∂Λ, the cap Λ inherits an orientation as D1(T ) is oriented clockwise. Denote this
orientation by an arrow on Λ.

Index: We define the cap index of Λ, denoted ind(Λ), to be the number of the marked point
to which the arrow points. The set of cap indices of T forms an increasing sequence, which
we denote capind(T ).

B(Λ): For Λ ∈ caps(T ), we let B(Λ) = {Λ′ ∈ caps(T )|∂Λ′ ⊆ ∂Λ}, and we say an element
Λ′ ∈ B(Λ) is bounded by Λ or that Λ bounds Λ′.

Definition 2.2.11. Let T be an annular (m,n)-tangle.

Cups: A cup V of T is a string that connects two external boundary points. The set of cups
of T will be denoted cups(T ).
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capind


∗
∗

 = {1, 4, 7}

Figure 2.7: An example of cap indices

∂V : If V ∈ cups(T ), there is a unique interval of D0(T ), denoted ∂V , such that V ∪ ∂V is
a closed loop (which is not smooth at two points) which does not contain D1 in its interior.
Using ∂V , the cup V inherits an orientation as D0(T ) is oriented clockwise. Denote this
orientation by an arrow on V .

Index: We define the cup index of V , denoted ind(V ), to be the number of the marked point
to which the arrow points. The set of cup indices of T forms an increasing sequence, which
we denote cupind(T ).

B(V ): For V ∈ cups(T ), we let B(V ) = {V ′ ∈ cups(T )|∂V ′ ⊆ ∂V }, and we say an element
V ′ ∈ B(V ) is bounded by V or that V bounds V ′.

Remark 2.2.12. Note capind(T ) = cupind(T ∗) for all annular tangles T .

Definition 2.2.13. Suppose T is an annular (m,n)-tangle.

ts(T ): A through string is a string of T which connects an internal boundary point of T to
an external boundary point of T . The set of through strings is denoted ts(T ). Note that
| ts(T )| ∈ 2Z≥0. We order ts(T ) clockwise starting at ∗0(T ), so each through string of T has
a number.

ts0(T ): Suppose T has a through string. Using ∗0(T ) as our reference, we go counterclockwise
along D0(T ) to the first through string, which is denoted ts0(T ). Note the number of ts0(T )
is | ts(T )|.
ts1(T ): Suppose T has a through string. Using ∗1(T ) as our reference, we go counterclockwise
along D1(T ) to the first through string, which is denoted ts1(T ). We denote the number of
ts1(T ) by # ts1(T ).

rel∗(T ): We define the relative star position of T , denoted rel∗(T ), as follows:

(1) Suppose T has an odd number k of non-contractible loops. Then there is a unique
region R which touches both a non-contractible loop and D1(T ). If R is unshaded, we
define rel∗(T ) to be the symbol ±(k), and if R is shaded, we define rel∗(T ) to be the
symbol ∓(k). This notation signifies the shading switches from unshaded to shaded,
respectively shaded to unshaded, as we read T from D1(T ) to D0(T ).
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(2) Suppose T has an even number k of non-contractible loops. If k = 0, then there is a
unique region R which touches both D0(T ) and D1(T ). If k ≥ 1, then there is a unique
region R which touches both a non-contractible loop and D1(T ). If R is unshaded, we
define rel∗(T ) to be the symbol +(k), and if R is shaded, we define rel∗(T ) to be the
symbol −(k).

(3) Suppose T has a through string. We define

rel∗(T ) =

⌊
# ts1(T )

2

⌋
mod

(
| ts(T )|

2

)
∈
{

0, 1, . . . ,
| ts(T )|

2
− 1

}
.

rel∗

 ∗

∗


= 2

Figure 2.8: An example of relative star position

“Generators and Relations” of Atl

Definition 2.2.14. Suppose T is an annular tangle. A loop of T is called contractible if it
is contractible in D \D1. Otherwise it is called non-contractible.

Definition 2.2.15 (Atl Tangle). An annular (m,n)-tangle T is called an Atl (m,n)-tangle
if T has no contractible loops.

Definition 2.2.16. Let Atl be the following small category:

Objects: [n] for n ∈ N ∪ {0±}
Morphisms: Given m,n ∈ N ∪ {0±}, Atl(m,n) is the set of all triples (T, c+, c−) where T is
an Atl (m,n)-tangle and c+, c− ∈ Z≥0.

Composition: Given (S, a+, a−) ∈ Atl(m,n) and (T, b+, b−) ∈ Atl(l,m), we define (S, a+, a−)◦
(T, b+, b−) ∈ Atl(l, n) to be the triple (R, c+, c−) obtained as follows: let R0 be the annular
(l, n)-tangle S ◦ T . Let d+, respectively d−, be the number of shaded, respectively un-
shaded, contractible loops. Let R be the Atl (l, n)-tangle obtained from R0 by removing all
contractible loops, and set c± = a± + b± + d±.
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Remark 2.2.17. For simplicity and aesthetics, we write T for the morphism (T, 0, 0) ∈
Mor(Atl).

∗
∗

◦

∗

∗ =

 ∗ ∗ , 1, 1


Figure 2.9: An example of composition in Atl

Definition 2.2.18. We give the following names to the following distinguished Atl (n,m)-
tangles:

(A) Let a1 be the only Atl (1, 0+)-tangle with no loops, and let a2 be the only Atl (1, 0−)-
tangle with no loops. For n ≥ 2 and i ∈ {1, . . . , 2n}, let ai be the Atl (n, n− 1)-tangle

∗
∗

, ∗

∗

Figure 2.10: a1 ∈ Atl(1, 0+) and a2 ∈ Atl(1, 0−)

whose ith and (i+ 1)th (modulo 2n) internal boundary point are joined by a string and
all other internal boundary points are connected to external boundary points such that

(i) If i = 1, then the first external point is connected to the third internal point.

(ii) If 1 < i < 2n, then the first external point is connected to the first internal point.

(iii) If i = 2n, then the first external point is connected to the (2n − 1)th internal
point.

(B) Let b1 be the only Atl (0+, 1)-tangle with no loops, and let b2 be the only Atl (0−, 1)-
tangle with no loops. For n ≥ 1 and i ∈ {1, . . . , 2n+2}, let bi be the Atl (n, n+1)-tangle
whose ith and (i+ 1)th (modulo 2n+ 2) external boundary point are joined by a string
and all other internal boundary points are connected to external boundary points such
that
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∗

···
∗

,

∗

···
∗

, · · · , ∗
· ··

∗

Figure 2.11: a1, a2, · · · , a2n ∈ Atl(n, n− 1). (without the dots, n = 3)

∗
∗

, ∗
∗

Figure 2.12: b1 ∈ Atl(0+, 1) and b2 ∈ Atl(0−, 1)

(i) If i = 1, then the third external point is connected to the first internal point.

(ii) If 1 < i, then the first external point is connected to the first internal point.

(iii) If i = 2n+ 2, then the first internal point is connected to the (2n+ 1)th external
point.

∗

·· ·

∗
,

∗

·· ·

∗
, · · · ,

∗

·· ·∗

Figure 2.13: b1, b2, · · · , b2n+2 ∈ Atl(n, n+ 1) (without the dots, n = 3)

(T) For n = 1, let t be the identity (1, 1)-tangle. For n ≥ 2, let t be the Atl (n, n)-tangle
where all internal points are connected to external point such that the third external
point is connected to the first internal point.

Theorem 2.2.19. The following relations hold in Atl:

(1) aiaj = aj−2ai for i < j − 1 and (i, j) 6= (1, 2n),

(2) bibj = bj+2bi for i ≤ j and (i, j) 6= (1, 2n+ 2),
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∗
· ··

∗

Figure 2.14: t ∈ Atl(n, n) (without the dots, n = 3)

(3) tn = id[n],

(4) ait = tai−2 for i ≥ 3,

(5) bit = tbi−2 for i ≥ 3,

(6) (id[0+], 1, 0) = a1b1 ∈ Atl(0+, 0+) and (id[0+], 0, 1) = a2b2 ∈ Atl(0−, 0−). If aibj ∈
Atl(n, n) with n ≥ 1, then

aibj =



t−1 if (i, j) = (1, 2n+ 2)

bj−2ai if i < j − 1, (i, j) 6= (1, 2n+ 2)

id[n] if i = j − 1

(id[n], 1, 0) if i = j and i is odd

(id[n], 0, 1) if i = j and i is even

id[n] if i = j + 1

bjai−2 if i > j + 1, (i, j) 6= (2n+ 2, 1)

t if (i, j) = (2n+ 2, 1)

(7) (id[n], 1, 0) and (id[n], 0, 1) commute with all (T, c+, c−) ∈ Atl(n, n) where n ∈ N∪{0±}.

Proof. These relations can be easily verified by drawing pictures.

Involution and Tangle Type

Proposition 2.2.20. The map ∗ : Atl → Atl given by [n]∗ = [n] for all n ∈ N ∪ {0±} and
(T, c+, c−)∗ = (T ∗, c+, c−) defines an involution on Atl.

Corollary 2.2.21. We have an isomorphism of categories Atl ∼= Atlop.

Proposition 2.2.22. The involution on Atl satisfies

A/B: a∗i = bi for i = 1, 2 if a1 ∈ Atl(1, 0+) and a2 ∈ Atl(1, 0−). For n ≥ 2 and ai ∈
Atl(n, n− 1), so i ∈ {1, . . . , 2n}, a∗i = bi ∈ Atl(n− 1, n).
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T: For n ∈ N and t ∈ Atl(n, n), t∗ = t−1.

D: For n ∈ N ∪ {0±}, (id[n], 1, 0)∗ = (id[n], 1, 0) and (id[n], 0, 1)∗ = (id[n], 0, 1).

Proof. Obvious.

Definition 2.2.23. An Atl (m,n)-tangle T is said to be of

Type I: if T is either id[n] for some n ∈ N∪{±0}, or T has no cups, at least one cap, and no
non-contractible loops, with the limitation on ∗0(T ) that exactly one of the following occurs:

I-1: There are no through strings, so ∗0(T ) is uniquely determined. Note that if n = 0−,
then there is no ∗0(T ).

I-2: There are through strings. Using ∗1(T ) as our reference, we go counterclockwise to
the first through string, and travel outward until we reach a marked point p of D0(T ).
The simple interval meeting p whose interior touches an unshaded region is ∗0(T ).

Type II: if T has no cups or caps, so T is a power of the rotation (including the identity
tangle) or an annular (0, 0)-tangle with k non-contractible loops (here we do not specify 0±).

Type III: if T is either id[n] for some n ∈ N ∪ {±0}, or T has no caps, at least one cup, and
no non-contractible loops, with the limitation on ∗1(T ), that exactly one of the following
occurs:

III-1: There are no through strings, so ∗1(T ) is uniquely determined. Note that if
m = 0−, then there is no ∗1(T ).

III-2: There are through strings. Using ∗0(T ) as our reference, we go counterclockwise
to the first through string, and travel outward until we reach a marked point p of
D1(T ). The simple interval meeting p whose interior touches an unshaded region is
∗1(T ).

Denote the set of all tangles of Type i by Ti, and denote the set of all (m,n)-tangles of Type
i by Ti(m,n) for i ∈ {I, II, III}.

Remark 2.2.24. Note that

(1) the ai’s are all Type I, and

(2) the bi’s are all Type III.

Notation 2.2.25. We will use the notation s+ = a2b1 ∈ Atl(0+, 0−) and s− = a1b2 ∈
Atl(0−, 0+).
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∗ ∗
,

∗
∗

Figure 2.15: Examples of tangles of Types I and III

∗

∗ , ∗
∗

Figure 2.16: Type II tangles s+, s−

Remark 2.2.26. For the case aibj : [0]→ [0] (where we do not specify ±), a suitable version
of relation (6) reads

aibj =


s− if (i, j) = (1, 2)

(id[0+], 1, 0) if i = j = 1

(id[0−], 0, 1) if i = j = 2

s+ if (i, j) = (2, 1).

Note that we replace t±1 with s±, which supports Graham and Lehrer’s reasoning that the
rotation converges to the non-contractible loop as n→ 0 in [GL98].

Lemma 2.2.27. Let m,n ∈ N ∪ {0±}. Types are related to the involution as follows:

(1) T ∈ TI(m,n) if and only if T ∗ ∈ TIII(m,n), and

(2) If T ∈ TII(n, n), then T ∗ ∈ TII(n, n).

Proof. Obvious.

Proposition 2.2.28. Let m,n ∈ N ∪ {0±}.
Type I: Any T ∈ TI(m,n) is uniquetly determined by capind(T ). Moreover, rel∗(T ) ∈
{0,+(0),−(0)}.
Type II: Suppose m = n ∈ N or m,n ∈ {0+, 0−}. Any T ∈ TII(m,n) is uniquely determined
by rel∗(T ).
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Type III: Any T ∈ TIII(m,n) is uniquely determined by cupind(T ). Moreover, rel∗(T ) ∈
{0,+(0),−(0)}.

Proof.

Type I: Suppose T1, T2 ∈ T1(m,n) with capind(T1) = capind(T2). If Λi ∈ caps(Ti) for
i = 1, 2 with ind(Λ1) = ind(Λ2), note that |B(Λ1)| = |B(Λ2)|, so the Λi’s must end at the
same points. Hence all caps of Ti start and end at the same points for i = 1, 2. Now note that
all other points on D1(Ti) for i = 1, 2 (if there are any) are connected to through strings, and
recall ∗0(Ti) is uniquely determined by ∗1(Ti) for i = 1, 2. Hence T1 = T2. The statement
about rel∗(T ) follows immediately from conditions (I-1) and (I-2).

Type II: Note that exactly one of the following occurs:

(1) m = n and T = id[n], in which case rel∗(T ) ∈ {0,+(0),−(0)},

(2) m = n and T = tk where 0 < k < n, in which case rel∗(T ) = k,

(3) m = n = 0± and T = (s∓s±)k for some k ∈ N, in which case rel∗(T ) = ±(2k), or

(4) m = 0± and n = 0∓ and T = (s±s∓)ks± for some k ∈ Z≥0, in which case rel∗(T ) =
±(2k + 1).

Type III: This follows immediately from the Type I case and Lemma 2.2.27.

Lemma 2.2.29. Tangle type is preserved under tangle composition for tangles.

Proof.

Type I: Suppose S, T ∈ TI such that R = S ◦ T makes sense. Certainly R has no cups or
loops. It remains to verify that ∗0(R) is in the right place. A problem could only arise in
the case where both S and T have through strings, but we see that if S and T both satisfy
condition (I-2), then so does R.

Type II: Obvious.

Type III: Suppose S, T ∈ TIII such that R = S ◦T makes sense. Then by Lemma 2.2.27, we
have T ∗, S∗ ∈ TI and R∗ = T ∗ ◦ S∗ makes sense, so by the Type I case, R∗ ∈ TI , and once
more by 2.2.27, R ∈ TIII .

Corollary 2.2.30. By 2.2.24 and Proposition 2.2.29,

(1) any composite of ai’s is in TI , and

(2) any composite of bi’s is in TIII .
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Unique Tangle Decompositions

For this section, we use the convention that if n = 0± and z ∈ Z, then n+ z = z.

Definition 2.2.31. A tangle T ∈ TI is called irreducible if there is at most one cap bounding
∗1(T ), and if there is a cap Λ bounding ∗1(T ), then all other caps of T are bounded by Λ.

Remark 2.2.32. If T ∈ TI(m,n) for m ≥ 1 is irreducible, then T has a unique representation
as follows:

Case 1: if there is no cap bounding ∗1(T ), then T = aik · · · ai1 with ij > ij+1 for all j ∈
{1, . . . , k − 1} and ij < 2(m− j) + 2 for all j ∈ {1, . . . , k}.
Case 2: If there is a cap bounding ∗1(T ), then T = aqaik · · · ai1ajl · · · aj1 where k, l ≥ 0 and

(i) q = 2n+ 2,

(ii) ir > ir+1 for all r ∈ {1, . . . , k − 1}, i1 < jl, and js > js+1 for all s ∈ {1, . . . , l− 1}, and

(iii) ir ≤ 2(k − r) + 1 for all r ∈ {1, . . . , k} and js ≥ 2(m− s) + 1 for all s ∈ {1, . . . , l}.

Uniqueness follows by looking at the cap indices which are given as follows:

Case 1: If there is no cap bounding ∗1(T ), then capind(T ) = {ik, · · · , i1}.
Case 2: If there is a cap Λ bounding ∗1(T ), then ind(Λ) = 2(m − l) and capind(T ) =
{ik, · · · , i1, 2(m− l), jl, · · · , j1}.

Remarks 2.2.33. Suppose T ∈ TI(m,n − 1) with m > n − 1 ≥ 1 is irreducible such
that ∗1(T ) is bounded. Let T = aqaik · · · ai1ajl · · · aj1 be the representation afforded by
the above remark. If S ∈ TI(n− 1, p) and R = S ◦ T , then

(1) there is a cap Λ of R bounding ∗1(R), of index 2(m− l). All other caps of R bounding
∗1(R) have smaller index than Λ.

(2) |B(Λ)| = k + l + 1.

(3) capind(R) = {ik, · · · , i1, c1, · · · , cs, 2(m − l), jl, . . . , j1} for some c1, . . . , cs ∈ N and
s = m− p− k − l − 1.

Lemma 2.2.34. Suppose T1 ∈ TI(m,m−u−1) and T2 ∈ TI(m,m−v−1) with m−u,m−v ≥
2 are irreducible and each has one cap bounding ∗1. Suppose S1 ∈ TI(m − u − 1, w) and
S2 ∈ TI(m− v − 1, w) such that S1 ◦ T1 = S2 ◦ T2. Then T1 = T2.

Proof. Set R = S1 ◦ T1 = S0 ◦ T0. We have that ∗1(R) is bounded by a cap Λ with index
2(m− u) = 2(m− v), so u = v. Now we have unique irreducible decompositions

T1 = apaik · · · ai1ajl · · · aj1 and

T2 = aqagr · · · ag1ahs · · · ah1 ,



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 19

∗

∗

Figure 2.17: R = S ◦ T , zoomed in near ∗1(R) where T = a2n+2a1a2a4a2m−1 ∈ TI(m,n) is
irreducible

and as the cap indices of R are unique, we have

capind(R) = {ik, · · · , i1, c1, · · · , cs, 2(m− u), jl · · · , j1}
= {gr, · · · , g1, c1, . . . , cs, 2(m− v), hs, · · · , h1}.

Hence we must have equality of the two sequences:

{ik, · · · , i1, 2(m− u), jl · · · , j1} = {gr, · · · , g1, 2(m− v), hs, · · · , h1},

and T1 = T2 by Proposition 2.2.28.

Proposition 2.2.35. Each T ∈ TI(m,n) where m ∈ N and n ∈ N ∪ {0±} has a unique
decomposition T = Wr · · ·W1 such that Wi is irreducible for all i = 1, . . . , r.

Proof.

Existence: The existence of such a decomposition will follow from Algorithm 3.2 below.

Uniqueness: We induct on r. Suppose r = 1. Then uniqueness follows from Remark 2.2.32.
Suppose now that r > 1 and the result holds for all concatenations of fewer irreducible words.
Suppose we have another decomposition

T = Wr · · ·W1 = Us · · ·U1.

Then by the induction hypothesis, we must have s ≥ r. As W1 and U1 are irreducible, we
apply Lemma 2.2.34 with

(1) T1 = W1 and S1 = Wr · · ·W2, and

(2) T2 = U1 and S2 = Us · · ·U2

to see that W1 = U1. We may now apply appropriate bi’s to T (on the right) to get rid of
W1 = U1 to get

W ′ = Wr · · ·W2 = Us · · ·U2.

where W ′ is equal to a concatenation of fewer irreducible words. By the induction hypothesis,
we can conclude r = s and Ui = Wi for all i = 2, . . . , r. We are finished.
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Algorithm 2.2.36. The following algorithm expresses a Type I tangle T ∈ TI(m,n) where
m ∈ N and n ∈ N ∪ {0±} as a composite of ai’s in the form required by Proposition 2.2.35.
Set T0 = T , m0 = m, and r = 1.

Step 1: Let S1 = {Λ ∈ caps(T0)|∗1(T0) ⊂ ∂Λ and ind(Λ) ∈ 2N}. Let S0 be the set of all
caps that are not in B(Λ) for some Λ ∈ S1. If S1 = ∅, proceed to Step 4.

Step 2: Suppose |S1| ≥ 1. Select the cap Λ ∈ S1 with the largest index. There are two cases:

Case 1: B(Λ) = {Λ}. Set Wr = αind(Λ). Proceed to Step 3.

Case 2: B(Λ)\{Λ} 6= ∅. List the cap indices for all caps Λ′ ∈ B(Λ)\{Λ} in decreasing
order from right to left, ik, · · · , i1 where ij > ij+1 for all j ∈ {1, . . . , k − 1}. where
k = |B(Λ) \ {Λ}|. Set q = ind(Λ)− 2k and Wr = aqaik · · · ai1 .

Step 3: Note that Wr is irreducible. Move ∗1(T0) counterclockwise to the closest simple
interval outside of Λ whose interior touches an unshaded region (which is necessarily 2
regions counterclockwise), and remove all caps in B(Λ) from T0 to get a new tangle, called
T1. Note that T0 = T1Wr. Set m1 equal to half the number of internal boundary points of
T1, and set r1 = r. Now set T0 = T1, m0 = m1, and r = r1 + 1. Go back to Step 1.

Step 4: List the cap indices for all caps Λ ∈ S0 in decreasing order from right to left, ik, · · · , i1
where ij > ij+1 for all j ∈ {1, . . . , k − 1}. There are two cases:

(i) There are fewer than m0 caps. Set Wr = aik · · · ai1 . Note that Wr is irreducible and
T0 = Wr. We are finished.

(ii) There are m0 caps. Proceed to Step 5.

Step 5: There are two cases:

(i) If the region touching D0(T0) is unshaded, set Wr = a1aik−1
· · · ai1 . Note that Wr is

irreducible and T0 = Wr. We are finished.

(ii) If the region touching D0(T0) is shaded, set Wr = a2aik−1
· · · ai1 . Note that Wr is

irreducible and T0 = Wr. We are finished.

Note that T = Wr · · ·W1 satisfies the conditions of Proposition 2.2.35.

The following Theorem is merely a strengthening of Corollary 1.16 in [Jon94].

Theorem 2.2.37 (Atl Tangle Decomposition). Each Atl (m,n)-tangle T can be written
uniquely as a composite T = TIII ◦ TII ◦ TI where Ti ∈ Ti for all i ∈ {I, II, III}.

Proof. We begin by proving the uniqueness of such a decomposition as it will tell us how to
find such a decomposition.
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Uniqueness: Suppose we have a decomposition T = TIII ◦ TII ◦ TI where TI ∈ TI(m, l),
TII ∈ TII(l, k), and TIII ∈ TIII(k, n) for some l, k ∈ N ∪ {0±}. Note that l, k are uniquely
determined by | ts(T )| and the shading of T . Note further that capind(TI) = capind(T ),
rel∗(TII) = rel∗(T ), and cupind(TIII) = cupind(T ). Hence Ti is uniquely determined for
i ∈ {I, II, III} by Proposition 2.2.28.

Existence: Let l = k be the number of through strings of T . If l = k = 0, set l = 0+,
respectively l = 0− if the region meeting D1(T ) is unshaded, respectively shaded, and set
k = 0+, respectively k = 0− if the region meeting D0(T ) is unshaded, respectively shaded.
Let TI ∈ TI(m, l) be the unique tangle with capind(TI) = capind(T ). Let TII ∈ TII(l, k) be
the unique tangle with rel∗(TII) = rel∗(T ). Let TIII ∈ TIII(k, n) be the unique tangle with
cupind(TIII) = cupind(T ). It is now obvious that T = TIII ◦ TII ◦ TI .

∗

∗

=

∗

∗

∗

∗

=

=
∗
∗

◦ ∗

∗

◦
∗ ∗

Figure 2.18: Decomposition of an ATL tangle into TIII ◦ TII ◦ TI

2.3 The Category a∆

Generators and Relations

Definition 2.3.1. Let a∆, the annular category, be the following small category:

Objects: [n] for n ∈ N ∪ {0±}, and
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Morphisms: generated by

α1 : [1]→ [0+], α2 : [1]→ [0−], and

αi : [n] −→ [n− 1] for i = 1, . . . , 2n and n ≥ 2;

β1 : [0+]→ [1], β2 : [0−]→ [1], and

βi : [n] −→ [n+ 1] for i = 1, . . . , 2n+ 2 and n ≥ 1;

τ : [n] −→ [n] for all n ∈ N; and

δ± : [n] −→ [n] for all n ∈ N ∪ {0±}

subject to the following relations:

(1) αiαj = αj−2αi for i < j − 1 and (i, j) 6= (1, 2n),

(2) βiβj = βj+2βi for i ≤ j and (i, j) 6= (1, 2n+ 2),

(3) τn = id[n],

(4) αiτ = ταi−2 for i ≥ 3,

(5) βiτ = τβi−2 for i ≥ 3,

(6) δ+ = α1β1 ∈ a∆(0+, 0+) and δ− = α2β2 ∈ a∆(0−, 0−). If αiβj : [n]→ [n] with n ≥ 1,
then

αiβj =



τ−1 if (i, j) = (1, 2n+ 2)

βj−2αi if i < j − 1, (i, j) 6= (1, 2n+ 2)

id[n] if i = j − 1

δ+ if i = j and i is odd

δ− if i = j and i is even

id[n] if i = j + 1

βjαi−2 if i > j + 1, (i, j) 6= (2n+ 2, 1)

τ if (i, j) = (2n+ 2, 1)

(7) δ± commutes with all other generators (including δ∓).

Involution and Word Type

Definition 2.3.2. A morphism h ∈ Mor(a∆) will be called primitive if h is equal to αi, βi,
t, δ±, or id[n] for n ∈ N∪{0±}. A word on a∆ is a sequence hr · · ·h1 with r ≥ 1 of primitive
morphisms in a∆. We say the length of such a word is r ∈ N. By convention, we will say a
word has length zero if and only if r = 1 and h1 = id[n] for some n ∈ N ∪ {0±}.

Definition 2.3.3. We define a map ∗ on Ob(a∆) and on primitive morphisms in Mor(a∆):
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(Ob) For n ∈ N ∪ {0±}, define [n]∗ = [n].

(I) For all n ∈ N ∪ {0±}, define id∗[n] = id[n].

(A) For α1 ∈ a∆(1, 0+), define α∗1 = β1 ∈ a∆(0+, 1). For α2 ∈ a∆(1, 0−), define α∗2 =
β2 ∈ a∆(0−, 1). For n ≥ 2 and αi ∈ a∆(n, n− 1), so i ∈ {1, . . . , 2n}, define α∗i = βi ∈
a∆(n− 1, n).

(B) For β1 ∈ a∆(0+, 1), define β∗1 = α1 ∈ a∆(1, 0+). For β2 ∈ a∆(0−, 1), define β∗2 =
α2 ∈ a∆(1, 0−). For n ≥ 1 and βi ∈ a∆(n, n + 1), so i ∈ {1, . . . , 2n + 2}, define
β∗i = αi ∈ a∆(n+ 1, n).

(T) For n ∈ N and τ ∈ a∆(n, n), define τ ∗ = τ−1.

(D) For n ∈ N ∪ {0±} and δ± ∈ a∆(n, n), define δ∗± = δ±.

Proposition 2.3.4. The following extension of ∗ to Mor(a∆) is well defined:

• If hr · · ·h1 is a word on a∆, then we define (hr · · ·h1)∗ = h∗1 · · ·h∗r.

Hence ∗ extends uniquely to an involution on a∆.

Proof. We must check that ∗ preserves the relations of a∆. Note that relations (3), (6), and
(7) are preserved by ∗, and the following pairs are switched: (1) & (2) and (4) & (5).

Corollary 2.3.5. We have an isomorphism of categories a∆ ∼= a∆op.

Proposition 2.3.6. The following additional relations hold in a∆:

(1) α1τ = α2n−1 and α2τ = α2n,

(2) τβ2n+1 = β1, τβ2n+2 = β2, and

(3) β1τ = τ 2β2n−1 and β2τ = τ 2β2n.

Proof. (1) By relations (4) and (5), we have

α2n−1 = α2n−1τ
n = τα2n−3τ

n−1 = · · · = τn−1α3τ = τnα1 = α1.

The proof of the other relation is similar.

(2) These relations are merely ∗ applied to (1).

(3) By relations (4) and (6), we have

τ 2β2n−1 = τ 2β2n−1τ
n = τ 2τβ2n−3τ

n−1 = · · · = τ 2τn−1β1τ = τn+1β1τ = β1τ.

The proof of the other relation is similar.
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Notation 2.3.7. (1) If h ∈ Mor(a∆), we write h ∈ A1 if h = αi ∈ a∆(1, 0±) where
i ∈ {1, 2}. We write h ∈ An where n ≥ 2 if h = αi ∈ a∆(n, n − 1) for some
i ∈ {1, . . . , 2n}. We write h ∈ A if h ∈ An for some n ≥ 1. Similarly we define Bn for
n ∈ N ∪ {0±} and B.

(2) For convenience, we will use the notation σ+ = α2β1 ∈ a∆(0+, 0−) and σ− = α1β2 ∈
a∆(0−, 0+).

Definition 2.3.8. A word w = hr · · ·h1 on a∆ is called

Type I: if w has length zero or if hi ∈ A for all i ∈ {1, . . . , r}.
Type II: if either

(1) w has length zero,

(2) r > 0 and hi = τ for all i ∈ {1, . . . , r}, or

(3) r = 2s for some s > 0 and hihi+1 = σ± for all odd i so that

w =

{
(σ±σ∓)kσ± if s = 2k + 1 is odd, or

(σ±σ∓)k if s = 2k is even.

Type III: if w has length zero or if hi ∈ B for all i ∈ {1, . . . , r}.
Denote the set of all words of Type i by Wi, and denote the set of all words of Type i with
domain [m] and codomain [n] by Wi(m,n) for i ∈ {I, II, III}.

Lemma 2.3.9. Let m,n ∈ N ∪ {0±}. Types are related to the involution as follows:

(1) w ∈ WI(m,n) if and only if w∗ ∈ WIII(n,m), and

(2) If w ∈ WII(n, n), then w∗ ∈ WII(n, n).

Proof. Obvious.

Standard Forms

Notation 2.3.10. if we replace j with j + 2 in the statement of relation (1), we get the
equivalent relation

(1’) αjαi = αiαj+2 for all j ≥ i with (j, i) 6= (2n, 1)

as maps [n+ 1]→ [n− 1].

Definition 2.3.11. A word w ∈ WI(m,n) with m ≥ 1 is called irreducible if either

(1) w = αik · · ·αi1 where ir > ir+1 for all r ∈ {1, . . . , k − 1} and ir < 2(m− r) + 2 for all
r ∈ {1, . . . , k}, in which case we also say w is ordered, or
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(2) w = αqαik · · ·αi1αjl · · ·αj1 ∈ WI(m,n) where m ≥ 1 and l, k ≥ 0 such that

(i) q = 2n+ 2,

(ii) ir > ir+1 for all r ∈ {1, . . . , k− 1}, i1 < jl, and js > js+1 for all s ∈ {1, . . . , l− 1},
and

(iii) ir ≤ 2(k− r) + 1 for all r ∈ {1, . . . , k} and js ≥ 2(m− s) + 1 for all s ∈ {1, . . . , l}.

Remark 2.3.12. If αqαik · · ·αi1αjl · · ·αj1 is irreducible as in (2) of 2.3.11, then so are

αqαik · · ·αi1αjl · · ·αjr and αqαik · · ·αis

for all r ∈ {1, . . . , l} and s ∈ {1, . . . , k}. In particular, if l > 0, then jl = 2(m− l) + 1, and
if k > 0, then ik = 1.

Algorithm 2.3.13. Suppose w = αik · · ·αi1 ∈ W1(m,n − 1) is ordered where n − 1 > 0.
The following algorithm gives words u1, u2 where u1 is irreducible and α2nw = u2u1. Set
u1 = α2nw and u3 = id[n−1].

Step 1: If u1 is irreducible, set u2 = u3. We are finished. Otherwise, proceed to Step 2.

Step 2: There is a j ∈ {1, . . . , k} such that 2(k− j) + 1 < ij < 2(m− j) + 1. Pick j minimal
with this property. Use relation (1) to push αik · · ·αij+1

past αij to get

w = α2nαij−2(k−j)+2αik−1
· · ·αij+1

αij−1
· · ·αi1 .

Note that

1 < ij − 2(k − j) < 2(m− j) + 1− 2(k − j) = 2(m− k) + 1 = 2n+ 1,

as m− k = n, so we may use relation (1’) to get

αij−2(k−j)α2n+2αik−1
· · ·αj+1αj−1 · · ·αi1 .

Set u2 = αij−2(k−j)+2u3. Now set u3 = u2. Set

u1 = α2n+2αik−1
· · ·αj+1αj−1 · · ·αi1 .

Go back to Step 1.

Proof. We need only prove the above algorithm terminates. Note one of the αi’s increases
in index each iteration, which cannot happen indefinitely.

Proposition 2.3.14. Suppose m ∈ N and n ∈ N ∪ {0±}. Each w ∈ WI(m,n) has a
decomposition w = wr · · ·w1 where each wi ∈ WI is irreducible. Such a decomposition of w
is called a standard decomposition of w.
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Proof. We induct on the length of w. If the length of w is 1, then we are finished. Suppose
w has length greater than 1 and the result holds for all words of shorter length. Use relation
(1’) to get w′ = wr · · ·w1 where each wi is ordered and for each s ∈ {1, . . . , r − 1}. If ws =
αia · · ·αi1 and ws+1 = αjb · · ·αj1 , then ia = 1, j1 = 2k, so αj1αia = α2kα1 ∈ a∆(k + 1, k − 1)
for some k ≥ 2. There are two cases.

Case 1: r = 1. Then w = w1 is ordered, hence irreducible, and we are finished.

Case 2: Suppose r > 1. As w2 = αia · · ·αi1 where αi1 = α2k ∈ a∆(k, k − 1), we apply
Algorithm 2.3.13 to the word α2kw1 to obtain u1, u2 with u1 irreducible such that u2u1 =
α2kw1. We now note that w = w′u1 where

w′ = wr · · ·w3αia · · ·αi2

is a word of strictly smaller length. Applying the induction hypothesis to w′ gives us the
desired result.

Theorem 2.3.15 (Standard Forms). Suppose w = hr · · ·h1 is a word on a∆ in a∆(m,n)
for m,n ∈ N ∪ {0±}. Then there is a decomposition w = δ

c+
+ δ

c−
− wIIIwIIwI where wi ∈ Wi

for all i ∈ {I, II, III}, c± ≥ 0, and wI and w∗III are in the form afforded by Proposition
2.3.14.

Proof. Note that it suffices to find vi ∈ Wi for i ∈ {I, II, III} and c± ≥ 0 such that
w = δ

c+
+ c

c−
− vIIIvIIvI , as we may then set wII = vII and apply Proposition 2.3.14 to vI and

v∗III to get wI and w∗III respectively. We induct on r. The case r = 1 is trivial. Suppose
r > 1 and the result holds for all words of shorter length. Apply the induction hypothesis
to w′ = hr−1 · · ·h1 to get

w′ = δ
c′+
+ δ

c′−
− uIIIuIIuI .

There are 4 cases.

(D) Suppose hr = δ±. Set c± = c′± + 1, c∓ = c′∓, and vi = ui for all i ∈ {I, II, III}. We
are finished.

(B) Suppose hr ∈ B. Set c± = c′± and vi = ui for i ∈ {I, II, III}. We are finished.

(T) Suppose hr = τ . Set c± = c′± and wI = uI . As we push τ right using relation (5) and
Proposition 2.3.6, only two extraordinary possibilities occur:

Case 1: τ meets β2n+1 or β2n+2 in a∆(n, n+1), so τ disappears when using Propo-
sition 2.3.6, or

Case 2: τ meets β1 ∈ a∆(0+, 1) or β2 ∈ a∆(0−, 1), so τ disappears as id[1] = τ ∈
a∆(1, 1).

