

Classifying small index subfactors

AMS JMM Special MRC Session on Quantum Information and Fusion Categories

David Penneys
UCLA

January 11, 2015

What is a subfactor?

Definition

A factor is a von Neumann algebra with trivial center.

A subfactor is an inclusion $A \subset B$ of factors.

Remark

Von Neumann algebras come in pairs (M, M') .

Subfactors do too: $(A \subset B, B' \subset A')$.

Theorem (Jones [Jon83])

For a subfactor $A \subset B$,

$$[B: A] \in \left\{ 4 \cos^2 \left(\frac{\pi}{n} \right) \middle| n = 3, 4, \dots \right\} \cup [4, \infty].$$

Moreover, there exists a subfactor at each index.

We will restrict our attention to a finite index subfactor $A \subset B$.

Where do subfactors come from?

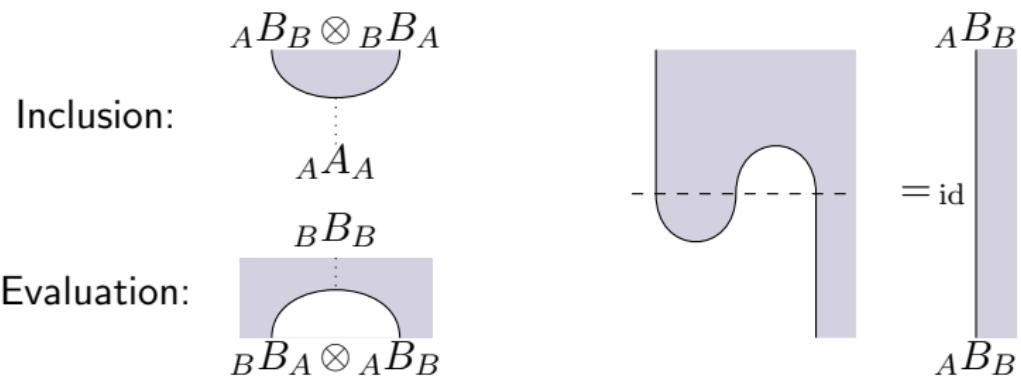
Some examples include:

- ▶ Groups – from $G \curvearrowright R$, we get $R^G \subset R$ and $R \subset R \rtimes_{\alpha} G$.
- ▶ finite dimensional unitary Hopf/Kac algebras
- ▶ Quantum groups
- ▶ Conformal field theory
- ▶ endomorphisms of Cuntz C^* -algebras
- ▶ tinkering with known subfactors (orbifolds, composites, ...)

However, there are certain possible infinite families without uniform constructions.

Finite index and the standard representation

The bimodule ${}_A B_B$ is the standard representation of $A \subset B$.
A finite index subfactor $A \subset B$ comes with canonical maps:



Since A, B are analytical objects, these maps also have adjoints.

Rep($A \subset B$)

Definition

The representation 2-category of $A \subset B$ is given by

- (0) 0-morphisms: $\{A, B\}$
- (1) 1-morphisms: bimodule summands of $\bigotimes_A^k B$ for some $k \geq 0$
- (2) 2-morphisms: bimodule intertwiners

- ▶ This 2-category is semi-simple, unitary, rigid, pivotal. It is spherical iff $A \subset B$ extremal.
- ▶ The $A - A$ bimodules form a rigid C^* -tensor category called the ‘principal even part’.
- ▶ The $B - B$ bimodules form the ‘dual even part’.
- ▶ The principal even and dual even parts are Morita equivalent:

$$A\text{Mod}_A \xleftarrow[B\text{Mod}_A]{A\text{Mod}_B} B\text{Mod}_B$$

Subfactor/representation 2-category correspondence

Theorem (Popa [Pop94])

There is a Tannaka-Krein like duality between (strongly) amenable subfactors and their representation 2-categories.

$$A \subset B \longleftrightarrow \text{Rep}(A \subset B)$$

Theorem (many authors)

Subfactors correspond to Frobenius algebra objects in rigid C^* -tensor categories.

- ▶ Finite depth subfactors correspond to Frobenius algebras in unitary fusion categories.

Fusion categories

Definition

$A \subset B$ has finite depth if $\text{Rep}(A \subset B)$ has finitely many isomorphism classes of simple bimodules.

