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1 Introduction

Planar algebras were first defined by Jones in [Jon99] to capture the structure of the
standard invariant of a finite index, extremal II1-subfactor. Since their inception,
the language of planar algebras has been applied to many branches of mathematics,
in particular TQFT’s, representation theory, and category theory. Some planar
algebras are very easy to understand, such as TL•(C, δ), the Temperley-Lieb planar
algebra over C with modulus δ. Others, such as the standard invariant of a finite
index, extremal II1-subfactor remain more cryptic. We describe a planar algebra
obtained from the simplest subfactor: CI2 ⊂M2(C). This example is just the planar
algbera of the bipartite graph with two vertices connected by two edges first defined
by Jones in [Jon00], but we present it here in the language used to describe the
standard invariant of a II1-subfactor.

2 Planar Algebras

2.1 The Planar Operad

Definition 2.1.1. Recall from [Jon99] that a planar k-tangle T consists of the
following data:

(1) The skeleton of T , denoted S(T ), consisting of:

(a) the closed unit disk D in C, whose boundary is denoted D0(T ),

(b) a finite (possibly empty) set of disjoint subdisks D1, . . . , Dn in the interior of
D whose boundaries are denoted D1(T ), . . . , Dn(T ),

(c) for i ≥ 0, an even number 2ki ≥ 0 of distinct marked points on Di(T ) called
the boundary points of Di(T ) with k = k0,

(d) insideD, but outsideDi for i > 0, there is a finite set of disjointly smoothly em-
bedded curves called strings which are either closed curves or whose boundaries
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are marked points of the Di(T )’s and the strings meet each Di(T ) transver-
sally. Each marked point on Di(T ) for i ≥ 1 meets exactly one string.

(2) The connected components of D \ S(T ) are called regions and are shaded black
and white so that regions whose closures meet have different shadings (often we will
call black regions shaded and white regions unshaded),

Definition: A boundary segment of Di(T ), i = 0, . . . , n, is a connected arc on Di(T )
between two boundary points of Di(T ). A simple boundary segment of Di(T ),
i = 0, . . . , n, is a boundary segment of Di(T ) in T which touches only two (adjacent)
boundary points.

(3) For every Di(T ), i ≥ 0, there is a distinguished simple boundary segment of
Di(T ) whose interior meets an unshaded region.

Remark 2.1.2. The case k = 0 is exceptional in that there are two kinds of 0-tangle
depending on whether the region meeting D0(T ) is white or black.

Definition 2.1.3. The planar operad P is the set of all orientation-preserving dif-
feomorphism classes of planar k-tangles, k being arbitrary, The diffeomorphisms
preserve D, but may move the Di’s, i ≥ 1.

Definition 2.1.4. Given a planar k-tangle T , a k′-tangle S, and a disk Di of T
with i > 0 with ki = k′, we define the k-tangle T ◦i S by isotoping S so that D0(S),
together with the marked points, coincides with that Di(T ), and the chosen simple
boundary segments for Di(T ) and D0(S) share a boundary segment. The strings
may then be joined at Di(T ) and smoothed, and Di(T ) is removed to obtain T ◦i S
whose diffeomorphism class only depends on those of T and S.

2.2 Planar Algebras

Definition 2.2.1. A planar algebra is a sequence (Vk) of C-vector spaces for k ≥ 1
and two C-vector spaces V white

0 and V black
0 of dimension 1 together with a represen-

tation of the planar operad as multiplinear maps among the Vi’s, Z : P→ ML(Vi),
i.e. to each k-tangle T in P, there is a multilinear map

Z(T ) :
n∏
i=1

Vki
−→ Vk

such that Z(T ◦i S) = Z(T ) ◦i Z(S) where ◦i on the right hand side is composition
of multilinear maps in the obvious way.

Remark 2.2.2. There is a unique way to identify each V0 as a C-algebra, and Z of
the empty picture in each case is 1. There are two scalars associated to a general
planar algebra, δ1, δ2, which correspond to the closed loop parameters.
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3 The Simplest “Subfactor” Planar Algebra

3.1 A “Finite Index” Subfactor

The index of a II1-subfactor was first defined by Jones in [Jon83]. The simplest
examples of factors are type In-factors for n ∈ N, which are (non-canonically) iso-
morphic to Mn(C). Therefore the simplest example of a subfactor is CI2 ⊂ M2(C)
where I2 is the 2× 2 identity matrix. One should think of this subfactor of having
“index” four as CI2 is one dimensional and M2(C) is four dimensional, so we set
δ = 2 =

√
4. Let tr : M2(C)→ C be the normalized trace. There is a unique linear

map E : M2(C)→ CI2 fixing CI2 such that tr ◦E = tr. It is given by

E

(
a b
c d

)
=

(
a+d
2

0
0 a+d

2

)
=

1

2
trace

(
a b
c d

)
I2 = tr

(
a b
c d

)
I2

Note that the map 〈·, ·〉 : M2(C)×M2(C)→ C given by

〈x, y〉 =
1

δ
trace(y∗x) = tr(y∗x)

defines an inner product on M2(C) (here y∗ is the adjoint (conjugate transpose) of
y). We fix the folowing orthonormal basis

B =

{(√
2 0

0 0

)
,

(
0
√

2
0 0

)
,

(
0 0√
2 0

)
,

(
0 0

0
√

2

)}
of M2(C), but our construction will be independent of B.

We need the following result to define our planar algebra, whose proof is left to
the reader:

Lemma 3.1.1 (Key Lemma). Suppose x ∈M2(C).

(1) x =
∑
b∈B

E(xb)b∗ =
∑
b∈B

bE(xb∗).

(2) 4I2 =
∑
b∈B

bb∗.