Hence we get that w = v′IIIτ
s where vIII ∈ WIII and s ∈ {0, 1}. If s = 0, set vII = uII ,

and if s = 1, set vII = τuII . We are finished.
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(A) Suppose hr = αq for some q ∈ N. Use relation (6) to push αq to the right of the β’s.
There are five cases.

Case 1: We use the relation αiβj = τ±1. Arguing as in Case (T) we are finished.

Case 2: We use the relation αiβi±1 = id[k] for some k ∈ N∪{0±}, so αquIII = vIII
for some vIII ∈ WIII . Set c± = c′± and vi = ui for i ∈ {I, II}. We are finished.

Case 3: We use the relation αiβi = δ±, so αquIII = δ±vIII for some vIII ∈ WIII .
Set c± = c′± + 1, c∓ = c′∓, and vi = ui for i ∈ {I, II}. We are finished.

Case 4: αq can be pushed all the way to the right of uIII to obtain αquIII = vIIIαp
for some p ∈ N and vIII ∈ WIII . Then necessarily uII = τ s for some s ∈ Z≥0, so
we use relation (4) and 2.3.6 to push αp to the right of the τ ’s. Hence we obtain
αpuII = vIIαk for some k ∈ N and vII ∈ WII . Set c± = c′± and vI = αkuI . We
are finished.

Case 5: αq can be pushed all the way to the right except for the last βi. This
means αquIII = vIIIαiβj for some vIII ∈ WIII where αiβj = σ±. Set vII = σ±uII ,
c± = c′±, and vI = uI . We are finished.

Definition 2.3.16. If w ∈ Mor(a∆), a decomposition of w as in Theorem 2.3.15 is called a
standard form of w.

Remark 2.3.17. It will be a consequence of Theorem 2.4.8 that a word w ∈ a∆ has a
unique standard form.

2.4 The Isomorphism of Categories a∆ ∼= Atl

Proposition 2.4.1. The following defines an involutive functor F : a∆→ Atl:

Objects: F ([n]) = [n] for all n ∈ N ∪ {0±},
Morphisms:

(A) Set F (αi) = ai,

(B) Set F (βi) = bi,

(T) Set F (τ) = t, and

(D) Set F (δ+ ∈ a∆(n, n)) = (id[n], 1, 0) and F (δ− ∈ a∆(n, n)) = (id[n], 0, 1) for n ∈
N ∪ {0±}.

Proof. We must check that F (id[n]) = id[n] for all n ∈ N ∪ {0±} and that F preserves
composition, but both these conditions follow from Theorem 2.2.19. It is clear ∗ preserves
the involution by Proposition 2.2.22.
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Remark 2.4.2. We construct a functor G : Atl → a∆ as follows: we create a function
G : Atl → a∆ taking objects to objects (this part is easy as objects in both categories have
the same names) and Atl(m,n)→ a∆(m,n) bijectively such that F ◦G = idAtl. It will follow
immediately that G is a functor and G ◦ F = ida∆.

Theorem 2.4.3. Let m,n ∈ N ∪ {0±}. Then Fi = F |Wi(m,n) : Wi(m,n) → Ti(m,n) is
bijective for all i ∈ {I, II, III}, i.e. there is a bijective correspondence between words of
Type i and Atl tangles of Type i for all i ∈ {I, II, III}.

Proof.

Type I: Note that im(FI) ⊂ TI(m,n). We construct the inverse GI for FI . Note that by
Proposition 2.2.35, each T ∈ TI(m,n) can be written uniquely as T = Wr · · ·W1, which can
further be expanded as

T = aip · · · ai1︸ ︷︷ ︸
Wr

ajq · · · aj1︸ ︷︷ ︸
W2

· · · akr · · · ak1︸ ︷︷ ︸
W1

satisfying 2.2.35. Set

GI(T ) = αip · · ·αi1 · · ·αjq · · ·αj1αkr · · ·αk1 .

It follows FI ◦GI = id. Now by Proposition 2.3.14, every word of Type I can be written in
this form. Hence we see GI is in fact the inverse of FI

Type II: Obvious.

Type III:. From the Type I case and the involutions in a∆ and Atl, we have the following
bijections:

TIII(m,n)←→ TI(n,m)←→WI(n,m)←→WIII(m,n).

Definition 2.4.4. We define G : Atl→ a∆ as follows:

Objects: G([n]) = [n] for all n ∈ N ∪ {0±}.
Morphisms: First define G(T, 0, 0) for a T ∈ Ti for i ∈ {I, II, III} by the bijective correspon-
dences given in Theorem 2.4.3. Then for an arbitrary Atl (m,n)-tangle T , define G(T, 0, 0)
by

G(T, 0, 0) = G(TIII , 0, 0) ◦G(TII , 0, 0) ◦G(TI , 0, 0)

where Ti for i ∈ {I, II, III} is defined for T as in the Atl Decomposition Theorem 2.2.37.
Finally, define G(T, c+, c−) = δ

c+
+ δ

c−
− G(T, 0, 0) for an arbitrary morphism (T, c+, c−) ∈

Mor(Atl). Note that G is well defined by the uniqueness part of 2.2.37.

Proposition 2.4.5. If T is an Atl (m,n)-tangle of Type i for i ∈ {I, II, III}, then F ◦
G(T ) = T .

Proof. This is immediate from the definition of G and Theorem 2.4.3.



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 29

Corollary 2.4.6. F ◦ G = idAtl, so G restricted to Atl(m,n) is injective into a∆(m,n) for
all m,n ∈ N ∪ {0±}.

Proof. This follows immediately from Theorem 2.2.37 and the definition of G as F is a
functor.

Proposition 2.4.7. G restricted to Atl(m,n) is surjective onto a∆(m,n).

Proof. We have that every word w ∈ Mor(a∆) is equal to a word δ
c+
+ δ

c−
− wIIIwIIwI in standard

form where wi is of Type i for i ∈ {I, II, III}. By 2.4.3 there are unique Atl tangles Ti of
Type i such that wi = G(Ti) for all i ∈ {I, II, III}. Set T = TIII ◦ TII ◦ TI , and note this
decomposition into a composite of Atl tangles of Types I, II, and III is unique by 2.2.37. It
follows that

G(T, c+, c−) = δ
c+
+ δ

c−
− wIIIwIIwI = w

by the definition of G.

Theorem 2.4.8. F : a∆ → Atl is an isomorphism of involutive categories. Hence a∆ is a
presentation of Atl via generators and relations.

Proof. Obvious from Corollary 2.4.6 and Proposition 2.4.7.

Corollary 2.4.9. Each word w ∈ Mor(a∆) has a unique standard form.

Proof. Each Atl tangle has a unique decomposition as TIII ◦ TII ◦ TI . Note T ∗III and TI have
unique decompositions as in Proposition 2.2.35 which correspond under the isomorphism of
categories to decompositions as in Proposition 2.3.14. We are finished.

2.5 The Annular Category from Two Cyclic

Categories

The Cyclic Category

In this subsection, we recover Jones’ result in [Jon00] that there are two copies of (the
opposite of) the cyclic category c∆op in a∆ ∼= Atl. We will recycle the notation t from Section
1. The definitions from this section are adapted from [Lod98].

Definition 2.5.1. Let cAtl+ be the subcategory of Atl with objects [n] for n ∈ N such that
for m,n ∈ N, cAtl(m,n) is the set of annular (m,n)-tangles with no loops, only shaded caps,
and only unshaded cups. Let cAtl− be the image of cAtl+ under the involution of Atl, i.e.
cAtl−(m,n) is the set of annular (m,n)-tangles with no loops, only unshaded caps, and only
shaded cups.

Remark 2.5.2. Clearly cAtl+ ∼= cAtl−.
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∗ ∗
, ∗

∗

Figure 2.19: Examples of morphisms in cAtl+ and cAtl− respectively.

Definition 2.5.3. The opposite of the cyclic category c∆op is given by

Objects: [n] for n ∈ Z≥0 and

Morphisms: generated by

di : [n] −→ [n− 1] for i = 0, . . . , n where n ≥ 1

si : [n] −→ [n+ 1] for i = 0, . . . , n where n ≥ 0

t : [n] −→ [n] where n ≥ 0

subject to the relations

(1) didj = dj−1di for i < j.

(2) sisj = sj+1si for i ≤ j,

(3) disj =


sj−1di if i < j

id[n] if i = j, j + 1

sjdi−1 if i > j + 1,

(4) tn+1 = id[n],

(5) dit = tdi−1 for 1 ≤ i ≤ n, and

(6) sit = tsi−1 for 1 ≤ i ≤ n.

Remark 2.5.4. The opposite of the simplicial category s∆op is the subcategory of c∆op

generated by the di’s and the si’s subject to relations (1)-(3).

Remark 2.5.5. Similar to Proposition 2.3.6, we have the additional relations in c∆op that
d0t = dn and s0t = t2sn.

Definition 2.5.6. For n ∈ Z≥0, we define s−1 : [n] → [n + 1] by s−1 = tsn. This map is
called the extra degeneracy.
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Remark 2.5.7. In [Lod98], Loday names this map sn+1. However, we will use the name s−1

considering Proposition 2.5.8, Corollary 2.5.16, and the fact that if R is a unital commutative
ring, A is a unital R-algebra, and C• is the cyclic R-module (see Section 2.6) arising from
the Hochschild complex with coefficients in A, then Cn = A⊗n+1, and

s−1(a0 ⊗ · · · ⊗ an) = 1⊗ a0 ⊗ · · · ⊗ an,
si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an for 0 ≤ i ≤ n− 1, and

sn(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ an ⊗ 1.

Proposition 2.5.8. The following additional relations hold for s−1 ∈ c∆op(n, n+ 1):

(1) s−1si = si+1s−1 for all i ≥ 0,

(2) dis−1 =


id[n] if i = 0

s−1di−1 if 1 ≤ i ≤ n

t if i = n+ 1, and

(3) s0t = ts−1.

Proof. (1) Using relations (2) and (6), we get

s−1si = tsn+1si = tsisn = si+1tsn = si+1s−1.

(2) Using Remark 2.5.5, we have d0s−1 = d0tsn = dnsn = id[n]. If 1 ≤ i ≤ n, then using
relations (3) and (5), we have

dis−1 = ditsn = tdi−1sn = tsn−1di−1 = s−1di−1.

Finally, dn+1s−1 = dn+1tsn = tdnsn = t id[n] = t.

(3) Using Remark 2.5.5, we have s0t = t2sn = ts−1.

Remark 2.5.9. We may now add s−1 to the list of generators of c∆op after appropriately
altering relations (3) and (6).

Proposition 2.5.10. Suppose w = hr · · ·h1 is a word on c∆op in c∆op(m,n) for m,n ∈ Z≥0.
Then there is a decomposition w = wIIIwIIwI such that

(D) wI = dia · · · di1 with ij > ij+1 for all j ∈ {1, . . . , a− 1}.

(T) wII = tk for some k ≥ 0, and

(S) wIII = sib · · · si1 with ij < ij+1 for all j ∈ {1, . . . , b− 1},



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 32

Proof. The proof is similar to Theorem 2.3.15, but much easier. We proceed by induction on
r. If r = 1, the result is trivial. Suppose r > 1 and the result holds for all words of shorter
length. Apply the induction hypothesis to w′ = hr−1 · · ·h1 to get

w′ = uIIIuIIuI

satisfying (1)-(3). There are three cases.

(T) Suppose hr = t. Set wI = uI . Use relation (6) and Remark 2.5.5 to push t to the right
of the si’s. Either it makes it all the way, or it disappears in the process. Define wII
accordingly. Order the si’s using relation (2) to get wIII . We are finished.

(D) Suppose hr = di. Use relation (3) to push di to the right of the sj’s. One of three
possibilities occurs:

(1) We only use the relation disj = skdl. Thus we can push di all the way to the
right. Now push di right of the t’s using relation (5) and Remark 2.5.5. Order
the sj’s using relation (2) to get wIII , define wII in the obvious way, and reorder
the di’s using relation (1) to get wI . We are finished.

(2) We use the relation disj = id, and di disappears. Set wi = ui for i ∈ {I, II}, and
order the sj’s using relation (2) to get wIII . We are finished.

(3) We use the relation dn+1s−1 = t. We are now argue as in Case (T). We are
finished.

(S) Suppose hr = si. Order siuIII using relation (2) to get wIII , and set wi = ui for
i ∈ {I, II}. We are finished.

Theorem 2.5.11. The following defines an injective functor H+ : c∆op → a∆:

Objects: H+([n]) = [n+ 1] for n ∈ Z≥0, and

Morphisms: Let n ∈ Z≥0.

(D) For dj ∈ c∆op(n, n− 1), set H+(dj) = α2j+1 ∈ a∆(n+ 1, n).

(T) For t ∈ c∆op(n, n), set H+(t) = τ ∈ a∆(n+ 1, n+ 1).

(S) For sj ∈ c∆op(n, n+ 1), set H+(sj) = β2j+2 ∈ a∆(n+ 1, n+ 2).

Proof. Clearly H+ is a functor as the relations are satisfied. Injectivity follows immediately
from Corollary 2.4.9 and Proposition 2.5.10.

Remark 2.5.12. Note that H+(s−1) = H+(tsn) = H+(t)H+(sn) = τβ2n+2 = β2n+4τ .

Corollary 2.5.13. The image of F ◦H+ : c∆op → Atl is cAtl+. Hence c∆op ∼= cAtl+.
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Proof. It is clear F ◦ H+ is injective and lands in cAtl+ as all generators of c∆op land in
cAtl+. Surjectivity follows from Theorem 2.2.37.

Corollary 2.5.14. A decomposition w = wIIIwIIwI as in Proposition 2.5.10 is unique.

Theorem 2.5.15. The following defines an injective functor H− : c∆op → a∆:

Objects: H−([n]) = [n+ 1] for n ∈ Z≥0, and

Morphisms: Let n ∈ Z≥0.

(D) For dj ∈ c∆op(n, n− 1), set H−(dj) = α2j+2 ∈ a∆(n+ 1, n).

(T) For t ∈ c∆op(n, n), set H−(t) = τ ∈ a∆([n+ 1], [n+ 1]).

(S) For sj ∈ c∆op(n, n+ 1), set H−(sj) = β2j+3 ∈ a∆(n+ 1, n+ 2).

Proof. Clearly H− is a functor as the relations are satisfied. Injectivity follows immediately
from Corollary 2.4.9 and Proposition 2.5.10.

Remark 2.5.16. Note that H−(s−1) = H−(tsn) = H−(t)H−(sn) = τβ2n+3 = β1.

Corollary 2.5.17. The image of F ◦H− : c∆op → Atl is cAtl−. Hence c∆op ∼= cAtl−.

Remark 2.5.18. cAtl+ and cAtl− are exactly the two copies of c∆op in Atl found by Jones
in [Jon00].

Corollary 2.5.19. There is an isomorphism c∆ ∼= c∆op.

Proof. We have cAtl− ∼= c∆op ∼= cAtl+. Note the involution in Atl is an isomorphism cAtl+ ∼=
(cAtl−)op. The result follows.

Augmenting the Cyclic Category

Recall from algebraic topology that the reduced (singular, simplicial, cellular) homology
of a space X is obtained by inserting an augmentation map ε : C0(X) → Z where C0(X)
denotes the appropriate zero chains. In the language of the semi-simplicial category, we see
that this is the same thing as looking at an augmented semi-simplicial abelian group, i.e.,
a functor from the opposite of the augmented semi-simplicial category, which is obtained
from the opposite of the semi-simplicial category (see 2.5.4) by adding an object [−1] and
the generator d0 : [0]→ [−1] subject to the relation didj = dj−1di for i < j.

[−1] [0]
d0oo [1]

d0,d1oo [2]
d0,d1,d2oo · · ·d0,d1,d2,d3oo

This immediately raises the question of how one should augment the opposite of the cyclic
category. The surprising answer comes from the symmetry arising from the extra degeneracy



CHAPTER 2. A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB
CATEGORY 34

s−1. We should add two objects, [+] and [−], and maps d0 : [0] → [+] and s−1 : [−] → [0]
subject to the relations didj = dj−1di for i < j and sisj = sj+1si for i ≤ j:

[+]

[0]

d0

ff

s−1,s0
// [1]

d0,d1oo

s−1,s0,s1
// [2]

d0,d1,d2oo

s−1,s0,s1,s2
// · · ·

d0,d1,d2,d3oo

[−]

s−1

88

As t : [0]→ [0] is the identity, we need not worry about the other relations. Under the isomor-
phism c∆op ∼= cAtl+ described in the previous subsection, these maps should be represented
by the following diagrams:

∗
∗

, ∗
∗

Figure 2.20: Maps d0 : [0]→ [+] and s−1 : [−]→ [0]

Note that these morphisms satisfy the shading convention of cAtl+ once we add [0±] to
the objects of cAtl+. We cannot use just one object as we would then violate the shading
convention and closed loops would arise. We will denote the augmented opposite of the

cyclic category by c̃∆op. For our main result, we will also need to consider the augmented

cyclic category c̃∆, which is just the category c̃∆op with the arrows switched.

Pushouts of Small Categories

Let Cat be the category of small categories. Note that pushouts exist in Cat.

Definition 2.5.20. Suppose A,B1,B2 are small categories and Fi : A → Bi for i = 1, 2 are
functors. Then the pushout of the diagram

A
F1 //

F2

��

B1

B2

is the small category C defined as follows:
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Objects: Ob(C) is the pushout in Set of the diagram

Ob(A)
F1 //

F2

��

Ob(B1)

G1

��
Ob(B2)

G2

// Ob(C)

This defines maps Gi : Ob(Bi)→ Ob(C) for i = 1, 2.

Morphisms: For X, Y ∈ Ob(C), Mor(X, Y ) is the set of all words of the form ϕn ◦ · · · ◦ ϕ1

such that

(1) ϕi ∈ Mor(B1) ∪Mor(B2) for all i = 1, . . . , n,

(2) the source of ϕ1 is in G−1
1 (X) ∪G−1

2 (X) and the target of ϕn is in G−1
1 (Y ) ∪G−1

2 (Y ),

(3) for all i = 1, . . . , n− 1, either

(i) the target of ϕi is the source of ϕi+1, or

(ii) the target of ϕi is Zi ∈ im(Fj) ⊆ Bj for some j ∈ {1, 2}, and the source of ϕi+1 is
in Fk(F

−1
j (Zi)) where k 6= j.

subject to the relation F1(ψ) = F2(ψ) for every morphism ψ ∈ Mor(A).

Notation 2.5.21. In the sequel, we will need to discuss c̃∆, the augmented cyclic category.
In order that no confusion can arise, we will add a ∗ to morphisms to emphasize the fact
that they compose in the opposite order. For example, we have generators d∗i satisfying the
relation d∗jd

∗
i = d∗i d

∗
j−1 for i < j.

Definition 2.5.22. Define the small category/groupoid T by

Objects: [n] for n ∈ Z≥0 ∪ {±}
Morphisms: Generated by t : [n]→ [n] subject to the relation tn+1 = id[n] for n ∈ Z≥0.

Definition 2.5.23. Let PO be the pushout in Cat of the following diagram:

T
F1 //

F2
��

c̃∆op

c̃∆

where Fi([n]) = [n] for n ∈ Z≥0 ∪ [±] for i = 1, 2 and F1(t) = t and F2(t) = (t∗)−1 = (t−1)∗.
Note that if c∆op has generators di, si, t and c∆ has generators d∗i , s

∗
i , t
∗, then PO is the

category given by

Objects: [n] for n ∈ Z≥0 ∪ {±} and
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Morphisms: generated by

d0 : [0]→ [+] and s∗−1 : [0]→ [−]

s−1 : [+]→ [0] and d∗0 : [−]→ [0]

di, s
∗
i−1 : [n] −→ [n− 1] for i = 0, . . . , n where n ≥ 1

si, d
∗
i+1 : [n] −→ [n+ 1] for i = −1, . . . , n where n ≥ 0

t : [n] −→ [n] where n ≥ 0

subject to the relations

(1) didj = dj−1di and s∗i s
∗
j = s∗j−1s

∗
i for i < j,

(2) sisj = sj+1si and d∗i d
∗
j = d∗j+1d

∗
i for i ≤ j,

(3) disj =


sj−1di if i < j

id[n] if i = j, j + 1

sjdi−1 if i > j + 1

and s∗i−1d
∗
j =


d∗j−1s

∗
i−1 if i < j − 1

id[n] if i = j, j + 1

d∗js
∗
i−2 if i > j + 1,

(4) tn+1 = id[n],

(5) dit = tdi−1 for 1 ≤ i ≤ n and s∗i t = ts∗i−1 for 0 ≤ i ≤ n, and

(6) sit = tsi−1 for 0 ≤ i ≤ n and d∗i t = td∗i−1 for 1 ≤ i ≤ n.

Note that t = (t∗)−1 as PO is the pushout, so t∗ does not appear in the above list.

Remark 2.5.24. Note that PO is involutive using the obvious involution as hinted by the
∗-notation.

Definition 2.5.25. Let PO(δ+, δ−) be the small category obtained from PO by adding
generating morphisms δ± : [n] → [n] for all n ∈ Z≥0 ∪ {±} which commute with all other
morphisms. The maps δ± are called the coupling constants.

Remark 2.5.26. Note that PO(δ+, δ−) is involutive if we define (δ±)∗ = δ±.

Theorem 2.5.27. a∆ is isomorphic to the category Q obtained from PO(δ+, δ−) with the
additional relations

(1) dis
∗
j =

{
s∗j−1di if i < j

s∗jd
∗
i+1 if j > i

(2) did
∗
j =

{
d∗j−1di if i < j

δ− if i = j
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(3) s∗i sj =

{
sj−1s

∗
i if i < j

δ+ if i = j

Proof. Define a map Ψ: a∆→ Q by

Objects: Define Ψ([0±]) = [±]. For n ≥ 1, define Ψ([n]) = [n− 1].

Morphisms: We define Ψ on primitive morphisms:

(A) Define Ψ(α1 ∈ a∆(1, 0+)) = d0 ∈ Q(0,+) and Ψ(α2 ∈ a∆(1, 0−)) = s∗−1 ∈ Q(0,−).
For n ≥ 2, define

Ψ(αi ∈ a∆(n, n− 1)) =

{
s∗(i−3)/2 ∈ Q(n− 1, n− 2) if i is odd

d(i−2)/2 ∈ Q(n− 1, n− 2) if i is even.

(B) Define Ψ(β1 ∈ a∆(0+, 1)) = s−1 ∈ Q(−, 0) and Ψ(β2 ∈ a∆(0−, 1)) = d∗0 ∈ Q(+, 0).
For n ≥ 1, define

Ψ(βi ∈ a∆(n, n+ 1)) =

{
s(i−3)/2 ∈ Q(n− 1, n) if i is odd

d∗(i−2)/2 ∈ Q(n− 1, n) if i is even.

(T) For n ≥ 1, define Ψ(τ ∈ a∆(n, n)) = t ∈ Q(n− 1, n− 1).

(D) Define Ψ(δ±) = δ±.

One checks Ψ is a well defined isomorphism by showing the relations match up.

Remarks 2.5.28. (1) The above relations are called the coupling relations.

(2) Usually we study representations of c∆ and a∆ in abelian categories and the coupling
constants are multiplication by scalars. These scalars can be built into the coupling
relations in our abelian category without first defining PO(δ+, δ−). Hence an annular
object in an abelian category (see Section 2.6) is obtained from the pushout of two
cyclic objects over a T-object and then quotienting out by the coupling relations.

(3) Another way to skip passing to PO(δ+, δ−) is to take the linearization of all our cate-
gories over some unital commutative ring R (make the morphism sets R-modules) and
choose scalars δ± for the coupling relations.

2.6 Annular Objects

Definition 2.6.1. An annular object in an arbitrary category C is a functor a∆ → C. A
cyclic object is a functor c∆op → C. If C is an abelian category and X• is an annular,
respectively cyclic, object, we replace X•(τ ∈ a∆(n, n)) with (−1)n−1X•(τ), respectively we
replace X•(t ∈ c∆op(n, n)) with (−1)nX•(t), to account for the sign of the cyclic permutation.
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Remarks 2.6.2. Each annular object has two restrictions to cyclic objects.

Notation 2.6.3. Usually such a functor is denoted with a bullet subscript, e.g. X•. If X•
is such a functor, we will use the following standard notation:

(1) X•([n]) = Xn for n ∈ Z≥0 and X•([0±]) = X± where applicable.

(2) X•(ϕ) = ϕ, i.e. we will use the same notation for the images of the morphisms in the
category C.

Note 2.6.4. For an annular object in an abelian category, relations (4), (5), and (6) become

(4’) αiτ = −ταi−2 for i ≥ 3,

(5’) βiτ = −τβi−2 for i ≥ 3, and

(6’) if αiβj : [n] → [n] with n ≥ 2 and (i, j) = (1, 2n + 2), (2n + 2, 1), then α1β2n+2 =
(−1)n−1τ−1 and α2n+2β1 = (−1)n−1τ .

Proposition 2.3.6 becomes

(1’) α1τ = (−1)n−1α2n−1 and α2τ = (−1)n−1α2n

(2’) τβ2n+1 = (−1)nβ1, τβ2n+2 = (−1)nβ2, and

(3’) β1τ = (−1)n−1τ 2β2n−1 and β2τ = (−1)n−1τ 2β2n.

Note 2.6.5. For a cyclic object in an abelian category, relations (5) and (6) become

(5’) dit = −tdi−1 for i ≥ 1 and

(6’) sit = −tsi−1 for i ≥ 1.

Following Remark 2.5.5, we have

(i) d0t = (−1)ndn and

(ii) s0t = (−1)nt2sn.

Definition 2.5.6 becomes s−1 = (−1)n+1tsn. Parts (2) and (3) of Proposition 2.5.8 become

(2’) dn+1s−1 = (−1)nt and

(3’) s0t = −ts−1.

Remark 2.6.6. The necessity of this sign convention becomes apparent in calculations with
Connes’ boundary map (see 2.6.19 and 2.6.20).

Definition 2.6.7. Let C be an involutive category and suppose X• : a∆→ C is an annular
object in C. Then X∗• : a∆→ C is also an annular object in C where
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Objects: X∗• ([n]) = Xn for all n ∈ N ∪ {0±}, and

Morphisms: X∗• (w) = X•(w
∗)∗ for all w ∈ Mor(a∆).

If C is abelian, then X∗• still satisfies the sign convention.

Remark 2.6.8. The representation theory of Atl was studied extensively by Graham and
Lehrer in [GL98] and Jones in [Jon01]. In Definition/Theorem 2.2 in [Pet10], Peters gives a
good summary of the case of an annular C∗-Hilbert module where δ± is given by multipli-
cation by δ > 2.

Homologies of Annular Modules

As the semi-simplicial, simiplicial, and cyclic categories live inside a∆, we can define
Hochschild and cyclic homologies of annular objects in abelian categories. We will focus on
annular modules and leave the generalization to an arbitrary abelian category to the reader.
Fix a unital commutative ring R.

Definition 2.6.9. Given a semi-simplicial R-module M•, define the Hochschild boundary
b : Mn →Mn−1 for n ≥ 1 by

b =
n∑
i=0

(−1)idi.

The Hochscild homology of M• is

HHn(M•, b) = ker(b)/ im(b)

for n ≥ 0, where we set M−1 = 0, and b : M0 →M−1 is the zero map.

Remark 2.6.10. As an annular R-module is a semi-simplicial R-module in two ways, we
will have two Hochschild boundaries.

Definition 2.6.11. Suppose X• is an annular R-module. Let X±• be the cyclic object
obtained from X• by restricting X• to G(cAtl±). For n ≥ 1, define

HH±n (X•) = HH±n−1(X±• ).

Remark 2.6.12. The Hochschild boundaries of X±• for n ≥ 2 are

b+ =
n−1∑
i=0

(−1)iα2i+1 and b− =
n−1∑
i=0

(−1)iα2i+2.

Definition 2.6.13. The above definition does not take into account X±. We may define
the reduced Hochschild homology by looking at the corresponding augmented cyclic objects
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(see Subsection 2.5). Define b± : X1 → X± by b+ = α1 : X1 → X+ and b− = α2 : X1 → X−.
Define the reduced Hochschild homology of X• as follows:

H̃H
±
n (X•) = HH±n (X•) for n ≥ 2,

H̃H
±
1 (X•) = ker(b±)/ im(b±), and

H̃H
±
0 (X•) = coker(b±)

Remark 2.6.14. The content of the next proposition was found by Jones in [Jon00].

Proposition 2.6.15. Let X• be an annular R-module. Then for all n ≥ 1,

β1b+ + b+β1 = δ+ idXn and

β2b− + b−β2 = δ− idXn ,

and when n = ±,

b+β1 = δ+ idX+ and

b−β2 = δ− idX− .

Proof. This follows immediately from relation 6.

Corollary 2.6.16. If δ± is multiplication by an element of R×, the group of units of R, then

H̃H
±
n (X•) = 0 for all n ≥ 0.

Corollary 2.6.17. Let N ⊂M be an extremal, finite index II1-subfactor, and let X• be the
annular C-module given by its tower of relative commutants (see [Jon99], [Jon01]). Then

H̃H
±
n (X•) = 0 for all n ≥ 0.

Example 2.6.18 (TL•(Z, 0)). When δ± /∈ R×, we can have non-trivial homology. For
example, for n ∈ N ∪ {0±}, let TLn(Z, 0) be the set of Z-linear combinations of planar
n-tangles with no input disks and no loops (adjust the definition of an annular n-tangle so
that there is no D1). The action of T ∈ a∆(m,n) on S ∈ TLm(Z, 0) is given by tangle
composition F (T ) ◦ S with the additional requirement that if there are any closed loops, we
get zero. We then extend this action Z-linearly. Then HH±n (TL•(Z, 0)) 6= 0 for all n ≥ 0.
In fact, the class of the planar n-tangle with only shaded, respectively unshaded, cups is a
nontrivial element in HH±n (TL•(Z, 0)) respectively. Clearly all such tangles are in ker(b±).
However, it is only possible to get an even multiple of this tangle in im(b±). If a shaded
region is capped off by an αi to make a cup, there must be two ways of doing so. Using
MAGMA [BCP97], the author has calculated the first few (+) reduced Hochschild homology
groups of TL•(Z, 0) to be

H̃H
+

0 = H̃H
+

1 = Z,
HH+

2 = HH+
3 = Z/2,

HH+
4 = HH+

5 = Z/6, and

HH+
6 = HH+

7 = Z/2⊕ Z/2.
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∗

Figure 2.21: Representative for a nontrivial element in HH+
4 (TL•(Z, 0))

For n ≥ 2, the class of the tangle described above contributes a copy of Z/2Z. The question
still remains whether this parity continues.

Definition 2.6.19. Given a cyclic R-module C•, define the cyclic bicomplex BC∗∗(C•) be
the bicomplex

b
��

b
��

b
��

b
��

C3

b
��

C2

b
��

Boo C1

b
��

Boo C0
Boo

C2

b
��

C1

b
��

Boo C0
Boo

C1

b
��

C0
Boo

C0

where b is the Hochschild boundary obtained by looking at the corresponding semi-simplicial
R-module, B = (1− t)s−1N : Cn → Cn+1 is Connes’ boundary map, and

N =
n∑
i=0

ti.

Recall s−1 = (−1)n+1tsn is the extra degeneracy. The cyclic homology of C• is given by
HCn(C•) = Hn(Tot(BC∗∗(C•))).

Remark 2.6.20. In order for BC∗∗(C•) to be a bicomplex, we need b2, B2, and bB +Bb to
equal zero. While the first two are trivial, we must use Loday’s sign convention to get the
third. Setting

b′ =
n−1∑
i=0

(−1)idi : Cn → Cn−1,
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we have b(1− t) = (1− t)b′, b′s−1 + s−1b
′ = id, and b′N = Nb, so

bB +Bb = b(1− t)s−1N + (1− t)s−1Nb = (1− t)(b′s−1 + s−1b
′)N = (1− t)N = 0.

Without this sign convention, we no longer have bB +Bb = 0.

Definition 2.6.21. Suppose X• is an annular R-module. Then X• becomes a cyclic module
in two ways, so we have two cyclic homologies to study. For n ≥ 1, define HC±n (X•) =
HCn−1(X±• ).

Remark 2.6.22. For n ≥ 1, B± : Xn → Xn+1 is given by

B+ = (−1)n(1− τ)(τβ2n)
n−1∑
i=0

τ i = (−1)n(1− τ)(β2n+2τ)
n−1∑
i=0

τ i

= (−1)n(1− τ)β2n+2

n−1∑
i=0

τ i and

B− = (−1)n(1− τ)β1

n−1∑
i=0

τ i

as the two extra degeneracies for G(cAtl±) are (−1)nτβ2n and (−1)nβ1 respectively.

Corollary 2.6.23. If δ± is multiplication by an element of R×, the group of units of R, then
HC±n (X•) = R for all odd n ≥ 1 and HC±n (X•) = 0 for all even n ≥ 2.

Corollary 2.6.24. Let N ⊂M be an extremal, finite index II1-subfactor, and let X• be the
annular C-module given by its tower of relative commutants. Then HC±n (X•) = C for all
odd n ≥ 1 and HC±n (X•) = 0 for all even n ≥ 2.

Example 2.6.25. Once again using MAGMA [BCP97], the author has calculated the first
few (+) cyclic homology groups of TL•(Z, 0) to be

HC+
1 = Z

HC+
2 = Z/2

HC+
3 = Z/2⊕ Z

HC+
4 = Z/2⊕ Z/6

HC+
5 = Z/2⊕ Z/6⊕ Z, and

HC+
6 = Z/2⊕ Z/2⊕ Z/2⊕ Z/6.
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Chapter 3

The embedding theorem for finite
depth subfactor planar algebras

3.1 Introduction

A powerful method of construction of subfactors is the use of commuting squares, which
are systems of four finite dimensional von Neumann algebras

A1,0 ⊂ A1,1

∪ ∪
A0,0 ⊂ A0,1

included as above, with a faithful trace on A1,1 so that A1,0 and A0,1 are orthogonal modulo
their intersection A0,0.

One iterates the basic construction of [Jon83] for the inclusions Ai,j ⊂ Ai,j+1 and Ai,j ⊂
Ai+1,j to obtain a tower of inclusions A0,n ⊂ A1,n. By a lovely compactness argument
of Ocneanu [JS97],[EK98], the standard invariant, or higher relative commutants, of the
inductive limit inclusion A0,∞ ⊂ A1,∞ are the algebras A′0,1 ∩ An,0. Thus once bases have
been chosen, the calculation of the relative commutants is a matter of elementary linear
algebra.

It was to formalise this calculation that planar algebras were first introduced [Jon99].
Finite dimensional inclusions are given by certain graphs (Bratteli diagrams), and in [Jon00],
a planar algebra associated purely combinatorially to a bipartite graph was introduced so
that it is rather obviously the tower of relative commutants for an inclusion B0 ⊂ B1 having
the graph as its Bratteli diagram. But because Ocneanu’s notion of connection was never
completely formalised in [Jon99], it was NOT proved that the planar algebra coming from
a commuting square via Ocneanu compactness is a planar subalgebra of the one defined in
[Jon00] for the graph of the inclusion A0,0 ⊂ A1,0.

Meanwhile the theory of planar algebras grew in its own right and a new method of
constructing subfactors evolved by looking at planar subalgebras of a given planar algebra
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[Pet10],[BMPS09]. Now if a subfactor is of finite depth, then by [Pop90], there is a commut-
ing square that constructs a hyperfinite model of it. Moreover the inclusion A0,0 ⊂ A1,0 for
this canonical commuting square has Bratteli diagram given by the so-called principal graph,
which is a powerful subfactor invariant. Thus if the the result of the previous paragraph had
been proved, it would have implied the following theorem, which is the main result of this
paper:

Theorem. A finite depth subfactor planar algebra is a planar subalgebra of the bipartite
graph planar algebra of its principal graph.