- ▶ Then both even parts are unitary fusion categories.
- ▶ Subfactors are a vital source of interesting fusion categories.

Suppose we have a Frobenius algebra object $\mathcal{A} \in \mathcal{C}$, a unitary fusion category.

- ▶ Get a subfactor representation 2-category from \mathcal{C} , the \mathcal{C} -module category $\mathcal{M} = \text{Mod}_{\mathcal{A}}$, and the commutant:

$$\mathcal{C} \xleftarrow[\mathcal{M}^{\text{op}}]{\mathcal{M}} \mathcal{C}'_{\mathcal{M}}$$

- ▶ Use Popa's theorem to recover a finite depth subfactor!

Examples of fusion categories

Let G be a finite group.

Example

$\text{Rep}(G)$, category of finite dimensional \mathbb{C} -representations.

Example

$\text{Vec}(G, \omega)$, G -graded vector spaces, $\omega \in H^3(G, \mathbb{C}^\times)$.

- ▶ Simple objects $V_g \cong \mathbb{C}$ for each $g \in G$.
- ▶ $V_g \otimes V_h = V_{gh}$
- ▶ The 3-cocycle gives the associator natural isomorphism:

$$\alpha_{g,h,k} : (V_g \otimes V_h) \otimes V_k \xrightarrow{\omega_{g,h,k}} V_g \otimes (V_h \otimes V_k).$$

The pentagon axiom is exactly the 3-cocycle condition.

$\text{Rep}(R \subset R \rtimes G)$

From a finite group G , get the group subfactor $R \subset R \rtimes G$.

Example

- ▶ The principal even part ($R - R$ bimodules) is $\mathcal{C} = \text{Vec}(G)$.
- ▶ $R \rtimes G$ corresponds to the algebra object $\mathbb{C}[G] \in \text{Vec}(G)$.
- ▶ $\mathcal{M} = \text{Mod}_{\mathbb{C}[G]} \subset \text{Vec}(G)$ has one simple object: $\mathbb{C}[G]$.
- ▶ In this case, $\mathcal{C}'_{\mathcal{M}} = \text{Rep}(G)$.

$$\text{Vec}(G) \xrightleftharpoons{\text{Mod}_{\mathbb{C}[G]}} \text{Rep}(G)$$

The Haagerup: an ‘exotic’ example

The Haagerup fusion category \mathcal{H} has 6 simple objects $1, g, g^2, X, gX, g^2X$ satisfying the following fusion rules:

- ▶ $\langle g \rangle \cong \text{Vec}(\mathbb{Z}/3\mathbb{Z})$, with trivial associator,
- ▶ $Xg \cong g^{-1}X$, and
- ▶ $X^2 \cong 1 \oplus X \oplus gX \oplus g^2X$ (the quadratic relation).

The algebra object $1 \oplus X$ gives an ‘exotic’ subfactor with index

$$\frac{5 + \sqrt{13}}{2} \approx 4.30278.$$

\mathcal{H} has only been constructed by brute force.

- ▶ It appears \mathcal{H} belongs to an infinite family, but only examples up to $\mathbb{Z}/19$ have been constructed [EG11].

Classifying small index subfactors

- ▶ A finite group G gives a subfactor $R \subset R \rtimes G$ which remembers G .
- ▶ Classifying all subfactors is hopeless.

Restrict the search space: one way is to look at small index.

Reminder:

The representation 2-category of $A \subset B$ is given by

- (0) 0-morphisms: $\{A, B\}$
- (1) 1-morphisms: bimodule summands of $\bigotimes_A^k B$ for some $k \geq 0$
- (2) 2-morphisms: bimodule intertwiners

Principal graphs

Definition

The principal (induction) graph Γ_+ has one vertex for each isomorphism class of simple ${}_A P_A$ and ${}_A Q_B$. There are

$$\dim(\mathrm{Hom}_{A-B}(P \otimes_A B, Q))$$

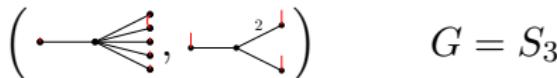
edges from P to Q .

The dual principal (restriction) graph Γ_- has a similar definition using $B - B$ and $B - A$ bimodules.

