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1 I,-factors

A factor is a von Neumann algebra with trivial center.
A factor A is a II;-factor if it is infinite dimensional and it has a
tracial state try: A — C.

o GNS representation of A on L?(A): (Z,7) = tra(y*z).

t
e Conjugate-linear unitary J: L2(A) — L?(A) by T~ x*.

A’ N B(L(A)) = JAJ = {JaJ|a € A}.
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Jones’' index

Definition
Let A C B be a I'1-subfactor. [B: A] = dima(L?(B)).

Observation [PP86]

A C B has finite index if and only if B is a finitely-generated
projective A-module.

<

Theorem [Jon83]

For a II;-subfactor A C B,

[B: A € {4cos2 (f)‘n:3,4,...}u [4, 00].

n

A\
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The basic construction

Definition

On L%(B), we define the Jones projection e4 as the projection
with range L?(A) C L*(B).

Definition

The basic construction of A C B is the von Neumann algebra
(B,ea) C B(L¥(B)).
Equivalently, (B,eq) = JA'J.

A/
v

B — L*(B)+ JBJ
/ N

A JAJ
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The basic construction

Definition

On L?(B), we define the Jones projection e4 by e4(b) = E4(b).
ea is the projection with range L?(A) C L*(B).

Definition

The basic construction of A C B is the von Neumann algebra
(B,ea) C B(L*(B)).

Equivalently, (B,e4) = JA'J.

<B,€A> Al
N\ v

B — L%*(B)+ JBJ
/ N

A JAJ
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Iteration

Theorem [Jon83]

If [B: A] < oo, then (B, ey4) is a I1;-factor, and

[(B,ea) : B] = [B: Al.

e Markov trace property:

tr(p.ex)(eaz) = [B: A trp(a)

for all z € B.
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The Jones tower

Definition
The Jones tower of A = Ay C A1 = B is given by

el e2 es
Ay C Ay C Ay C A3 C ---

where ¢; is the projection in B(L?(A;)) with range L?(A;_1).
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The Temperley-Lieb algebras

Definition

The Jones projections e; satisfy the following relations:
(1) es=ef =€,
(2) eijej = eje; for i — j| > 1, and
(3) eieirie; = [B: Al e

Renormalize: d?> = [B: A], E; = de;. This gives:
(1) dE; = dE} = E2,

(2) EyE; = E;E; for |i — j| > 1, and

(3) EiEin1Ei = E;
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The Temperley-Lieb algebras

Let T'L,,(d) be the complex *-algebra generated by
1, Ey, ..., E,_1 satisfying the relations:

(1) dE; = dE} = EZ,
(2) EZEJ = EVJE’Z for |Z —]| > 1, and
(3) EiEi+1E; = E;
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Kauffman diagrams

N
e String diagram for F;: | (| L
N W
e Multiplication is stacking:
/
N
EsFEsFEs = = = Fj3
N
£
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Kauffman diagrams

e Closed loops count for a multiplicative factor of d:

N
E? = O =d ~ =dE,
N
N
e The adjoint is reflection about z-axis:
NZ N
N N
e TL,(d) = TLy,+1(d) by adding a string to the right:
N N
TLa(d) > — € TL3(d)
LN LN
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The trace

We define a tracial linear functional tr,, on T'L,,(d):

This trace satisfies the Markov property!

Theorem [Jon83]

(x,y) = trp(y*x) is positive semi-definite on T'L,,(d) for all n > 0
if and only if

d € {2cos(n/k)|k > 3} U[2,00).
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Standard invariant

Two towers of centralizer algebras: (AN A,)n>0, (A1 N Apt1)n>o0

e Markov trace

e Finite dimensional C*-algberas (semi-simple)

e Bratteli diagram

e TL,(d) C AjNn A, where d?> = [Ay: Ag] when d > 2
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Example Bratteli diagram

The Bratteli diagram for the algebras T'L,,(d) for d > 2 is half of
Pascal’s triangle:
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Infinite index

What if [B: A] = 00?
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11, -factors

A I, -factor A is a factor such that:

e 1 € A is an infinite projection, and
e There is a weight Trs: AT — [0, 00| which is:
Tracial: Try(a*z) = Tra(xzz*) for all z € A,
Faithful: Try(z*z) =0 <= x =0,
Normal: z; /& = Tra(z;) / Tra(x) where z;,z € AT,
Semifinite: for all z € AT, there is a 0 < y < z such that Tra(y) < oo.

Tra(ly) = ool
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GNS representation

We can still define the GNS-representation. Define
o np, = {z € AlTra(z*x) < oo},
o (z,y) = Tra(y*z) for T,y € nry, by polarization,
o 12(4) = T e,
We still get:
o Conjugate-linear unitary J: L2(A) — L2(A) by T — z*.

AN B(I2(A)) = JAJ = {JaJ|a € A}.
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The basic construction

Suppose A C B is a II;-subfactor with [B: A] = oo.

(1) (B,ea) is a Il -factor.

e There is a canonical trace Tr(p .,y on (B,ea)" satisfying

Tr(pe,y(zeay) = trp(zy) for all z,y € B.

(2) Tr(Be4) |+ = o0, so L?(B) ¢ L?(B,e4).
(3) There is no Jones projection eg: L?(B,ea) — L*(B).