(See [MPS10] for the definition of the principal graph of a planar algebra.)
We prove this result with the interesting twist of not using connections. In particular,

our proof does not invoke the dual principal graph, which is perhaps rather surprising.
There are three steps to our proof. The first step, Section 3.2, is to define a canonical

planar ∗-algebra structure on the tower of relative commutants from a connected unital
inclusion of finite dimensional C∗-algebras whose Bratteli diagram is a given graph. We call
this the canonical planar ∗-algebra associated to the inclusion. We do this in more generality,
replacing finite dimensionality by a strong Markov property (see Definition 3.2.8), because
it is no harder and should have applications.

The second step, Section 3.3, is to identify the canonical planar ∗-algebra with the bi-
partite graph planar algebra of [Jon00] in the finite dimensional case. Loops on the Bratteli
diagram for the inclusion give bases for the relative commutants, so the isomorphism is
constructed by choosing bases for the vector spaces in the canonical planar ∗-algebra.

Finally, in Section 3.4, we construct the embedding map as follows: given a finite depth
subfactor planar algebra Q•, pick 2r suitably large so that the inclusion Q2r,+ ⊂ Q2r+1,+ ⊂
(Q2r+2,+, e2r+1) is standard, i.e., isomorphic to the basic construction. Set M0 = Q2r,+ and
M1 = Q2r+1,+, and let P• be the canonical planar ∗-algebra P• associated to the inclusion
M0 ⊂ M1. We prove in Theorem 3.4.1 that the map Q• → P• given by adding 2r or 2r + 1
strings on the left, depending on whether we are in Qn,+ or Qn,− respectively, is an inclusion
of planar algebras.

︸ ︷︷ ︸
n

· · ·

· · ·

x 7−→

︸ ︷︷ ︸
2r

︸ ︷︷ ︸
n

· · ·

· · ·

· · · x

While this paper was being written, Morrison and Walker in [MW10] produced a totally
different proof which constructs an embedding directly from the planar algebra Q• without
the use of algebra towers and centralisers. Their method also has the advantage that it
applies to infinite depth subfactor planar algebras without alteration!
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3.2 The canonical planar ∗-algebra of a strongly

Markov inclusion of finite von Neumann algebras

After defining the notion of a strongly Markov inclusion of finite von Neumann algebras,
we show the basic construction is also strongly Markov with the same (Watatani) index. We
then define the canonical planar ∗-algebra associated to a strongly Markov inclusion.

Many results of this section can be found in [Jon83], [PP86], [Wat90], [Jol90], [Pop94],
[Bis97], and [Bur03], but our treatment differs slightly, so we provide some proofs for the
reader’s convenience.

Bases, traces, and strongly Markov inclusions

Notation 3.2.1. Throughout this paper, a trace on a finite von Neumann algebra means
a faithful, normal, tracial state unless otherwise specified. We will write M0 ⊂ (M1, tr1) to
mean M0 ⊂ M1 is an inclusion of finite von Neumann algebras where tr1 is a trace on M1.
We set tr0 = tr1 |M0 .

Let M0 ⊂ (M1, tr1). Let M2 = 〈M1, e1〉 = JM ′
0J ⊂ B(L2(M1, tr1)) be the basic con-

struction, where e1 is the Jones projection with range L2(M0, tr0), and J : L2(M1, tr1) →
L2(M1, tr1) is the antilinear unitary given by the antilinear extension of xΩ 7→ x∗Ω, where
Ω ∈ L2(M1, tr1) is the image of 1 ∈M1.

Recall that there is a unique trace-preserving conditional expectation EM0 : M1 → M0

determined by tr1(xy) = tr0(EM0(x)y) for all x ∈M1 and y ∈M0, i.e., EM0 is the (Banach)
adjoint of the inclusion of preduals (M0)∗ → (M1)∗ [Tak02]. The conditional expectation
satisfies e1(xΩ) = EM0(x)Ω for all x ∈M1.

The following proposition is straightforward:

Proposition 3.2.2. The following are equivalent for a finite subset B = {b} ⊂M1:

(i) 1 =
∑
b∈B

be1b
∗,

(ii) x =
∑
b∈B

bEM0(b
∗x) for all x ∈M1, and

(iii) x =
∑
b∈B

EM0(xb)b
∗ for all x ∈M1.

Definition 3.2.3. A Pimsner-Popa basis for M1 over M0 is a finite subset B = {b} ⊂ M1

for which the conditions in Proposition 3.2.2 hold.
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We refer the reader to [Wat90] for the proof of the following:

Proposition 3.2.4. The following are equivalent:

(i) There is a Pimsner-Popa basis for M1 over M0,

(ii) M1 ⊗M0 M1 →M2 by x⊗ y 7→ xe1y is an M1 −M1 bimodule isomorphism, and

(iii) M2 = M1e1M1.

Remark 3.2.5. M1 ⊗M0 M1 is a ∗-algebra with multiplication (x1 ⊗ y1)(x2 ⊗ y2) = x1 ⊗
EM0(y1x2)y2 and adjoint (x ⊗ y)∗ = y∗ ⊗ x∗. If there is a Pimsner-Popa basis for M1 over
M0, the sum

∑
b∈B b⊗ b∗ is independent of the choice of Pimsner-Popa basis B, as it is the

identity. (We will renormalize in Proposition 3.2.25.)

Definition 3.2.6 ([Wat90]). If there is a Pimsner-Popa basis B = {b} for M1 over M0, then
we define the (Watatani) index

[M1 : M0] =
∑
b∈B

bb∗,

which is independent of the choice of basis.

Definition 3.2.7. Recall from [Pop94] that M2 has a canonical faithful, normal, semifinite
trace Tr2 which is the extension of the map xe1y 7→ tr1(xy) for x, y ∈M1.

Definition 3.2.8. An inclusion M0 ⊂ (M1, tr1) of finite von Neumann algebras is called
Markov if it satisfies the Markov property:

(1) Tr2 is finite with Tr2(1)−1 Tr2 |M1 = tr1.

A Markov inclusion is called strongly Markov if

(2) there is a Pimsner-Popa basis for M1 over M0.

Remark 3.2.9. Markov inclusions have been studied by Jolissaint [Jol90], Pimsner, Popa
[PP86], [Pop94], and more. In [Jol90], Jolissaint showed that condition (1) implies condition
(2) when the centers are atomic and the inclusion is connected, i.e., Z(M0)∩Z(M1) = M ′

1∩M0

is one dimensional. It is unknown to the authors at this point whether condition (1) implies
condition (2) for connected inclusions with diffuse centers.

The adjective “strongly” in the term “strongly Markov” comes from Definition 3.6 in
[BDH88], where they define the notion of “fortement d’indice fini” for a conditional expec-
tation. This notion translates as the existence of a finite Pimsner-Popa basis.

Remark 3.2.10. Recall from [Pop94] that Tr2(1)−1 Tr2 extends tr1 if and only if Tr2(1) =
[M1 : M0] ∈ [1,∞).

Examples 3.2.11. (1) A finite Jones index inclusion of II1-factors with the unique trace
is strongly Markov, and the Watatani index is equal to the Jones index.
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(2) A connected, unital inclusion of finite dimensional C∗-algebras with the Markov trace
is strongly Markov, and the index is equal to ‖ΛTΛ‖ where Λ is the bipartite adjacency
matrix for the Bratteli diagram of the inclusion.

Suppose M0 ⊂ (M1, tr1) is strongly Markov. Then M2 is finite and tr2 = [M1 : M0]−1 Tr2

extends tr1, so we may iterate the basic construction for M1 ⊂ (M2, tr2). Let M3 =
〈M2, e2〉 ⊂ B(L2(M2, tr2)), where e2 is the Jones projection with range L2(M1, tr1). Let
Tr3 be the canonical faithful, normal, semifinite trace on M3 (see Definition 3.2.7). The
following lemma is straightforward:

Lemma 3.2.12. (1) The conditional expectation EM1 : M2 →M1 is given by EM1(xe1y) =
xy,

(2) e1e2e1 = [M1 : M0]−1e1 and e2e1e2 = [M1 : M0]−1e2, and

(3) if B is a Pimsner-Popa basis for M1 over M0, then
{

[M1 : M0]1/2be1

∣∣b ∈ B} is a
Pimsner-Popa basis for M2 over M1.

Theorem 3.2.13. M1 ⊂ (M2, tr2) is strongly Markov and [M2 : M1] = [M1 : M0].

Proof. Note M3 = M2e2M2 by Proposition 3.2.4 and Lemma 3.2.12, so the canonical trace
Tr3 on M3 is finite. By Definition 3.2.7 and Lemma 3.2.12, if x ∈M2,

Tr3(x) = [M1 : M0]
∑
b∈B

Tr3(xbe1e2e1b
∗) = [M1 : M0]

∑
b∈B

tr2(xbe1b
∗) = [M1 : M0] tr2(x).

Hence [M2 : M1] = Tr3(1) = [M1 : M0], and tr3 = [M1 : M0]−1 Tr3 extends tr2.

Definition 3.2.14. Suppose P ⊂ B(L2(M1, tr1)) is a von Neumann algebra containing
M1, trP is a trace on P extending tr1, and p is a projection in P . We say the inclusion
M0 ⊂ M1 ⊂ (P, trP , p) is standard if there is an isomorphism of von Neumann algebras
ϕ : P →M2 such that ϕ|M1 = idM1 , trP = tr2 ◦ϕ, and ϕ(p) = e1.

The following lemma, which is an alteration of Lemma 5.8 of [Jol90] and uses ideas from
Lemma 5.3.1 in [JS97], allows us to identify when inclusions are standard:

Lemma 3.2.15. Suppose M0 ⊂M1 ⊂ (P, trP , p) such that

(1) pmp = EM0(m)p for all m ∈M1, and

(2) EM1(p) = [M1 : M0]−1.

Then ψ : M1⊗M0M1 →M1pM1 by x⊗y 7→ xpy is an M1-bilinear isomorphism of ∗-algebras.
Hence ϕ : M1e1M1 →M1pM1 by xe1y 7→ xpy is an isomorphism of ∗-algebras. Moreover, if

(3) P = M1pM1,
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then M0 ⊂ M1 ⊂ (P, trP , p) is standard via ϕ. Conversely, if M0 ⊂ M1 ⊂ (P, trP , p) is
standard, then (1), (2), and (3) hold.

Proof. First, note that px = xp for all x ∈ M0 by (1), and the map M1 → M1p by y 7→ yp
is injective by (2). Clearly ψ is surjective and preserves the ∗-algebra structure. Suppose

ψ

(
k∑
i=1

xi ⊗ yi

)
=

k∑
i=1

xipyi = 0.

Then for all x, y ∈M1,

px

(
k∑
i=1

xipyi

)
yp =

(
k∑
i=1

EM0
(xxi)EM0

(yiy)

)
p = 0 =⇒

k∑
i=1

EM0
(xxi)EM0

(yiy) = 0.

If B = {b} is a Pimsner-Popa basis for M1 over M0, by Remark 3.2.5,

k∑
i=1

xi ⊗ yi =
∑
a∈B

a⊗ a∗
(

k∑
i=1

xi ⊗ yi

)∑
b∈B

b⊗ b∗ =
∑
a,b∈B

k∑
i=1

a⊗ EM0
(a∗xi)EM0

(yib)b
∗ = 0.

The remaining claims follow as in [Jol90].

The Jones tower and tensor products

We give the background necessary to define the canonical planar ∗-algebra associated
to a Markov inclusion and to prove its uniqueness. Many facts stated without proof in
Subsection 3.2 rely on the results of this subsection. In particular, the multistep basic
construction described in this subsection helps us understand tangles which cap off on the
left (see Proposition 3.2.47), which are crucial to the proof of Theorem 3.4.1, the main result
of this paper.

For the rest of this section, let M0 ⊂ (M1, tr1) be a strongly Markov inclusion of finite
von Neumann algebras, and set d = [M1 : M0]1/2. For n ∈ N, inductively define the basic
construction

Mn+1 = 〈Mn, en〉 = MnenMn = JnM
′
n−1Jn ⊂ B(L2(Mn, trn))

with canonical trace trn+1 extending trn and satisfying trn+1(xen) = d−2 trn(x) for all x ∈Mn

where en ∈ B(L2(Mn, trn)) is the Jones projection with range L2(Mn−1, trn−1). For n ∈ N,
set En = den.

Fact 3.2.16. The Ei’s satisfy the Temperley-Lieb relations:

(i) E2
i = dEi = dE∗i ,

(ii) EiEj = EjEi for |i− j| > 1, and
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(iii) EiEi±1Ei = Ei.

Proposition 3.2.17. Suppose N ⊂ (M, trM) and M ⊂ (P, trP ) such that trP |M = trM .
Suppose A = {a} is a Pimsner-Popa basis for P over M and B = {b} is a Pimsner-Popa
basis for M over N . Then

(1) AB = {ab|a ∈ A and b ∈ B} is a Pimsner-Popa basis for P over N ,

(2) [P : N ] = [P : M ][M : N ], and

(3)
∑
b∈B

bePNb
∗ = ePM ∈ B(L2(P, trP )), where ePN is the projection L2(P, trP ) → L2(N, trN)

and ePM is the projection L2(P, trP )→ L2(M, trM).

Proof. (1) For all x ∈ P ,∑
ab∈AB

abEPN (b∗a∗x) =
∑
a,b

abEMN (EPM (b∗a∗x)) =
∑
a,b

abEMN (b∗EPM (a∗x)) =
∑
a

aEPM (a∗x) = x.

(2) Immediate from (1).

(3) If p ∈ P and Ω ∈ L2(P, trP ) is the image of 1 ∈ P , then∑
b∈B

bePNb
∗pΩ =

∑
b∈B

bEP
N(b∗p)Ω =

∑
b∈B

bEM
N (b∗(EP

M(p))Ω = EP
M(p)Ω = ePMpΩ.

Corollary 3.2.18. Mk ⊂ (Mn, trn) is strongly Markov for all 0 ≤ k ≤ n.

The following technical lemma will be used to define the multistep basic construction in
Proposition 3.2.20.

Lemma 3.2.19. For all 0 ≤ k ≤ n, let

fnn−k = dk(k−1)(enen−1 · · · en−k+1)(en+1en · · · en−k+2) · · · (en+k−1en+k−2 · · · en) ∈Mn+k.

If 0 ≤ j ≤ k ≤ n and B is a Pimsner-Popa basis for Mn−j over Mn−k, then
∑

b∈B bf
n
n−kb

∗ =
fnn−j.

Proof. For j + 1 ≤ i ≤ k, let Ai be a Pimsner-Popa basis for Mn−i+1 over Mn−i. Then
A = Aj+1 · · ·Ak is a Pimsner-Popa basis for Mn−j over Mn−k by Proposition 3.2.17, and∑

ai∈Ai
j+1≤i≤k

aj+1 · · · akfnn−ka∗k · · · a∗j+1 =
∑
ai∈Ai

j+1≤i≤k−1

aj+1 · · · ak−1f
n
n−k+1a

∗
k−1 · · · a∗j+1

= · · · =
∑

aj+1∈Aj+1

aj+1f
n
n−j−1a

∗
j+1 = fnn−j.
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For B another Pimsner-Popa basis for Mn−j over Mn−k, define U ∈ Mat|A|×|B|(Mn−k) by

Ua,b = E
Mn−j
Mn−k

(a∗b). If we consider A as a row vector in Mat1×|A|(Mn−j), then B = AU and
A = BU∗. For ` ∈ N, let F` = fnn−kI` ∈ Mat`×`(Mn+k), i.e., F` is the ` × ` diagonal matrix
with all diagonal entries equal to fnn−k. Then since fnn−k commutes with Mn−k, we have∑

b∈B

bfnn−kb
∗ = BF|B|B

∗ = AUF|B|U
∗A∗ = AUU∗F|A|A

∗ = AF|A|A
∗ =

∑
a∈A

afnn−ka
∗ = fnn−j .

Forms of the next proposition appear in [PP88], [Jol90], and [Bis97].

Proposition 3.2.20 (Multistep Basic Construction). The inclusion

Mn−k ⊂Mn ⊂ (Mn+k, trn+k, f
n
n−k)

is standard. (See Remark 3.2.45).

Proof. Let B be a Pimsner-Popa basis for Mn over Mn−k. Then by Lemma 3.2.19,∑
b∈B

bfnn−kb
∗ = 1,

so Mnf
n
n−kMn = Mn+k. It is straightforward to check fnn−kxf

n
n−k = EMn−k(x)fnn−k for all

x ∈Mn and EMn(fnn−k) = d−2k, and the result follows by Lemma 3.2.15.

Remark 3.2.21. Note that L2(Mn, trn) has left and right actions of M0, . . . ,M2n, where as
usual, the right action of Mi is the left action of JnMiJn ∼= Mop

i . Note that M ′
i = JnM2n−iJn,

so we define a canonical trace on M ′
i ∩ B(L2(Mn, trn)) by tr′i(x) = tr2n−i(Jnx

∗Jn) for all
x ∈M ′

i ∩B(L2(Mn, trn)).

Proposition 3.2.22 (Shifts). For all 0 ≤ k ≤ n, there is a canonical isomorphism M ′
k ∩

Mn
∼= M ′

k+2 ∩Mn+2.

Proof. On B(L2(Mn, trn)), the map x 7→ Jnx
∗Jn gives an anti-isomorphism M ′

k ∩ Mn
∼=

M ′
n ∩M2n−k. On B(L2(Mn+1, trn+1)), the map y 7→ Jn+1y

∗Jn+1 gives an anti-isomorphism
M ′

n ∩M2n−k ∼= M ′
k+2 ∩Mn+2.

Proposition 3.2.23. The canonical trace-preserving conditional expectation Mn+k →Mn+k−i
is given by xfnn−ky 7→ d−2ixfnn−k+iy where x, y ∈ Mn. The canonical trace-preserving con-
ditional expectation M ′

n−k = JnMn+kJn → JnMn+k−iJn = M ′
n−k+i is given by the same

formula, only with x, y ∈M ′
n = JnMnJn.

Proof. We prove the first statement, as the second is similar. By the Markov property, for
all x, y ∈Mn,

trn+k(xf
n
n−ky) = d−2k trn(xy) = d−2i trn+k−i(xf

n
n−k+iy),

so the map is trace-preserving. Now Mn+k−i-bilinearity follows from the following two facts:
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(i) for all 1 ≤ i ≤ k, Mn−k ⊂Mn−k+i, so fnn−k+if
n
n−k = fnn−k, and

(ii) E
Mn+k

Mn+k−i
(fnn−k) = d−2ifnn−k+i.

We can now strengthen Proposition 2.7 from [Bis97], versions of which also appear in
[Bur03]. This is the main proposition describing left-capping tangles.

Proposition 3.2.24. Let 0 ≤ k ≤ ` ≤ n, and let B be a Pimsner-Popa basis for M` over Mk.

The conditional expectation E
M ′k
M ′`

: (M ′
k ∩ B(L2(Mn, trn)), tr′k) → (M ′

` ∩ B(L2(Mn, trn)), tr′`)

is given by

E
M ′k
M ′`

(x) =
1

d2(`−k)

∑
b∈B

bxb∗.

In particular, this map is independent of n and the choice of basis.

Proof. The result follows from Lemma 3.2.19 and Proposition 3.2.23, since for x, y ∈ JnMnJn ⊂
M ′

`, ∑
b∈B

bxfnk yb
∗ =

∑
b∈B

xbfnk b
∗y = xfn` y.

To define our planar ∗-algebra in Subsection 3.2, we need the following fact, which follows
from Proposition 3.2.4 and a simple induction argument.

Proposition 3.2.25. For k ∈ N, let vk = EkEk−1 · · ·E1. For all n ∈ N, there are isomor-
phisms of M1 −M1 bimodules

θn :
n⊗
M0

M1 −→Mn by

x1 ⊗ · · · ⊗ xn 7−→ x1v1x2v2 · · · vn−1xn.

Remark 3.2.26. Recall that L2(Mn, trn) is the completion ofMn with inner product 〈x, y〉 =
trn(y∗x). As usual, θn gives an isomorphism of Hilbert-bimodules

n⊗
M0

L2(M1, tr1) −→ L2(Mn, trn)

where the tensor product on the left is Connes’ relative tensor product with inner product
given inductively by

〈x1 ⊗ u, y1 ⊗ v〉n = 〈EM0(y
∗
1x1)u, v〉n−1

〈u⊗ xn, v ⊗ yn〉n = 〈u, vEM0(ynx
∗
n)〉n−1.
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The following operators will be useful in the definition of the rotation operators in Sub-
sections 3.2 and 3.2.

Definition 3.2.27. Given x ∈M1, we get

(1) left and right multiplication operators

L(x), R(x) :
n⊗
M0

L2(M1, tr1) −→
n⊗
M0

L2(M1, tr1)

by L(x)(v) = xv and R(x)(v) = vx, and

(2) left and right creation operators

Lx, Rx :
n⊗
M0

L2(M1, tr1) −→
n+1⊗
M0

L2(M1, tr1)

by Lx(v) = x⊗ v and Rx(v) = v ⊗ x.

Fact 3.2.28. For x ∈M1, we have

L∗x(y1 ⊗ · · · ⊗ yn+1) = EM0(x
∗y1)y2 ⊗ · · · ⊗ yn+1 and

R∗x(y1 ⊗ · · · ⊗ yn+1) = y1 ⊗ · · · ⊗ ynEM0(yn+1x
∗).

The following lemma will be instrumental in defining the action of tangles.

Lemma 3.2.29. If A is a C-algebra, V1 is a right A-module, V2 is an A−A bimodule, and
V3 is a left A-module, then for each A-invariant v2 ∈ V2, the map

v1 ⊗ v3 7−→ v1 ⊗ v2 ⊗ v3

defines a linear map φv2 : V1 ⊗A V3 → V1 ⊗A V2 ⊗A V3. Moreover, the map v 7→ φv on
A′ ∩ V2 = {v ∈ V2|av = va for all a ∈ A} is C-linear.

Proof. Middle A-linearity is satisfied as v2 is A-invariant.

Remark 3.2.30. This lemma gives an alternate proof that the map E
M ′1
M ′0

is well defined

in Proposition 3.2.24. By Remark 3.2.5, d−2
∑

b∈B b ⊗ b∗ is independent of the choice of
Pimsner-Popa basis B, so the composite map

x 7−→ φx 7−→ φx

(
d−2

∑
b∈B

b⊗ b∗
)

= d−2
∑
b∈B

b⊗ x⊗ b∗ 7−→ d−2
∑
b∈B

bxb∗

on M ′
0 ∩ B(L2(Mn, trn)) is independent of the choice. Moreover, the result is M1-invariant,

since for any unitary u ∈M1, {ub|b ∈ B} is another Pimsner-Popa basis for M1 over M0.
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Definition of the canonical planar ∗-algebra

The definition of a planar ∗-algebra has evolved since its inception in [Jon99]. We use
the definition of [Jon10] (see also [Pet10]), but we do not reproduce it here.

In [Jon99], it was shown how to endow the tower of relative commutants of an extremal,
finite index II1-subfactor with the structure of a subfactor planar algebra, i.e., a planar
∗-algebra Q• = {Qn,±} with dim(Qn,±) <∞ for all n ≥ 0 which is

• Spherical: dim(Q0,±) = 1 and any fully labelled 0-tangle is invariant under spherical
isotopy. This implies shaded and unshaded contractible loops count for the same
multiplicative factor of d, called the modulus of Q•.

• Positive-definite: The bilinear form on Qn,± given by 〈a, b〉 = d−n tr(b∗a) is positive
definite.

The only essential ingredient to the construction of [Jon99] is a Pimsner-Popa basis, so
the same construction applies to a strongly Markov inclusion M0 ⊂ (M1, tr1). As we do
not require the algebras to be factors or the inclusion to be extremal, the resulting planar
algebra need not be spherical nor positive-definite nor have finite dimensional n-box spaces.

Below, we define a planar ∗-algebra structure on the vector spaces Pn,± (n ≥ 0) given by
Pn,+ = θ−1

n (M ′
0 ∩Mn) and Pn,− = θ−1

n (M ′
1 ∩Mn+1). This planar algebra is independent of

any choices, so we call it the canonical planar ∗-algebra associated to M0 ⊂ (M1, tr1).
We define the action of a planar tangle in standard form:

(1) all the input and output disks are horizontal rectangles with all strings (that are not
closed loops) emanating from the top edges of the rectangles,

(2) all the input disks are in disjoint horizontal bands and all maxima and minima of
strings are at different vertical levels, and not in the horizonal bands defined by the
input disks, and

(3) the distinguished (starred) intervals of all the disks are at the left edges of the rectan-
gles. (In the sequel, we will assume this convention and omit the ∗’s.)

We do not provide the proof of isotopy invariance, i.e., that the action is independent of the
choice of standard form, as this proof is identical to that in [Jon99]. However, in Subsection
3.2, we provide Burns’ elegant proof that the rotation operator is well-defined.

Suppose we have a (k,±)-tangle T in standard form with s input rectangles, and input
rectangle j has 2rj strings emanating from the top. We define the action of T on an s-tuple
ξ = (ξ1, · · · , ξs) where ξj ∈ Prj ,±j and ±j = ± if the region just below input rectangle j is
unshaded or shaded respectively.

We read the action of T on ξ by sliding a horizontal line through the tangle from bottom
to top. For a fixed vertical y-value, off the input disks’ horizontal bands and away from the
relative extrema of the strings, the horizontal line will meet ny shaded regions from left to
right. One should think of the shaded regions along this line as elements of M1 and the



CHAPTER 3. THE EMBEDDING THEOREM FOR FINITE DEPTH SUBFACTOR
PLANAR ALGEBRAS 54

unshaded regions between shaded regions as the symbols ⊗M0 . Near the top, the line will
meet k or k + 1 shaded regions depending on whether the left-most region of T is unshaded
or shaded respectively. We illustrate a typical (3,+)-tangle with the horizontal line about
half way through its travel:

For each y coordinate of the horizontal line, one reads off an Mi-invariant element ηy ∈⊗ny
M0
M1, where i = 0 if T is a (k,+)-tangle and i = 1 if T is a (k,−)-tangle.

The element ηy begins as 1 ∈Mi near the bottom, and it remains constant as long as the
horizontal line meets neither maxima, minima, nor rectangles. If the horizontal line passes
input rectangle j for which exactly t shaded regions sit to the left, then we insert ξj into ηy
as in Figure 3.1 by applying Lemma 3.2.29 with v2 = ξj,

V1 =
t⊗
M0

M1, V2 = Prj ,±j , and V3 =

ny−t⊗
M0

M1.

Note that V1, V3 are considered as M`-modules and Prj ,±j is an M` −M` bimodule, where
` = 0 if ±j = + and ` = 1 if ±j = −. Note that inserting ξj into ηy gives an Mi-invariant
vector.

As the horizontal line passes a maximum or minimum, ηy changes according to Figure
3.2 where the changes indicated on the tensors are to be inserted into the position indicated
by the shaded regions on the horizontal (dashed) line. With the exception of one case, each
of these maps is an M1 −M1 bimodule map, so it will preserve Mi-invariant elements. The
remaining case to consider is when the left-most or right-most shaded region is capped off by
applying the third map pictured above, which is an M0 −M0 bimodule map. But this will
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· · ·
ζ ∈ Pn,+ →

· · ·
ζ ∈ Pn,+ x⊗ y 7→ x⊗ ζ ⊗ y

· · ·
κ ∈ Pn,− →

· · ·
κ ∈ Pn,− x 7→ xκ = κx

Figure 3.1: Inserting central vectors

→ x⊗ y 7−→ x⊗ 1⊗ y

→ x 7−→ d−1
∑
b∈B

xb⊗ b∗ = d−1
∑
b∈B

b⊗ b∗x

→ x⊗ y ⊗ z 7−→ dxEM0(y)⊗ z = dx⊗ EM0(y)z

→ x⊗ y 7−→ xy.

Figure 3.2: Reading maxima and minima of planar tangles in standard form

only occur when the distinguished (starred) interval of the external disk meets an unshaded
region, so i would have to be 0 from the beginning.

The action of the tangle on ξ is the element ηy ∈ Pk,± read for horizontal lines sufficiently
close to the top. The ∗-structure is the same as that of [Jon99].

Example 3.2.31. To calculate

· · ·

· · ·

ξ for

ξ =
k∑
i=1

xi1 ⊗ · · · ⊗ xin ∈ θ−1
n (M ′

0 ∩Mn),
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we first isotope the tangle into a standard form. The horizontal line travels upward as shown:

· · ·

ξ ,

which we read as:

1C 7→ 1M 7→ d−1
∑
b∈B

b⊗ b∗ 7→ d−1
∑
b∈B

b⊗ ξ ⊗ b∗ 7→ d−1
∑
b∈B

k∑
i=1

b⊗ xi1 ⊗ · · · ⊗ xin−1 ⊗ xinb∗

7→
∑
b∈B

k∑
i=1

b⊗ xi1 ⊗ · · · ⊗ xin−1EM0(x
i
nb
∗),

the last line giving the output of the tangle applied to ξ.

Burns’ treatment of the rotation operator on Pn,+

The key to showing that the Pn,±’s define a planar algebra is isotopy invariance, which
relies on the existence of the rotation on Pn,±. A particularly elegant treatment of this is
due to Michael Burns, but it only appears in his thesis [Bur03], so we include a proof below
for the reader’s convenience.

Definition 3.2.32. Let B be a Pimsner-Popa basis of M1 over M0. For

x = x1 ⊗ · · · ⊗ xn ∈
n⊗
M0

M1,

define ρ(x) =
∑
b∈B

LbR
∗
b(x) =

∑
b∈B

b⊗ x1 ⊗ · · · ⊗ xn−1EM0(xnb
∗) (see Example 3.2.31).

Proposition 3.2.33. The map ρ preserves Pn,+, and its restriction to Pn,+ is independent
of the choice of B.

Proof. Middle linearity is respected by ρ, so it is well defined, though it may depend on B.
By Lemma 3.2.29 and Remark 3.2.5, for M0-invariant x, the sum∑

b∈B

b⊗ x⊗ b∗

is independent of B. We obtain ρ by applying an M0 −M0 bilinear map which does not
involve B, so the restriction of ρ is M0-invariant and independent of B.
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Theorem 3.2.34 ([Bur03]). For x ∈ Pn,+ and y1, . . . , yn ∈M1,

〈ρ(x), y1 ⊗ · · · ⊗ yn〉 = 〈x, y2 ⊗ · · · ⊗ yn ⊗ y1〉,

so ρn = id on Pn,+.

Proof. As ρ(x) =
∑
b∈B

LbR
∗
b(x), we have

〈ρ(x), y1 ⊗ · · · ⊗ yn〉 =
∑
b∈B

〈LbR∗bx, y1 ⊗ · · · ⊗ yn〉 =
∑
b∈B

〈x,RbL∗by1 ⊗ · · · ⊗ yn〉

=
∑
b∈B

〈x,EM0(b
∗y1)y2 ⊗ · · · ⊗ yn ⊗ b〉 =

∑
b∈B

〈EM0(b
∗y1)

∗x, y2 ⊗ · · · ⊗ yn ⊗ b〉

=
∑
b∈B

〈xEM0
(b∗y1)

∗, y2 ⊗ · · · ⊗ yn ⊗ b〉 =
∑
b∈B

〈x, y2 ⊗ · · · ⊗ yn ⊗ bEM0
(b∗y1)〉

= 〈x, y2 ⊗ · · · ⊗ yn ⊗ y1〉.

Corollary 3.2.35. The rotation

· · ·

· · ·

on Pn,+ is well defined.

The rotation on Pn,−

We mimic Burns’ treatment of the rotation on Pn,+ to define the rotation on Pn,−.

Definition 3.2.36. Let B be a Pimsner-Popa basis of M1 over M0. For

x = x1 ⊗ · · · ⊗ xn+1 ∈
n+1⊗
M0

M1,

define σ(x) =
∑
b∈B

R(b∗)R∗1Lb(x) =
∑
b∈B

b⊗ x1 ⊗ · · · ⊗ xnEM0(xn+1)b∗.

Proposition 3.2.37. The map σ preserves Pn,−, and its restriction to Pn,− is independent
of the choice of B.

Proof. Similar to Proposition 3.2.33.

Theorem 3.2.38. For x ∈ Pn,− and y1, . . . , yn+1 ∈M1,

〈σ(x), y1 ⊗ · · · ⊗ yn+1〉 = 〈x, y2 ⊗ · · · ⊗ yn ⊗ yn+1y1 ⊗ 1〉.
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Proof. Similar to Theorem 3.2.34.

Corollary 3.2.39. σn = id on Pn,−.

Proof. As σ preserves Pn,−, we repeatedly apply Theorem 3.2.38 for x ∈ Pn,− to get

〈σn(x), y1 ⊗ · · · ⊗ yn+1〉 = 〈σn−1(x), y2 ⊗ · · · ⊗ yn ⊗ yn+1y1 ⊗ 1〉
= 〈σn−2(x), y3 ⊗ · · · ⊗ yn ⊗ yn+1y1 ⊗ y2 ⊗ 1〉
= · · · = 〈x, yn+1y1 ⊗ y2 ⊗ · · · ⊗ yn ⊗ 1〉.

We then invoke Burns’ trick again to get

〈x, yn+1y1 ⊗ y2 ⊗ · · · ⊗ yn ⊗ 1〉 = 〈y∗n+1x, y1 ⊗ · · · ⊗ yn ⊗ 1〉
= 〈xy∗n+1, y1 ⊗ · · · ⊗ yn ⊗ 1〉
= 〈x, y1 ⊗ · · · ⊗ yn ⊗ yn+1〉.

Corollary 3.2.40. The rotation

· · ·

· · ·

on Pn,− is well defined.

Uniqueness of the canonical planar ∗-algebra

We have the following facts whose proofs are similar to those in [Jon99] and will be
omitted (they are straightforward from the results in Subsections 3.2 and 3.2). We shade
tangles as much as possible, but sometimes we will not have enough information.

Proposition 3.2.41 (Multiplication). Suppose x, y ∈Mn such that

θ−1
n (x) = x1 ⊗ · · · ⊗ xn and θ−1

n (y) = y1 ⊗ · · · ⊗ yn

Then

θ−1
n (xy) =

{
x1 ⊗ · · · ⊗ xkEM0

(xk+1EM0
(xk+2(· · · )yk−1)yk)⊗ yk+1 ⊗ · · · ⊗ y2k n = 2k

x1 ⊗ · · · ⊗ xk+1EM0
(xk+2EM0

(xk+3(· · · )yk−1)yk)yk+1 ⊗ · · · ⊗ y2k+1 n = 2k + 1.

Remark 3.2.42. If x, y as above are in M ′
i ∩Mn where i ∈ {0, 1}, then

θ−1
n (xy) = · · ·

· · ·

· · ·

y1 ⊗ · · · ⊗ yn

x1 ⊗ · · · ⊗ xn
where the shading depends on i and the parity of n.
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Proposition 3.2.43 (∗-Structure). Suppose x ∈Mn such that θ−1
n (x) = x1⊗· · ·⊗xn. Then

θ−1
n (x∗) = x∗n ⊗ · · · ⊗ x∗1.

Proposition 3.2.44 (Jones Projections). (1) For n ≥ 1, the Jones projection En ∈ Pn+1,+

is given by ︸ ︷︷ ︸
n−1

· · · .

(2) For n ≥ 2, the Jones projection En ∈ Pn,− is given by ︸ ︷︷ ︸
n−2

· · · .

Remark 3.2.45. The multistep basic construction projection of Proposition 3.2.20 is given

by fnn−k = d−k ︸︷︷︸
n−k

︸︷︷︸
k

· · ·
...

...

.

Proposition 3.2.46 (Inclusions). (1) Let in : M ′
0 ∩ Mn → M ′

0 ∩ Mn+1 be the inclusion.

Then the inclusion θ−1
n+1 ◦ in ◦ θn : Pn,± → Pn+1,± is given by

· · ·

· · ·
.

(2) If x ∈ Pn,−, then
· · ·

· · ·
x = x ∈ Pn+1,+.

Proposition 3.2.47 (Conditional Expectations). (1) The conditional expectation θ−1
n−1 ◦

EMn−1 ◦ θn : Pn,+ → Pn−1,+ is given by d−1 ·
· · ·

· · ·
.