- ▶ Γ_\pm is pointed, where the base point is ${}_A A_A$, ${}_B B_B$ respectively.
- ▶ The depth of a vertex is its distance to the base point.
- ▶ Duals always occur at the same depth, since B is a $*$ -algebra. However, duals at odd depths of Γ_\pm are on Γ_\mp .

Examples of principal graphs

- ▶ index < 4: ADE classification, but no D_{odd} or E_7 .
- ▶ index = 4: affine Dynkin diagrams
- ▶ Graphs for $R \subset R \rtimes G$ obtained from $\text{Vec}(G)$ and $\text{Rep}(G)$.



- ▶ Principal graph for $R^G \subset R^H$ is the induction-restriction graph for $H \subset G$:

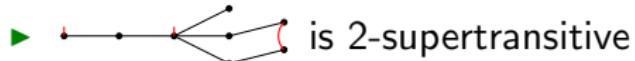
- ▶ First graph is principal, second is dual principal.
- ▶ Leftmost vertex corresponds to base points ${}_A A_A$, ${}_B B_B$.
- ▶ Red tags for duality $({}_A P_A \mapsto \overline{{}_A P_A})$ of even vertices.
- ▶ Duality of odd vertices by depth and height

Supertransitivity

Definition

A principal graph is n -supertransitive if has an initial segment with n edges before branching.

Examples

- ▶ is 1-supertransitive
- ▶  is 2-supertransitive
- ▶ is 3-supertransitive

Small index subfactor classification program

Steps of subfactor classifications:

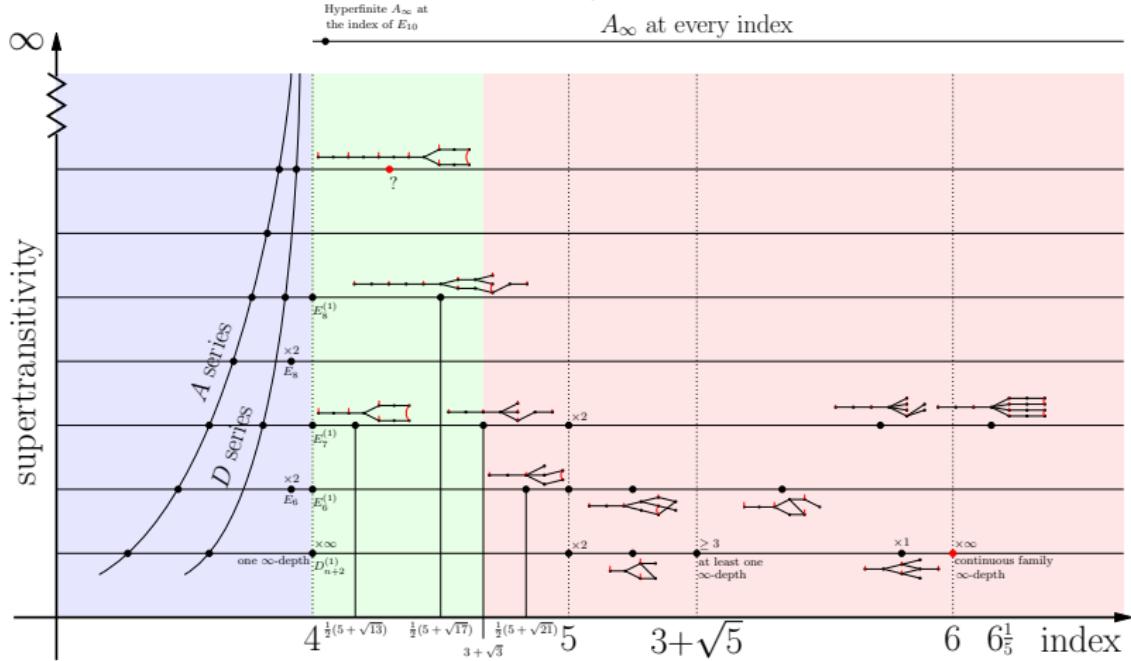
1. Enumerate graph pairs which survive obstructions.
2. Construct examples when graphs survive.

Fact (Popa [Pop94])

For a subfactor $A \subset B$, $[B : A] \geq \|\Gamma_+\|^2 = \|\Gamma_-\|^2$.