(3)
∑
b∈B

xb⊗ b∗ =
∑
b∈B

b⊗ b∗x.

3.2 Planar Structure

Definition 3.2.1. Set V white
0 = C and V black

0 equal to C. For k ≥ 1, set

Vk =
k⊗
C

M2(C).
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Define the maps di, si, ∂i, σi for i = 1, . . . , k and s0 by the following formulas where
ξ = x1 ⊗ · · · ⊗ xk ∈ Vk and δ = 2:

d1(ξ) = x1x2 ⊗ x3 ⊗ · · · ⊗ xk
di(ξ) = x1 ⊗ · · · ⊗ xi−1 ⊗ xixi+1 ⊗ · · · ⊗ xk for 1 < i < k

dk(ξ) = xkx1 ⊗ x2 ⊗ · · · ⊗ xk−1

s0(ξ) = I2 ⊗ x1 ⊗ · · · ⊗ xk
si(ξ) = x1 ⊗ · · · ⊗ xi ⊗ I2 ⊗ xi+1 ⊗ · · · ⊗ xk for 0 < i < k

sk(ξ) = x1 ⊗ · · · ⊗ xk ⊗ I2
∂1(ξ) = δE(x1)x2 ⊗ x3 ⊗ · · · ⊗ xk
∂i(ξ) = δx1 ⊗ · · · ⊗ xi−1 ⊗ E(xi)xi+1 ⊗ xi+2 ⊗ · · · ⊗ xk for 0 < i < k

∂k(ξ) = δx1 ⊗ x2 ⊗ · · · ⊗ xk−2 ⊗ xk−1E(xk) = δE(xk)x1 ⊗ x2 ⊗ · · · ⊗ xk−1

σi(ξ) =
1

δ

∑
b∈B

x1 ⊗ · · · ⊗ xib⊗ b∗ ⊗ xi+1 ⊗ · · · ⊗ xk

=
1

δ

∑
b∈B

x1 ⊗ · · · ⊗ xi ⊗ b⊗ b∗xi ⊗ xi+1 ⊗ · · · ⊗ xk for i < k

σk(ξ) =
1

δ

∑
b∈B

x1 ⊗ · · · ⊗ xkb⊗ b∗ =
1

δ

∑
b∈B

x1 ⊗ · · · ⊗ xk−1 ⊗ b⊗ b∗xk,

and for η = y0 ⊗ · · · yl ∈ Vl, define the map µη,i for i = 0, . . . , k by

µη,0(ξ) = y1 ⊗ · · · ⊗ yl ⊗ x1 ⊗ · · · ⊗ xk
µη,i(ξ) = x1 ⊗ · · · ⊗ xi ⊗ y1 ⊗ · · · ⊗ yl ⊗ xi+1 ⊗ · · · ⊗ xk
µη,k(ξ) = x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yl.

Definition 3.2.2. Given a planar k-tangle T ∈ P, a standard k-picture of T , de-
noted θ(T ), is obtained from T as follows: cut Di(T ) in the distinguished simple
boundary segment of Di(T ), and apply an orientation-preserving diffeomorphism to
C (which will from now on be identified with R2) which straightens each Di(T ) into
a into a horizontal line, denote Li(T ) so that

(1) the y-coordinates of each Li(T ) and every local maximum and local minimum of
the strings are all distinct and form a finite set called the set of critical points of
θ(T ),

(2) the y-coordinate of L0(T ) is greater than the y-coordinate of Li(T ), i ≥ 1, and
strings go downward from L0(T ), and

(3) all strings come from the top of the Li(T ), i ≥ 1.

Denote the union of the Li(T )’s and the strings of T by S ′(T ). Note that the
unbounded component of C\S ′(T ) is unshaded, as is the region directly below each
Li(T ), i ≥ 1.
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Definition 3.2.3. Given a planar k-tangle T ∈ P and a standard k-picture θ(T ),
one should think that each shaded region is a matrix and that each unshaded region
between two shaded region is a ⊗ symbol. We define a map

Zθ(T ) :
n∏
i=1

Vki
→ Vk

as follows, where ηi ∈ Vki
for each i = 1, . . . , n:

(1) Beginning below all of the critical points of θ(T ), and start with the value 1C.

(2) Traveling upwards, we perform the following maps to in the event of such a
critical point:

(a) If we pass an Li(T ) and there are j shaded regions to the left of Li(T ), apply
the map µj,yi

. This critical point adds ki more shaded regions and is “labeled”
by ηi, so we should insert the ki matrices ξi.

(b) If we pass a local maximum and the region above the maximum is shaded and
there are j shaded regions to the left right before the minimum, we apply the
map dj. This critical point joins two shaded regions, so we should multiply
two matrices.

(c) If we pass a local minimum and the region above the minimum is shaded and
there are j shaded regions to the left of the minimum, we apply the map
sj. This critical point adds another shaded region, so we should add another
matrix, namely I2.

(d) If we pass a local maximum and the region above the maximum is unshaded
and there are j shaded regions to the left right before the minimum, we apply
the map ∂j. This critical point takes away one shaded region, so we need to
get rid of a matrix by applying E.

(e) If we pass a local minimum and the region above the minimum is unshaded
and there are j shaded regions to the left right after the minimum, we apply
the map σj. This critical point takes one shaded region and divides it into
two, so we use the orthonormal basis to “divide up” the matrix.

Theorem 3.2.4 ([Jon99]). The map Zθ(T ) is independent of the choice of standard
k-picture θ(T ) as well as the choice B of orthonormal basis.

Remark 3.2.5. It is a direct result of the key lemma 3.1.1 that the proof given by
Jones in [Jon99] works in this case as well.

3.3 Some Calculations

We should convince the reader at this part that these definitions actually give us a
well defined map Z : P→ML(Vi).
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