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II1-factors

Defintion

A factor is a von Neumann algebra with trivial center.
A factor A is a II1-factor if it is infinite dimensional and it has a
tracial state trA : A→ C.

• GNS representation of A on L2(A): 〈x̂, ŷ〉 = trA(y
∗x).

• Conjugate-linear unitary J : L2(A)→ L2(A) by x̂ 7→ x̂∗.

Theorem

A′ ∩B(L2(A)) = JAJ = {JaJ |a ∈ A}.
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Jones’ index

Definition

Let A ⊂ B be a II1-subfactor. [B : A] = dimA(L
2(B)).

Observation [PP86]

A ⊂ B has finite index if and only if B is a finitely-generated
projective A-module.

Theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{
4 cos2

(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].
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The basic construction

Definition

On L2(B), we define the Jones projection eA as the projection
with range L2(A) ⊂ L2(B).

Definition

The basic construction of A ⊂ B is the von Neumann algebra
〈B, eA〉 ⊂ B(L2(B)).
Equivalently, 〈B, eA〉 = JA′J .

A
↗

B → L2(B)

JAJ
↖
JBJ←

A′

↙
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The basic construction

Definition

On L2(B), we define the Jones projection eA by eA(̂b) = ÊA(b).
eA is the projection with range L2(A) ⊂ L2(B).

Definition

The basic construction of A ⊂ B is the von Neumann algebra
〈B, eA〉 ⊂ B(L2(B)).
Equivalently, 〈B, eA〉 = JA′J .

A
↗

B →

〈B, eA〉
↘

L2(B)

JAJ
↖
JBJ←

A′

↙
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Iteration

Theorem [Jon83]

If [B : A] <∞, then 〈B, eA〉 is a II1-factor, and

[〈B, eA〉 : B] = [B : A].

• Markov trace property:

tr〈B,eA〉(eAx) = [B : A]−1 trB(x)

for all x ∈ B.

David Penneys Infinite index subfactors and the GICAR algebras



Finite index Infinite index Tensor categories Index for subfactors The basic construction Temperley-Lieb

The Jones tower

Definition

The Jones tower of A = A0 ⊂ A1 = B is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).
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The Temperley-Lieb algebras

Definition

The Jones projections ei satisfy the following relations:

(1) ei = e∗i = e2i ,

(2) eiej = ejei for |i− j| > 1, and

(3) eiei±1ei = [B : A]−1ei

Renormalize: d2 = [B : A], Ei = dei. This gives:

(1) dEi = dE∗i = E2
i ,

(2) EiEj = EjEi for |i− j| > 1, and

(3) EiEi±1Ei = Ei
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The Temperley-Lieb algebras

Definition

Let TLn(d) be the complex ∗-algebra generated by
1, E1, . . . , En−1 satisfying the relations:

(1) dEi = dE∗i = E2
i ,

(2) EiEj = EjEi for |i− j| > 1, and

(3) EiEi±1Ei = Ei
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Kauffman diagrams

• String diagram for Ei: ︸ ︷︷ ︸
i−1

· · ·

• Multiplication is stacking:

E3E2E3 = = = E3
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Kauffman diagrams

• Closed loops count for a multiplicative factor of d:

E2
2 = = d = dE2

• The adjoint is reflection about x-axis:

∗

=

• TLn(d) ↪→ TLn+1(d) by adding a string to the right:

TL2(d) 3 7−→ ∈ TL3(d)
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The trace

We define a tracial linear functional trn on TLn(d):

trn(x) =
1

dn · · ·x

This trace satisfies the Markov property!

Theorem [Jon83]

〈x, y〉 = trn(y
∗x) is positive semi-definite on TLn(d) for all n ≥ 0

if and only if

d ∈ {2 cos(π/k)|k ≥ 3} ∪ [2,∞).
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Standard invariant

Two towers of centralizer algebras: (A′0 ∩An)n≥0, (A′1 ∩An+1)n≥0

• Markov trace

• Finite dimensional C∗-algberas (semi-simple)

• Bratteli diagram

• TLn(d) ⊂ A′0 ∩An where d2 = [A1 : A0] when d ≥ 2
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Example Bratteli diagram

