A “Subfactor” Planar Algebra Everyone Will
Understand

David Penneys
January 13, 2009

1 Introduction

Planar algebras were first defined by Jones in [Jon99)] to capture the structure of the
standard invariant of a finite index, extremal I[;-subfactor. Since their inception,
the language of planar algebras has been applied to many branches of mathematics,
in particular TQFT’s, representation theory, and category theory. Some planar
algebras are very easy to understand, such as T'L(C, ¢), the Temperley-Lieb planar
algebra over C with modulus . Others, such as the standard invariant of a finite
index, extremal [I;-subfactor remain more cryptic. We describe a planar algebra
obtained from the simplest subfactor: CIy C My(C). This example is just the planar
algbera of the bipartite graph with two vertices connected by two edges first defined
by Jones in [Jon00], but we present it here in the language used to describe the
standard invariant of a I [;-subfactor.

2 Planar Algebras

2.1 The Planar Operad

Definition 2.1.1. Recall from [Jon99] that a planar k-tangle 7' consists of the
following data:

(1) The skeleton of T, denoted S(T'), consisting of:
(a) the closed unit disk D in C, whose boundary is denoted Dy(T'),

(b) a finite (possibly empty) set of disjoint subdisks Dy, ..., D, in the interior of
D whose boundaries are denoted Dy(T),. .., D,(T),

(c) for ¢ > 0, an even number 2k; > 0 of distinct marked points on D;(T") called
the boundary points of D;(T") with k = ko,

(d) inside D, but outside D; for i > 0, there is a finite set of disjointly smoothly em-
bedded curves called strings which are either closed curves or whose boundaries



are marked points of the D;(T)’s and the strings meet each D;(T') transver-
sally. Each marked point on D;(7T) for ¢ > 1 meets exactly one string.

(2) The connected components of D \ S(T) are called regions and are shaded black
and white so that regions whose closures meet have different shadings (often we will
call black regions shaded and white regions unshaded),

Definition: A boundary segment of D;(T), i =0,...,n, is a connected arc on D;(T)
between two boundary points of D;(T"). A simple boundary segment of D;(T),
i=0,...,n,is a boundary segment of D;(T) in T which touches only two (adjacent)
boundary points.

(3) For every D;(T), i > 0, there is a distinguished simple boundary segment of
D;(T') whose interior meets an unshaded region.

Remark 2.1.2. The case k = 0 is exceptional in that there are two kinds of 0-tangle
depending on whether the region meeting Do(T') is white or black.

Definition 2.1.3. The planar operad P is the set of all orientation-preserving dif-
feomorphism classes of planar k-tangles, k£ being arbitrary, The diffeomorphisms
preserve D, but may move the D;’s, i > 1.

Definition 2.1.4. Given a planar k-tangle 7', a k’-tangle S, and a disk D; of T'
with @ > 0 with k; = K/, we define the k-tangle T o; S by isotoping S so that Dy(S),
together with the marked points, coincides with that D;(T"), and the chosen simple
boundary segments for D;(T) and Dgy(S) share a boundary segment. The strings
may then be joined at D;(T") and smoothed, and D;(T") is removed to obtain 7" o; S
whose diffeomorphism class only depends on those of 7" and S.

2.2 Planar Algebras

Definition 2.2.1. A planar algebra is a sequence (Vj) of C-vector spaces for k > 1
and two C-vector spaces Vy"™t and V12 of dimension 1 together with a represen-
tation of the planar operad as multiplinear maps among the V;’s, Z: P — M L(V;),
i.e. to each k-tangle T" in PP, there is a multilinear map

i=1
such that Z(T o; S) = Z(T) o; Z(S) where o; on the right hand side is composition
of multilinear maps in the obvious way.

Remark 2.2.2. There is a unique way to identify each Vj as a C-algebra, and Z of
the empty picture in each case is 1. There are two scalars associated to a general
planar algebra, 91, d2, which correspond to the closed loop parameters.



3 The Simplest “Subfactor” Planar Algebra

3.1 A “Finite Index” Subfactor

The index of a I[;-subfactor was first defined by Jones in [Jon83]. The simplest
examples of factors are type I,-factors for n € N, which are (non-canonically) iso-
morphic to M, (C). Therefore the simplest example of a subfactor is CI, C My(C)
where I, is the 2 x 2 identity matrix. One should think of this subfactor of having
“index” four as Cly is one dimensional and Ms(C) is four dimensional, so we set
§ =2 = /4. Let tr: My(C) — C be the normalized trace. There is a unique linear
map E: My(C) — CI; fixing CI; such that troE = tr. It is given by

a b atd 1 a b a b
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FE (c d) = ( 0 %i) = 2tmce (c d) I, =tr (c d) I
Note that the map (-,-): M3(C) x My(C) — C given by

(2,9) = = trace(y"s) = tr(y")

defines an inner product on M(C) (here y* is the adjoint (conjugate transpose) of
y). We fix the folowing orthonormal basis

s {09605 06 W)

of Ms(C), but our construction will be independent of B.
We need the following result to define our planar algebra, whose proof is left to
the reader:

Lemma 3.1.1 (Key Lemma). Suppose x € My(C).