Tre,)(ea) =1, 50 Trg.,y(1 —ea) = oco.
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Iteration

We can still iterate the basic construction. We use the formula:
(B,eq) = JA'J C B(L*(B)).
We iteratively define

Ani1 = JnAl_ 1 Jn 1 C B(LX(Ay)).

There is a canonical semifinite trace Tr,, on A4,, for all n > 2, and
A, is a I1,,-factor.
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Odd Jones projections

Theorem [Bur03]

(1) Tr2n+1 |A2+n = Tl"gn and

(2) Tronto |A§n+1 = %

This implies:
o L?(Ay,) C L?(Ag,41), so there is a Jones projection
€ant1 € A2n+2 C B(L2(A2n+1)) with range L2(A2n).

o L*(Ani1) € L*(Aant2)

The odd Jones projections ey, 11 satisfy:
(1) es =€} = 622,

(2) eiej = eje; for all 4, 5.
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String diagrams

String diagram for eg;41 :

Multiplication is stacking:

l l

T T

We remove closed strings (dots at both sides).
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Higher relative commutants

Idea: we can make sense of diagrams like

Fori,j <mn, ezi_1 ~ €251 in A6 N As,.
Hence Af; N Ay, is not abelian when n > 2.

|

is a partial isometry witnessing ez ~ e5 € Af N As.
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GICAR algebras

For n > 0, let GG;, be the complex x-algebra generated by these
diagrams. For example:

G2:< TN 17u>
x L L L] L

e Adjoint is reflection: =

T |

e G, — Gn41 by adding a string to the right:

! l

GQB — €G3
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GICAR algberas

The complex x-algebras G,, are isomorphic to the GICAR algebras

k=1

For example, the x-algebra generated by the diagrams

| | l |
I [ LI |

modulo diagrams with fewer through strings is isomorphic to
M5(C).
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Bratteli diagram

The Bratteli diagram for the algebras G, is given by Pascal's
triangle:
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GICAR in A} N A,

Given a subfactor Ay C A; of arbitrary index, G,, < A{ N Agy,.

€1€3

€1€3€;5
€1€e3e5eyr

' €1€3€5€7€9

For k < n, the (semi-finite) traces of ejes - - egr_1 and

11 1
€1 €3 €5, 1 are non-zero.
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Can we only get GICAR?

Is there an infinite index IIj-subfactor Ag C A such that
Al N Agy, = G, for all n?

If Go = Stab(1) C S = G4, then if
Ay=Rx Gy CRxGi = A4, d1m(A6 ﬂAgn) < oo for all n.
However, dim(A{ N As;,) grows too quickly.

The group-subgroup subfactor won't work.
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unitary tensor categories

A unitary tensor category has the following properties (and more):

e for each object X € C, there is an object X € C and
evaluation and coevaluation morphisms

i%; - X X _
€ Hom(X ® X, 1¢), N Hom(1lg, X ® X)
X X 1

satisfying the zigzag relations,

e for each X,Y € C, an involution
«: Hom(X,Y) - Hom(Y, X) such that if f € Hom(X,Y)
and g € Hom(Y, Z), then (go f)* = ¢g* o f*, and

e for each X,Y € C, Hom(X,Y') is a Banach space, and
Hom(X, X) is a C*-algebra.
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Temperley-Lieb

Fact

In a unitary tensor category, picking a distinguished object X, we
get canonical maps

TLop(tr(X)) = End( X @ X ®--- X ® X)
TLopi1(tr(X)) 2 End( X @ X ®--- X ® X ® X)

by using the evaluation and coevaluation maps.
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Finite index subfactors give unitary 2-categories

The paragroup of A C B is the 2-category given by
@ 0-morphisms: {A, B}

@ 1-morphisms: bimodule summands of L?(A;,) for some k > 0

@ 2-morphisms: intertwiners (live inside AN Ay, A7 N Aki1)

The Temperley-Lieb algebras arise by looking at the distinguished
I-morphism X =4 L?(B)p.

A\
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Infinite index subfactors do not give unitary 2-categories

There are no evaluation and coevaluation maps

sL?*(B)p
R € Hom(gL?*(B) ®4 L*(B),5 L*(B)B)
BL2 B)a ALQ(B B ~pL%(B,ea)B

€ Hom(pL?*(B)p, pL*(B) ®4 L*(B)g)

sL*(B)p =pL(Bea)n

Since L*(B) ¢ L*(B,e4), and there is no Jones projection ep.

David Penneys Infinite index subfactors and the GICAR algebras



Tensor categories Temperley-Lieb GICAR

GICAR

The GICAR algebras arise by looking at the evaluation and
coevalutation maps

AL?(A) 4
N T € Hom(4L?(B) ®p L*(B)a,a L*(A)a)
AL*(B)p pL?*(B)a ~,L2(B)a

AL*(B)p pL?*(B)a
— i € Hom(oL?(A) 4, AL*(B) ®p L*(B) )

AL%(A) 4 =al?(B)a

where e 4 is the Jones projection and i 4 is the inclusion.
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Thank you for listening!

Slides available at:
http://math.berkeley.edu/~dpenneys

Preprint available at:
http://math.berkeley.edu/~dpenneys/GICAR. pdf
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