The Bratteli diagram for the algebras TLn(d) for d ≥ 2 is half of
Pascal’s triangle:

1
1
1
1
1
1
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Infinite index

What if [B : A] =∞?
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II∞-factors

Definition

A II∞-factor A is a factor such that:

• 1 ∈ A is an infinite projection, and

• There is a weight TrA : A+ → [0,∞] which is:

Tracial: TrA(x
∗x) = TrA(xx

∗) for all x ∈ A,
Faithful: TrA(x

∗x) = 0⇐⇒ x = 0,
Normal: xi ↗ x =⇒ TrA(xi)↗ TrA(x) where xi, x ∈ A+,

Semifinite: for all x ∈ A+, there is a 0 ≤ y ≤ x such that TrA(y) <∞.

Caution

TrA(1A) =∞!
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GNS representation

We can still define the GNS-representation. Define

• nTrA = {x ∈ A|TrA(x∗x) <∞},
• 〈x̂, ŷ〉 = TrA(y

∗x) for x̂, ŷ ∈ nTrA by polarization,

• L2(A) = nTrA
‖·‖2 .

We still get:

• Conjugate-linear unitary J : L2(A)→ L2(A) by x̂ 7→ x̂∗.

Theorem

A′ ∩B(L2(A)) = JAJ = {JaJ |a ∈ A}.
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The basic construction

Suppose A ⊂ B is a II1-subfactor with [B : A] =∞.

Facts

(1) 〈B, eA〉 is a II∞-factor.

• There is a canonical trace Tr〈B,eA〉 on 〈B, eA〉+ satisfying

Tr〈B,eA〉(xeAy) = trB(xy) for all x, y ∈ B.

(2) Tr〈B,eA〉 |B+ =∞, so L2(B) * L2〈B, eA〉.
(3) There is no Jones projection eB : L2〈B, eA〉 → L2(B).

Caution

Tr〈B,eA〉(eA) = 1, so Tr〈B,eA〉(1− eA) =∞.
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Iteration

We can still iterate the basic construction. We use the formula:

〈B, eA〉 = JA′J ⊂ B(L2(B)).

We iteratively define

An+1 = JnA
′
n−1Jn−1 ⊂ B(L2(An)).

Fact

There is a canonical semifinite trace Trn on An for all n ≥ 2, and
An is a II∞-factor.
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Odd Jones projections

Theorem [Bur03]

(1) Tr2n+1 |A+
2n

= Tr2n and

(2) Tr2n+2 |A+
2n+1

=∞.

This implies:

• L2(A2n) ⊂ L2(A2n+1), so there is a Jones projection
e2n+1 ∈ A2n+2 ⊂ B(L2(A2n+1)) with range L2(A2n).

• L2(A2n+1) * L2(A2n+2)

Fact

The odd Jones projections e2n+1 satisfy:

(1) ei = e∗i = e2i ,

(2) eiej = ejei for all i, j.
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String diagrams

String diagram for e2i+1 : ︸︷︷︸
i

· · ·

Multiplication is stacking:

e5e7 = = = e7e5 =

We remove closed strings (dots at both sides).

David Penneys Infinite index subfactors and the GICAR algebras



Finite index Infinite index Tensor categories Index = ∞ The basic construction GICAR

Higher relative commutants

Idea: we can make sense of diagrams like .

Theorem

For i, j ≤ n, e2i−1 ∼ e2j−1 in A′0 ∩A2n.
Hence A′0 ∩A2n is not abelian when n ≥ 2.

is a partial isometry witnessing e3 ∼ e5 ∈ A′0 ∩A6.
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GICAR algebras

Definition

For n ≥ 0, let Gn be the complex ∗-algebra generated by these
diagrams. For example:

G2 =

〈
, , , , ,

〉

• Adjoint is reflection:

∗

=

• Gn ↪→ Gn+1 by adding a string to the right:

G2 3 7−→ ∈ G3
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GICAR algberas

Theorem

The complex ∗-algebras Gn are isomorphic to the GICAR algebras

Gn
∼=

n⊕
k=1

M(nk)
(C).