(2) The conditional expectation θ−1
n ◦ E

M ′0
M ′1
◦ θn : Pn,+ → Pn−1,− (see Proposition 3.2.24) is

given by d−1 ·
· · ·

· · ·
.

Notation 3.2.48. We use the notation from [Pen12a]:

(1) Denote the annular capping maps Pn,+ → Pn−1,+ by αj as shown:

∗

···
∗

,

∗

···
∗

, · · · , ∗
· ··

∗
,



CHAPTER 3. THE EMBEDDING THEOREM FOR FINITE DEPTH SUBFACTOR
PLANAR ALGEBRAS 60

i.e., numbering the boundary points clockwise from ∗, the ith and (i+1)th (modulo 2n)
internal boundary points are joined by a string and all other internal boundary points
are connected to external boundary points such that

(i) If i = 1, then the first external point is connected to the third internal point.

(ii) If 1 < i < 2n, then the first external point is connected to the first internal point.

(iii) If i = 2n, then the first external point is connected to the (2n − 1)th internal
point.

(2) Denote the annular cupping maps Pn−1,+ → Pn,+ by βj as shown:

∗

·· ·

∗
,

∗

·· ·

∗
, · · · ,

∗

·· ·∗
,

i.e., βj is αj turned inside out.

The following lemma is similar to a result in [KS04]:

Lemma 3.2.49. Suppose P• is a planar ∗-algebra with modulus d 6= 0 and Qn,± ⊂ Pn,± are
∗-subalgebras which are closed under the following operations:

(1) left and right multiplication by tangles En = ︸ ︷︷ ︸
n−1

· · · ∈ Pn+1,+ for n ∈ N;

(2) The maps from Pn,+ as follows:

αn =
· · ·

· · ·
: Pn,+ → Pn−1,+, βn+1 =

· · ·

· · ·
: Pn,+ → Pn+1,+,

γ+
n =

· · ·

· · ·
: Pn,+ → Pn−1,−; and

(3) the map i−n =
· · ·

· · ·
: Pn,− → Pn+1,+.

Then the Qn,± define a planar ∗-subalgebra Q• ⊂ P•.
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Proof. As Qn,± is closed under multiplication and ∗, it suffices to show Q• is closed under
all annular maps. To show this, it suffices to show all αj’s, all βj’s, and both rotations by 1
preserve Q•.

First, note that the maps γ−n : Pn,− → Pn−1,+ and i+n : Pn,+ → Pn+1,− given by

γ−n (x) =
· · ·

· · ·
x =

1

d
αn+2(EnEn−1 · · ·E1 · βn+2(i−nx)) · E1E2 · · ·En) and

i+n (x) =
· · ·

· · ·
x = γ+

n+2((E1E2 · · ·En) · βn+2βn+1(x) · (En+1En · · ·E1))

preserve Q•.
We show all αj’s preserve Q•. For j < n and x ∈ Qn,

αj(x) =
1

d
αnαn+1((EnEn−1 · · ·Ej) · βn+1(x) · (En))).

The case n < j < 2n is similar. It is clear α2n(x) = α2n−1(i−n−1(γ+
n (x))).

We show all βj’s preserve Q•. If j < n+ 1, we have

βj(x) = (EjEj−1 · · ·En) · βn+1(x).

The case n+ 1 < j < 2n+ 2 is similar. It is clear β2n+2(x) = α2γ
−
n+1γ

+
n (x).

We show both rotations by 1 preserve Q•. We have

· · ·

· · ·
x =

1

d
γ+
n+1α2n+2i

−
n+1i

+
nαnβn+1(x) and

· · ·

· · ·
x = αn+1βn+2α2n+1i

−
n (x).

Theorem 3.2.50. Given a strongly Markov inclusion M0 ⊂ (M1, tr1), there is a unique
planar ∗-algebra P• of modulus d = [M1 : M0]1/2 where

Pn,+ = θ−1
n (M ′

0 ∩Mn) and Pn,− = θ−1
n+1(M ′

1 ∩Mn+1)

such that the multiplication is given by Remark 3.2.42,

(0) for all tangles T with n input disks, T (ξ∗1 , · · · , ξ∗n) = T ∗(ξ1, · · · , ξn)∗ where for ξi ∈
Pni,±i, ξ

∗
i is as in Proposition 3.2.43 and T ∗ is the mirror image of T ;
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(1) for n ∈ N, En = ︸ ︷︷ ︸
n−1

· · · ∈ Pn+1,+;

(2) for x ∈ Pn,+ and B a Pimsner-Popa basis for M1 over M0,

· · ·

· · ·
x = dEMn−1(x),

· · ·

· · ·
x = x ∈ Pn+1,+, and

· · ·

· · ·
x = dE

M ′0
M ′1

(x) = d−1
∑
b∈B

bxb∗; and

(3) for x ∈ Pn,−,
· · ·

· · ·
x = x ∈ Pn+1,+.

Proof. Uniqueness follows from Lemma 3.2.49. Existence follows from the existence of the
canonical planar ∗-algebra associated to M0 ⊂ (M1, tr1).

Corollary 3.2.51. The canonical planar ∗-algebra associated to an extremal, finite index
II1-subfactor is the subfactor planar algebra constructed in [Jon99].

3.3 The planar algebra isomorphism for finite

dimensional C∗-algebras

We now restrict our attention to a connected unital inclusion M0 ⊂ M1 of finite dimen-
sional C∗-algebras with the Markov trace. We show that in this case, the canonical planar
∗-algebra of Theorem 3.2.50 is isomorphic to the bipartite graph planar algebra [Jon00] of
the Bratteli diagram.

Many of the results in this section can be found in [GdlHJ89],[JS97],[EK98], but we
present them here for completeness and for the reader’s convenience.

Loop algebras

We define loop algebras in the spirit of [Jon00] which are another description of Evans,
Ocneanu, and Sunder’s path algebras [GdlHJ89],[JS97],[EK98], with a more GNS (rather
than spatial) flavor.

Notation 3.3.1. For this section, let Γ be a finite, connected, bipartite multi-graph. Let
V± denote the set of even/odd vertices of Γ, and let E denote the edge set of Γ. Usually
we will denote edges by ε and ξ. All edges will be directed from even to odd vertices, so
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we have source and target functions s : E → V+ and t : E → V−. We will write ε∗ to denote
an edge ε traversed from an odd vertex to an even vertex, and we define source and target
functions s : E∗ = {ε∗|ε ∈ E} → V− and t : E∗ → V+ by s(ε∗) = t(ε) and t(ε∗) = s(ε). Let
m+ : V+ → N be a dimension (row) vector for the even vertices. For v ∈ V−, define the
dimension (row) vector for the odd vertices by

m−(v) =
∑
t(ε)=v

m+(s(ε)).

Let Λ be the bipartite adjacency matrix for Γ (Λi,j is the number of times the ith vertex in
V+ is connected to the jth vertex in V−).

Remark 3.3.2. Given (Γ,m+), we can associate a connected unital inclusion of finite di-
mensional C∗-algebras M0 ⊂M1. We set

M0 =
⊕
v∈V+

Mm+(v)(C) and M1 =
⊕
v∈V−

Mm−(C),

and the inclusion is such that Γ is the Bratteli diagram for the inclusion, and Λ is the inclusion
matrix (Λi,j is the number of times the ith simple summand of M0 is contained in the jth

simple summand of M1). Conversely, given such an inclusion, we get a finite, connected,
bipartite multi-graph (the Bratteli diagram) and a dimension vector m+ (corresponding to
the simple summands of M0).

Definition 3.3.3. Let G0,± be the complex vector space with basis V± respectively. For
n ∈ N, Gn,± will denote the complex vector space with basis loops of length 2n on Γ based
at a vertex in V± respectively.

We discuss the vector spaces Gn,+. The spaces Gn,− are similar, and it is clear what the
corresponding notation should be and how they will behave.

Notation 3.3.4. Loops in Gn,+ will be denoted [ε1ε
∗
2 · · · ε2n−1ε

∗
2n]. Any time we write such

a loop, it is implied that

(i) t(εi) = s(ε∗i+1) = t(εi+1) for all odd i < 2n,

(ii) t(ε∗i ) = s(εi) = s(εi+1) for all even i < 2n, and

(iii) t(ε∗2n) = s(ε2n) = s(ε1).

For a loop ` = [ε1ε
∗
2 · · · ε2n−1ε

∗
2n] ∈ Gn,+ and 1 ≤ k ≤ 2n, we define the following paths in `:

`[1,k] =

{
ε1ε
∗
2 · · · εk−1ε

∗
k k even

ε1ε
∗
2 · · · ε∗k−1εk k odd

`[k,2n] =

{
εkε
∗
k+1 · · · ε2n−1ε

∗
2n k odd

ε∗kεk+1 · · · ε2n−1ε
∗
2n k even.
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Definition 3.3.5. Define an antilinear map ∗ on Gn,+ by the antilinear extension of the
map

[ε1ε
∗
2 · · · ε2n−1ε

∗
2n]∗ = [ε2nε

∗
2n−1 · · · ε2ε

∗
1].

There is also an obvious notion of taking ∗ of a path γ[j,k](`) for a loop ` ∈ Gn,+. We define
a multiplication on Gn,+ by

`1 · `2 = δ(`1)∗
[n+1,2n]

,(`2)[1,n] [(`1)[1,n](`2)[n+1,2n]].

It is clear that ∗ is an involution, i.e., an anti-automorphism of period 2, for Gn,+ under this
multiplication.

Remark 3.3.6. We can think of a loop in Gn,+ as a path up and down the multi-graph Γn
corresponding to the Bratteli diagram for the inclusions

M0 ⊂M1 ⊂ · · · ⊂Mn,

which is obtained by reflecting Γ a total of n−1 times, as the inclusion matrix of Mj ⊂Mj+1

is given by Λ or ΛT if j is even or odd, respectively [Jon83].

Definition 3.3.7. Let Γ̃ be the augmentation of the bipartite graph Γ by adding a distin-
guished vertex ? which is connected to each v ∈ V+ by m+(v) distinct edges. These edges
are oriented so they begin at ?. We will denote these added edges by η′s (and ζ’s and κ’s
when necessary).

Definition 3.3.8. For n ∈ Z≥0, let An be the algebra defined as follows: a basis of An will

consist of loops of length 2n+ 2 on Γ̃ of the form

[η1ε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗
2]

i.e., the loops start and end at ?, but remain in Γ otherwise. Note that we have an obvious
∗-structure on each An. Multiplication will be given as follows: if one defines the similar
path notation as in Notation 3.3.4, then we have

`1 · `2 = δ(`1)∗
[n+2,2n+2]

,(`2)[1,n+1]
[(`1)[1,n+1](`2)[n+2,2n+2]].

Remark 3.3.9. We can think of a loop in An as a path up and down the multi-graph Γ̃n
corresponding to the Bratteli diagram for the inclusions

C ⊂M0 ⊂M1 ⊂ · · · ⊂Mn.

Definition 3.3.10 (Inclusions). The inclusion An → An+1 is given by the linear extension
of

[η1ε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗
2] 7−→


∑

s(ε)=s(εn)

[η1ε1ε
∗
2 · · · ε∗nεε∗εn+1 · · · ε2n−1ε

∗
2nη
∗
2] n even∑

s(ε)=t(εn)

[η1ε1ε
∗
2 · · · εnε∗εε∗n+1 · · · ε2n−1ε

∗
2nη
∗
2] n odd.

We identify An with its image in An+1.
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Remark 3.3.11. The inclusion identifications allow us to define a multiplication Am×An →
Amax{m,n} by including Am, An into Amax{m,n} and using the regular multiplication. Explicitly,
if `1 ∈ Am and `2 ∈ An with m ≤ n, then

`1 · `2 = δ(`1)∗
[m+2,2m+2]

,(`2)[1,m+1]
[(`1)[1,m+1](`2)[m+2,2n+2]].

The case m ≥ n is similar.

Towers of loop algebras

We provide an isomorphism of the tower (Mn)n≥0 coming from a connected unital inclu-
sion of finite dimensional C∗-algebras with the Markov trace and the corresponding tower
(An)n≥0 of loop algebras. Assume the notation of Subsection 3.3.

For n ≥ 0, if Si is the ith simple summand of of Mn, then loops ` in An for which `[1,n+1]

ends at the corresponding vertex of Γ̃n form a system of matrix units for a simple algebra
isomorphic to Si. Hence for n ∈ Z≥0, there is a ∗-algebra isomorphism An ∼= Mn, and
dim(An) = dim(Mn).

At this point, we only choose such isomorphisms ϕn : An → Mn for n = 0, 1 which
respects the inclusion given in Definition 3.3.10. In Proposition 3.3.17, we will inductively
define isomorphisms ϕn : An →Mn for n ≥ 2 to identify the Jones projections.

Definition 3.3.12. Following [Jon83], let λi be the Markov trace (column) vector for Mi

for i = 0, 1 such that
m+λ0 = 1 = m−λ1,

so λi gives the traces of minimal projections in the simple summands of Mi for i = 0, 1. In
order for the trace on M1 to restrict to the trace on M0, we must have Λλ1 = λ0.

Recall that the inclusion matrix for Mn ⊂ Mn+1 is given by Λ if n is even and ΛT if
n is odd. This means that to extend the trace, we must have ΛΛTλ0 = d−2λ0, ΛTΛλ1 =
d−2λ1, and λn = d−2λn−2 for all n ≥ 2, where λn is the Markov trace vector for Mn and
d =

√
‖ΛTΛ‖ =

√
‖ΛΛT‖.

Definition 3.3.13. Let λ =

 λ0

dλ1

, a Frobenius-Perron eigenvector for

 0 Λ

ΛT 0

.

Definition 3.3.14 (Traces). We define a trace on A0 by

tr0([η1η
∗
2]) =

{
λ(t(η1)) = λ0(t(η1)) if η1 = η2

0 else.

Suppose ` = [η1ε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗
2] ∈ An with n ≥ 1. We define a trace on An by

trn(`) =


d−nλ(s(εn)) if n is even and ` = `∗

d−nλ(t(εn)) if n is odd and ` = `∗

0 if ` 6= `∗.
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Remark 3.3.15. The isomorphisms ϕn for n = 0, 1 preserve the trace. Moreover, trn+1 |An =
trn for all n ∈ N as λ is a Frobenius-Perron eigenvector.

Proposition 3.3.16 (Conditional Expectations). If ` = [η1ε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗
2] ∈ An, the

conditional expectation An → An−1 is given by

EAn−1(`) =


d−1δεn,εn+1

(
λ(s(εn))

λ(t(εn))

)
[η1ε1ε

∗
2 · · · εn−1ε

∗
n+2 · · · ε2n−1ε

∗
2nη
∗
2] n even

d−1δεn,εn+1

(
λ(t(εn))

λ(s(εn))

)
[η1ε1ε

∗
2 · · · ε∗n−1εn+2 · · · ε2n−1ε

∗
2nη
∗
2] n odd.

Proof. We consider the case n even. The case n odd is similar. We must show trn(xy) =
trn−1(EAn−1(x)y) for all x ∈ An and y ∈ An−1. It suffices to check when x, y are loops. If

x = [η1ε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗
2] and y = [η3ξ1ξ

∗
2 · · · ξ2n−3ξ

∗
2n−2η

∗
4],

using the formula above, we have

trn−1(EAn−1
(x)y) = d−1δεn,εn+1

δy[1,n],x
∗
[n+2,2n+2]

λ(s(εn))

λ(t(εn))
trn−1([η1ε1 · · · εn−1ξ∗nξn+1 · · · ξ∗2n−2η∗4 ])

= d−nδy[1,n],x
∗
[n+2,2n+2]

δεn,εn+1δx[1,n],y
∗
[n+1,2n−2]

λ(s(εn)) = trn(xy).

Definition 3.3.17 (Jones Projections). For n ∈ N, define distinguished elements of An+1

as follows: if n is odd, define

Fn =
∑
~i

∑
t(η)=s(εi1 )

[λ(t(εin))λ(t(εin+1))]
1/2

λ(s(εin))
[ηεi1ε

∗
i2 · · · ε

∗
in−1

εinε
∗
inεin+1

ε∗in+1
εin−1

· · · εi2ε∗i1η
∗]

where the sum is taken over all vectors ~i = (i1, i2, . . . , in+1) such that

[εi1ε
∗
i2
· · · ε∗in−1

εinε
∗
inεin+1ε

∗
in+1

εin−1 · · · εi2ε∗i1 ] ∈ Gn+1,+

If n is even, then define

Fn =
∑
~i

∑
t(η)=s(εi1 )

[λ(s(εin))λ(s(εin+1
))]1/2

λ(t(εin))
[ηεi1ε

∗
i2 · · · εin−1

ε∗inεinε
∗
in+1

εin+1
ε∗in−1

· · · εi2ε∗i1η
∗]

with a similar limitation on the vectors ~i = (i1, i2, . . . , in+1).

Lemma 3.3.18. (1) FnxFn = dEAn−1(x)Fn for all x ∈ An and

(2) trn+1(xFn) = d−1 trn(x) for all x ∈ An, i.e., EAn(Fn) = d−1.

Proof. We prove the case n odd. The case n even is similar.
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(1) If x = [ζ1ξ1ξ
∗
2 · · · ξn−1ξ

∗
n · · · ξ2n−1ξ

∗
2nζ
∗
2 ] ∈ An, then

FnxFn =
∑
~i

∑
t(η)=s(εi1 )

[λ(t(εin))λ(t(εin+1))]
1/2

λ(s(εin))
[ηεi1ε

∗
i2 · · · ε

∗
in−1

εinε
∗
inεin+1

ε∗in+1
εin−1

· · · εi2ε∗i1η
∗]×

x
∑
~j

∑
t(κ)=s(εj1 )

[λ(t(εjn))λ(t(εjn+1
))]1/2

λ(s(εjn))
[κεj1ε

∗
j2 · · · ε

∗
jn−1

εjnε
∗
jnεjn+1

ε∗jn+1
εjn−1

· · · εj2ε∗j1κ
∗]

=
∑

s(ξ)=s(ξn−1)

[λ(t(ξ))λ(t(ξn+1))]
1/2

λ(s(ξ))
[ζ1ξ1ξ

∗
2 · · · ξ∗n−1ξξ∗ξnξ∗n+1 · · · ξ2n−1ξ∗2nζ∗2 ]×

∑
~j

∑
t(κ)=s(εj1 )

[λ(t(εjn))λ(t(εjn+1
))]1/2

λ(s(εjn))
[κεj1ε

∗
j2 · · · ε

∗
jn−1

εjnε
∗
jnεjn+1

ε∗jn+1
εjn−1

· · · εj2ε∗j1κ
∗]

= δξn,ξn+1

λ(t(ξn))

λ(s(ξn))

∑
s(ξ)=s(ξn−1)
s(ε)=s(ξn+2)

[λ(t(ε))λ(t(ξ))]1/2

λ(s(ε))
[ζ1ξ1ξ

∗
2 · · · ξ∗n−1ξξ∗εε∗ξn+2 · · · ξ2n−1ξ∗2nζ∗2 ]

= dEAn−1
(x)Fn.

(2) Another straightforward calculation.

Proposition 3.3.19 (Basic Construction). For n ∈ N, the inclusion

An−1 ⊂ An ⊂ (An+1, trn+1, d
−1Fn)

is standard. Hence for all k ≥ 0, there are isomorphisms ϕk : Ak →Mk preserving the trace
such that ϕk+1|Ak = ϕk and ϕm(Fn) = En for all m > n.

Proof. We construct the isomorphisms ϕn for n ≥ 1 by induction on n. The base case is
finished. Suppose we have constructed ϕn for n ≥ 1. We know that Mn+1 = MnEnMn

and An ∼= Mn via ϕn. By Lemmata 3.2.15 and 3.3.18, there is an algebra isomorphism
hn+1 : Mn+1 = MnEnMn → AnFnAn ⊆ An+1 such that En 7→ Fn. But dim(Mn+1) =
dim(An+1), so An+1 = AnFnAn, and we set ϕn+1 = h−1

n+1, which extends ϕn. Finally, note
the ϕm’s preserve the trace by construction and the uniqueness of the Markov trace.

Relative commutants are isomorphic to loop algebras

We provide isomorphisms between the relative commutants of the tower (An)n≥0 and the
spaces Gn,±.

Proposition 3.3.20 (Central Vectors). A basis for the central vectors A′0 ∩ An is given by

S0,n =

 ∑
t(η)=s(ε1)

[ηε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗] ∈ An

∣∣∣∣∣∣[ε1ε
∗
2 · · · ε2n−1ε

∗
2n] ∈ Gn,+

 .
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A basis for the central vectors A′1 ∩ An+1 is given by

S1,n+1 =


∑

t(η)=s(ε)
t(ε)=t(ε1)

[ηεε∗1ε2 · · · ε∗2n−1ε2nε
∗η∗] ∈ An+1

∣∣∣∣∣∣∣∣[ε
∗
1ε2 · · · ε∗2n−1ε2n] ∈ Gn,−

 .

Proof. Note that if [ζ1ζ
∗
2 ] ∈ A0, then we have

[ζ1ζ
∗
2 ] ·

∑
t(η)=s(ε1)

[ηε1ε
∗
2 · · · ε2n−1ε∗2nη∗] =

∑
t(η)=s(ε1)

δζ2,η[ζ1ε1ε
∗
2 · · · ε2n−1ε∗2nη∗]

= [ζ1ε1ε
∗
2 · · · ε2n−1ε∗2nζ∗2 ] =

∑
t(η)=s(ε1)

δη,ζ1 [ηε1ε
∗
2 · · · ε2n−1ε∗2nζ∗2 ]

=

 ∑
t(η)=s(ε1)

[ηε1ε
∗
2 · · · ε2n−1ε∗2nη∗]

 · [ζ1ζ∗2 ]
Hence S0,n ⊂ A′0 ∩ An. Similarly, S1,n+1 ⊂ A′1 ∩ An.

Suppose now that x ∈ A′0 ∩ An. Then since 1A0 =
∑

η[ηη
∗], we have

x =

(∑
η

[ηη∗]

)
x =

(∑
η

[ηη∗] · [ηη∗]

)
x =

∑
η

[ηη∗] · x · [ηη∗] ∈ span(S0,n).

Similarly, A′1 ∩ An+1 ⊆ span(S1,n+1).

Corollary 3.3.21. There are ∗-algebra isomorphisms

φn,+ : Gn,+ −→ A′0 ∩ An and

φn,− : Gn,− −→ A′1 ∩ An+1.

If n = 0, the isomorphisms are given by

φ0,+(v+) =
∑

t(η)=v+

[ηη∗] and φ0,−(v−) =
∑

t(η)=s(ε);t(ε)=v−

[ηεε∗η∗].

For n ∈ N, the isomorphisms are given by

φn,+([ε1ε
∗
2 · · · ε2n−1ε

∗
2n]) =

∑
t(η)=s(ε1)

[ηε1ε
∗
2 · · · ε2n−1ε

∗
2nη
∗] and

φn,−([ε∗1ε2 · · · ε∗2n−1ε2n]) =
∑

t(η)=s(ε)
t(ε)=t(ε1)

[ηεε∗1ε2 · · · ε∗2n−1ε2nε
∗η∗].

It will be helpful to have an explicit Pimsner-Popa basis for A1 over A0:
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Proposition 3.3.22 (Pimsner-Popa Bases). For each v+ ∈ V+, pick a distinguished ηv+
with t(ηv+) = v+. Set

B1 =


(
dλ(s(ε2))

λ(t(ε2))

)1/2 ∑
t(η)=s(ε1)

[ηε1ε
∗
2η
∗]

∣∣∣∣∣∣[ε1ε
∗
2] ∈ G1,+

 and

B2 =

{(
dλ(s(ε2))

λ(t(ε2))

)1/2

[η1ε1ε
∗
2η
∗
s(ε2)]

∣∣∣∣∣s(ε1) 6= s(ε2)

}
.

Then B = B1 qB2 is a Pimsner-Popa basis for A1 over A0.

Proof. Suppose x = [ζ1ξ1ξ
∗
2ζ
∗
2 ] ∈ A1.

Case 1: Suppose that s(ξ1) = s(ξ2), so [ξ1ξ
∗
2 ] ∈ G1,+. If b ∈ B2, then EA0(b

∗x) = 0 as the
formula will have delta functions δξi,εi for i = 1, 2. Hence we have

∑
b∈B

bEA0
(b∗x) =

∑
b∈B1

bEA0
(b∗x) =

∑
b∈B1

dλ(s(ε2))

λ(t(ε2))

∑
t(η)=s(ε1)
t(ζ)=s(ε1)

[ηε1ε
∗
2η
∗]EA0

(
[ζε2ε

∗
1ζ
∗] · [ζ1ξ1ξ∗2ζ∗2 ]

)

=
∑
b∈B1

dλ(s(ε2))

λ(t(ε2))

∑
t(η)=s(ε1)

δζ1,ζδξ1,ε1 [ηε1ε
∗
2η
∗]EA0

([ζε2ξ
∗
2ζ
∗
2 ])

=
∑
b∈B1

dλ(s(ε2))

λ(t(ε2))

∑
t(η)=s(ξ1)

[ηξ1ε
∗
2η
∗]EA0

([ζ1ε2ξ
∗
2ζ
∗
2 ])

=
∑
b∈B1

∑
t(η)=s(ξ1)

δξ2,ε2 [ηξ1ε
∗
2η
∗] · [ζ1ζ∗2 ] = [ζ1ξ1ξ

∗
2ζ
∗
2 ] = x.

Case 2: Suppose that s(ξ1) 6= s(ξ2). If b ∈ B1, then similarly, EA0(b
∗x) = 0. Hence

∑
b∈B

bEA0(b
∗x) =

∑
b∈B2

bEA0(b
∗x) =

∑
b∈B2

dλ(s(ε2))

λ(t(ε2))
[η1ε1ε

∗
2η
∗
s(ε2)

]EA0

(
[ηs(ε2)ε2ε

∗
1η
∗
1 ] · [ζ1ξ1ξ∗2ζ∗2 ]

)
= [ζ1ξ1ξ

∗
2η
∗
s(ξ2)

] · [ηs(ξ2)ζ
∗
2 ] = [ζ1ξ1ξ

∗
2ζ2] = x.

Remark 3.3.23. One could also take

B2 =

{(
dλ(s(ε2))

m+(s(ε2))λ(t(ε2))

)1/2

[η1ε1ε
∗
2η
∗
2]

∣∣∣∣∣s(ε1) 6= s(ε2)

}
.

Corollary 3.3.24 (Commutant Conditional Expectations). If

x =
∑

t(ζ)=s(ξ1)

[ζξ1ξ
∗
2 · · · ξ2n−1ξ

∗
2nζ
∗] ∈ A′0 ∩ An,
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the conditional expectation A′0 ∩ An → A′1 ∩ An is given by

E
A′0
A′1

(x) = d−1δξ1,ξ2n

(
λ(s(ξ1))

λ(t(ξ1))

) ∑
t(ζ)=s(ε);t(ε)=t(ξ2)

[ηεξ∗2ξ3 · · · ξ∗2n−2ξ2n−1ε
∗η∗].

Proof. Let B be as in Proposition 3.3.22. By Proposition 3.2.24, we have

d2E
A′0
A′1

(x) =
∑
b∈B

bxb∗ =
∑
b∈B1

bxb∗ +
∑
b∈B2

bxb∗.

We treat each sum separately:

∑
b∈B1

bxb∗ =
∑
b∈B1

(
dλ(s(ε2))

λ(t(ε2))

) ∑
t(η)=s(ε1)=t(κ)
t(ζ)=s(ξ1)

[ηε1ε
∗
2η
∗] · [ζξ1ξ∗2 · · · ξ2n−1ξ∗2nζ∗] · [κε2ε∗1κ∗]

= d
∑

s(ε)=s(ε2)
t(ε)=t(ξ2)

(
λ(s(ε2))

λ(t(ε2))

) ∑
t(η)=s(ε1)=t(κ)
t(ζ)=s(ξ1)

δη,ζδζ,κδε2,ξ1δε2,ξ2n [ηεξ
∗
2 · · · ξ2n−1ε∗κ∗]

= d
∑

t(η)=s(ε)=s(ξ1)
t(ε)=t(ξ2)

(
λ(s(ξ1))

λ(t(ξ1))

)
δξ1,ξ2n [ηεξ

∗
2 · · · ξ2n−1ε∗η∗].

Similarly, we have∑
b∈B2

bxb∗ = d
∑

t(η)=s(ε)6=s(ξ1)
t(ε)=t(ξ2)

(
λ(s(ξ1))

λ(t(ξ1))

)
δξ1,ξ2n [ηεξ∗2 · · · ξ2n−1ε

∗η∗].

Putting these two together, we get the desired formula for E
A′0
A′1

.

The bipartite graph planar algebra and the isomorphism

We refer the reader to [Jon00] for the full definition of the planar algebra of a bipartite
graph.

Let G• be the planar algebra of the bipartite graph Γ with spin vector λ as in Subsections
3.3 and 3.3. We briefly recall the action of tangles on the Gn,±, and we calculate some
necessary examples.

A state σ of a tangle T is a way of assigning the regions and strings of T with compatible
vertices and edges of Γ respectively, i.e., if a string S of T partitions the unshaded region
R+ from the shaded region R−, then for σ(S) ∈ E , s(σ(S)) = σ(R+) ∈ V+ and t(σ(S)) =
σ(R−) ∈ V−.

Define the output loop `σ as the loop obtained by reading clockwise around the outer
boundary of T once it has been labeled by σ.
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Suppose now that T has n input disks, and ` = `1 ⊗ · · · ⊗ `n is a simple tensor of loops
where `i is a loop in Gni,±i . Then the action of T on ` is given by

T (`) =
∑

states σ

c(σ, `)`σ,

where c(σ, `) is a correction factor defined as follows:

(1) First, label the regions and strings of T adjacent to the input disks with the edges and
vertices which compose the `i’s. If the labeling contradicts σ, then c(σ, `) = 0.

(2) If the labels agree, put the tangle in a standard form similar to Section 3.2, where the
only difference is that the half the strings emanate from the top of the input rectangles,
and half the strings emanate down, but the ∗ is still on the left side. Let E(T ) be the set
of local extrema of the strings of the standard form of the tangle. For each e ∈ E(T ),
let conv(e) be the vertex assigned by σ to the convex region of the extrema, and let
conc(e) be the vertex assigned to the concave region. Set

ke =

√
λ(conv(e))

λ(conc(e))
.

Below is an example of an extrema e on a string S with σ(S) = ε, connecting vertices
w, v:

convex
w

concave
v

ε −→ ke =

√
λ(w)

λ(v)
.

Note that conv(e) may be in either V+ or V−. Finally, set

c(σ, `) =
∏

e∈E(T )

ke.

The ∗-structure on the bipartite graph planar algebra is given as follows: if T , ` are as above,
then

T (`∗1 ⊗ · · · ⊗ `∗n) = T ∗(`1 ⊗ · · · ⊗ `n)∗

where T ∗ is the mirror image of T , and the adjoint of a loop is the loop traversed backwards
as in Definition 3.3.5.

Remark 3.3.25. Contractible loops are traded for a multiplicative factor of d as λ is a
Frobenius-Perron eigenvector (see Definition 3.3.13).

Remark 3.3.26. Note from Corollary 3.3.21 that there is a natural inclusion identification
Gn,− → Gn+1,+ given by

[ε∗1ε2 · · · ε∗2n−1ε2n] 7−→
∑

t(ε)=s(ε1)

[εε∗1ε2 · · · ε∗2n−1ε2nε
∗].
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Examples 3.3.27. (0) If `1, `2 ∈ Gn,±, then `1 · `2 = · · ·

· · ·

· · ·

`2

`1

, the shading

depending on n,±.

(1) For n ∈ N odd,

︸ ︷︷ ︸
n−1

· · · =
∑
~i

[λ(t(εin))λ(t(εin+1))]
1/2

λ(s(εin))
[εi1 · · · ε∗in−1

εinε
∗
inεin+1ε

∗
in+1

εin−1 · · · ε∗i1 ],

where the sum is taken over all vectors ~i = (i1, i2, . . . , in+1) such that

[εi1ε
∗
i2
· · · ε∗in−1

εinε
∗
inεin+1ε

∗
in+1

εin−1 · · · εi2ε∗i1 ] ∈ Gn+1,+.

There is a similar formula for n even. (Compare with Definition 3.3.17.)

(2) Suppose ` = [ε1ε
∗
2 · · · ε2n−1ε

∗
2n] ∈ Gn,+.

(i) If n is even, then

· · ·

· · ·
` = δεn,εn+1

λ(s(εn))

λ(t(εn))
[ε1ε

∗
2 · · · εn−1ε

∗
n+2ε2n−1 · · · ε∗2n],

with a similar formula for n odd. (Compare with Proposition 3.3.16.)

(ii) If n is even, then

· · ·

· · ·
` =

∑
s(ε)=s(εn)

[ε1ε
∗
2 · · · ε∗nεε∗εn+1 · · · ε2n−1ε

∗
2n],

with a similar formula for n odd. (Compare with Definition 3.3.10.)

(iii)
· · ·

· · ·
` = δε1,ε2n

λ(s(ε1))

λ(t(ε1))
[ε∗2ε3 · · · ε∗2n−2ε2n−1].

(Compare with Proposition 3.3.24 and Remark 3.3.26.)

(3) If ` = [ε∗1ε2 · · · ε∗2n−1ε2n] ∈ Gn,−, then

· · ·

· · ·
` =

∑
t(ε)=s(ε1)

[εε∗1ε2 · · · ε∗2n−1ε2nε
∗],

which may be identified with ` ∈ Gn+1,+ by Remark 3.3.26.



CHAPTER 3. THE EMBEDDING THEOREM FOR FINITE DEPTH SUBFACTOR
PLANAR ALGEBRAS 73

Theorem 3.3.28. The canonical planar ∗-algebra P• associated to M0 ⊂ (M1, tr1) is iso-
morphic to the bipartite graph planar ∗-algebra G• of the Bratteli diagram Γ for the inclusion.

Proof. To show that the ∗-algebra isomorphisms

Gn,+

φn,+ // A′0 ∩ An
ϕn|A′0∩An //M ′

0 ∩Mn

θ−1
n |M′0∩Mn // Pn,+

Gn,−
φn,− // A′1 ∩ An+1

ϕn+1|A′1∩An+1//M ′
1 ∩Mn+1

θ−1
n+1|M′1∩Mn+1 // Pn,−

give an isomorphism of planar ∗-algebras G• → P•, we must check that

(1) they map Jones projections in G• to those in P•, and

(2) they preserve the action of annular tangles.

Both follow immediately from Examples 3.3.27 and the proof of Lemma 3.2.49.

3.4 The Embedding Theorem

Let Q• be a finite depth subfactor planar algebra of modulus d. Pick r ≥ 0 minimal
such that Q2r,+ ⊂ Q2r+1,+ ⊂ (Q2r+2,+, e2r+1) is standard (with the usual trace). Note this
is possible if and only if Q• has finite depth. In fact, Qk,+ ⊂ Qk+1,+ ⊂ (Qk+2,+, ek+1) is
standard for all k ≥ 2r. For n ≥ 0, set Mn = Q2r+n,+ and Fn+1 = E2r+n+1 (shifted Jones
projections). Let P• be the canonical planar ∗-algebra associated to the inclusion M0 ⊂M1,
i.e.,

Pn,+ = M ′
0 ∩Mn = Q′2r,+ ∩Q2r+n,+ and

Pn,− = M ′
1 ∩Mn+1 = Q′2r+1,+ ∩Q2r+n+1,+,

where we suppress the isomorphisms θn with the tensor products of Q2r+1,+ over Q2r,+.

Theorem 3.4.1. Define Φ: Q• → P• by adding 2r strings to the left for x ∈ Qn,+ and
adding 2r + 1 strings to the left for x ∈ Qn,−.

︸ ︷︷ ︸
n

· · ·

· · ·

x 7−→

︸ ︷︷ ︸
2r

︸ ︷︷ ︸
n

· · ·

· · ·

· · · x

Then Φ is an inclusion of planar ∗-algebras.

