TEMPERLEY LIEB DIAGRAMS AND 2-CATEGORIES David Penneys

4/14/08

(1) Simplicial Resolutions. Let F': C — D be a left adjoint to U: D — C, and denote by
o (respectively ) the unit (respectively counit) of the adjunction. So o(d) € D(d, UF(d))
corresponds to idp(g) and d(c) € C(FU(c),c) to idy (-

(a) For any object ¢ € C, show that the following formulas define a simplicial object L4 ()
in C: Let L, (¢) = (FU)"(c) and let

d; = (FU)'6((FU)" " (c)): (FU)"™Y(e) — (FU)"(c)
s; = (FU)'Fo(U(FU)"(c)): (FU)""?(c) — (FU)""(c).

(b) Show that d(c) induces a simplicial map €(c): Lo (¢) — co, where the right hand side
denotes the constant simplicial C-object.

(c) Assume that there is a functor K: D — Set such that KU(Le (c¢)) is Kan. Show
that the augmentation €(c) gives a weak equivalence KU (e(c)), i.e. it induces an
isomorphism on all homotopy groups (that vanish above dimension zero for the constant
functor).

(d) Apply this to your favorite pair of adjoint functors and see what you get. For example,
you could use C = R — Mod or Ring and D = Ab or Set. If C happens to be an abelian
category, one can apply the (normalized) chain complex to €(c) and get all resolutions
we have studied in class so far!
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Solution.
(a) We will prove a more general result which will imply the desired result. Our proof will rely on
the following facts:

Facts: (i) If X, Y, and Z are categories, we have an equivalence
Fun(X,Fun(Y,Z)) =2 Fun(X x Y, Z) = Fun(Y, Fun(X, Z)).

(ii) There is a 2-category Cat whose objects are small categories, 1-morphisms are functors, and
2-morphisms are natural transformations. Recall that there are two compositions o and ¢
of 2-morphisms in Cat, given respectively by:

B D
X 1o Y tn Z and Xk e Y
\A/ \C/ \/

for natural transformations 6: A = B, n: C' = D, etc. Furthermore, € is strict in the sense
that we have equality
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We will construct a simplicial functor L€ Fun(sA, Fun(C, C)) = Fun(C, Fun(sA, C)), i.e., Lo (c)

will be a simplicial object in C. To define this simplicial functor, we will look at a 2-subcategory € of
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Cat whose objects are the categories C and D; 1-morphisms are composites of F', U, id¢c, and idp; and
2-morphisms are composites of identity natural transformations, o: idp = UF, and §: FU = idc.
We will use the following suggestive notation: to say a 1-morphism A is in €, we will write A € €,
and to say there is a natural transformation n: A — B for A, B € €, we will write n € €(A, B).
Using the definitions of composition of 2-morphisms in €, one can easily prove the following lemma:

Lemma 1: (i) Consider (FU)" € €. Then

(FU)"
w ) \'/
FU (FU)" (FU)+1

ie. 0 oidpyyn = O(FU)". Similarly, id pyyn 06 = (FU)"S, o oidypyn = o(UF)", and
ld(UF)" o0 = (UF)nO'
(ii) Consider FU € €. Then

idc idc
//;;\ /\
FU FU

i.e. (SOidFU =J. Similarly, g o idUF =0.
(iii) idg oidp = idap and id4 ¢id4 = id4 for composable A, B € €.

Also, since we have an adjunction, we have the following lemma;:

Lemma 2: We have the following relations among F, U, o, d,idp, idy:
(i) 6F ¢ Fo = idp:

F F
e N TN
-~ = d D

F F

(ii) Ud 0 oU = idy. The diagram is similar.