For example, the ∗-algebra generated by the diagrams

, , ,

modulo diagrams with fewer through strings is isomorphic to
M2(C).
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Bratteli diagram

Theorem

The Bratteli diagram for the algebras Gn is given by Pascal’s
triangle:

1
11
11
11
11
11
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GICAR in A′0 ∩ A2n

Theorem

Given a subfactor A0 ⊂ A1 of arbitrary index, Gn ↪→ A′0 ∩A2n.

Proof

1
e1e⊥1
e1e3e⊥1 e

⊥
3

e1e3e5e⊥1 e
⊥
3 e
⊥
5

e1e3e5e7e⊥1 e
⊥
3 e
⊥
5 e
⊥
7

e1e3e5e7e9e⊥1 e
⊥
3 e
⊥
5 e
⊥
7 e
⊥
9

For k ≤ n, the (semi-finite) traces of e1e3 · · · e2k−1 and
e⊥1 e

⊥
3 · · · e⊥2k−1 are non-zero.
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Can we only get GICAR?

Question

Is there an infinite index II1-subfactor A0 ⊂ A1 such that
A′0 ∩A2n = Gn for all n?

Theorem

If G0 = Stab(1) ⊂ S∞ = G1, then if
A0 = RoG0 ⊂ RoG1 = A1, dim(A′0 ∩A2n) <∞ for all n.
However, dim(A′0 ∩A2n) grows too quickly.

The group-subgroup subfactor won’t work.
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unitary tensor categories

Properties

A unitary tensor category has the following properties (and more):

• for each object X ∈ C, there is an object X ∈ C and
evaluation and coevaluation morphisms

XX

1C
∈ Hom(X ⊗X, 1C),

X X

1C

∈ Hom(1C , X ⊗X)

satisfying the zigzag relations,

• for each X,Y ∈ C, an involution
∗ : Hom(X,Y )→ Hom(Y,X) such that if f ∈ Hom(X,Y )
and g ∈ Hom(Y,Z), then (g ◦ f)∗ = g∗ ◦ f∗, and

• for each X,Y ∈ C, Hom(X,Y ) is a Banach space, and
Hom(X,X) is a C∗-algebra.
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Temperley-Lieb

Fact

In a unitary tensor category, picking a distinguished object X, we
get canonical maps

TL2n(tr(X))→ End(X ⊗X ⊗ · · ·X ⊗X)

TL2n+1(tr(X))→ End(X ⊗X ⊗ · · ·X ⊗X ⊗X)

by using the evaluation and coevaluation maps.
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Finite index subfactors give unitary 2-categories

Definition

The paragroup of A ⊂ B is the 2-category given by

0-morphisms: {A,B}
1-morphisms: bimodule summands of L2(Ak) for some k ≥ 0

2-morphisms: intertwiners (live inside A′0 ∩Ak, A′1 ∩Ak+1)

Fact

The Temperley-Lieb algebras arise by looking at the distinguished
1-morphism X =A L

2(B)B.
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Infinite index subfactors do not give unitary 2-categories

Caution

There are no evaluation and coevaluation maps

BL
2(B)A AL

2(B)B

BL
2(B)B

∈ Hom(BL
2(B)⊗A L

2(B)B︸ ︷︷ ︸
∼=BL2〈B,eA〉B

,B L
2(B)B)

BL
2(B)A AL

2(B)B

BL
2(B)B

∈ Hom(BL
2(B)B,BL

2(B)⊗A L
2(B)B︸ ︷︷ ︸

∼=BL2〈B,eA〉B

)

Since L2(B) * L2〈B, eA〉, and there is no Jones projection eB.
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GICAR

Fact

The GICAR algebras arise by looking at the evaluation and
coevalutation maps

AL
2(B)B BL

2(B)A

AL
2(A)A

= eA ∈ Hom(AL
2(B)⊗B L

2(B)A︸ ︷︷ ︸
∼=AL2(B)A

,A L
2(A)A)

AL
2(B)B BL

2(B)A

AL
2(A)A

= iA ∈ Hom(AL
2(A)A,AL

2(B)⊗B L
2(B)A︸ ︷︷ ︸

∼=AL2(B)A

)

where eA is the Jones projection and iA is the inclusion.
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Thank you for listening!

Slides available at:

http://math.berkeley.edu/~dpenneys

Preprint available at:

http://math.berkeley.edu/~dpenneys/GICAR.pdf
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