Proof. We use Lemma 3.2.49. Note that Φ(x∗) = Φ(x)∗ and Φ(xy) = Φ(x)Φ(y) for all
x, y ∈ Qn,±.
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(1) Since Φ(Ej) = E2r+j = Fj for all j ∈ N, we have Φ(Ejx) = FjΦ(x) and Φ(xEj) =
Φ(x)Fj for all x ∈ Qn,± and all j ∈ N.

(2) Note that

(i) For n ∈ N, Φ(EQn−1,+(x)) = EPn−1,+(Φ(x)) since

EQ2r+n−1,+|Q′2r,+∩Q2r+n,+
= EQ2r+n−1,+ |Pn,+ = EPn−1,+

(since Q2r,+ ⊂ Q2r+n−1,+, we have that EQ2r+n−1,+ preserves Q2r,+-central vectors
as it is Q2r+n−1,+-bilinear).

(ii) Φ(βn+1(x)) = βn+1(Φ(x)) for all x ∈ Qn,+ since the inclusion Pn,+ → Pn+1,+ is
the restriction of the inclusion Q2r+n,+ → Q2r+n+1,+.

(iii) Let B = {b} be a Pimsner-Popa basis for M1 = Q2r+1,+ over M0 = Q2r,+. Since
each b ∈ B is an (2r + 1,+)-box in Q2r+1,+,

1

d

∑
b∈B

b

b∗

x

· · ·

· · ·

· · ·

· · ·

· · ·

=
∑
b∈B

be2r+1b
∗ = 1P2r+2,+ =

︸ ︷︷ ︸
2r+1

x
· · ·

· · ·

· · ·

.

Then by Proposition 3.2.24 and Theorem 3.2.50, for all x ∈ Qn,+,

γ+
n (Φ(x)) =

1

d

∑
b∈B

bΦ(x)b∗ =
1

d

∑
b∈B

︸ ︷︷ ︸
2r ︸ ︷︷ ︸

n

b

b∗

x

· · ·

· · ·

· · ·

· · ·

· · ·

=
1

d

∑
b∈B

b

b∗

x

· · ·

· · ·

· · ·

· · ·

· · ·

=
︸ ︷︷ ︸

2r+1
x

· · ·

· · ·

· · ·

= Φ(γ+
n (x)).
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(3) The inclusion i−n : Pn,− → Pn+1,+ is the identity in the canonical planar ∗-algebra. If
x ∈ Qn,−, then we have

i−n (Φ(x)) = Φ(x) = ︸ ︷︷ ︸
2r+1

x
· · ·

· · ·

· · ·

= Φ(i−n (x)).

Corollary 3.4.2. Let N ⊂ M be a finite index, finite depth II1-subfactor, and let P• be
the associated canonical subfactor planar algebra. Let Γ be the principal graph of N ⊂ M ,
and let G• be the bipartite graph planar algebra of Γ. Then there is an embedding of planar
algebras P• → G•.
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Chapter 4

A planar calculus for infinite index
subfactors

4.1 Introduction

Jones initiated the modern theory of subfactors in [Jon83]. Given a finite index II1-
subfactor A0 ⊆ A1, he used the basic construction to obtain the Jones tower (An)n≥0, ob-
tained iteratively by adding the Jones projections (en)n≥1 which satisfy the Temperley-Lieb
relations. Jones used this structure to show the index lies in the range {4 cos2(π/n)|n ≥ 3}∪
[4,∞), and he found an example for each value.

Much initial subfactor research classified hyperfinite subfactors of small index ([A1 : A0] ≤
4) by studying the standard invariant, i.e., the two towers of higher relative commutants
(A′i∩Aj)i=0,1;j≥0 [Ocn88, GdlHJ89, Izu91, Pop94]. This combinatorial data was axiomatized
in three slightly different structures: paragroups [Ocn88], λ-lattices [Pop95], and planar
algebras [Jon99]. When combined, these viewpoints produce strong results, e.g., standard
invariants with index in (4, 5) are completely classified, excluding the A∞ standard invariant
at each index value [Pop93] (see [MS11, MPPS12, IJMS11, PT12] for more details).

Some finite index results generalize to infinite index subfactors, such as discrete, irre-
ducible, “depth 2” subfactors correspond to outer (cocylce) actions of Kac algebras [HO89,
EN96], and the classical Galois correspondence still holds for outer actions of infinite discrete
groups and minimal actions of compact groups [ILP98].

In his Ph.D. thesis [Bur03], Burns studied rotations and extremality for infinite index,
since the key to isotopy invariance of Jones’ planar calculus in [Jon99] is the rotation operator
(also known to Ocneanu). Burns’ essential observation for finite index was that the centralizer
algebras A′0 ∩ An coincide with the central L2-vectors:

A′0 ∩ L2(An) =
{
ζ ∈ L2(An)

∣∣aζ = ζa for all a ∈ A0

}
.
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Burns found an elegant formula for the rotation on Pn,+ = A′0 ∩
⊗n

A0
L2(A1):

ρ =
∑
β

LβR
∗
β

where {β} is a Pimsner-Popa basis for A1 over A0, Lβ is the left creation operator, and R∗β
is the right annihilation operator (see Definition 4.2.4). This approach was generalized in
[JP11] to define a canonical planar ∗-algebra associated to a strongly Markov inclusion of
finite von Neumann algebras. Burns adapted his formula to infinite index, and he showed
existence of the rotation on the central L2-vectors is equivalent to approximate extremality
of the subfactor.

In infinite index, A′0 ∩ An and A′0 ∩ L2(An) do not coincide. One naturally asks:

Question 4.1.1. What is a suitable standard invariant for infinite index subfactors?

A definitive answer to Question 4.1.1 is not yet known. On one hand, we have the
two towers of centralizer algebras (A′i ∩ Aj)i=0,1;j≥0 in which we can multiply (the shift
isomorphisms A′i ∩ Aj ∼= A′i+2 ∩ Aj+2 still hold by [EN96]). On the other hand, we have the
central L2-vectors on which we have Burns’ rotation (in the approximately extremal case)
and graded multiplication in the sense of [GJS10] (tensoring of central vectors). However,
the operator valued weights which replace the conditional expectations do not preserve these
spaces and may not be well-defined. All this structure is necessary for a good planar calculus.
We ask:

Question 4.1.2. What is the strongest planar calculus we can define for infinite index
subfactors?

In this paper, we propose an answer to Question 4.1.2 using both centralizer algebras
and central L2-vectors. We do so in more generality, starting with a bimodule AHA over
a II1-factor A (one recovers the subfactor case when A = A0 and H = L2(A1)). First,
we set Hn =

⊗n
AH, Qn = A′ ∩ (Aop)′ ∩ B(Hn) (the centralizer algebras), and Pn = A′ ∩

Hn = {ζ ∈ Hn|aζ = ζa for all a ∈ A} (the central L2-vectors). As mentioned above, the Pn’s
naturally form a graded algebra P• in the sense of [GJS10] under relative tensor product.
We represent central vectors in Pn as in [GJS10] by boxes with n strings emanating from the
top, and we denote graded multiplication (relative tensor product) of ζm ∈ Pm and ζn ∈ Pn
by

ζm ⊗ ζn = ζm

m

ζn

n

∈ Pm+n.

We represent elements of Qn as boxes with strings emanating from top and bottom. For
ζ ∈ Pn, note that the creation-annihilation operator L(ζ)L(ζ)∗ = R(ζ)R(ζ)∗ lies in Qn,
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which we represent as

L(ζ)L(ζ)∗ =
ζ

ζ

n

n

∈ Qn.

Theorem 4.1.3. The extended positive cones Q̂+
n (in the sense of [Haa79]) naturally form

an algebra Q̂+
• over the operad BP generated by the oriented tangles

n ,
n

n

,
n

n

,

n

,

n

, and
m

m

n

n

for m,n ≥ 0 up to planar isotopy. (We suppress external disks, draw one thick string labelled
n for n individual strings, and orient all strings upward unless otherwise specified.)

Moreover, the BP-algebra Q̂+
• and graded algebra P• are compatible: if z ∈ Q̂+

n and ζ ∈ Pn,
then

z(ωζ) =

ζ

ζ

z =

ζ

ζ

z

= Trn(L(ζ)L(ζ)∗ · z)

where Trn is the canonical trace on Qn coming from the right A-action on Hn. (Note that
the multiplication tangle only makes sense once we take the trace by [Haa79]. See Theorem
4.2.14 for more details.)

We generalize to bimodules Burns’ work on rotations: an operator ρ on the central
L2-vectors Pn is a Burns rotation if for all left and right bounded vectors b1, . . . , bn ∈ H,
(omitting the subscript A on the tensors,)

〈ρ(ζ), b1 ⊗ · · · ⊗ bn〉 = 〈ζ, b2 ⊗ · · · ⊗ bn ⊗ b1〉.

Note this equation implies the uniqueness and periodicity of ρ if it exists. We generalize
Burns’ notion of (approximate) extremality, and we prove the following theorem:

Theorem 4.1.4. Consider the following statements (include all or none of the parenthetical
statements):

(1) Hn is (approximately) extremal for some n ≥ 1,
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(2) Hn is (approximately) extremal for all n ≥ 1,

(3) The (possibly non-)unitary ρ exists on P2n for all n ≥ 1, and

(4) The (possibly non-)unitary ρ exists on P2n for some n ≥ 1.

Then (1)⇒ (2)⇒ (3)⇒ (4). If H is symmetric, then (4)⇒ (1).
When ρ exists, we represent it diagrammatically by

ρm(ζ) = ζ

nm

for ζ ∈ Pm+n,

(well-defined by Corollary 4.4.16) and these diagrams are compatible with the diagrams above
in the sense of Theorem 4.4.17.

Interestingly, we find our planar structure without the use of Jones’ basic construction
and resulting Jones projections!

Outline:
In Section 4.2, we give a brief introduction to modules, the relative tensor product,

extended positive cones, and operator valued weights. Subsections 4.2 and 4.2 provide some
helpful, well-known results for the convenience of the reader.

In Subsection 4.3, starting with our A−A bimodule H, we introduce Hn along with two
towers of algebras Cn, C

op
n , a tower of centralizer algebras Qn = Cn ∩ Cop

n , and the central
L2-vectors Pn. We then compute formulas for the various canonical maps associated with
these towers. In Subsection 4.3, we show the extended positive cones (in the sense of [Haa79])

of the centralizer algebras Q̂+
n naturally form an algebra over an operad BP (we use positive

cones so we can “conditionally expect” using operator valued weights). In Subsection 4.3,
we show that the vectors in P• are left and right A-bounded and form a graded algebra in
the sense of [GJS10]. We then show the compatibility of Q̂+

• and P• in Subsection 4.3.
Subsection 4.4 defines extremality for bimodules and Burns rotations. In Subsection 4.4,

we show how the Burns rotation fits in our planar calculus, and in Subsection 4.4, we show
that (approximate) extremality implies the existence of the Burns rotation (Theorem 4.4.20).
A converse of this theorem for symmetric bimodules is obtained in Subsection 4.4, which
finishes the proof of Theorem 4.1.4.

Subsection 4.5 discusses centralizer algebras Qn and central L2-vectors Pn for some basic
examples, including the infinite index group-subgroup subfactor, and Subsection 4.5 deter-
mines if the examples are (approximately) extremal. In particular, Corollaries 4.5.9, 4.5.11,
and 4.5.20 give an extremal infinite index subfactor for which dim(Qn) <∞ and dim(Pn) = 1
for all n ∈ N. This example contrasts Burns’ example of an infinite index subfactor with a
type III summand in a higher relative commutant [Bur03].

Throughout the paper, we need some technical results which have been included in the
last few sections. Section 4.6 shows that the relative tensor product of extended positive
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cones is well-defined and associative, which is necessary for our planar calculus. Section 4.7
discusses the operad BP which acts on the positive cones Q̂+

n , including results on generating
sets of tangles, standard form of tangles, and that the action is well-defined. In Section 4.8,
we axiomatize the notion of extended positive cone to make rigorous the idea of a planar
algebra over such objects. The main intricacy is that we must make multiplication by ∞R
well-defined.

Future research:
The annular Temperley-Lieb category, especially the rotation, played an important role in

the construction of certain exotic finite index subfactors [Pet10, BMPS09]. In a future paper
with Jones, we will incorporate the odd Jones projections for infinite index (see [Bur03]) into
the planar calculus, and we will give the analog of the annular Tempeley-Lieb category for
infinite index. We hope this viewpoint will be as fruitful as in the finite index case.

The results of this paper should generalize to bimodules over an arbitrary finite von
Neumann algebra. As it requires substantial calculations while obscuring the main new
ideas presented here, this generalization will appear in a future paper.

Finally, it would be interesting to try to connect Connes’ results on self-dual positive
cones [Con74] to the extended positive cones axiomatized in Section 4.8.
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4.2 Preliminaries

Notation 4.2.1. • Throughout this paper, a trace on a finite von Neumann algebra
means a faithful, normal, tracial state unless otherwise specified.

• A will always denote a finite von Neumann algebra with trace trA.

• We use the notation â to denote the image of a ∈ A in L2(A, trA).
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• For a semifinite von Neumann algebra M with normal, faithful, semifinite (n.f.s.) trace
TrM , we write

nTrM = {x ∈M |TrM(x∗x) <∞} and

mTrM = n∗TrM
nTrM = span {x∗y|x, y ∈ nTrM} .

Modules and the relative tensor product

This exposition follows [Con80, Sau83, Pop94, EN96, Bis97, EV00, Bur03].

Definition 4.2.2 (Left modules). If AK is a left Hilbert A-module, then the set of left
A-bounded vectors is given by

D(AK) = {η ∈ K|‖aη‖2 ≤ λ‖a‖2 for some λ ≥ 0} ,

and each η ∈ D(AK) gives a bounded map R(η) : L2(A)→ H by the extension of â 7→ aη.
For η1, η2 ∈ D(AK), we have an A-valued inner product given by

A〈η1, η2〉 = JR(η1)∗R(η2)J ∈ A

satisfying

(1) A〈aη1 + η2, η3〉 = aA〈η1, η3〉+ A〈η2, η3〉,

(2) A〈η1, η2〉∗ = A〈η2, η1〉, and

(3) A〈xη1, η2〉 = A〈η,x∗η2〉

for all a ∈ A, x ∈ A′ ∩B(K), and η1, η2, η3 ∈ D(AK) (note xηi ∈ D(AK)).
An AK-basis is a set of vectors {α} ⊂ D(AK) such that∑

α

R(α)R(α)∗ = 1K ⇐⇒
∑
α

A〈η, α〉α = η for all η ∈ D(AK).

AK-bases exist by [Con80].
The canonical trace on A′ ∩ B(K) is given by TrA′∩B(K)(x) =

∑
α〈xα, α〉 where {α} is

any AK basis.
If η ∈ D(AK), then TrA′∩B(K)(R(η)R(η)∗) = trA(A〈η, η〉) = ‖η‖2

2.

Definition 4.2.3 (Right modules). A right Hilbert A-module is the same as a left Hilbert
Aop-module. If HA is a right Hilbert A-module, we write ξa for aopξ for all aop ∈ Aop. We
get parallel definitions:

The set of right A-bounded vectors is given by

D(HA) = {ξ ∈ H|‖ξa‖2 ≤ λ‖a‖2 for some λ ≥ 0} .
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Each ξ ∈ D(HA) defines a bounded map L(ξ) : L2(A)→ H by the extension of â 7→ ξa.
For ξ1, ξ2 ∈ D(HA), we have an A-valued inner product given by

〈ξ1|ξ2〉A = L(ξ1)∗L(ξ2) ∈ A

satisfying

(1) 〈ξ1|ξ2a+ ξ3〉A = 〈ξ1|ξ2〉Aa+ 〈ξ1|ξ3〉A,

(2) 〈ξ1|ξ2〉∗A = 〈ξ2|ξ1〉A, and

(3) 〈xξ1|ξ2〉A = 〈ξ1|x∗ξ2〉A

for all a ∈ A, x ∈ (Aop)′ ∩B(H), and ξ1, ξ2, ξ3 ∈ D(HA) (note xξi ∈ D(HA)).
An HA-basis is a set of vectors {β} ⊂ D(HA) such that∑

β

L(β)L(β)∗ = 1H ⇐⇒
∑
β

β〈β|ξ〉A = ξ for all ξ ∈ D(HA).

HA-bases exist by [Con80].
The canonical trace on on (Aop)′ ∩B(H) is given by Tr(Aop)′∩B(H)(x) =

∑
β〈xβ, β〉 where

{β} is any HA basis.
If ξ ∈ D(HA), then Tr(Aop)′∩B(H)(L(ξ)L(ξ)∗) = trA(〈ξ|ξ〉A) = ‖ξ‖2

2.

Definition 4.2.4 (Relative tensor product). The relative tensor product H ⊗A K is given
by one of the three equivalent definitions:

(1) the completion of the algebraic tensor product D(HA) �A K under the pseudo-norm
induced by the sesquilinear form 〈ξ1 � η1, ξ2 � η2〉 = 〈〈ξ2|ξ1〉Aη1, η2〉,

(2) the completion of the algebraic tensor product H �A D(AK) under the pseudo-norm
induced by the sesquilinear form 〈ξ1 � η1, ξ2 � η2〉 = 〈ξ1A〈η1, η2〉, ξ2〉H , or

(3) the completion of the algebraic tensor product D(HA) �A D(AK) under the pseudo-
norm induced by the sesquilinear form

〈ξ1 � η1, ξ2 � η2〉 = 〈ξ1A〈η1, η2〉, ξ2〉H = 〈〈ξ2|ξ1〉Aη1, η2〉K .

The image of ξ � η in H ⊗A K is denoted ξ ⊗ η. (This notation avoids confusion with the
operators x⊗A y as in Lemma 4.6.4.)

Given ξ ∈ D(HA) and η ∈ D(AK), we get bounded creation operators Lξ : K → H⊗AK
by η′ 7→ ξ ⊗ η′ and Rη : H → H ⊗A K by ξ′ 7→ ξ′ ⊗ η, whose adjoints are the annihilation
operators given by L∗ξ(ξ

′ ⊗ η′) = 〈ξ|ξ′〉Aη′ and R∗η(ξ
′ ⊗ η′) = ξ′A〈η′, η〉.
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Definition 4.2.5 (Fiber product, [Sau85, EV00]). Suppose Aop ⊂ M1 ⊂ B(H) and A ⊂
M2 ⊂ B(K). Then we define

M ′
1 ⊗AM ′

2 = {x⊗A y|x ∈M ′
1 and y ∈M ′

2} ⊂ B(H ⊗A K)

(see Section 4.6 and Lemma 4.6.4), and the fiber product of M1 and M2 over A is given by
M1 ?AM2 = (M ′

1 ⊗AM ′
2)′. The fiber product satisfies:

• (M1 ?AM2) ∩ (N1 ?A N2) = (M1 ∩N1) ?A (M2 ∩N2) and

• M1 ?A A = ((Aop)′ ∩M1)⊗A 1K and Aop ?AM2 = 1H ⊗A (A′ ∩M2).

In particular,

(B(H) ?A A)′ = ((Aop)′ ⊗A 1K)′ = Aop ?A B(K) = 1H ⊗A A′.

Some easy facts about the relative tensor product

The following are well-known to experts, but we reproduce them here for the sake of
completeness and the reader’s convenience. For this subsection, HA is a right Hilbert A-
module, and AK is a left Hilbert A-module unless otherwise stated.

Lemma 4.2.6. Suppose {β} is an HA-basis. Then if u ∈ U((Aop)′∩B(H)), {uβ} is another
HA-basis. If v ∈ U(A), then {βv} is also an HA-basis. A similar result holds for left modules.

Proof. For u ∈ (Aop)′ ∩B(H), L(uβ)L(uβ)∗ = uL(β)L(β)∗u∗. Thus

∑
uβ

L(uβ)L(uβ)∗ = u

(∑
β

L(β)L(β)∗

)
u∗ = 1H .

If v ∈ U(A), then L(βv)L(βv∗) = L(β)vv∗L(β)∗ = L(β)L(β)∗, and the result follows.

Lemma 4.2.7. Let ξ1, ξ2 ∈ D(HA) and η1, η2 ∈ D(AK). Then L∗ξ1Lξ2 ∈ B(K) is left
multiplication by 〈ξ1|ξ2〉A and R∗η1Rη2 ∈ B(H) is right multiplication by A〈η1, η2〉.

Proof. 〈L∗ξ1Lξ2η1, η2〉 = 〈ξ2 ⊗ η1, ξ1 ⊗ η2〉 = 〈〈ξ1|ξ2〉Aη1, η2〉. The other is as trivial.

Lemma 4.2.8. If {β} is an HA-basis, then
∑

β LβL
∗
β = 1H⊗AK. Similarly, if {α} is an

AH-basis, then
∑

αRαR
∗
α = 1H⊗AK.

Proof. We prove the first statement. Suppose ξ ∈ D(HA) and η ∈ D(AK). Then∑
β

LβL
∗
β(ξ ⊗ η) =

∑
β

Lβ(L∗βLξ)η =
∑
β

β〈β|ξ〉A ⊗ η = ξ ⊗ η.
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Lemma 4.2.9. Suppose η ∈ AK and η′ ∈ D(AK). Then there is a unique A〈η′, η〉 ∈ L2(A) ⊂
L1(A) such that 〈aη, η′〉K = 〈a, A〈η′, η〉〉L2(A) for all a ∈ A. A similar result holds for right
modules.

Proof. If ξ ∈ D(AK), this is just the usual Radon-Nikodym derivative, and

‖A〈η′, η〉‖2 = sup
a∈A,‖â‖2≤1

|〈â, A〈η′, η〉̂〉L2(A)| = sup
a∈A,‖â‖2≤1

tr(A〈η, η′〉a)

= sup
a∈A,‖â‖2≤1

|〈aη, η′〉K | ≤

(
sup

a∈A,‖â‖2≤1

‖a∗η′‖2

)
‖η‖2 ≤ λ‖η‖2

for some λ > 0 depending only on η′ as η′ ∈ D(AK). Now if η /∈ D(AK), take ηn ∈ D(AK)
with ηn → η in ‖ · ‖2, and define

A〈η′, η〉 = lim
n

A〈η′, ηn〉

which exists by the above estimate. Now 〈aη, η′〉K = 〈â, A〈η′, η〉〉L2(A) for all a ∈ A by
construction.

Corollary 4.2.10. Each η ∈ AK gives a closable operator R(η)0 : Â → AK by â 7→ aη. A
similar result holds for right modules.

Proof. We need only show its adjoint is densely defined. If η′ ∈ D(AK), then

〈R(η)0â, η′〉K = 〈aη, η′〉K = 〈Â, A〈η′, η〉〉L2(A)

by Lemma 4.2.9, and the result follows as D(AK) is dense in K.

Corollary 4.2.11. Each η ∈ AK gives a closable unbounded operator R0
η : D(HA)→ H⊗AK

by ξ 7→ ξ ⊗ η. A similar result holds for each ξ′ ∈ HA.

Proof. Once again, we show its adjoint is densely defined. If ξ′ ∈ D(HA) and η′ ∈ D(AK),
then by Lemma 4.2.9,

〈R0
ηξ, ξ

′ ⊗ η′〉H⊗AK = 〈ξ ⊗ η, ξ′ ⊗ η′〉H⊗AK = 〈〈ξ′|ξ〉Aη, η′〉K = 〈〈ξ′|ξ〉̂A, A〈η′, η〉̂〉L2(A)

= 〈L(ξ′)∗ξ, A〈η′, η〉̂〉L2(A) = 〈ξ, L(ξ′)A〈η′, η〉̂〉H .

The result now follows as D(HA)⊗A D(AK) is dense in H ⊗A K.

Haagerup’s extended positive cones and operator valued weights

For this subsection, M is a von Neumann algebra acting on a Hilbert space H.

Definition 4.2.12 (Section 1 of [Haa79]). The extended positive cone of M , denoted M̂+,
is the set of weights on the predual of M , i.e., maps m : M+

∗ → [0,∞] such that



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 85

(1) m(λφ+ ψ) = λm(φ) +m(ψ) for all λ ≥ 0 and φ, ψ ∈M+
∗ , and

(2) m is lower semicontinuous.

The extended positive cone has additional structure:

• There is a natural inclusion M+ → M̂+ by m 7→ (φ 7→ φ(m)).

• For m ∈ M̂+ and a ∈M , we define a∗ma ∈ M̂+ by

a∗ma(φ) = m(aφa∗) = m(φ(a∗ · a)).

We write λm for λ1/2mλ1/2 for λ ≥ 0.

• There is a natural partial ordering on M̂+ given by m1 ≤ m2 if m1(φ) ≤ m2(φ) for all
φ ∈M+

∗ .

• If I is a directed set, we say (mi)i∈I ⊂ M̂+ increases to m ∈ M̂+ if i ≤ j implies
mi ≤ mj and supimi(φ) = m(φ) for all φ ∈ M+

∗ . Hence we can define the sum of

elements of M̂+ pointwise.

• Each φ ∈M+
∗ extends uniquely to a map M̂+ → [0,∞] by φ(m) = m(φ).

Remark 4.2.13 (Section 1 of [Haa79]). There are equivalent definitions of M̂+:

• Given a projection p ∈ P (M) and a densely-defined positive, self-adjoint operator S
in K = pH affiliated with M , we can define

m(K,S)(ωξ) =

{
‖S1/2ξ‖ if ξ ∈ D(S1/2)

∞ else
(4.1)

where ωξ = 〈· ξ, ξ〉. Conversely, given m ∈ M̂+, there are unique (K,S) such that
Equation (4.1) holds. In the sequel, we will write m = (K,S) when we use this
bijective correspondence.

• Each m ∈ M̂+ has a unique spectral resolution

m(φ) =

∫ ∞
0

λdφ(eλ) +∞φ(p)

where {eλ}λ∈[0,∞) are increasing family of projections in M such that:

(1) λ 7→ eλ is strongly continuous from the right, and

(2) p = 1− limλ→∞ eλ
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Moreover,

e0 = 0⇐⇒ m(φ) > 0 for all φ ∈M+
∗ \ {0}

p = 0⇐⇒
{
φ ∈M+

∗
∣∣m(φ) <∞

}
is dense in M+

∗ .

• Every m ∈ M̂+ is a pointwise limit of an increasing sequence of operators in M+.

• M̂+ is the set of all m ∈ B̂(H)+ affiliated to M (umu∗ = m for all u ∈ U(M ′)).

Theorem 4.2.14 ([Haa79], Proposition 1.11, Theorem 1.12). Suppose M is a semifinite von
Neumann algebra with n.f.s. trace TrM . For x, y ∈ M+, let TrM(x · y) = TrM(x1/2yx1/2).

Then the map (x, y) 7→ TrM(x · y) has a unique extension to M̂+ × M̂+ such that

• TrM(x · y) = TrM(y · x) for all x, y ∈ M̂+,

• TrM is additive and homogeneous in both variables,

• if (xi), (yj) ⊂ M̂+ with xi ↗ x and yj ↗ y, then TrM(xi · yj)↗ TrM(x · y), and

• TrM((a∗xa) · y) = TrM(x · (aya∗)) for all x, y ∈ M̂+ and a ∈M .

Moreover

• The map x 7→ Tr(x · ) is a homogeneous, additive bijection from M̂+ onto the set of
normal weights of M ,

• x ≤ y ⇐⇒ Tr(x · ) ≤ Tr(y · ) and xi ↗ x⇐⇒ Tr(xi · )↗ Tr(x · ), and

• If x =
∫∞

0
λ deλ +∞p, then Tr(x · ) is faithful if and only if e0 = 0 and semifinite if

and only if p = 0.

Definition 4.2.15 ([Haa79], Definitions 2.1 and 2.2). Let M and N be von Neumann

algebras N ⊆ M . An operator valued weight from M → N is a map T : M+ → N̂+ which
satisfies the following conditions:

(1) T (λx+ y) = λT (x) + T (y) for all λ ≥ 0 and x, y ∈M+, and

(2) T (a∗xa) = a∗T (x)a for all x ∈M+ and a ∈ N .

As in the case of ordinary weights, we set

nT =
{
x ∈M

∣∣T (x∗x) ∈ N+
}

and

mT = n∗TnT = span {x∗y|x, y ∈ nT} .

Moreover, we say T is:
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• normal if xi ↗ x⇒ T (xi)↗ T (x) for all xi, x ∈M+,

• faithful if T (x∗x) = 0⇒ x = 0 for all x ∈M+, and

• semifinite if nT is σ-weakly dense in M .

We will abbreviate normal, faithful, semifinite by the acronym n.f.s.

Remarks 4.2.16. (1) T is a conditional expectation if and only if T (1) = 1.

(2) If T is normal, it has a unique extension to M̂+ satisfying (1) and (2).

(3) nT is a left-ideal and nT ,mT are algebraic N−N bimodules. By polarization, T extends
to a map T : mT → N , and T (axb) = aT (x)b for all x ∈ mT and a, b ∈ N .

Theorem 4.2.17 ([Haa79], Theorem 2.7). Given an inclusion N ⊆ M of semifinite von
Neumann algebras with n.f.s. traces TrN ,TrM respectively. Then there is a unique n.f.s.
trace-preserving operator valued weight T : M+ → N̂+. Moreover, if x ∈ M+, T (x) is the

unique element of N̂+ such that

TrM(y · x) = TrN(y · T (x)) for all y ∈ N+ (4.2)

(where we also write TrN for the unique extension of TrN to N̂+).

Definition 4.2.18. For N ⊆M an inclusion of von Neumann algebras, we write

• P(M,N) for the set of n.f.s. operator valued weights M+ → N̂+, and

• P0(M,N) ⊆ P(M,N) for the set of operator valued weights whose restriction to N ′∩M
is semifinite.

Lemma 4.2.19 ([ILP98], Lemma 2.5 and Proposition 2.8, [Yam94], Corollary 28). Let
N ⊂M be an inclusion of semifinite von Neumann algebras.

(1) There is a unique central projection z ∈ N ′ ∩M such that

• P0(pMp, pN) = ∅ for all p ∈ N ′ ∩M , p ≤ (1− z) and

• P0(zMz, zN) = P(zMz, zN).

Moreover, for all T ∈ P(M,N),

• (1− z)(N ′ ∩M) ∩mT = {0}, and

• T |z(N ′∩M) is semifinite.

(2) If P0(M,N) 6= ∅ and P0(N ′,M ′) 6= ∅, then N ′ ∩M is a direct sum of type I factors,
and pN ⊂ pMp has finite index for every finite rank p ∈ N ′ ∩M .
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Useful lemmata on extended positive cones

For this subsection, M is a von Neumann algebra acting on a Hilbert space H.

Lemma 4.2.20. For m ∈ M̂+ and η, ξ ∈ H, the parallelogram identity holds:

m(ωη+ξ) +m(ωη−ξ) = 2m(ωη) + 2m(ωξ).

Proof. Take (xi) ⊂M+ with xi increasing to m. Then

m(ωη+ξ) +m(ωη−ξ) = sup
i,j

(
xi(ωη+ξ) + xj(ωη−ξ)

)
≤ sup

i,j

(
sup
k≥i,j

(
xk(ωη+ξ) + xk(ωη−ξ)

))
= sup

i,j

(
sup
k≥i,j

(
2xk(ωη) + 2xk(ωξ)

))
≤ sup

i′,j′

(
2xi′(ωη) + 2xj′(ωξ)

)
= 2m(ωη) + 2m(ωξ).

The other inequality is proved similarly.

Lemma 4.2.21. (1) m1 ≤ m2 if and only if m1(ωξ) ≤ m2(ωξ) for all ξ ∈ H.

(2) (mi)i∈I increases to m if and only if i ≤ j implies mi ≤ mj and supimi(ωξ) = m(ωξ)
for all ξ ∈ H.

(3) If (mi)i∈I increases to m and a ∈M+, then a∗mia increases to a∗ma.

Proof. First, note every φ ∈M+
∗ is a sum of functionals ωξk = 〈· ξk, ξk〉 for ξi ∈ H.

(1) Follows immediately by lower semicontinuity of m ∈ M̂+.

(2) Suppose φ =
∑

k ωξk . By lower semicontinuity,

m(φ) =
∑
k

m(ωξk) =
∑
k

sup
i
mi(ωξk)

≥ sup
i

∑
k

mi(ωξk) = sup
i
mi

(∑
k

ωk

)
= sup

i
mi(φ).

There are two cases:

Case 1: Suppose m(φ) = ∞. Then there is a ε > 0 such that supimi(ωξk) > ε for
infinitely many k, say (kn). Let N > 0, and let M > 0 such that Mε > N . Choose
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j1 ∈ I such that i ≥ j1 implies mi(ωk1) > ε. For n = 2, . . . ,M , inductively choose
jn > jn−1 such that i ≥ jn implies mi(ωkn) > ε. Then for all i > jM ,

∑
k

mi(ωξk) ≥
M∑
n=1

mi(ωξkn ) ≥
M∑
n=1

ε = Mε > N.

Since N was arbitrary, we must have

sup
i
mi(φ) = sup

i
mi (ωk) = sup

i

∑
k

mi(ωk) =∞.

Case 2: Suppose m(φ) < ∞. Let ε > 0. Then there is an N ∈ N such that∑
k>N m(ωξk) < ε. Now as in the proof of Lemma 4.2.20,

m(φ)− ε <
N∑
k=1

sup
i
mi(ωξk) = sup

i

N∑
k=1

mi(ωξk) ≤ sup
i

∑
k

mi(ωk) = sup
i
mi(φ),

and the result follows as ε was arbitrary.

(3) We use (2). Let ξ ∈ H.

a∗mia(ωξ) = mi(ωaξ) ≤ mj(ωaξ) = a∗mja(ωξ) for all i ≤ j and

sup
i
a∗mia(ωξ) = sup

i
mi(ωaξ) = m(ωaξ) = a∗ma(ωξ).

Remark 4.2.22. Suppose (xi)i∈I , (yi)i∈I ⊂ M+ are directed families and λ ≥ 0. Then by
Lemma 4.2.21 and techniques similar to those used in the proof of Lemma 4.2.20,

sup
i

(λxi + yi) = λ sup
i
xi + sup

j
yj.

Lemma 4.2.23. Suppose F ⊂ M̂+ is a directed family, i.e., if x, y ∈ F , then there is a z ∈ F
with z ≥ x and z ≥ y. Then there is a unique mF = (KF , SF ) ∈ M̂+ with KF = Dom(S

1/2
F )

such that

mF (ωξ) = 〈S1/2
F ξ, S

1/2
F ξ〉 = sup

x∈F
x(ωξ) for all

ξ ∈ Dom(S
1/2
F ) =

{
ξ ∈ H

∣∣∣∣sup
x∈F

x(ωξ) <∞
}
.

We denote mF by supx∈F x.
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Proof. As in [Haa79, Con80, Tak03], one checks that the extended quadratic form sF : H →
[0R,∞R] given by sF (ξ) = supx∈F x(ωξ) satisfies

(1) sF (λξ) = |λ|2sF (ξ),

(2) sF (η + ξ) + sF (η − ξ) = 2sF (η) + 2sF (ξ),

(3) sF is lower semicontinuous, and

(4) sF (uξ) = sF (ξ) for all u ∈M ′.

(1) and (4) are trivial. (3) follows as sups of lower semicontinuous maps are lower semicon-
tinuous. (2) is similar to the proof of Lemma 4.2.20.

Definition 4.2.24. Suppose M is a semifinite von Neumann algebra with n.f.s. trace TrM
acting on the right of H. Let ξ ∈ D(HM), and suppose (xi) ∈ (M ′ ∩B(H))+ with xi ↗ x ∈

̂(M ′ ∩B(H))+. Then each L(ξ)∗xiL(ξ) ∈ M+ as it commutes with the right M -action on
L2(M,TrM), so we define

L(ξ)∗xL(ξ) = sup
i
L(ξ)∗xiL(ξ) ∈ M̂+.