We now introduce a powerful tool: a graphical calculus for working in €. Usually, A € € is
written as an arrow from its source to its target. One could instead write A as a point and its
source and target as arrows going in and out of A. This diagram is the dual diagram:

XAY: XAY _ XAY

where one often supresses the directions on the arrows when the convention is understood (all
arrows will point left in these dual diagrams).
One usually writes natural transformations as 2-cells. Dually, we can write them as pictures
from dual diagrams to dual diagrams. This gives the added benefit that we can denote an identity
2



2-morphisms as a “string” going from the bottom to the top:

A X A Y
X 'ﬂldA Y - idA
X A Y

A

and we can denote the unit or counit by a “cap,” once more reading bottom to top:

/\ D ,_C p.0D
D o D = \/
\/ idp

idp

idc

Now o-composition of 2-morphisms corresonds in the dual diagram language to splicing pictures
together sideways, and o-composition corresponds to stacking. Often we do not label the categories
and 1-morphisms as the 2-morphisms encode this data.

A B
/_\ ° °
X ) ida Y 1 idiap Z = id 4 idp
[ ] [ )
A B

When a cap appears, we sometimes do not label the 2-morphisms as they are completely determined.
Furthermore, we omit the bullet representing the identity functor:

idc
C T CcC = ° °
N s
FU

Using the convention of shading the regions of the diagram which have D along the outer boundary,
we get string diagrams in which the lemmas above correspond exactly to isotopy of the strings. In
the following diagrams, shaded regions have a * in them:
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Figure 4: Lemma 2.i3, Ud o cU = idy.

Now that we have this graphical calculus at our disposal, we can build our simplicial functor 1,.
Set L,= (FU)"*! € € and

d; = (FU)'S(FU)"™": (FU)"™ — (FU)"
s; = (FU)'FoU(FU)"": (FU)""? — (FU)"*L.

We can represent these natural transformations diagramatically:

Figure 5: do,d, € €((FU)?, FU).
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Figure 6:s0 € ¢(FU, (FU)?).
To prove that this defines a simplicial functor, we must show the following relations:
didj = dj_ldi for 4 <jJ

5i5j = 8j418; for 1 <j

deifl if 1 <j
diSj: id ifi:j,j—l-l
Sj_ldi if o >j5+1.
However, these are straightforward from the earlier lemmas by drawing the appropriate diagrams.
We will prove dod; = dodo: (FU)3 — (FU)* first using the usual diagrams in €, and secondly using
the graphical calculus, i.e. the dual diagrams.

idc

%/N;U\\ /\ @ / ﬂldFU \
dody =C<~—F—7—C = C
FU
fidpu
idc idC FU
¥ ﬂididc N\ %/ﬂg\\ ¥ pidpy N
N AN T AN
FU FU FU
idc
= C@C —dOdO
FU
o——o oo
@ o @ [ = o o ° @




Figure 7: dod; = dody € €((FU)3, FU).

The only non-obvious relation is d;s; = id = d;115s;, but these follow directly from Lemma 2. We
will prove dys1 = idpyry = das1 € €((FU)?, (FU)?) using the dual diagrams.

AN N R A
U/ U/

Figure 8: dysg = idpy = disg € Q:(FU,FU)

Thus, Lo is a simplicial functor in Fun(C,C), and evaluation at ¢ € C gives a simplicial object
1o (c) in C.

(b) Define | ;= idc and e: (FU)™ — idc by “capping everything off,” i.e. d(dp)" . Note that
this is equivalent to dd;, - - - d;, , by the dual diagrams. Next, define ids as the constant simplicial
functor, i.e. id, = idc and d;, s; are all idjq.. It is obvious that € induces a simplicial map from
Lle— id,, i.e. dje = ed;, and sje = €s;, since € is capping everything off. Once more, evaluation at
c € C gives the simplicial map 1l e— C,-

(c) Composition with U gives a simplicial functor U Lo in Fun(C,D). The dual diagrams (for the
d;’s and s;’s) are altered by adding one more string to the left. One immediately observes the
existence of an extra degeneracy s_1: U(FU)" — U(FU)"*! by

s_1 = oU(FU)" € ¢(U(FU)", U(FU)"H).

Dual diagramatically, we have:

*

Figure 9: s_; € ¢(UFU,U(FU)?).