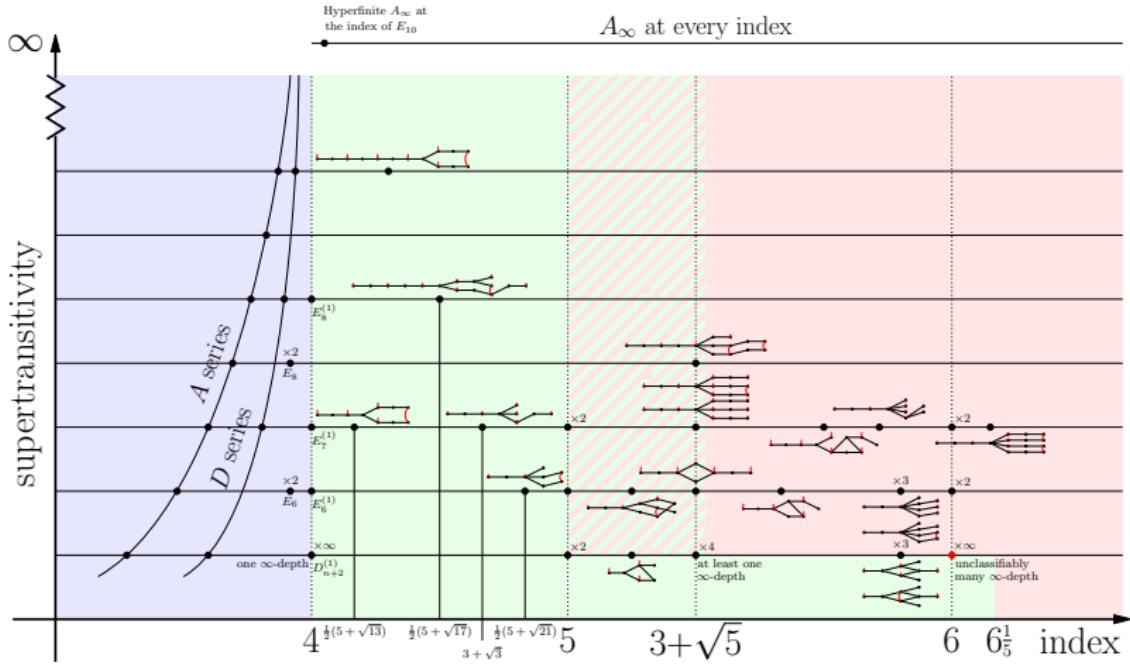
If we enumerate all graph pairs with norm at most r , we have found all principal graphs of subfactors with index at most r^2 .

Known small index subfactors, 2009



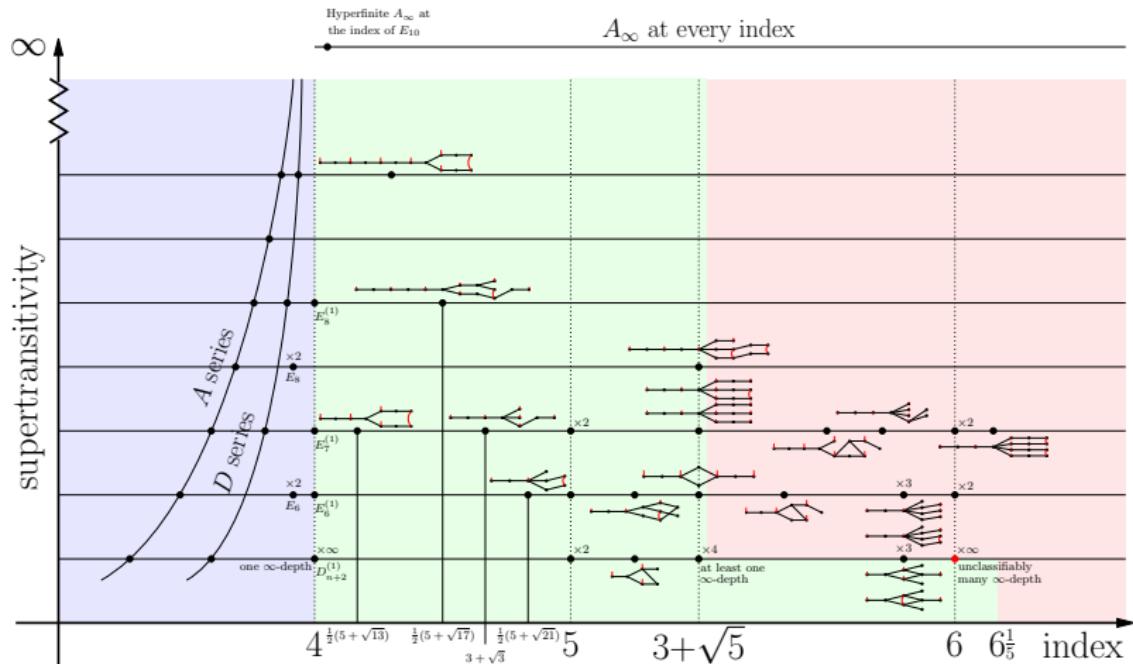
- ▶ Quantum groups and their quantum subgroups
- ▶ Composites
- ▶ Haagerup's exotic subfactor and classification to $3 + \sqrt{3}$
- ▶ Izumi's Cuntz algebra examples (2221, 3^n)