Note that if κ ∈ L2(M,TrM), then(
L(ξ)∗xL(ξ)

)
(ωκ) = sup

i

(
L(ξ)∗xiL(ξ)

)
(ωκ) = sup

i
xi(ωξ⊗κ) = x(ωξ⊗κ),

which is independent of the choice of (xi). Hence L(ξ)∗xL(ξ) is well-defined by Lemma
4.2.21. Similarly, we may define operators of the form R(η)∗yR(η), L∗ξxLξ, and R∗ηyRη.

4.3 Planar calculus for bimodules

For this section, let A be a II1-factor, and let AHA be an A − A Hilbert bimodule, i.e.,
H has commuting actions of A and Aop.

Centralizer algebras, central L2-vectors, and canonical maps

Definition 4.3.1. For an A− A bimodule K (algebraic or Hilbert), we define

A′ ∩K = {ξ ∈ K|aξ = ξa for all a ∈ A} .

Notation 4.3.2. For n ≥ 0, let

• Hn =
⊗n

AH, with the convention that H0 = L2(A),



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 91

• Bn = D(AH
n)∩D(Hn

A), which is dense in Hn by Lemma 1.2.2 of [Pop86]. We also use
the convention B = B1. Note B0 = A.

• {α} ⊂ B be an AH basis (possible due to the density of B in H), with

{αn} = {α1 ⊗ · · · ⊗ αn|αi ∈ {α} for all i = 1, . . . , n} ⊂ Bn

the corresponding AH
n basis (as Rα1⊗···⊗αn = Rα1 · · ·Rαn). We let {β} ⊂ B be an HA

basis, with {βn} ⊂ Bn the corresponding Hn
A basis.

• (central L2-vectors) Pn = A′ ∩Hn. Note P0 = A′ ∩ L2(A) = C1̂.

• Cn = (Aop)′ ∩ B(Hn) (the commutant of the right A-action on Hn) with canonical
trace Trn =

∑
βn〈 · βn, βn〉,

• Cop
n = A′ ∩B(Hn) with canonical trace Trop

n =
∑

αn〈 ·αn, αn〉,

• (centralizer algebras) Qn = Cn ∩ Cop
n .

Remark 4.3.3. Note that A ⊂ Cn and Aop ⊂ Cop
n .

Definition 4.3.4. H is called symmetric if there is a conjugate-linear isomorphism J : H →
H such that J(aξb) = b∗(Jξ)a∗ for all a, b ∈ A and ξ ∈ H and J2 = idH .

Remark 4.3.5. If H is symmetric, then for n ≥ 1, Hn is symmetric with conjugate-linear
isomorphism Jn : Hn → Hn given by the extension of

Jn(ξ1 ⊗ · · · ⊗ ξn) = (Jξ1)⊗ · · · ⊗ (Jξn).

for ξi ∈ B for all i. Note that JnAJn = Aop, JnCnJn = Cop
n , and JnB

n = Bn. On B(Hn),
we define jn by jn(x) = Jnx

∗Jn. Note that j2
n = id and Trn = Trop

n ◦jn.
If H is not symmetric, then in general, Cop

n is not the opposite algebra of Cn, e.g.

R⊗1L
2(R⊗R)R⊗R where R is the hyperfinite II1-factor.

Remark 4.3.6. It is clear that Bn is an A − A bimodule. If η ∈ Bn and c ∈ Cn, then
cξ ∈ D(Hn

A), but in general, cξ /∈ D(AH
n). However, if c ∈ Qn, then clearly cξ ∈ Bn.

Proposition 4.3.7. We have natural inclusions:

in : Cn → Cn+1 by x 7→ x⊗A idH = (η ⊗ ξ 7→ (xη)⊗ ξ for η ∈ Bn and ξ ∈ B) and

iop
n : Cop

n → Cop
n+1 by y 7→ idH ⊗Ay = (ξ ⊗ η 7→ ξ ⊗ (yη) for ξ ∈ B and η ∈ Bn).

Both maps include Qn → Qn+1.

Proof. If z ∈ Qn, then in(z) ∈ Qn+1 as for all a, b ∈ A,

(z ⊗A idH)[a(ξ ⊗ η)b] = (z(aξ))⊗ (ηb) = (a(zξ))⊗ (ηb) = a[(zη)⊗ ξ]b.

The result is similar for iop
n .
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Proposition 4.3.8. If x ∈ Cn, then in(x) =
∑

αRαxR
∗
α. If y ∈ Cop

n , then iop
n (y) =∑

β LβyL
∗
β.

Proof. We prove the first statement. If ξ1, . . . , ξn+1 ∈ B, we have(∑
α

RαxR
∗
α

)
ξ1 ⊗ · · · ⊗ ξn =

∑
α

Rαx(ξ1 ⊗ · · · ⊗ ξn−1A〈ξn, α〉)

=
∑
α

(
x(ξ1 ⊗ · · · ⊗ ξn−1A〈ξn, α〉)⊗ α

)
=
∑
α

(
x(ξ1 ⊗ · · · ⊗ ξn−1)

)
⊗ A〈ξn, α〉α

= [x(ξ1 ⊗ · · · ⊗ ξn−1)]⊗ ξn = in(x)(ξ1 ⊗ · · · ⊗ ξn).

Remark 4.3.9. By Definition 4.2.5, (Ck ⊗A idn−k)
′ ∩B(Hn) = idk⊗ACop

n−k.

Lemma 4.3.10. Suppose ξ ∈ Hn and y ∈ (Cop
n+1)+. Recall the operator R0

ξ : B → Hn+1 by

η 7→ η ⊗ ξ is closable by Corollary 4.2.11. Then y1/2R0
ξ : B → Hn+1 is also closable.

Proof. Let p be the range/kernel perp projection of y1/2. By the spectral theorem, there
are projections pk ∈ Cop

n+1 such that y1/2pk = pky
1/2 is invertible on pkH

n+1 and pk ↗ p

(strongly). Fix k ≥ 0. Vectors of the form ζ =
∑j

i=1 σi ⊗ κi ∈ pkHn+1 where σ1, . . . , σj ∈ B
and κ1, . . . , κj ∈ Bn are dense in pkH

n+1 by the density of B ⊗A Bn ⊂ Hn+1. Then for such
ζ and all η ∈ B,

〈y1/2R0
ξη, y

−1/2pkζ〉 =

j∑
i=1

〈η ⊗ ξ, σi ⊗ κi〉 =

j∑
i=1

〈η, Lσi(A〈κi, ξ〉)〉 =

〈
η,

j∑
i=1

Lσi(A〈κi, ξ〉)

〉
(see Corollary 4.2.11). Finally, the span of vectors of the form y−1/2pkζ where ζ is as above
and k ≥ 0 is dense in pHn+1.

The following proposition and its proof are similar to Theorem 3.2.26 and Proposition
3.2.27 of [Bur03].

Proposition 4.3.11. Recall from Proposition 4.3.7 that in(Cn) ⊂ Cn+1 and iop
n (Cop

n ) ⊂
Cop
n+1. The unique trace-preserving operator valued weight

Tn+1 : (C+
n+1,Trn+1)→ (Ĉ+

n ,Trn) is given by x 7→
∑
β

R∗βxRβ.

The unique trace-preserving operator valued weight

T op
n+1 :

(
(Cop

n+1)+,Trop
n+1

)
→
(

(̂Cop
n )+,Trop

n

)
is given by y 7→

∑
α

L∗αyLα.

In particular, Tn+1 and T op
n+1 are independent of the choice of basis.
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Proof. We prove the result for the second statement.
Suppose y ∈ (Cop

n+1)+ and ξ ∈ Hn. By Lemma 4.3.10, y1/2R0
ξ is closable, so we set

S = (y1/2R0
ξ)
∗y1/2R0

ξ , which is affiliated with Cop
1 , and define mS ∈ (̂Cop

1 )+ as in Equation
(4.1) by

mS(ωη) =

{
‖S1/2η‖ if η ∈ D(S1/2) ⊃ B

∞ else.

Now we calculate that

Trop
1 (mS) =

∑
α

mS(ωα) =
∑
α

‖S1/2α‖2
2 =

∑
α

‖y1/2R0
ξα‖2

2

=
∑
α

〈y(α⊗ ξ), (α⊗ ξ)〉Hn+1 =

〈(∑
α

L∗αyLα

)
ξ, ξ

〉
Hn

= T op
n+1(y)(ωξ).

As all elements of B(H)+
∗ are sums

∑
i ωξi , T

op
n+1 is well-defined and independent of the choice

of {α}.
Note that T op

n+1((Cop
n+1)+) ⊂ (̂Cop

n )+ as if y ∈ (Cop
n+1)+, ξ ∈ Hn, and u ∈ U(A), then∑

α

L∗αyLα(ωuξ) =
∑
α

〈y(α⊗ uξ), α⊗ uξ〉 =
∑
α

〈y(αu⊗ ξ), αu⊗ ξ〉

=
∑
α

L∗αuyLαu(ωξ) =
∑
α

L∗αyLα(ωξ)

as {αu} is another AH basis by Lemma 4.2.6.
Finally, if x ∈ (Cop

n )+ and y ∈ (Cop
n+1)+, then

Trop
n+1

(
[iop
n (x1/2)]y[iop

n (x1/2)]
)

=
∑
αn+1

〈
[iop
n (x1/2)]y[iop

n (x1/2)]αn+1, αn+1
〉

=
∑
α,αn

〈
y(α⊗ (x1/2αn)), (α⊗ (x1/2αn))

〉
=
∑
αn

〈∑
α

L∗αyLα(x1/2αn), (x1/2αn)

〉
= Trop

n

(
x1/2T op

n+1(y)x1/2
)
,

so T op
n+1 is the unique trace-preserving operator valued weight by Equation (4.2) in Theorem

4.2.17.

Remark 4.3.12. If z ∈ Q+
n+1, then T op

n+1(z) ∈ Q̂+
n as if ξ ∈ Hn and u ∈ U(A),∑

α

L∗αzLα(ωξu) =
∑
α

〈z(α⊗ ξu), α⊗ ξu〉 =
∑
α

〈(z(α⊗ ξ))uu∗, α⊗ ξ〉 =
∑
α

L∗αzLα(ωξ).

A similar result holds for Tn+1.
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Corollary 4.3.13. If z ∈ Q+
1 , then

∑
α L(α)∗zL(α) = Trop

1 (z)1L2(A).
Similarly,

∑
αR(β)∗zR(β) = Tr1(z)1L2(A).

Proof. We prove the first formula. First,
∑

α L(α)∗zL(α) ∈ Q̂+
0 = [0,∞]. Now(∑

α

L(α)∗zL(α)

)
(ω1̂) =

∑
α

〈L(α)∗zL(α)1̂, 1̂〉 =
∑
α

〈zα, α〉 = Trop
1 (z).

Proposition 4.3.14. The unique trace-preserving operator valued weight

T̃n+1 : (Q+
n+1,Trn+1)→ (iop

n (Q̂+
n ),Trn) is given by x 7→

∑
β

L∗βxLβ.

The unique trace-preserving operator valued weight

T̃ op
n+1 :

(
Q+
n+1,Trop

n+1

)
→
(
in(Q̂+

n ),Trop
n

)
is given by y 7→

∑
α

R∗αyRα.

In particular, T̃n+1 and T̃ op
n+1 are independent of the choice of basis.

Proof. Similar to the proof of Proposition 4.3.11 using Remark 4.3.12. Note that if u ∈ U(A),
then {uα}, {βu} are also AH,HA-bases respectively by Lemma 4.2.6.

Planar algebra over extended positive cones of centralizer algebras

In this subsection, we define an operad BP, and describe a BP-algebra of extended positive
cones Q̂+

• . The proof that the action is well-defined is deferred to Section 4.7 as it is quite
technical. The relations given in the next theorem will be important in our approach.

Theorem 4.3.15. The following relations hold among the maps in, i
op
n , Tn, T

op
n ,⊗A,Trn,Trop

n

for m,n ≥ 1 (compare with Theorem 4.7.2, Remark 4.7.8, and the proof of Theorem 4.7.13):

(1) TnT
op
n+1(z) = T op

n Tn+1(z) for all z ∈ Q̂+
n+1,

(2) z1 ⊗A (z2 ⊗A z3) = (z1 ⊗A z2)⊗A z3 for all zi ∈ Q̂+
ni

, i = 1, 2, 3,

(3) Tm+n(z1 ⊗ z2) = z1 ⊗A (Tnz2) and T op
m+n(z1 ⊗ z2) = (T op

m z1)⊗A z2 for all z1 ∈ Q̂+
m and

z2 ∈ Q̂+
n ,

(4) Trn(z1 · z2) = Trn(z2 · z1) for all z1, z2 ∈ Q̂+
n , and similarly for Trop

n , and

(5) Trn+1(z1 · in(z2)) = Trn(Tn+1(z1) · z2) for all z1 ∈ Q̂+
n+1 and z2 ∈ Q̂+

n , and a similar
statement holds with op.
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Proof. (1) For all ξ ∈ Hn and z ∈ Q̂+
n+1,

(
TnT

op
n+1(z)

)
(ωξ) =

(∑
β

R∗β

(∑
α

L∗αzLα

)
Rβ

)
(ωξ) =

∑
α,β

(R∗βL
∗
αzLαRβ)(ωξ)

=
∑
α,β

z(ωα⊗ξ⊗β) =

(∑
α

L∗α

(∑
β

R∗βzRβ

)
Lα

)
(ωξ)

=
(
T op
n Tn+1(z)

)
(ωξ).

(2) This is Corollary 4.6.14.

(3) Suppose z1,j ∈ Q+
m increases to z1 and z2,k ∈ Q+

n increases to z2. Then

Tm+n(z1,j ⊗A z2,k) =
∑
β

R∗β(z1,j ⊗A z2,k)Rβ =
∑
β

z1,j ⊗A
(
R∗βz2,kRβ

)
= z1,j ⊗A

(∑
β

R∗βz2,kRβ

)
= z1,j ⊗A (Tnz2,k).

Now Tnz2,k increases to Tnz2, and we are finished by Theorem 4.6.16. The other
equality is similar.

(4) This is Theorem 4.2.14.

(5) This is Proposition 4.8.11.

Corollary 4.3.16. The following relations also hold:

(1) in+1i
op
n (z) = iop

n+1in(z) for all z ∈ Q̂+
n .

(2) im+n(z1 ⊗A zn) = z1 ⊗A in(z2) and iop
m+n(z1 ⊗A z2) = iop

m (z1)⊗A z2 for all z1 ∈ Q̂+
m and

z2 ∈ Q̂+
n ,

(3) iop
n−1Tn(z) = Tn+1i

op
n (z) and in−1T

op
n (z) = T op

n+1in(z) for all z ∈ Q̂+
n ,

(4) (Tn+1 ◦ · · · ◦ Tm+n)(z1 ⊗A z2) = Trn(z2)z1 for all z1 ∈ Q̂+
m and z2 ∈ Q̂+

n , and a similar
statement holds with op. In particular, Trm+n(z1⊗z2) = Trm(z1) Trn(z2) and Trop

m+n(z1⊗
z2) = Trop

m (z1) Trop
n (z2).

(5) Trm+n((z1⊗Az2)·(z3⊗Az4)) = Trm(z1·z3) Trn(z2·z4) for all z1, z3 ∈ Q̂+
m and z2, z4 ∈ Q̂+

n .
A similar statement holds for Trop

n .
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Definition 4.3.17. The bimodule planar operad BP is the operad of oriented, unshaded
planar tangles (up to planar isotopy) generated by

n ,
n

n

,
n

n

,

n

,

n

, and
m

m

n

n

for m,n ≥ 0 up to planar isotopy. (We draw all disks as boxes, suppress external disks,
draw one thick string labelled n for n individual strings, and orient all strings upward unless
otherwise specified.) A topological characterization of BP tangles is given in Theorem 4.7.9.

A BP-algebra (of extended positive cones) V• is a sequence {Vn}n≥0 of extended positive
cones (defined in Section 4.8) and an action by multilinear maps

Z : BP→ML{Vn}

(Z is the partition function) which is well-behaved under composition.

A BP-algebra is called:

• central if V0 = [0R,∞R],

• normal if Z(T ) is normal for all T ∈ BP, and

• self-dual if Vn is self-dual for all n, and for all annular tangles T ∈ BP, flipping it inside
out gives the adjoint map (see Definitions 4.8.8 and 4.8.10).

Theorem 4.3.18. Given an A − A bimodule H, the extended positive cones Q̂+
n form a

central, normal, self-dual BP-algebra Q̂+
• such that:

(1) idHn = idn = n ,

(2) Tn+1(z) = z

n

n

and T op
n+1(z) = z

n

n

for all z ∈ Q̂+
n+1,

(3) z1 ⊗A z2 = z1

m

m

z2

n

n

(defined in Section 4.6) for all z1 ∈ Q̂+
m and z2 ∈ Q̂+

n , and
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(4) Trn(z1 · z2) =

z1

z2
n

and Trop
n (z1 · z2) =

z1

z2
n

for all z1, z2 ∈ Q̂+
n .

Moreover, the following hold:

(5) in(z) = z

n

n

and iop
n (z) = z

n

n

for all z ∈ Q̂+
n and

(6) dim−A(H) = T1(1) = 1 and dimA−(H) = T op
1 (1) = 1 .

Note that for Z to be well-defined, any closed diagram must count for a multiplicative factor

in Q̂+
0 = Ẑ(A)+ = [0R,∞R].

We call Q̂+
• the canonical BP-algebra associated to H.

Proof. We will show (1)-(4) uniquely determine the action of any BP-tangle. We defer this
technical proof to Section 4.7 (Theorem 4.7.13), which uses the important relations given in

Theorem 4.3.15 and Corollary 4.3.16. Note that Q̂+
• is central since Q̂+

0 = Ẑ(A)+ = [0R,∞R],
normal by Theorem 4.2.14 and Remark 4.8.7, and self-dual by Proposition 4.8.11.

Remark 4.3.19. Given some operad P of (shaded, unshaded, oriented, disoriented, etc.)
planar tangles, it is not always possible to define an (extended) positive cone planar algebra
over P. For example, the rotation does not always map positive elements to positive elements
in a subfactor planar algebra.

Graded algebra of central L2-vectors

In this subsection, we define a graded algebra P• of central L2-vectors.

Lemma 4.3.20. Suppose K is a Hilbert A−A bimodule. Then A′ ∩K ⊆ D(AK)∩D(KA).

Proof. Suppose ζ ∈ A′∩K, ζ 6= 0. Define ϕ : A+ → C by a 7→ 〈aζ, ζ〉. Note that ϕ is traicial
as

ϕ(a∗a) = 〈a∗aζ, ζ〉 = 〈a∗ζa, ζ〉 = 〈a∗ζ, ζa∗〉 = 〈a∗ζ, a∗ζ〉 = 〈aa∗ζ, ζ〉 = ϕ(aa∗).

Hence there is a λ ≥ 0 such that ϕ = λ trA by the uniqueness of the trace on a II1-factor.
Now for all a ∈ A,

‖aζ‖2
2 = ‖ζa‖2

2 = ϕ(a∗a) = λ trA(a∗a) = λ‖a‖2
2,

and ζ is left and right A-bounded.
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Remark 4.3.21. In the sequel, we will confuse elements ζ ∈ Pn and the operators L(ζ) =
R(ζ) : L2(A)→ Hn. We will omit R(ζ) and only write L(ζ).

Definition 4.3.22. We represent elements ζ ∈ Pn by boxes with n strings emanating from
the top

ζ or L(ζ) =

ζ

n .

By Lemma 4.3.20, the Pn’s form a graded algebra P• in the sense of [GJS10] where the
graded multiplication is given by relative tensor product (over A) of central vectors. We
denote the product of ζm ∈ Pm and ζn ∈ Pn by

ζm ⊗ ζn = ζm

m

ζn

n

∈ Pm+n.

If z ∈ Qn and ζ ∈ Pn, then zζ ∈ Pn, which we denote as:

zζ or L(zζ) =

z

ζ

.

The reflections of these diagrams denote the functionals 〈 · , ζ〉 or adjoints L(ζ)∗ = ζ
n

.

The inner product 〈 · , · 〉 : Pn×P ∗n → C is given by 〈ξ, ζ〉 =
ζ

ξ

(see Lemma 4.3.23 (2)).

Compatibility

We now show how the BP-algebra Q̂+
• and the graded algebra P• are compatible.

Lemma 4.3.23. (1) If ζ ∈ Pn and ξ ∈ Bn, then A〈ζ, ξ〉 = 〈ξ|ζ〉A.

(2) If ζ, ξ ∈ Pn, A〈ζ, ξ〉 = 〈ξ|ζ〉A = 〈ζ, ξ〉1L2(A) ∈ C1L2(A).

(3) For ζ ∈ Pn, L(ζ)L(ζ)∗ = R(ζ)R(ζ)∗ ∈ Q+
n . We denote the common operator as:

ζ

ζ

n

n

∈ Q+
n .
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(4) If ζ ∈ Pn and ‖ζ‖2 = 1, L(ζ)L(ζ)∗|Pn = pζ, the projection onto Cζ.

Proof. (1) Suppose a1, a2 ∈ A. Then

〈A〈ζ, ξ〉â1, â2〉 = 〈JR(ζ)∗R(ξ)Jâ1, â2〉 = 〈â∗2, R(ζ)∗R(ξ)â∗1〉 = 〈a∗2ζ, a∗1ξ〉
= 〈ζa∗2, a∗1ξ〉 = 〈a1ζ, ξa2〉 = 〈ζa1, ξa2〉 = 〈L(ζ)â1, L(ξ)â2〉
= 〈〈ξ|ζ〉Aâ1, â2〉.

(2) Since ζ, ξ ∈ Pn, for all a, b, a1, a2 ∈ A,

〈〈ξ|ζ〉A(aâ1b), â2〉 = 〈ζaa1b, ξa2〉 = 〈ζa1, ξa
∗a2b

∗〉
= 〈〈ξ|ζ〉Aâ1, a

∗â2b
∗〉 = 〈a(〈ξ|ζ〉Aâ1)b, â2〉,

so 〈ξ|ζ〉A ∈ Z(A) = C1A. Now setting a = b = a1 = a2 = 1A gives the result.

(3) For ξ ∈ Bn, by (1),

L(ζ)L(ζ)∗ξ = ζ〈ζ|ξ〉A = 〈ζ|ξ〉Aζ = A〈ξ, ζ〉ζ = R(ζ)R(ζ)∗ξ,

so the two are equal on Hn. We have Cn 3 L(ζ)L(ζ)∗ = R(ζ)R(ζ)∗ ∈ Cop
n , so

L(ζ)L(ζ)∗ ∈ Q+
n .

(4) Trivial from (2) and (3).

Theorem 4.3.24. Suppose ζ ∈ Pn and z ∈ Q̂+
n .

(1) L(ζ)∗zL(ζ) = z(ωζ)1L2(A) = R(ζ)∗zR(ζ). We denote this diagrammatically by

ζ

ζ

z .

(2) In the notation of Theorem 4.2.14,

z(ωζ) = trA(L(ζ)∗zL(ζ)) = Trn(L(ζ)L(ζ)∗ · z)

= trAop(R(ζ)∗zR(ζ)) = Trop
n (z ·R(ζ)R(ζ)∗).

In diagrams,

ζ

ζ

z =

ζ

ζ

z

=

ζ

ζ

z

.
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Proof. (1) We show the first equality. If z ∈ Q+
n , this is just (2) of Lemma 4.3.23 with

ζ1 = ζ2 = z1/2ζ. Now for z ∈ Q̂+
n , pick (zm) ⊂ Q+

n with zm ↗ z to get

L(ζ)∗zL(ζ) = lim
m→∞

L(ζ)∗zmL(ζ) = lim
m→∞

zm(ωζ)1L2(A) = z(ωζ)1L2(A).

The second equality is similar.

(2) We show the second equality. We may assume z ∈ Q+
n , after which we may take sups

to get the full result. Then as z1/2ζ ∈ Pn, we have

Trn(z · L(ζ)L(ζ)∗) = Trn(z1/2L(ζ)L(ζ)∗z1/2) = Trn(L(z1/2ζ)L(z1/2ζ)∗)

= trA(L(z1/2ζ)∗L(z1/2ζ)) = trA(L(ζ)∗zL(ζ)).

The other equality is similar.

Remark 4.3.25. If a ∈ Qn, z ∈ Q̂+
n , and ζ ∈ Pn,

ζ

ζ

a∗za = (a∗za)(ωζ) = z(ωaζ) =

aζ

aζ

z .

Corollary 4.3.26. If ζ1 ∈ Pm, ζ2 ∈ Pn, z1 ∈ Q+
m, and z2 ∈ Q+

n , then

ζ1 ⊗ ζ2

ζ1 ⊗ ζ2

z1 ⊗A z2
= 〈(z1 ⊗A z2)(ζ1 ⊗ ζ2), (ζ1 ⊗ ζ2)〉 = 〈z1ζ1, ζ1〉〈z2ζ2, ζ2〉 =

ζ1

ζ1

z1

ζ2

ζ2

z2 .

For z1 ∈ Q̂+
m, and z2 ∈ Q̂+

n , taking sups gives

ζ1 ⊗ ζ2

ζ1 ⊗ ζ2

z1 ⊗A z2
= (z1 ⊗A z2)(ωζ1⊗ζ2) = z1(ωζ1)z2(ωζ2) =

ζ1

ζ1

z1

ζ2

ζ2

z2 .
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Theorem 4.3.27 (P• acts on Q̂+
• ). Given a tangle T ∈ BP with 2n boundary points and a

ζ ∈ Pn, we have

ζ

ζ

T := evωζ ◦T : Vi1 × · · · × Vik → [0R,∞R].

In this sense, we say P• acts as weights on Q̂+
• . By Theorems 4.3.15 and 4.3.24 and Corollary

4.3.26, we may remove closed subdiagrams and multiply by the appropriate scalar in [0R,∞R].

Remark 4.3.28. If A ⊂ (B, trB) is an inclusion of II1-factors and H = L2(B), then one can
also define a shaded bimodule planar operad which works similarly to the above construction.
This will be explored in a future paper.

4.4 Extremality and rotations

For this section, A is a II1-factor. Assume the notation of the last section.

Extremality

Definition 4.4.1. H is approximately extremal with constant λ ≥ 1 if on Q+
1 ,

λ−1 Tr1 ≤ Trop
1 ≤ λTr1 .

H is extremal if Tr1 = Trop
1 on Q+

1 .

The following proposition is almost identical to Proposition 2.8 in [ILP98].

Proposition 4.4.2 (Structure of Qn). Qn = an ⊕ bn ⊕ bop
n ⊕ cn such that

• an is a direct sum of type I factors, and for each finite rank p ∈ an, pA ⊂ pCnp has
finite index.

• Trn |an⊕bn and Trop
n |an⊕bopn are semifinite,

• bop
n ⊕ cn ∩mTrn = {0} = bn ⊕ cn ∩mTropn , and

• If Hn is symmetric, then jn fixes an, cn and jn(bn) = bop
n .
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Proof. By Lemma 4.2.19, let zn, z
op
n ∈ Qn be the unique central projections corresponding

to A ⊂ Cn and Aop ⊂ Cop
n . Set

an = znz
op
n Qn bn = zn(1− zop

n )Qn

bop
n = (1− zn)zop

n Qn cn = (1− zn)(1− zop
n )Qn,

and the rest follows immediately.

Proposition 4.4.3. Let Q1 = a1 ⊕ b1 ⊕ bop
1 ⊕ c1 as in Proposition 4.4.2. The following are

equivalent:

(1) H is approximately extremal with constant λ ≥ 1, and

(2) b1 = bop
1 = {0} and there is a λ ≥ 1 such that on Q+

1 ∩ a1, λ−1 Tr1 ≤ Trop
1 ≤ λTr1 .

A similar result holds for the extremal case.

Proof.

(1)⇒ (2): Suppose H is approximately extremal. We show b1 = {0}. As Tr1 |a1⊕b1 is
semifinite by Proposition 4.4.2, we choose z ∈ b1 such that z ≥ 0 and z ∈ mTr1 . Then
z ∈ mTrop1

, but b1 ∩mTrop1
= {0}. Similarly bop

1 = {0}.
(2)⇒ (1): Tr1 |c1∩Q+

1
= Trop

1 |c1∩Q+
1

=∞.

Corollary 4.4.4. H is extremal if and only if for each Hilbert A−A bimodule K ⊂ H, the
left and right von Neumann dimensions agree.

Remark 4.4.5. If H has a two-sided basis {γ}, then H is extremal as

Tr1 =
∑
γ

〈 · γ, γ〉 = Trop
1 .

Remark 4.4.6. If H is approximately extremal, then there is a λ ≥ 1 such that for all

z ∈ Q̂+
1 ,

λ−1
∑
β

z(ωβ) ≤
∑
α

z(ωα) ≤ λ
∑
β

z(ωβ).

If H is extremal, then λ = 1 works.

Theorem 4.4.7. (1) If H is (approximately) extremal (with constant λ ≥ 1), then Hn is
(approximately) extremal for all n ≥ 1 (with constant λn).

(2) If Hn is (approximately) extremal for some n ≥ 1, then H is (approximately) extremal.

Proof. We prove the extremal case, and the approximately extremal case is similar.
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(1) We use strong induction on n. Suppose H1 and Hn are extremal. If z ∈ Q+
n+1,

Trn+1(z) = z

n+ 1

= z

n

= z

n

= z

n+ 1

= Trop
n+1(z).

Hence Hn+1 is extremal.

(2) Suppose Hn is extremal and z ∈ Q+
1 . Then z ⊗A · · · ⊗A z ∈ Q+

n . By the bimodule
planar calculus, z


n

= zz · · ·· · · = z ⊗A · · · ⊗A z

n

= z ⊗A · · · ⊗A z

n

= z z· · · · · · =

 z


n

.

In equations:

Tr1(z)n = Trn(z ⊗A · · · ⊗A z) = Trop
n (z ⊗A · · · ⊗A z) = Trop

1 (z)n.

Taking nth roots gives the desired result.

Proposition 4.4.8. If H is extremal and z ∈ Q̂+
n , then

∑
β R
∗
βzRβ =

∑
αR

∗
αzRα and∑

α L
∗
αzLα =

∑
β L
∗
βzLβ.

Proof. Immediate from Propositions 4.3.11 and 4.3.14.

Rotations

Definition 4.4.9 (Inspired by [Bur03]). A Burns rotation is a map ρ : Pn → Pn such that
for all ζ ∈ Pn and b1, . . . , bn ∈ B,

〈ρ(ζ), b1 ⊗ · · · ⊗ bn〉 = 〈ζ, b2 ⊗ · · · ⊗ bn ⊗ b1〉. (4.3)

An opposite Burns rotation is defined similarly:

〈ρop(ζ), b1 ⊗ · · · ⊗ bn〉 = 〈ζ, bn ⊗ b1 ⊗ · · · ⊗ bn−1〉.
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Remark 4.4.10. Note that if such a ρ exists, it is unique, and ρn = idPn . In this case,
ρop = ρ−1.

Theorem 4.4.11 (Essentially due to [Bur03]). If ρ =
∑

β LβR
∗
β converges strongly on Pn,

then ρ is a Burns rotation. Similarly, if ρop =
∑

αRαL
∗
α converges strongly on Pn, then ρop

is an opposite Burns rotation.

Proof. We must show that ρ preserves Pn and that ρ satisfies Equation (4.3). The latter
follows from:

〈ρ(ζ), b1 ⊗ · · · ⊗ bn〉 =
∑
β

〈ζ, RβL
∗
β(b1 ⊗ · · · ⊗ bn)〉

=
∑
β

〈ζ, 〈β|b1〉Ab2 ⊗ · · · ⊗ bn ⊗ β〉

=
∑
β

〈〈β|b1〉∗Aζ, b2 ⊗ · · · ⊗ bn ⊗ β〉

=
∑
β

〈ζ〈β|b1〉∗A, b2 ⊗ · · · ⊗ bn ⊗ β〉

=
∑
β

〈ζ, b2 ⊗ · · · ⊗ bn ⊗ β〈β|b1〉A〉

= 〈ζ, b2 ⊗ · · · ⊗ bn ⊗ b1〉.

Now ρ is independent of the choice of {β}. In particular, for any u ∈ U(A), {uβ} is an
HA-basis, and

uρ(ζ)u∗ = u

(∑
β

LβR
∗
βζ

)
u∗ =

∑
β

LuβR
∗
uβζ = ρ(ζ) ∈ Pn.

Diagrammatic representation of the Burns rotation

For this section, we assume the Burns rotation ρ exists on Pn for all n ≥ 0. Recall for all
k ≥ 0, ρ−k = (ρop)k.

Notation 4.4.12. For ζ ∈ Pm+n, we denote ρm(ζ) = (ρop)n(ζ) ∈ Pm+n by moving m strings
around the bottom counterclockwise or by moving n strings around the bottom clockwise:

ζ

nm

= ρm(ζ) = (ρop)n(ζ) = ζ

m n
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Proposition 4.4.13. If η ∈ Pm and ξ ∈ Pn, then ρn(η ⊗ ξ) = ξ ⊗ η:

ξη

mn = ξ

n

η

m

.

Proof. Suppose α ∈ Bm and β ∈ Bn. Then by (1) of Lemma 4.3.23,

〈ρn(η ⊗ ξ), β ⊗ α〉 = 〈η ⊗ ξ, α⊗ β〉 = 〈〈α|η〉Aξ, β〉 = 〈ξA〈η, α〉, β〉 = 〈ξ ⊗ η, β ⊗ α〉.

Definition 4.4.14. For 0 ≤ j < m, define µj : Pm×Pn → Pm+n by µj(η, ξ) = ρ−j(ρj(η)⊗ξ).
We represent µj diagrammatically as follows:

µj(η, ξ) =

ξ

η

m− j j

n

.

That this diagram is well-defined relies on the following proposition.

Proposition 4.4.15. The µi’s are associative, i.e., if σ ∈ P`, η ∈ Pm, and ξ ∈ Pn, and
i ≤ `, j ≤ m, then

µi(κ, µj(η, ξ)) = µi+j(µi(κ, η), ξ).

Proof. Suppose α ∈ B`−i, β ∈ Bm−j, γ ∈ Bn, δ ∈ Bj, and ε ∈ Bi. Then

〈µi(κ, µj(η, ξ)), α⊗ β ⊗ γ ⊗ δ ⊗ ε〉 =
〈
ρ−i
(
ρi(κ)⊗ ρ−j(ρj(η)⊗ ξ)

)
, α⊗ β ⊗ γ ⊗ δ ⊗ ε

〉
=
〈
ρi(κ)⊗ ρ−j

(
ρj(η)⊗ ξ

)
, ε⊗ α⊗ β ⊗ γ ⊗ δ

〉
=
〈
ρ−j
(
ρj(η)⊗ ξ

)
, 〈ρi(κ)|ε〉Aα⊗ β ⊗ γ ⊗ δ

〉
=
〈
ρj(η)⊗ ξ, δ ⊗ 〈ρi(κ)|ε〉Aα⊗ β ⊗ γ

〉
=
〈
ρj(η), δ ⊗ 〈ρi(κ)|ε〉Aα⊗ βA〈γ, ξ〉

〉
=
〈
η, 〈ρi(κ)|ε〉Aα⊗ βA〈γ, ξ〉 ⊗ δ

〉
=
〈
ρi(κ)⊗ η, ε⊗ α⊗ βA〈γ, ξ〉 ⊗ δ

〉
=
〈
ρj
(
ρi(κ)⊗ η

)
, δ ⊗ ε⊗ α⊗ βA〈γ, ξ〉

〉
=
〈
ρj
(
ρi(κ)⊗ η

)
⊗ ξ, δ ⊗ ε⊗ α⊗ β ⊗ γ

〉
=
〈
ρ−i−j

(
ρi+j(ρ−i(ρi(κ)⊗ η))⊗ ξ

)
, α⊗ β ⊗ γ ⊗ δ ⊗ ε

〉
= 〈µi+j(µi(κ, η), ξ), α⊗ β ⊗ γ ⊗ δ ⊗ ε〉.
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Corollary 4.4.16. P• naturally forms an algebra over the operad generated by the unshaded,
oriented tangles

m n

,

nm

for m,n ≥ 0 up to planar isotopy.