Now when we apply the functor K, we have a simplicial functor KU 1, in Fun(C,Set) with an
extra degeneracy.

At this point, we must evaluate KU 1, at an object ¢ € C to get a simplicial set for which we
can describe the homotopy groups. We show €(c): KU 1o (¢) — KU ide(c) = KUc, is a weak
equivalence, i.e. all homotopy groups 7, (KU Le (¢),%) =2 0 for n > 0 and mo(KU Le (c),*) =
KU(c) for a basepoint * € KUFU (c). Suppose z,z’ € Z,(KU Lq (c),*) for n > 0. Recall that
a horn h is given by (n + 1) n-simplices y1,...,Yi—1,Yi; Yi+1; - - - » Ynt2 such that dyy; = dj_1y; if
1 < j. Note that we have a horn

h = (90,91 = s_1(x),y2 = s_1(2), %, %,...,%) € KU L1 (c)
if n > 0 since for all ¢ > 0,

dis_l(x) = 8_1d2‘_1(x) = % = 8_1d7;_1(.1‘/) = dis_l(x’).
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Since KU L, (c) is Kan, we can fill this horn, so there is a yo € KU L, (c) such that d;yo = *
for i > 1,

doyo = doy1 = dos—1(x) and

=
d1yo = doyz = dos—1(z') = 2.
Hence yp is a homotopy = ~ 2/, and 7, (KU L (¢),*) =0 for all n > 0.

We show m = mo(KU L, (¢), %) =2 KU(c). We have an extra degeneracy s_i: KU(c) — KU Ly

(¢) which satisfies es_1 = id gy ()

Figure 10: es_; = idy € €(U,U).

Hence s_; is injective and e is surjective. Now Z = Zo(KU L, (¢),*) = KU L4 (¢) and €(Z) =
KU/(c). Note that if z ~ 2/ for z,2" € Z, then there is a y € KU L1 (¢) such that dy(y) = = and
di(y) = 2'. Then €(z) = e(2') as edy = edy (this is the “capping off” trick discussed in (b)). Thus,
€ induces a map €: m — KU (c) which must be surjective as € = €q where ¢q: Z — 7 is the canonical
epimorphism.

€

Z
S—1
=

Moreover €qs_1 = es—1 = id, so ¢s_j is injective. Let x € Z and y = s_1(x). Then dy(y) =
dos—1(x) = x and dy(y) = d1s—1(z) = s_1€(x).

KU(C)

Figure 11: dis_1 = s_1e € CUFU,UFU).

Hence x ~ s_je(x). Thus, ¢gs_; is bijective with inverse €, so € induces a bijection m = KU (c), and
we are finished.



(d) We will illustrate two examples. First, consider the example F' = Free: Set — Ab and U =
Forget: Ab — Set. Then 0(c): Z(A) — A is evaluation of a formal finite linear combination of
elements of A € Ab. We have a simplicial group

do,dy

The maps d; are evaluation of a formal linear combination done at the i*! step. For example, if
x € Z(Z(A)), then we have

Ny Na
Tr = E n; E msaj; |,
=1 7=1

where n;,m; € Z and a; € A, and we may not distribute the n;’s into the sum over j. Then we
have

N1 N Ny N2
do(x) = Z Znimjaj and dj(z) = Znibi where b; = ijaj €A
i=1 j=1 i=1 j=1

Furthermore, o(S): d — U(Z(S)) is inclusion by s — 1- s, so if y € Z(A), then we have

N3 N3
y= Z kia; and so(y) = Z ki(1-a;)

where 1-a € Z(A). It is clear that dysy = d1sp = id in this case.

Consider F' = Z—: Group — Ring, i.e. taking the group ring, and U = —*: Ring — Group, i.e.
taking the group of units. Then 6(R): Z(R*) — R is once again evaluation and o(G): G — (ZG)*
is inclusion. We have a simplicial ring

S0
Z(R*) " Z(Z(R*))* -
do,d1

and maps d; and s; are defined similarly as before. O