Known small index subfactors, 2014



- ▶ Classification to 5 [MS12, MPPS12, IJMS12, PT12, IMP⁺14]
- ▶ Examples at $3 + \sqrt{5}$ [MP13, PP13, IMP13, MP14]
- ▶ 1-supertransitive to $6\frac{1}{5}$ and examples at $3 + 2\sqrt{2}$ [LMP14]

Known small index subfactors, today



Theorem (Afzaly-Morrison-P, 2015)

We know all subfactor standard invariants up to index $5\frac{1}{4}$.

Thank you for listening!

Slides available at

<http://www.math.ucla.edu/~dpenneys/PenneysJMM2015.pdf>

 David E. Evans and Terry Gannon, *The exoticness and realisability of twisted Haagerup-Izumi modular data*, Comm. Math. Phys. **307** (2011), no. 2, 463–512, arXiv:1006.1326 MR2837122
DOI:10.1007/s00220-011-1329-3.

 Masaki Izumi, Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, *Subfactors of index less than 5, Part 3: Quadruple points*, Comm. Math. Phys. **316** (2012), no. 2, 531–554, MR2993924, arXiv:1109.3190, DOI:10.1007/s00220-012-1472-5.

 Masaki Izumi, Scott Morrison, and David Penneys, *Fusion categories between $\mathcal{C} \boxtimes \mathcal{D}$ and $\mathcal{C} * \mathcal{D}$* , 2013, arXiv:1308.5723.

 Masaki Izumi, Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, *Subfactors of index exactly 5*, 2014, arXiv:1406.2389.

 Vaughan F. R. Jones, *Index for subfactors*, Invent. Math. **72** (1983), no. 1, 1–25, MR696688, DOI:10.1007/BF01389127.

 Zhengwei Liu, Scott Morrison, and David Penneys, *1-supertransitive subfactors with index at most $6\frac{1}{5}$* , Comm. Math. Phys. (2014), arXiv:1310.8566, DOI:10.1007/s00220-014-2160-4.

 Scott Morrison and David Penneys, *Constructing spoke subfactors using the jellyfish algorithm*, Trans. Amer. Math. Soc. (2013), arXiv:1208.3637, DOI:10.1090/S0002-9947-2014-06109-6. ◀ ▶ ⏪ ⏩ ⏴ ⏵

 _____, 2-supertransitive subfactors at index $3 + \sqrt{5}$, 2014, arXiv:1406.3401.

 Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, *Subfactors of index less than 5, Part 2: Triple points*, Internat. J. Math. **23** (2012), no. 3, 1250016, 33, MR2902285, arXiv:1007.2240, DOI:10.1142/S0129167X11007586.

 Scott Morrison and Noah Snyder, *Subfactors of index less than 5, Part 1: The principal graph odometer*, Comm. Math. Phys. **312** (2012), no. 1, 1–35, MR2914056, arXiv:1007.1730, DOI:10.1007/s00220-012-1426-y.

 Sorin Popa, *Classification of amenable subfactors of type II*, Acta Math. **172** (1994), no. 2, 163–255, MR1278111, DOI:10.1007/BF02392646.

 David Penneys and Emily Peters, *Calculating two-strand jellyfish relations*, 2013, arXiv:1308.5197.

 David Penneys and James E. Tener, *Subfactors of index less than 5, Part 4: Vines*, Internat. J. Math. **23** (2012), no. 3, 1250017, 18, MR2902286, arXiv:1010.3797, DOI:10.1142/S0129167X11007641.