The Burns rotation is also compatible with the BP-algebra Q̂+
• .

Theorem 4.4.17. (1) For all ζ ∈ Pm+n and x ∈ Qm, and y ∈ Qn, ρn((x ⊗A y)ζ) =
(y ⊗A x)ρn(ζ):

ζ

y

n

x

m

=

ζ

y

n

x

m

=

ζ

x

m

y

n

=

ζ

x

m

y

n

.

(2) If ρ is unitary, then for all ζ ∈ Pm+n and x ∈ Q̂+
m, and y ∈ Q̂+

n , (y ⊗A x)(ωρnζ) =
(x⊗A y)(ωζ):

ζ

ζ

y

n

n

x

m

m

=

ζ

ζ

y

n

n

x

m

m

=

ζ

ζ

x

m

m

y

n

n

.

Proof. (1) For η ∈ Bn and ξ ∈ Bm,

〈ρn((x⊗A y)ζ), η ⊗ ξ〉 = 〈(x⊗A y)ζ, ξ ⊗ η〉 = 〈ζ, (x∗ ⊗A y∗)(ξ ⊗ η)〉
= 〈ζ, (x∗ξ)⊗ (y∗η)〉 = 〈ρn(ζ), (y∗η)⊗ (x∗ξ)〉
= 〈(y ⊗A x)ρn(ζ), η ⊗ ξ〉.

(2) Pick (xi) ⊂ Q+
m and (yj) ⊂ Q+

n with xi ↗ x and yj ↗ y. Then by (1), for all i,

(yj ⊗A xi)(ωρnζ) = ‖(y1/2
j ⊗A x

1/2
i )ρnζ‖2

2 = ‖ρn((x
1/2
i ⊗A y

1/2
j )ζ)‖2

2

= ‖(x1/2
i ⊗A y

1/2
j )ζ‖2

2 = (xi ⊗A yj)(ωζ).
We are finished by Theorem 4.6.13, since xi ⊗A yj ↗ x⊗A y and yj ⊗A xi ↗ y ⊗A x.

Remark 4.4.18. When the operads for P• and Q̂+
• interact as in Theorem 4.3.27, we may

remove closed subdiagrams and multiply by the appropriate scalar in [0R,∞R] by Corollary
4.4.16 and Theorem 4.4.17.
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Extremality implies the existence of the Burns rotation

We will show in the next lemma and theorem that (approximate) extremality implies the
existence of the Burns rotation. The intuition comes from the bimodule planar calculus. In
diagrams, for the extremal case, we have:

ζ

ζ

n− 1 =
ζ

ζ

n− 1
=

ζ

ζ

n
.

Although these diagrams are not yet well-defined, they tell us how to proceed. They become
well-defined after the Burns rotation exists by Theorems 4.3.24 and 4.4.17.

Lemma 4.4.19. Let pn be the projection in B(Hn) with range Pn.

(1) If H is approximately extremal with constant λ ≥ 1, then(∑
β

pnRβR
∗
βpn

)
≤ λn−1pn and

(∑
α

pnLαL
∗
αpn

)
≤ λn−1pn.

(2) If H is extremal, then on Pn,
∑

β pnRβR
∗
βpn = pn =

∑
α pnLαL

∗
αpn.

Proof. (1) We prove the first inequality. Note that R∗βζ ∈ D(AH
n−1), and R(R∗βζ) =

R∗βR(ζ) : L2(A) → Hn−1. Since H is (approximately) extremal, so is Hn−1 with con-
stant λn−1, and〈(∑

β

pnRβR
∗
βpn

)
ζ, ζ

〉
Pn

=
∑
β

‖R∗βζ‖2
2 =

∑
β

trA
(
A〈R∗βζ, R∗βζ〉

)
=
∑
β

Trop
n−1

(
R∗βR(ζ)R(ζ)∗Rβ

)
= Trop

n−1 Tn−1(R(ζ)R(ζ)∗)

≤ λn−1 Trn−1 Tn−1(L(ζ)L(ζ)∗) = λn−1 Trn(L(ζ)L(ζ)∗)

= λn−1‖ζ‖2
2 = 〈(λn−1pn)ζ, ζ〉Pn .

(2) As λ = 1, by (1), 〈(∑
β

pnRβR
∗
βpn

)
ζ, ζ

〉
= 〈ζ, ζ〉

for all ζ ∈ Pn, and the result follows from polarization.
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Theorem 4.4.20. Suppose H is approximately extremal. Then ρ =
∑

β LβR
∗
β converges

strongly on Pn. Moreover if H is extremal, ρ is unitary. A similar result holds for ρop =∑
αRαL

∗
α.

Proof. We begin as in the proof of Proposition 3.3.19 of [Bur03], but as we do not have Jones
projections, we use Lemma 4.4.19.

Suppose ζ ∈ Pn, and enumerate {β} = {βi}i∈N. We will show∥∥∥∥∥
s∑
i=r

LβiR
∗
βi
ζ

∥∥∥∥∥
2

2

→ 0 as r, s→∞.

First note that the infinite matrix (L∗βjLβi) is a projection, so it is dominated by 1 = δi,j.

Hence each corner (L∗βjLβi)
s
i,j=r is dominated by 1 = δi,j, and∥∥∥∥∥

s∑
i=r

LβiR
∗
βi
ζ

∥∥∥∥∥
2

2

=
s∑

i,j=r

〈
(L∗βjLβi)R

∗
βi
ζ, R∗βjζ

〉
≤

s∑
i=r

〈R∗βiζ, R
∗
βi
ζ〉.

We need to show that the right hand side tends to zero, which is certainly true if the infinite
sum

∑
β ‖R∗βζ‖2

2 converges. But this follows immediately from Lemma 4.4.19. Hence ρ

converges and ‖ρ‖ ≤
√
λn−1 (where λ is the approximate extremality constant). If λ = 1,

then ‖ρ‖ ≤ 1 and ρn = idPn , so ρ is necessarily isometric and thus unitary.

Symmetric bimodules and a converse of Theorem 4.4.20

We prove a converse of Theorem 4.4.20, with some additional structure on H.

Remark 4.4.21. For the rest of this section, we assume H is symmetric (see Remark 4.3.5).

Lemma 4.4.22. For all η, ξ ∈ Bn, 〈η|ξ〉A = A〈Jη, Jξ〉.

Proof. Suppose a1, a2 ∈ A. Then〈
A〈Jη, Jξ〉â1, â2

〉
= 〈JR(Jη)∗R(Jξ)Jâ1, â2〉 = 〈â∗2, R(Jη)∗R(Jξ)â∗1〉 = 〈a∗2Jη, a∗1Jξ〉
= 〈J(ηa2), J(ξa1)〉 = 〈ξa1, ηa2〉 =

〈
〈η|ξ〉Aâ1, â2

〉
.

Definition 4.4.23. Using Lemma 4.4.22, we define an algebra structure on Bn ⊗A Bn as
follows: if η1, η2, ξ1, ξ2 ∈ Bn, then

(η1 ⊗ ξ1)(η2 ⊗ ξ2) = η1〈Jξ1|η2〉A ⊗ ξ2 = η1A〈ξ1, Jη2〉 ⊗ ξ2.

Proposition 4.4.24 ([Sau83, HO89]). The map Bn ⊗A Bn → Cn by η ⊗ Jnξ 7→ L(η)L(ξ)∗

gives a ∗-algebra isomorphism onto its image, and it extends to a Cn−Cn bimodule isomor-
phism θn : H2n → L2(Cn,Trn). The same result holds swapping op.
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Proof. The map is well defined as it is A-middle linear:

ηa⊗ Jnξ 7→ L(ηa)L(ξ)∗ = L(η)aL(ξ)∗ = L(η)L(ξa∗)∗ and

η ⊗ aJnξ 7→ L(η)L(Jn(aJnξ))
∗ = L(η)L(ξa∗)∗.

The map clearly preserves the multiplicative structure and is isometric by construction. If
η1, η2, ξ1, ξ2 ∈ Bn, then

〈L(η1)L(ξ1)∗, L(η2)L(ξ2)∗〉L2(Cn,Trn) = Trn (L(ξ2)L(η2)∗L(η1)L(ξ1)∗)

= Trn (L(ξ2)〈η2|η1〉AL(ξ1)∗)

= Trn (L(ξ2〈η2|η1〉A)L(ξ1)∗)

= 〈ξ2〈η2|η1〉A, ξ1〉Hn

= 〈Jnξ1, Jn(ξ2〈η2|η1〉A)〉Hn

= 〈Jnξ1, 〈η1|η2〉AJnξ2〉Hn

= 〈η1 ⊗ Jnξ1, η2 ⊗ Jnξ2〉H2n .

Hence it clearly extends to a Cn − Cn bilinear bimodule isomorphism.

Corollary 4.4.25. Cn−k ⊆ Cn ⊆ Cn+k is standard (isomorphic to the basic construction)
for all n, k ≥ 0.

Proof. By Remark 4.3.9 and Proposition 4.4.24,

J2n(Cn−k ⊗A idn+k)
′J2n = J2n(idn−k⊗ACop

n+k)J2n = Cn+k ⊗A idn−k .

Lemma 4.4.26 ([Bur03], Theorem 3.3.13). Let N be a von Neumann subalgebra of a semifi-
nite von Neumann algebra M with n.f.s. trace TrM . Then

(1) N ′ ∩ L2(M) = N ′ ∩ nTrM

‖·‖2

(2) (N ′ ∩ L2(M))⊥ = [N, nTrM ]
‖·‖2

, the closure of the span of the commutators in L2(M).

Remark 4.4.27. By Proposition 4.4.24 and Lemma 4.4.26, θn yields an isomorphsim

P2n = A′ ∩H2n ∼= A′ ∩ L2(Cn,Trn) = A′ ∩ nTrn

‖·‖2
= Cop

n ∩ nTrn

‖·‖2
= L2(Qn,Trn)

of Qn −Qn bimodules. A similar result holds swapping op.

Theorem 4.4.28. If ρ exists on P2n, then Hn is approximately extremal. If ρ is unitary,
then Hn is extremal.

Proof. The main step is to show the following lemma, whose proof is essentially the same as
in [Bur03].
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Lemma 4.4.29 (3.3.21.(ii) of [Bur03]). If ρ exists on P2n, then for all x ∈ Cop
n ∩ nTrn,

ρn(θ−1
n (x̂)) = θ−1

n (ĵn(x)) ∈ Cop
n ∩ nTrn. In particular, Cop

n ∩ nTrn = nTropn ∩ nTrn. A similar
result holds swapping op.

Using this lemma, Burns’ proof shows Trop
n ≤ ‖ρn‖Trn on Q+

n . Suppose z ∈ Qn. If
Trn(z∗z) =∞, we are finished. Otherwise, z ∈ Cop

n ∩ nTrn = nTropn ∩ nTrn , and

Trop
n (z∗z) = Trn ◦jn(z∗z) = Trn(jn(z)∗jn(z)) =

〈
ĵn(z), ĵn(z)

〉
L2(Qn,Trn)

=
〈
θ−1
n (ĵn(z)), θ−1

n (ĵn(z))
〉
Pn

=
〈
ρn(θ−1

n (ẑ)), ρn(θ−1
n (ẑ))

〉
Pn

= ‖ρn(θ−1
n (ẑ))‖2

Pn ≤ ‖ρ
n‖2‖θ−1

n (ẑ)‖2
Pn = ‖ρn‖2‖ẑ‖2

L2(Qn,Trn)

= ‖ρn‖2 Trn(z∗z).

Similarly Trn ≤ ‖ρn‖2 Trop
n on Q+

n , and Hn is approximately extremal. In particular, if
‖ρ‖ = 1, Hn is extremal.

Remark 4.4.30. Theorem 4.1.4 now follows immediately from Theorems 4.4.7, 4.4.20, and
4.4.28.

4.5 Examples

Centralizer algebras and central L2-vectors

Example 4.5.1 (Bifinite bimodules). In the case that H is a symmetric, bifinite A − A
bimodule, then the BP-algebra structure encodes the C∗-tensor category whose objects are
the sub-bimodules of Hn for some n and whose morphisms are intertwiners.

Example 4.5.2. Suppose A0 = A ⊂ B = A1 is an infinite index inclusion of II1-factors.
Then H = L2(B) gives an A − A bimodule. In this case, letting An+1 be the nth iterated
basic construction of An−1 ⊂ An, we have

• Hn ∼= L2(An,Trn),

• Cn, Cop
n is the left,right action respectively of A2n, and

• Qn = A′0 ∩ A2n.

Theorem 4.1.4 was proven for this case by [Bur03].

Example 4.5.3. Suppose A is a II1-factor, and σ ∈ Aut(A). Define Hσ = AL
2(A)σ(A) by

ab̂c = âbσ(c) for all a, b, c,∈ A. Suppose that σ is outer and not periodic, and σn is outer
for all n ∈ N. Then Hn

σ
∼= Hσn is extremal and Pn = (0) for all n ≥ 1.
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Example 4.5.4 (Group actions). Suppose G is a countable i.c.c. group, and π : G→ U(K)
is a unitary representation. We can define two bimodules:

(1) H = K ⊗C `
2(G) where the left action is given by the diagonal action π ⊗ λ and the

right action is given by 1 ⊗ ρ where λ, ρ are the left,right regular representation of G
on `2(G). Hence K ⊗C `

2(G) gives an A− A bimodule where A = LG. Then we may
identify

Hn = Kn ⊗C `
2(G)

where we write Kn = K⊗Cn, and the left action is the diagonal action πn ⊗ λ and
the right action is 1n ⊗ ρ. It is clear that projections in Qn correspond to LG − LG
invariant subspaces of Hn. Every G-invariant subspace of Kn yields such a subspace,
but in general, they do not exhaust all possible subspaces.

(2) To fix this problem, we use an idea of Richard Burstein and add a copy of the hyperfinite
II1-factor R. Suppose α : G→ Aut(R) is an outer action, so A = RoαG is a II1-factor.
Set H = K ⊗C L

2(R)⊗C `
2(G), and consider the left and right actions where

r1(k ⊗ r̂2 ⊗ δg)r3 = k ⊗ ̂r1r2αg(r3)⊗ δg
g1(k ⊗ r̂ ⊗ δg2)g3 = (πg1k)⊗ α̂g1(r)⊗ δg1g2g3

for r, ri ∈ R and g, gi ∈ G for i = 1, 2, 3. Hence g ∈ G acts on the left by πg ⊗ αg ⊗ λg
and on the right by 1⊗ 1⊗ ρg. Then similarly we may identify

Hn = Kn ⊗C L
2(R)⊗C `

2(G).

Theorem 4.5.5. For A = R oα G and Hn as above, A − A invariant subspaces of Hn

correspond to G-invariant subspaces of Kn.

Proof. First, if L0 ⊂ Kn is a G-invariant subspace, then L0 ⊗ L2(A) is an A − A invariant
subspace of Hn.

Now suppose L ⊂ Hn is an A− A invariant subspace, and let p ∈ Qn be the projection
onto L. Note that

p ∈
(

1Kn ⊗R
)′
∩
(

1Kn ⊗ Aop

)′
=

(
B(Kn)⊗ (R′ ∩B(L2(A)))

)
∩
(
B(Kn)⊗ A

)
= B(Kn)⊗ (R′ ∩ A) = B(Kn)⊗ 1L2(A).

Hence there is a q ∈ B(Kn) such that p = q ⊗ 1L2(A). But since q commutes with the left
G-action on Hn, we have q ∈ π(G)′ ∩B(Kn).

Corollary 4.5.6. A− A invariant vectors of Hn correspond to G-invariant vectors of Kn.
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Example 4.5.7 (Group-subgroup). Suppose G0 ⊆ G1 is an inclusion of countable i.c.c.
groups, and let K = `2(G1/G0). As in Example 4.5.4, we consider two cases:

(1) A0 = LG0, A1 = LG1, and H = K ⊗C `
2(G1).

(2) A0 = RoG0, A1 = RoG1, and H = K ⊗C L
2(R)⊗ `2(G1).

Note that in either case, Hn ∼= L2(An+1), where An+1 = JnA
′
n−1Jn is the basic construction

of An−1 ⊂ An. As in the usual subfactor treatment, we can consider Hn as an Ai − Aj
bimodule for i, j ∈ {0, 1}.

Theorem 4.5.8. Let G1 = S∞, the group of finite permutations of N, and let G0 = Stab(1)
be the permutations which fix 1. Let A0 = R o G0 and A1 = R o G1, and let H = K ⊗C
L2(R) ⊗ `2(G1) as in (2) of Example 4.5.7. Then considering Hn as an A0 − A0 or as an
A1 − A1 bimodule, we have that dim(Qn) <∞ for all n ∈ N.

Proof. Since A′i ∩ Aj ∼= A′i+2 ∩ Aj+2 for all i, j ≥ 0 by [EN96], it suffices to show that
dim(A′1 ∩ A2n+1) <∞ for all n ≥ 0. Also by [EN96],

A′1 ∩ A2n+1
∼= EndA1−A1(L

2(An+1)) ∼= EndA1−A1(H
n).

By Theorem 4.5.5, A1−A1 invariant subspaces of Hn correspond to G1-invariant subspaces
of Kn. The result now follows by [Lie72].

Corollary 4.5.9. The infinite index II1-subfactor R o G0 ⊂ R o G1 for G0 = Stab(1) ⊂
S∞ = G1 has finite dimensional higher relative commutants.

Theorem 4.5.10. Suppose G0 ⊂ G1 and K are as in Example 4.5.7 such that [G1 : G0] =∞
and #G0\G1/G0 = 2. Then

(1) the space of G0-invariant vectors in Kn is one dimensional, and

(2) zero is the only G1-invariant vector in Kn.

Proof. Let {gi}i≥0 be a set of coset representatives forG1/G0 with g0 = e. Since #G0\G1/G0 =
2, for i, j ≥ 1, there are hi,j ∈ G0 such that hi,jgiG0 = gjG0.

(1) Suppose

ξ =
∑
i1,...,in

λi1,...,inδgi1G0 ⊗ · · · ⊗ δginG0 ∈ Kn

is G0-invariant. Then since πhi,jξ = ξ for all i, j ≥ 1, we must have λi1,...,in = 0 unless
ij = 0 for all j = 1, . . . , n. (Otherwise, there would be infinitely many coefficients
which would be nonzero and equal, a contradiction to ξ ∈ Kn ∼= `2((G1/G0)n).) Hence
ξ ∈ span{δG0 ⊗ · · · ⊗ δG0}.

(2) Since δG0 ⊗ · · · ⊗ δG0 is not G1-invariant, the result follows from (1).
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Corollary 4.5.11. Let G0 = Stab(1) ⊂ S∞ = G1. Let Ai = R o Gi for i = 0, 1, and let
K = `2(G1/G0).

(1) When we consider H = K ⊗C L2(R)⊗C `
2(G1) as an A1 − A1 bimodule, Pn = (0).

(2) When we consider H = L2(A1) = L2(R)⊗C `
2(G1) as an A0 − A0 bimodule,

Hn ∼= L2(An) ∼= Kn−1 ⊗C L
2(R)⊗C `

2(G1),

and for all n ≥ 0, Pn is one-dimensional and spanned by

1̂⊗ · · · ⊗ 1̂ ∈
n⊗
A0

L2(A1) ∼= L2(An).

In joint work with Steven Deprez, we have shown an even stronger result:

Theorem 4.5.12. The algebras Qn for the bimodules in (1) and (2) in Example 4.5.7 are
finite dimensional, and the dimensions grow super-factorially.

Corollary 4.5.13. The infinite index II1-subfactor LG0 ⊂ LG1 where G0 = Stab(1) ⊂
S∞ = G1 has finite dimensional higher relative commutants.

(Approximate) Extremality

Example 4.5.14. If AHA is a bifinite bimodule (e.g., as in Example 4.5.1), then dim(Q1) <
∞ by [Jon83]. Since any two faithful traces on a finite dimensional von Neumann algebra
are comparable, H is approximately extremal.

In the case that H = L2(A1) and A = A0 where A0 ⊂ A1 is a finite index (not necessarily
extremal) II1-subfactor, rotations for Hn were constructed in [JP11].

Example 4.5.15. To get an example of an infinite index approximately extremal bimodule,
take any bifinite bimodule AHA and tensor it with `2 over C.

In the subfactor setting, this is equivalent to looking at the infinite index subfactor
A0 ⊗ 1 ⊂ A1 ⊗ R where A0 ⊂ A1 is finite index. To get an example which is approximately
extremal and not extremal, just take A0 ⊂ A1 non-extremal (such examples with principal
graph A−∞,∞ are given in [Jon83]).

Example 4.5.16. The bimodules in Example 4.5.3 and Theorem 4.5.10 (2) are trivially
extremal, and the rotation is trivial.

We will now derive necessary and sufficient conditions for the (approximate) extremality
for the infinite index group-subgroup subfactor as in Example 4.5.7. For the rest of this
subsection, Suppose G0 ⊂ G1 is an inclusion of countable groups with [G1 : G0] = ∞, and
α : G1 → Aut(R) is an outer action. Set A0 = R oα G0 ⊂ R oα G1 = A1 and H = L2(A1),
and note that A0 ⊂ A1 is an irreducible inclusion of II1-factors, i.e., A′0 ∩ A1 = C1.
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Example 4.5.17 (Two-sided bases). As stated in Remark 4.4.5, any time H has a two-sided
basis, H is extremal. For example, if G0 = {e} is trivial, then H = L2(A1) ∼= L2(R)⊗ `2(G1)

is extremal, since
{

1̂⊗ δg
∣∣∣g ∈ G1

}
is a two-sided basis.

In fact, an HA-basis is obtained from a set of left coset representatives for G1/G0, and
an AH-basis is obtained from a set of right coset representatives. Hence if G1 has a set of
simultaneous left and right coset representatives, then H is extremal by Remark 4.4.5. For
example, if G0 = Stab(1) ⊂ S∞ = G1, then such a set of representatives is given by the
transpositions {(1 n)|n ∈ N}.

Proposition 4.5.18 (Similar to [ILP98], Example 3.5). For g ∈ G1, let |OgG0| denote the
size of the orbit of gG0 in the G0-set G1/G0. Then

(1) Q1
∼= `∞(G0\G1/G0), where we denote the minimal projection onto CδG0gG0 by pg for

g ∈ G1.

(2) Tr1(pg) = |OgG0 | = [G0 : G0 ∩ gG0g
−1], and

(3) Since j1(pg) = pg−1,

Trop
1 (pg) = |Og−1G0

| = [G0 : G0 ∩ g−1G0g] = [gG0g
−1 : G0 ∩ gG0g

−1].

Theorem 4.5.19. Assume the notation of Proposition 4.5.18. Then exactly one of the
following occurs:

(1) |OgG0| = |Og−1G0
| for all g ∈ G1 and H is extremal, or

(2) there is a g ∈ G1 for which |OgG0 | 6= |Og−1G0
|, and H is not approximately extremal.

Proof. If there is a g ∈ G where exactly one of |OgG0|, |Og−1G0
| is finite, then H is not

approximately extremal. Hence we must only consider the case where for all g ∈ G, both
|OgG0|, |Og−1G0

| are finite or infinite. Recall that the commensurator

CommG1(G0) = {g ∈ G1||OgG0|, |Og−1G0
| <∞}

is a subgroup of G1, and the map ϕ : CommG1(G0)→ Q>0 by

g 7→ |OgG0|
|Og−1G0

|

is a homomorphism. Hence if there is a g ∈ CommG1(G0) with ϕ(g) > 1, then for each
n ∈ N, there is a kn ∈ N such that

n < ϕ(g)kn = ϕ(gkn) =
|OgknG0

|
|Og−knG0

|
=

Tr1(pgkn )

Trop
1 (pgkn )

,

and H is not approximately extremal.
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Corollary 4.5.20. (1) If H is approximately extremal, then H is extremal.

(2) If #G0\G1/G0 = 2, then H is extremal.

(3) If there is a g ∈ G1 such that gG0g
−1 ( G0, then H is not approximately extremal.

Remark 4.5.21. In [ILP98], Izumi, Longo, and Popa give an example of G0 ⊂ G1 where
there is a g ∈ G1 such that gG0g

−1 ( G0 (so |Og−1G0
| = 1) and |OgG0| =∞. Thus they give

an example of an irreducible infinite index subfactor which is not approximately extremal.

Finally, we leave the reader with an open question:

Question 4.5.22. Is there an irreducible infinite index II1-subfactor which is approximately
extremal and not extremal?

4.6 Relative tensor products of extended positive

cones

Notation 4.6.1. For this section, let HA be a right Hilbert A-module, AKB be a Hilbert
A − B bimodule, and BL be a left Hilbert B-module where A,B are finite von Neumann
algebras. We write:

• X = (Aop)′ ∩B(H),

• AK when we ignore the right B-action,

• Y0 = A′ ∩B(K),

• Y = A′ ∩ (Bop)′ ∩B(K),

• Z = B′ ∩B(L),

• X ⊗A Y0 = {x⊗A y|x ∈ X and y ∈ Y0}′′, and

• X ⊗A Y ⊗B Z = {x⊗A y ⊗B z|x ∈ X, y ∈ Y, and z ∈ Z}′′.

The goal of this section is to define the operator x ⊗A y ∈ ̂(X ⊗A Y0)+ for x ∈ X̂+ and

y ∈ Ŷ +
0 such that certain properties, e.g., associativity, are satisfied.

The next three lemmata are straightforward, but we include some proofs for completeness
and for the convenience of the reader.

Lemma 4.6.2. Suppose x ∈ M+ and (xi)i∈I ⊂ M+ is a directed net, with xi ≤ x for all
i ∈ I. The following are equivalent:

(1) xi → x strongly (if and only if σ-strongly as ‖xi‖∞ ≤ ‖x‖∞ for all i)
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(2) xi → x weakly (if and only if σ-weakly as ‖xi‖∞ ≤ ‖x‖∞ for all i)

(3) xi ↗ x, i.e., xi(ωξ)↗ x(ωξ) for all ξ ∈ H,

(4) xi(ωξ)↗ x(ωξ) for all ξ in a dense subspace D of H.

Proof. Clearly (1)⇒ (2)⇒ (3)⇒ (4).

(3)⇒ (1): Suppose (x− xi)(ωξ)→ 0 for all ξ ∈ H. Then ‖
√
x− xiξ‖2 → 0, so

√
x− xi → 0

strongly. Hence xi → x strongly as multiplication is strongly continuous on bounded sets.

(4)⇒ (3): Choose an orthonormal basis {en}n≥1 ⊂ D forH. Suppose ξ =
∑

n λnen ∈ H\{0},
and let ε > 0. Then there is an N > 0 such that

ξN :=
∑
n>N

λnen =⇒ ‖ξN‖2
2 =

∑
n>N

|λn|2 <
ε2

16‖x‖2
∞‖ξ‖2

2

.

For n = 1, . . . , N , there are in ∈ I such that i > in implies

|〈(x− xi)λnen, ξ〉| ≤ ‖(x− xi)λnen‖2‖ξ‖2 <
ε

2n+1
.

Now choose i′ > in for all n = 1, . . . , N . We calculate that for i > i′,

(x− xi)(ωξ) = 〈(x− xi)ξ, ξ〉

≤
N∑
n=1

|〈(x− xi)λnen, ξ〉|+ |〈(x− xi)ξN , ξ〉|

≤
N∑
n=1

ε

2n+1
+ |〈xξN , ξ〉|+ |〈xiξN , ξ〉|

≤
N∑
n=1

ε

2n+1
+ 2‖x‖∞‖ξN‖2‖ξ‖2

<
ε

2
+ 2‖x‖∞

ε

4‖x‖∞‖ξ‖2

‖ξ‖2 = ε.

As ε was arbitrary, we are finished.

Lemma 4.6.3. If x, y ∈ M+, and (xi)i∈I , (yj)j∈J ⊂ M+ are directed nets of increasing
operators such that

• any two elements in {x, y} ∪ {xi|i ∈ I} ∪ {yj|j ∈ J} commute and

• xi ↗ x and yj ↗ y,

then xiyj ↗ xy (and Lemma 4.6.2 applies).
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Lemma 4.6.4. Suppose x ∈ X and y ∈ Y0. Then x⊗A y : H ⊗AK → H ⊗AK given by the
unique extension of ξ ⊗ η 7→ (xξ) ⊗ (yη) where ξ ∈ D(HA) and η ∈ D(AK) is well-defined
and bounded, and ‖x⊗A y‖∞ ≤ ‖x‖∞‖y‖∞. Hence the ∗-algebra map x�C y 7→ x⊗A y is a
binormal representation of X �C Y0 on H ⊗A K.

Proof. (1) Fix ξ1, . . . , ξk ∈ D(HA) and η1, . . . , ηk ∈ D(AK), and let ξ = (ξ1, . . . , ξk) and
η = (η, . . . , ηk). Since the matrices m = (A〈yηi, yηj〉)i,j, n = (〈ξj, ξi〉A)i,j ∈ Mk(A) are
positive (see Lemma 1.8 of [Bis97]), we have∥∥∥∥∥

k∑
i=1

(xξi)⊗ (yηi)

∥∥∥∥∥
2

2

=
k∑

i,j=1

〈(xξi)⊗ (yηi), (xξj)⊗ (yηj)〉

=
k∑

i,j=1

〈(xξi)A〈yηi, yηj〉, (xξj)〉 = 〈(xξ)n, (xξ)〉

= ‖(xξ)n1/2‖2
2 = ‖x(ξn1/2)‖2

2

≤ ‖x‖2
∞‖ξn1/2‖2

2 = ‖x‖2
∞

k∑
i,j=1

〈ξiA〈yηi, yηj〉, ξj〉

= ‖x‖2
∞

k∑
i,j=1

〈〈ξj, ξi〉A(yηi), (yηj)〉 = ‖x‖2
∞‖m1/2(yη)‖2

2

= ‖x‖2
∞‖y(m1/2η)‖2

2 ≤ ‖x‖2
∞‖y‖2

∞‖m1/2η‖2
2

= ‖x‖2
∞‖y‖2

∞

∥∥∥∥∥
k∑
i=1

ξi ⊗ ηi

∥∥∥∥∥
2

2

.

(2) That x 7→ x⊗A1K is a normal representation of X follows from the density of D(HA)⊗A
K and (4) of Lemma 4.6.2. Similar for y 7→ 1H ⊗A y.

Notation 4.6.5. Let B be the Borel σ-algebra of subsets of [0R,∞R]. For a spectral measure
E : B → P (H), we use the conventions Eλ = E([0, λ]), so E∞ = 1, and E∞ = E({∞}) (in
general, our spectral measures on B have non-trivial mass at ∞).

Lemma 4.6.6. Suppose E : B → P (X) ⊂ B(HA) is a spectral measure. Suppose f : [0,∞]→
[0,∞) is a bounded Borel-measurable function, and (ϕn) is a sequence of positive simple
functions increasing pointwise to f . Then∫ ∞

0

f(λ) dEλ := sup
n

∫ ∞
0

ϕn(λ) dEλ

is well-defined.



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 118

Proof. Suppose ξ ∈ H. Then as ωξ is normal, ωξ ◦ E is a Borel measure, and∫ ∞
0

f(λ) d(ωξ(Eλ)) = sup
n

∫ ∞
0

ϕn(λ) d(ωξ(Eλ))

is independent of the choice of positive simple functions ϕn increasing to f .

Proposition 4.6.7. Suppose

E : B −→ P (X) ⊂ B(HA) and

F : B −→ P (Y0) ⊂ B(AK)

are spectral measures.

(1) The map E ⊗A F : B ⊗ B −→ P (X ⊗A Y0) by

(I1, I2) 7−→
∫
I1×I2

d(Eλ ⊗A Fµ) := E(I1)⊗A F (I2)

extends uniquely to a spectral measure by countable additivity.

(2) If ϕ, ψ : [0,∞]→ [0,∞) are positive simple functions, then∫ ∞
0

∫ ∞
0

ϕ(λ)ψ(µ) d(Eλ ⊗A Fµ) =
(∫ ∞

0

ϕ(λ) dEλ

)
⊗A

(∫ ∞
0

ψ(µ) dFµ

)
∈ X ⊗A Y0.

(3) If f, g are bounded, B-measurable functions and (ϕm), (ψn) are sequences of positive
simple functions increasing to f, g, then

sup
m,n

∫ ∞
0

∫ ∞
0

ϕm(λ)ψn(µ) d(Eλ ⊗A Fµ) =
(∫ ∞

0

f(λ) dEλ

)
⊗A

(∫ ∞
0

g(µ) dFµ

)
∈ X ⊗A Y0.

Proof. (1) One simply needs to check countable additivity (pointwise on H ⊗AK), which
follows from countably additivity on products of intervals, which is straightforward.

(2) Obvious.

(3) Immediate from (2) together with Lemmas 4.6.3 and 4.6.6.

Lemma 4.6.8. The relative tensor product of spectral measures as in Proposition 4.6.7 is
associative, i.e., if

E : B −→ P (X) ⊂ B(HA),

F : B −→ P (Y ) ⊂ B(AKB), and

G : B −→ P (Z) ⊂ B(BL)
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are spectral measures on B, then (E⊗AF )⊗BG = E⊗A(F⊗BG). Moreover, if f, g, h : [0,∞]→
[0,∞) are bounded B-measurable functions, and (ϕm), (ψn), (γk) are positive simple functions
increasing to f, g, h respectively, then

sup
m,n,k

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕm(λ)ψn(µ)γ`(ν) d(Eλ ⊗A Fµ ⊗B Gν) =

=

(∫ ∞
0

f(λ) dEλ

)
⊗A

(∫ ∞
0

g(µ) dFµ

)
⊗B

(∫ ∞
0

h(ν) dGν

)
∈ X ⊗A Y ⊗B Z.

Proof. Immediate from associativity of the relative tensor product and Proposition 4.6.7.

Definition 4.6.9. Suppose x ∈ X̂+ and y ∈ Ŷ +
0 have spectral resolutions

x =

∫
[0,∞)

λ dEλ +∞E∞ and y =

∫
[0,∞)

µ dFµ +∞F∞

(recall Notation 4.6.5). Then

E : B −→ P (X) ⊂ B(HA) and

F : B −→ P (Y0) ⊂ B(AK)

are two spectral measures as in Proposition 4.6.7. For m,n ∈ N, set

xm =

∫
[0,m]

λ dEλ +mE∞ and yn =

∫
[0,n]

µ dFµ + nF∞.

Applying Lemma 4.2.23 to the directed set

F = {xm ⊗A yn|m,n ∈ N} ⊂ (X ⊗A Y0)+,

we get a positive, self-adjoint operator affiliated toX⊗AY0 and densely-defined in an affiliated
subspace of X ⊗A Y0. We denote this operator as x⊗A y.

Remark 4.6.10. Assume the notation of Definition 4.6.9. When we work with x ⊗A y, it
helps to consider the following 3 projections:

p0 = (E0 ⊗A 1K) ∨ (1H ⊗ F0),

p∞ =

(
(1− E0)⊗A F∞

)
+

(
E∞ ⊗A (1− F0)

)
+ E∞ ⊗A F∞, and

pf = sup
λ,µ<∞

Eλ ⊗A Fµ = (1− E∞)⊗A (1− F∞),

which we should think of as having the following “supports” given by the shaded areas in
[0R,∞R]2 below:

p0 =

0
∨
µ

∨
∞

0 < λ <∞

, p∞ =

0
∨
µ

∨
∞

0 < λ <∞

, pf =

0
∨
µ

∨
∞

0 < λ <∞

.
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• These three projections commute with x⊗A y.

• Dom((x ⊗A y)1/2) ⊂ (1 − p∞)(H ⊗A K), and (x ⊗A y)(1 − p∞) is densely defined on
(1− p∞)(H ⊗A K).

• (x⊗A y)pf = supm,n<∞
∫

[0,m]

∫
[0,n]

λµ d(Eλ ⊗A Fµ).

• (x⊗A y)p0 = 0.