(1) x =Y E(b)b* =) bE(xb").

beB beB
(2) AL, = 3 bb*.
beB
(3) > xb@b =) bab.
beB beB

3.2 Planar Structure

Definition 3.2.1. Set V"Mt = C and V2% equal to C. For k > 1, set

k
Vi = Q) Ma(C).
C



Define the maps d;, s;,0;,0; for i = 1,...,k and sq by the following formulas where
E=11® - ®Rxp € Vi and 6 = 2:

di(§) =111 @13 ® -+ @ Wy
i) =11® Qi1 QETiy1 @ - Q@u for 1 <i<k
dr(§) = TpT1 @ T2 ® -+ @ T
50)=L®r® - Qxp
$i)=11® QLT ®--®uay for 0 <i <k
k) =21 @ Q@ ® Iy
01(&) = 0B (1)1, @23 ® -+ @
058) =01 ® - Q@x;1 QE(x;)ri41 T2 ® - Qg for 0 <i <k
() =001 @22+ Q@ xpo @ Tp_1E(x)) = 0E(24)01 @y ® + -+ @ Tp_q
Ui(f):%I)GZBM®~--®xib®b*®xi+1®...®xk
—% TR ;b0 "1, a1 @+ Ry, for i < k
beB
Ok(g):SE)GZB-fl@"‘@fkb@b*:%;%@---@xk—l@b@b*xk,

and for n =y ® - - -y, € V;, define the map p,,; for i =0,...,k by

o) =1 @ QuUT ®- - Qxy
i) =11 @ T, QY B QY DT @ @ Ty,
k() =11® - Q1 @ -+ @Y.

Definition 3.2.2. Given a planar k-tangle T" € P, a standard k-picture of T, de-
noted 6(7'), is obtained from 7T as follows: cut D;(T) in the distinguished simple
boundary segment of D;(T"), and apply an orientation-preserving diffeomorphism to
C (which will from now on be identified with R?) which straightens each D;(T') into
a into a horizontal line, denote L;(T") so that

(1) the y-coordinates of each L;(T") and every local maximum and local minimum of

the strings are all distinct and form a finite set called the set of critical points of
0(T),

(2) the y-coordinate of Lo(T') is greater than the y-coordinate of L;(7T), i > 1, and
strings go downward from Lg(7"), and

(3) all strings come from the top of the L;(T"), i > 1.

Denote the union of the L;(T)’s and the strings of 7' by S’(T"). Note that the

unbounded component of C\ S’(7T") is unshaded, as is the region directly below each
Li(T),i>1.



Definition 3.2.3. Given a planar k-tangle 7" € P and a standard k-picture 6(T),
one should think that each shaded region is a matrix and that each unshaded region
between two shaded region is a ® symbol. We define a map

Zy(T): [[ Vi = Vi
=1

as follows, where n;, € Vi, foreach i =1,... n:

(1) Beginning below all of the critical points of §(7T'), and start with the value 1¢.

(2) Traveling upwards, we perform the following maps to in the event of such a
critical point:

()

(b)

If we pass an L;(T") and there are j shaded regions to the left of L;(T), apply
the map p;,,. This critical point adds k; more shaded regions and is “labeled”
by n;, so we should insert the k; matrices &;.

If we pass a local maximum and the region above the maximum is shaded and
there are j shaded regions to the left right before the minimum, we apply the
map d;. This critical point joins two shaded regions, so we should multiply
two matrices.

If we pass a local minimum and the region above the minimum is shaded and
there are j shaded regions to the left of the minimum, we apply the map
sj. This critical point adds another shaded region, so we should add another
matrix, namely I5.

If we pass a local maximum and the region above the maximum is unshaded
and there are 5 shaded regions to the left right before the minimum, we apply
the map 0;. This critical point takes away one shaded region, so we need to
get rid of a matrix by applying E.

If we pass a local minimum and the region above the minimum is unshaded
and there are j shaded regions to the left right after the minimum, we apply
the map o;. This critical point takes one shaded region and divides it into
two, so we use the orthonormal basis to “divide up” the matrix.

Theorem 3.2.4 ([Jon99]). The map Zy(T) is independent of the choice of standard
k-picture O(T) as well as the choice B of orthonormal basis.

Remark 3.2.5. 1t is a direct result of the key lemma that the proof given by
Jones in [Jon99] works in this case as well.

3.3

Some Calculations

We should convince the reader at this part that these definitions actually give us a
well defined map Z: P — ML(V;).
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