Lemma 4.6.11. Let x ∈ X̂+ and y ∈ Ŷ +
0 , and assume the notation of Definition 4.6.9 and

Remark 4.6.10. Suppose x′ ∈ X+, y′ ∈ Y +
0 with x′ ≤ x and y′ ≤ y. Then

(1) (x′ ⊗A y′)p0 = p0(x′ ⊗A y′) = 0,

(2) for all ξ ∈ H ⊗A K, (x⊗A y)(ωξ) = (x⊗A y)(ω(1−p0)ξ), and

(3) x′ ⊗A y′ ≤ x⊗A y.

Proof. (1) Suppose η ∈ D((E0H)A) and κ ∈ D(AK) (recall E0 ∈ X and F∞ ∈ Y0). Then
since x′ ≤ x, we must have

‖(x′)1/2η‖2
H = 〈x′η, η〉 = x′(ωη) ≤ x(ωη) = x(ωE0η) = xE0(ωη) = 0.

But this implies x′η = 0. Hence we have

(x′ ⊗A y′)(η ⊗ κ) = 0.

Similarly, for all η ∈ D(HA) and κ ∈ D(A(F0K)), (x′ ⊗A y′)(η ⊗ κ) = 0. By density of
D(HA)⊗A D(AK), we have (x′ ⊗A y′)p0 = 0. Taking adjoints gives p0(x′ ⊗A y′) = 0.

(2) By (1), for all m,n > 0, p0(xm ⊗A yn) = (xm ⊗A yn)p0 = 0, so

(x⊗A y)(ωξ) = sup
m,n

(xm ⊗A yn)(ωξ)

= sup
m,n

(
(xm ⊗A yn)(ω(1−p0)ξ) + 〈(xm ⊗A yn)p0ξ, p0ξ〉

+ 〈(xm ⊗A yn)p0ξ, ξ〉+ 〈(xm ⊗A yn)ξ, p0ξ〉
)

= sup
m,n

(xm ⊗A yn)(ω(1−p0)ξ) = (x⊗A y)(ω(1−p0)ξ).

(3) By (2), it suffices to show that for all ξ ∈ Dom((x⊗A y)1/2) with ξ = pfξ,(
pf (x

′ ⊗A y′)pf
)

(ωξ) = (x′ ⊗A y′)(ωξ) ≤ (x⊗A y)(ωξ) =

(
pf (x⊗A y)pf

)
(ωξ).
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Fix such a ξ, and let ε > 0. As Eλ ⊗A Fµ → pf strongly as λ, µ → ∞ from below,
there is an N > 0 such that for all λ, µ > N ,(

pf (x
′ ⊗A y′)pf − (Eλx

′Eλ ⊗A Fµy′Fµ)

)
(ωξ) < ε.

Since x′ ≤ x and y′ ≤ y, we have ENx
′EN ≤ xEN , FNy

′FN ≤ yFN by Lemma 4.2.21,
so ENx

′EN⊗AFNy′FN ≤ xEN⊗AyFN as all these operators mutually commute. Hence(
pf (x

′ ⊗ y′)pf
)

(ωξ) =

(
p0(xm ⊗A yn)p0 − (ENx

′EN ⊗A FNy′FN)

)
(ωξ)

+ (ENx
′EN ⊗A FNy′FN)(ωξ)

< ε+ (xEN ⊗A yFN)(ωξ) ≤ ε+ (x⊗A y)(ωξ).

Since ε was arbitrary, the result follows.

Lemma 4.6.12. Suppose (x′j)j∈J ⊂ X̂+ increases to x ∈ X̂+. Suppose p, q ∈ P (X) are

spectral projections of x such that p+ q = 1. Then 〈x′jpξ, qξ〉 → 0 for all ξ ∈ Dom(x1/2).

Proof. For k = 0, 1, 2, 3, pξ + ikqξ ∈ Dom(x1/2) ⊆ Dom((x′j)
1/2) for all j ∈ J . Since x′j

increases to x, by polarization

lim
j∈J
〈(x′j)1/2pξ, (x′j)

1/2qξ〉 = lim
j∈J

1

4

3∑
k=0

ikx′j(ωpξ+ikqξ) =
1

4

3∑
k=0

ikx(ωpξ+ikqξ)

= 〈x1/2pξ, x1/2qξ〉 = 0

as p, q commute with x1/2.

Theorem 4.6.13. Let x ∈ X̂+ and y ∈ Ŷ +
0 , and assume the notation of Definition 4.6.9

and Remark 4.6.10. Suppose there are sequences (x′m) ⊂ X+, (y′n) ⊂ Y +
0 which increase to

x, y respectively. Then x′m ⊗A y′n increases to x⊗A y.

Proof.

Case 1: Suppose ξ /∈ Dom((x ⊗A y)1/2) and M > 0. Since supm,n xm ⊗A yn = x ⊗A y, there
is an N0 ∈ N such that for all m,n ≥ N0, (xm ⊗A yn)(ωξ) > M . Since p0ξ 6= ξ by Lemma
4.6.11, we must have

(1H ⊗A (1K − F0))ξ 6= 0 and ((1H − E0)⊗A 1K)ξ 6= 0.

Claim: There is an N1 > N0 such that (x′m ⊗ 1K)ξ 6= 0 6= (1H ⊗A y′n)ξ for all m,n > N1.
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Proof. We prove the second non-equality. Suppose not. Then for each n > 0, there is an
k > n such that (1⊗A y′k)ξ = 0. But then

(1H ⊗A y′n)(ωξ) ≤ (1H ⊗A y′k)(ωξ) = 0,

so (1H⊗Ay′n)ξ = 0 for all n ∈ N. Since (1H⊗A(1−F0))ξ 6= 0, and D(HA)⊗AD(A((1−F0)K))
is dense in H ⊗A ((1K − F0)K), there is an η ∈ D(HA) such that L∗ηξ ∈ ((1K − F0)K) \ {0}
and LηL

∗
η ≤ 1H ⊗A 1K . Now since y′n increases to y, and y(ωL∗ηξ) > 0, there is an N ′ > 0

such that for all n > N ′,

0 < y′n(ωL∗ηξ) = (LηynL
∗
η)(ωξ) =

(
LηL

∗
η(1H ⊗A y′n)

)
(ωξ) ≤ (1H ⊗A y′n)(ωξ) = 0,

a contradiction.

Choose N1 as in the claim, and suppose n > N1. Let {αi} ⊂ D(AK) be an AK-basis,
and let η = (1H ⊗A (yN1)

1/2)ξ 6= 0, and note (xN1 ⊗A 1K)(ωη) > M . Then

M < (xN1 ⊗ 1K)(ωη) =

(
(xN1 ⊗A 1K)

(∑
i

RαiR
∗
αi

))
(ωη) =

∑
i

(Rαi(xN1)R
∗
αi

)(ωη),

so there is an N2 > 0 such that

M <

N2∑
i=1

(RαixN1R
∗
αi

)(ωη) =

N2∑
i=1

xN1(ωR∗αη) ≤
N2∑
i=1

x(ωR∗αη).

Now as x′m increases to x, there is an N3 > N1 such that m > N3 implies

M <

N2∑
i=1

x′m(ωR∗αη) =

N2∑
i=1

(Rαix
′
mR

∗
αi

)(ωη) ≤
∑
i

(Rαix
′
mR

∗
αi

)(ωη)

=

(
(x′m ⊗A 1K)

(∑
i

RαiR
∗
αi

))
(ωη) = (x′m ⊗ yN1)(ωξ).

Repeating the above argument for y′n yields an N4 such that m,n > N4 implies M <
(x′m ⊗A y′n)(ωξ).

Case 2: Suppose ξ ∈ Dom((x⊗A y)1/2). Then ξ = (1− p∞)ξ. We want to show

sup
m,n

(x′m ⊗A y′n)(ωξ) = (x⊗A y)(ωξ) = sup
m,n

(xm ⊗A yn)(ωξ),

so by Lemma 4.6.11, we may assume ξ = (1− p0)ξ, and thus ξ = pfξ. Let ε > 0. Since

pf (x⊗A y)pf = sup
λ,µ<∞

xEλ ⊗A yFµ,
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there is an N0 ∈ N such that for all λ, µ ≥ N0,(
(x⊗A y)− (xEλ ⊗A yFµ)

)
(ωξ) <

ε

4
.

By Lemma 4.6.11, x′m ⊗A y′n ≤ x⊗A y for all m,n, so using Lemma 4.2.21, we have(
(x′m ⊗A y′n)− (EN0x

′
mEN0)⊗A (FN0y

′
nFN0)]

)
≤
(

(x⊗A y)− (xEN0 ⊗A yFN0)

)
and

EN0x
′
mEN0 ⊗A FN0y

′
nFN0 ≤ xEN0 ⊗A yFN0

by multiplying on either side by 1H⊗AK − (EN0 ⊗A FN0) and EN0 ⊗A FN0 respectively. Now
since x′m, y

′
n increase to x, y respectively, by Lemma 4.2.21, EN0x

′
mEN0 , FN0y

′
nFN0 increases

to xEN0 , yFN0 respectively. Thus EN0x
′
mEN0 ⊗A FN0y

′
nFN0 increases to xEN0 ⊗A yFN0 by

Lemma 4.6.3, and there is an N1 > N0 such that for all m,n ≥ N1,(
(xEN0 ⊗A yFN0)− (EN0x

′
mEN0 ⊗A FN0y

′
nFN0)

)
(ωξ) <

ε

4
.

By Lemma 4.6.12, there is an N2 > N1 such that for all m,n > N2,∣∣∣∣〈(x′m ⊗ y′n)(1H⊗AK − EN0 ⊗A FN0)ξ, (EN0 ⊗A FN0)ξ

〉∣∣∣∣ < ε

4
.

Now we calculate that for all m,n > N2,

(x⊗A y − x′m ⊗ y′n)(ωξ) = (1− EN0
⊗A FN0

)(x⊗A y − x′m ⊗ y′n)(1− EN0
⊗A FN0

)(ωξ)

+ (1H⊗AK − EN0 ⊗A FN0)(x⊗A y − x′m ⊗ y′n)(EN0 ⊗A FN0)(ωξ)

+ (EN0
⊗A FN0

)(x⊗A y − x′m ⊗ y′n)(1H⊗AK − EN0
⊗A FN0

)(ωξ)

+ (EN0
⊗A FN0

)(x⊗A y − x′m ⊗ y′n)(EN0
⊗A FN0

)(ωξ)

≤
(
(x⊗A y)− (xEN0 ⊗A yFN0)

)
(ωξ)

+ |((1H⊗AK − EN0 ⊗A FN0)(x
′
m ⊗A y′n)(EN0 ⊗A FN0)(ωξ)|

+ |(EN0
⊗A FN0

)(x′m ⊗A y′n)(1− EN0
⊗A FN0

)(ωξ)|

+

(
(xEN0

⊗A yFN0
)− (EN0

x′mEN0
⊗A FN0

y′nFN0
)

)
(ωξ)

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Corollary 4.6.14. If x ∈ X̂+, y ∈ Ŷ +, and z ∈ Ẑ+, then (x⊗A y)⊗B z = x⊗A (y ⊗B z).
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Proof. Take sequences (xm) ⊂ X+, (yn) ⊂ Y +, and (z`) ⊂ Z+ which increase to x, y, z
respectively. Then

(x⊗A y)⊗B z = sup
m,n,`

(xm ⊗A yn)⊗B z` = sup
m,n,`

xm ⊗A (yn ⊗B z`) = x⊗A (y ⊗B z).

Corollary 4.6.15. If x,w ∈ X̂+, y ∈ Ŷ +
0 , and λ ∈ [0,∞], then (λx + w) ⊗A y = λ(x ⊗A

y) + (w ⊗A y).

Proof. Choose X+ 3 xm, wn ↗ x,w ∈ X̂+ respectively and Ŷ +
0 3 y` ↗ y ∈ Ŷ +

0 . Then
(λxm +wn)⊗A y` = λ(xm ⊗A y`) + (wn ⊗A y`), and the result follows by Remark 4.2.22 and
Theorem 4.6.13.

By taking sups appropriately, and with a little more care, Lemma 4.6.11 and Theorem
4.6.13 can be generalized to prove:

Theorem 4.6.16. Let x ∈ X̂+ and y ∈ Ŷ +
0 . Suppose there are nets (xi)i∈I ⊂ X̂+, (yj)j∈J ⊂

Ŷ +
0 which increase to x, y respectively. Then xi ⊗A yj ↗ x⊗A y.

4.7 The action of BP is well-defined

In this section, we show the action of BP is well-defined in Theorem 4.3.18. We do so in
two steps. First, we define a sub-operad BP1 ⊂ BP, define the action of BP1 on the extended
positive cones Q̂+

n , and show the action is well-defined. We show that each connected tangle
(see Definition 4.7.1) has a unique standard form (see Algorithm 4.7.4) that behaves well
under composition, analogous to the methods of [Pen12a]. Second, we extend the action
to BP and show it is well-defined by considering the possibilities that occur when inserting
connected BP1-tangles into the quadratic pairing tangle τn or τ op

n (see Definition 4.7.7).

The operad BP1

Definition 4.7.1. We will define BP1, an operad of unshaded, oriented tangles up to planar
isotopy. First, we require for tangles T ∈ BP1:

(1) T has an external disk D0 and internal disks D1, . . . , Ds, each with an even number
2ki of market boundary points and a distinguished interval marked ∗. The boundary
points of Di are numbered 1, . . . , 2ki clockwise from ∗, and and we use the convention
that for 1 ≤ n ≤ 2ki, the −nth boundary point is the point numbered 2ki − n+ 1.

(2) Each boundary point of T is connected to exactly one oriented string. Each oriented
string is either a closed loop, or it is attached to two distinct boundary points.
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(3) For i = 1, . . . , s, reading counter-clockwise from ∗, the strings attached to the first
ki boundary points of Di are oriented away from Di, and the second ki strings are
oriented toward Di,

(4) Reading counter-clockwise from ∗, the strings attached to the first k0 boundary points
of D0 are oriented toward D0, and the second k0 strings are oriented away from D0,

When we draw such a tangle, we draw all disks Di (0 ≤ i ≤ s) as rectangles with ki strings
connected to the top and bottom, we suppress the external disk, we draw one thick string
labelled n for n individual strings, and we orient all strings upward unless otherwise specified.

A tangle with disks {Di}si=0 and strings {Sj}tj=1 satisfying (1)-(4) is called:

• connected if {Di}si=0 ∪ {Sj}tj=1 is connected in R2, and

• internally connected if T has no external boundary points and {Di}si=1 ∪ {Sj}tj=1 is
connected in R2.

Let BP1 be the operad generated by the following tangles:

Temperley-Lieb: For n ≥ 0, the “Temperley-Lieb” tangle 1n with no inputs and 2n boundary
points:

1n = n ,

Note that 10 is the empty tangle.

Partial trace: For n ≥ 0, the tangles tn+1, t
op
n+1 with 2n+ 2 internal boundary points and 2n

external boundary points and only one right, left cap respectively:

tn+1 =
n

n

and top
n+1 =

n

n

,

Tensoring: For m,n ≥ 0, the tangles ⊗m,n with internal disks D1, D2 with 2m, 2n internal
boundary points and 2(m+ n) external boundary points as follows:

⊗m,n =
m

m

n

n

.

Theorem 4.7.2. The following relations hold in BP1 for m,n ≥ 0 (compare with (1)-(3) in
Theorem 4.3.15):

(1) tmt
op
m+1 = top

m tm+1,

(2) ⊗`,m+n(−,⊗m,n(−,−)) = ⊗`+m,n(⊗`,m(−,−),−), and
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(3) tm+n(⊗m,n(−,−)) = ⊗m,n−1(−, tn(−)) and top
m+n(⊗m,n(−,−)) = ⊗m−1,n(top

m (−),−).

Proof. Clear by drawing pictures.

Theorem 4.7.3. Suppose T is an unshaded, oriented tangle which satisfies requirements
(1)-(4) in Definition 4.7.1. Then

• (BP0) If boundary points m and n of D0 are connected by a string, then m = −n
(recall the convention −n = 2ki − n+ 1 from (1) of Definition 4.7.1).

The tangle T is in BP1 if and only if the following conditions are satisfied:

• (BP1) No string may connect the input disks Di and Dj for i 6= j.

• (BP2) If the string S connects the nth boundary point of Di to the mth boundary point of
D0, then there is a string S ′ connecting the −nth boundary point of Di to the the −mth

boundary point of D0, and any other string connected to Di must only be connected to
Di or D0.

If (BP1) and (BP2) hold, then the following condition also holds:

• (BP3) If the string S connects boundary points m and n of Di, then m = −n. Such
a string is called an i-cap of T . We call the i-cap a left i-cap if when we connect
boundary points n and −n by an imaginary string S ′ inside Di, the loop S∪S ′ contains
the distinguished interval of Di. The i-cap is a right i-cap otherwise.

Proof. (BP0) follows from (1)-(4) in Definition 4.7.1 by a simple counting argument. Sim-
ilarly, (BP3) follows from (BP0)-(BP2). Clearly tangles in BP1 satisfy (BP1) and (BP2),
since these properties are preserved under composition of the tangles which generate BP1.

Now suppose T satisfies (BP0)-(BP3). If T is internally connected, then either T is a
closed loop, or T has only one input disk D1, and we may write T uniquely as

T = top
1 · · · t

op
` t`+1t`+2 · · · t`+r (4.4)

where ` is the number of left caps and r is the number of right caps of D1 of T . Hence, we
may reduce to the case that T is connected. Now Algorithm 4.7.4 expresses the connected
tangle T in a standard form as a composite of generators of BP1.

Algorithm 4.7.4 (Standard form of connected BP1-tangles). Suppose T satisfies (1)-(4) of
Definition 4.7.1 and (BP1)-(BP3) in Theorem 4.7.3, and suppose T is connected. Then we
can use ⊗m,n to “parenthesize” the Di’s (i ≥ 0) and groups of through strings 1b from right
to left. Before we give the algorithm we give an example:

m1 b m2
`1 r2

= ⊗m1,t+m2(t
op
m1+1 · · · t

op
m1+`1

,⊗b,m2(1b, tm2+1 · · · tm2+r2)).

The following algorithm expresses T in a standard form as a composite of generators of BP1:
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(0) If T is the empty tangle, break.

(1) Start at ∗ on the external boundary. Going clockwise along D0, denote the strings
oriented toward D0 by S1, . . . , Sk0 (note k0 > 0). Set:

• a = k0 (a is the number of strings S1, . . . , Sk0 remaining to be examined) and

• n = 0 (Sn+1 is the string we are currently examining).

Record a place holder ? to be replaced.

(2) If Sn+1 connects D0 to D0, find b maximal such that Sn+1, . . . , Sn+b all connect D0 to
D0. Set a = a− b.

(2a) If a = 0, replace the last ? with 1b and break.

(2b) If a > 0 and b > 0, replace the last ? with ⊗b,a(1b, ?), where ? will be replaced
later, and set n = n+ b.

(3) Now a > 0, and Sn+1 is the first string connecting D0 to some input disk Di. Find mi

maximal such that Sn+1, . . . , Sn+mi connect D0 to Di. Set a = a − mi, let `i be the
number of left caps of Di, and let ri be the number of right caps of Di.

(3b) If a = 0, replace the last ? with top
mi+1 · · · t

op
mi+`i

tmi+`i+1 · · · tmi+`i+ri and break.

(3a) If a > 0, replace the last ? with ⊗mi,a(t
op
mi+1 · · · t

op
mi+`i

tmi+`i+1 · · · tmi+`i+ri , ?), where
? will be replaced later, set n = n+mi, and go to (2).

Definition 4.7.5 (Action of tangles in BP1). We may now describe the action of a tangle
T ∈ BP on a tuple

(z1, . . . , zs) ∈
s∏
i=1

Q̂+
ni
.

If T is connected, we put T in the standard form afforded by Algorithm 4.7.4, label the
inputs with the zi’s, and replace 1n with idHn ; tn, t

op
n with Tn, T

op
n ; and ⊗m,n with ⊗A.

If T is not connected, then there are internally connected subtangles which are either
closed loops, or which can be uniquely written as in Equation (4.4). These subtangles will

act as scalars in Q̂+
0 = Ẑ(A)+ = [0R,∞R], and the order of scalar multiplication does not

matter, so it suffices to define the scalar given by a single internally connected subtangle.
First, closed loops count for a multiplicative factor:

dim−A(H) = T1(1) = 1 and dimA−(H) = T op
1 (1) = 1 .

Suppose S is a closed, internally connected subtangle of T with only one input disk. Then
we may write S uniquely as in Equation (4.4), label the tangle by zi, and replace tn, t

op
n with

Tn, T
op
n .
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Theorem 4.7.6. Definition 4.7.5 gives a well-defined action of BP1.

Proof. The methods of [Pen12a] show that the standard forms of connected and internally
connected tangles given in Algorithm 4.7.4 and Equation (4.4) and the maps given in Sub-
section 4.3 behave the same under composition by Theorems 4.3.15 and 4.7.2. We briefly
sketch such an argument.

We need only consider the composites R ◦ S and S ◦i T where R,S, T ∈ BP1 such that
R is internally connected with 1 input disk and S, T are connected. That the action is well-
defined follows from using the relations in Theorems 4.3.15 and 4.7.2 and (4) in Corollary
4.3.16 to get the standard form of the composite from the composite of the standard forms
(push all ⊗m,n,⊗A as far to the left as possible, and push all left caps top, T op to the left of
the right caps t, T ). Once again, since internally connected tangles act as scalars in [0R,∞R],
the order in which we remove them and multiply by the scalar does not matter.

The operad BP
We now include the pairing tangles to get the operad BP and show its action is well-

defined.

Definition 4.7.7. Let BP be the operad generated by BP1 and the following tangles:

Pairing: For n ≥ 1, the tangles τn, τ
op
n with two input disks, each with 2n internal boundary

points, and no external boundary points such that boundary point m of input disk D1 is
connected to boundary point 2n−m+ 1 of input disk D2 for each m = 1, . . . , 2n as follows:

τn =

n

and τ op
n =

n

.

There are similar notions of connectivity and internal connectivity for tangles T ∈ BP.

Remark 4.7.8. τn(T1(−), T2(−)) = τn(T2(−), T1(−)) and similarly for τ op
n for all T1, T2 ∈ BP

up to reindexing internal disks.

Theorem 4.7.9. Suppose T is an unshaded, oriented, internally connected tangle which
satisfies (1)-(4) in Definition 4.7.1. Then T ∈ BP if and only if conditions (BP0), (BP2),
and (BP3) from Theorem 4.7.3 are satisfied (we now exclude (BP1)) along with the following
conditions:

• (BP4) If the string S connects boundary point m of Di to boundary point n of Dj where
1 ≤ i < j ≤ s, then

(i) no string of Di or Dj connects to D0, and
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(ii) there is another string S ′ connecting boundary points −m of Di and −n of Dj.

We call S ∪S ′ an i, j-cap of T . In this case, if we connect boundary points m and −m
of Di and boundary points n and 2kj − n + 1 of Dj by imaginary strings Si, Sj inside
Di, Dj respectively, then the loop S ∪ S ′ ∪ Si ∪ Sj either

(i) contains the ∗’d intervals of Di and Dj, and the i, j-cap is a left i, j-cap, or

(ii) does not contain the ∗’d intervals, and the i, j-cap is a right i, j-cap.

• (BP5) The i, j-caps of T are either all right or all left caps, and they form concentric
circles.

Proof. Once again, it is clear that any tangle in BP satisfies the desired properties, since
these properties are preserved under composition of tangles (the total number of i, j-caps
can only decrease under composition of connected and internally connected tangles), and
the generating tangles satisfy these properties. The other direction follows from Algorithm
4.7.11, which shows how to ‘comb’ the tangle into a unique standard form.

Example 4.7.10. The tangle on the left is in BP (see Algorithm 4.7.11), but the tangle on
the right is not:

.

Algorithm 4.7.11. Suppose T is an internally connected tangle which satisfies (1)-(4) of
Definition 4.7.1 and (BP0),(BP2),(BP3) in Theorem 4.7.3 and (BP4),(BP5) in Theorem
4.7.9. Suppose further that T has at least two input disks, so there is an i, j-cap. Let C1 be
the outermost i, j-cap of T . Then there is a unique smallest n ∈ N and two unique connected
tangles T1, T2 ∈ BP1 up to swapping such that:

Right: if C1 is a right i, j-cap, T = τn(T1(−), T2(−)), and

Left: if C1 is a left i, j-cap, T = τ op
n (T1(−), T2(−)).

We give an algorithm for the right-cap case, and the left-cap case is similar. We will build T1

and T2 by partitioning the internal disks of T into two sets U and L, standing for “upper”
and “lower.” All i, j-caps of T will be between a Di ∈ U and a Dj ∈ L. We form T1 by
putting a box around the Di ∈ U together with all “contractible” i-caps, and we form T2 by
doing the same to the Dj ∈ L.



CHAPTER 4. A PLANAR CALCULUS FOR INFINITE INDEX SUBFACTORS 130

Before we describe the algorithm, we give an example:

D2

D1

D3

D4

−→

D2 D3

D1 D4

.

(1) Start at the ∗ on the external boundary. Set U = L = ∅. Let c be the number of
i, j-caps of T .

(2) If c = 0, then go to (4).

(3) Find the next outermost i, j-cap C in T , where i < j. Set c = c− 1.

(3a) If U = L = ∅, then set U = {Di} and L = {Dj}.
(3b) If Di or Dj is not in U ∪ L (note that at least one of Di, Dj is in U ∪ L), put the

missing one where the other one is not, e.g., if Di /∈ U ∪ L and Dj ∈ L, then set
U = U ∪ {Di}. (There are 4 cases here.)

(3c) Isotope the tangle so that

• all disks in U and L appear on the same horizontal levels, with L below U ,

• any string connecting a disk Du ∈ U to a disk D` ∈ L travels upward from
D` to Du with no critical points, or travels in a large arc from Du to D` with
only two critical points,

• all k-caps which enclose the i, j-cap C are large arcs with only two critical
points,

• all k-caps for Dk ∈ U ∪ L which do not enclose an a, b-cap are close to Dk.

(3d) Go to (2).

(4) Put boxes around the disks and caps in U,L as desired. We have τn(T1(−), T2(−)) for
some n ∈ N and some connected tangles T1, T2 ∈ BP1.

Note that the n is determined by the i, j-caps and the k-caps which enclose an i, j-cap, and
this n is minimal when all other `-caps are contracted so they are close to D`. Moreover, the
only choice we made was the initial choice U = {Di} and L = {Dj} with i < j, but if we
swapped U and L, we would have ended up with τn(T2(−), T1(−)). Hence T1, T2 are unique
up to swapping.
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Definition 4.7.12 (Action of tangles in BP). We extend the action of BP1 to an action
of BP. Note that it suffices to define the action of an internally connected tangle with at
least 2 input disks (so there is necessarily an i, j-cap), and any such tangle can be written
uniquely as τn(T1, T2) (or τ op

n ) with n minimal and T1, T2 ∈ BP1 unique up to swapping by
Algorithm 4.7.11. Simply use the action prescribed by Definition 4.7.5 for T1 and T2, and
then the action of τn, τ

op
n is given by replacing it with Trn,Trop

n .

Theorem 4.7.13. Definition 4.7.12 gives a well-defined action of BP.

Proof. We show that for any connected S1,S2 ∈ BP1 and m ∈ N, that the action of the
composite tangle τm(S1,S2) is the same as the composite of the actions of τm and the actions
of the tangles S1,S2 ∈ BP1. A similar result holds for τ op

m .
First, note that (4) and (5) of Corollary 4.3.16 allow us to reduce to the case where

τm(S1,S2) is internally connected. If τm(S1,S2) is internally connected, then Algorithm
4.7.11 gives a standard form τn(T1, T2) = τm(S1,S2) where n ∈ N is minimal and T1, T2 ∈ BP1

are unique connected tangles up to swapping. If m > n, then setting b = m − n, we must
have (up to swapping) that T1 = tn+1 · · · tn+b(S1) and S2 = ⊗n,b(T2, 1b). A similar statement
holds for τ op

m using top’s and ⊗b,n(1b,−).

τ2(T1, T2) =

T2

T1

=

S2

S1

= τ3(S1,S2)

Now the result follows from (5) in Theorem 4.3.15 (which is also Proposition 4.8.11).

4.8 Extended positive cones

For the bimodule planar calculus, we need to make multiplication by ∞R rigorous. We
do so by generalizing the notion of an extended positive cone.

Definition 4.8.1. An extended positive cone is a set V together with a partial order ≤, an
addition +: V × V → V , and a scalar multiplication · : [0R,∞R]× V → V such that

Additivity axioms:

• (Zero) There is a 0V ∈ V such that 0V + v = v + 0V = v for all v ∈ V .

• (Infinity) There is an ∞V ∈ V \ {0} such that v +∞V =∞V + v =∞V for all v ∈ V .

• (Associativity) v1 + (v2 + v3) = (v1 + v2) + v3 for all v1, v2, v3 ∈ V .
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• (Commutativity) v1 + v2 = v2 + v1 for all v1, v2 ∈ V .

Multiplicative axioms:

• (Unit) 1Rv = v for all v ∈ V .

• (Associativity) (λµ)v = λ(µv) for all λ, µ ∈ [0R,∞R] and v ∈ V .

• (Zero) 0Rv = 0V for all v ∈ V .

• (Infinity) λ∞V =∞V for all λ > 0R.

Distributivity:

• (Scalars distribute) λ(v1 + v2) = λv1 + λv2 for all λ ∈ [0R,∞R] and v1, v2 ∈ V .

• (V distributes) (λ1 + λ2)v = λ1v + λ2v for all λ1, λ2 ∈ [0R,∞R] and v ∈ V .

Partial order axioms:

• (Non-degeneracy) 0V ≤ x ≤ ∞V for all x ∈ V .

• (Linearity) if xi ≤ yi for i = 0, 1 and λ ∈ [0R,∞R], then λx0 + x1 ≤ λy0 + y1.

Remark 4.8.2. (1) 0V ,∞V ∈ V are unique.

(2) If λv = 0V , then v = 0V or λ = 0R.

Examples 4.8.3. (1) The set [0R,∞R] with the usual ordering and the convention that
λ∞R = ∞λ = ∞R for all λ ∈ R>0 and 0R∞R = ∞R0R = 0R is an extended positive
cone.

(2) Let X be a nonempty set. The space of functions {f : X → [0R,∞R]} is an extended
positive cone with pointwise addition and scalar multiplication, where f ≤ g if f(x) ≤
g(x) for all x ∈ X. Similarly, the space of extended positive measurable functions on
a measure space is an extended positive cone.

(3) If M is a von Neumann algebra, ω(M), the set of normal weights ω : M+ → [0R,∞R],
is an extended positive cone where ∞ω(M) is the map which sends 0M to 0R and all
other elements of M+ to ∞R, and ϕ ≤ ψ if ϕ(x) ≤ ψ(x) for all x ∈M+.

(4) If M is a von Neumann algebra, M̂+ is an extended positive cone where ∞
M̂+ is the

unbounded operator affiliated to M with domain (0), and m1 ≤ m2 if m1(φ) ≤ m2(φ)
for all φ ∈M+

∗ .

(5) If V,W are extended positive cones, then so is V × W where (v1, w1) + (v2, w2) =
(v1 + v2, w1 +w2), λ(v1, w1) = (λv1, λw1), 0V×W = (0V , 0W ),∞V×W = (∞V ,∞W ), and
(v1, w1) ≤ (v2, w2) if v1 ≤ v2 and w1 ≤ w2.
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Definition 4.8.4. Let V,W be extended positive cones. A function T : V → W is a linear
map (of extended positive cones) if

• T (λu+ v) = λTu+ Tv for all u, v ∈ V and λ ∈ [0R,∞R], and

• if u, v ∈ V with u ≤ v, then Tu ≤ Tv.

We define a multi-linear map of extended positive cones V1 × · · · × Vn → V0 similarly.

Examples 4.8.5. (1) For a fixed scalar λ ∈ [0R,∞R], multiplication by λ is a map of
extended positive cones.

(2) Suppose ω : M+ → [0R,∞R] is a normal weight. Then its unique extension to a normal

weight ω : M̂+ → [0R,∞R] is a map of extended positive cones.

(3) If m ∈ M̂+, then m : ω(M) → [0R,∞R] given byϕ 7→ m(ϕ) is a map of extended
positive cones.

(4) Suppose N ⊂ M is an inclusion of von Neumann algebras, i : N̂+ → M̂+ is the

inclusion (well-defined by Equation (4.1)), and T : M̂+ → N̂+ is the unique extension

of an operator valued weight M+ → N̂+. Then i, T are maps of extended positive
cones.

(5) Using the notation of Section 4.6, the map X̂+ × Ŷ +
0 → ̂X ⊗A Y +

0 given by (x, y) 7→
x⊗A y is a multilinear map of extended positive cones by Lemma 4.6.15.

Definition 4.8.6. An increasing net (xi)i∈I ⊂ V converges to x ∈ V if x is the unique least
upper bound for (xi)i∈I . We denote this convergence by supi∈I xi = x or xi ↗ x.

• V is complete if each increasing net (xi)i∈I has a unique least upper bound.

• A map T : V → W is normal if xi ↗ x implies Txi ↗ Tx.

Remark 4.8.7. The maps in Examples 4.8.5 are all normal.

Definition 4.8.8. The dual space of V , denoted V ∗, is the set of all normal maps V →
[0R,∞R]. Note that V ∗ is a complete extended positive cone with

(1) (λϕ + ψ)(v) = λϕ(v) + ψ(v) for all v ∈ V , λ ∈ [0R,∞R], and ϕ, ψ ∈ V ∗, with the
convention that 0R · ∞R = 0R,

(2) 0V ∗ is the zero map,

(3) ∞V ∗(v) =

{
0 if v = 0

∞V else, and

(4) (supi∈I ϕi)(v) := supi∈I ϕi(v).
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• There is a natural inclusion V → V ∗∗ by x 7→ (evx : ϕ 7→ ϕ(x)).

• The completion of V is the set of sups of increasing nets in the image of V in V ∗∗.

Theorem 4.8.9. Let M be a semifinite von Neumann algebra with n.f.s. trace TrM . Let
ω(M) be the set of normal weights on M+.

(1) M̂+ is the dual extended positive cone of ω(M) (the ordering on each is given in
Examples 4.8.3).

(2) The map M̂+ 3 x 7→ TrM(x · ) ∈ ω(M) is a normal isomorphism of extended positive
cones.

Proof. This is a rewording of Theorem 4.2.14 into the language of this subsection.

Definition 4.8.10. If T : V → W is a normal map of extended positive cones, we get a map
of dual spaces T ∗ : W ∗ → V ∗ by T ∗(φ) = φ ◦T for all φ ∈ W ∗. We can characterize it as the
unique map satisfying

〈T (v), ϕ〉W = ϕ(T (v)) = 〈v, T ∗(ϕ)〉V
for all v ∈ V and ϕ ∈ W .

Proposition 4.8.11. Suppose N ⊂ M is an inclusion of semifinite von Neumann algebras
with n.f.s. traces TrN ,TrM respectively. Let i : ω(N) ∼= N̂+ → M̂+ ∼= ω(M) be the inclusion,

and let T : M̂+ → N̂+ be the unique extension to M̂+ of the unique trace-preserving operator
valued weight. Then i, T are normal and T = i∗, T ∗ = i.

Proof. Clearly i, T are normal. Suppose n ∈ N̂+ and m ∈ (M̂+)∗ = M̂+. Then

〈i(n),m〉
M̂+ = TrM(m · n) = TrN(T (m) · n) = 〈n, T (m)〉

N̂+ ,

so T = i∗. Since TrM(m · n) = TrM(n ·m), i = T ∗.
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[Müg03] Michael Müger, From subfactors to categories and topology. I. Frobenius al-
gebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra
180 (2003), no. 1-2, 81–157, MR1966524 DOI:10.1016/S0022-4049(02)00247-5

arXiv:math.CT/0111204.

[MW10] Scott Morrison and Kevin Walker, The graph planar algebra embedding theorem,
2010, preprint available at tqft.net/gpa.
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