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What is a subfactor?

Definition
A factor is a von Neumann algebra with trivial center.
A subfactor is an inclusion A C B of factors.

Remark
Von Neumann algebras come in pairs (M, M').
Subfactors do too: (A C B,B' C A').

Theorem (Jones [Jon83])
For a subfactor A C B,

[B: A € {4(:032 (%)‘nzBA,...}U [4, 00].

Moreover, there exists a subfactor at each index.
We will restrict our attention to a finite index subfactor A C B.



Where do subfactors come from?

Some examples include:
Groups — from G ~ R, we get R c Rand RC R x,G.

finite dimensional unitary Hopf/Kac algebras

v

v

v

Quantum groups

v

Conformal field theory

v

endomorphisms of Cuntz C*-algebras
» tinkering with known subfactors (orbifolds, composites, ...)

However, there are certain possible infinite families without
uniform constructions.



Finite index and the standard representation

The bimodule 4 Bpg is the standard representation of A C B.
A finite index subfactor A C B comes with canonical maps:

ABp®pBa ABgB
Inclusion:
AA4 .
=id
BBB
Evaluation: :
BBA® ABpg ABp

Since A, B are analytical objects, these maps also have adjoints.



Rep(A C B)

Definition

The representation 2-category of A C B is given by

(0) 0-morphisms: {A, B}

(1) 1-morphisms: bimodule summands of ®§1 B for some k > 0

(2) 2-morphisms: bimodule intertwiners

> This 2-category is semi-simple, unitary, rigid, pivotal. It is
spherical iff A C B extremal.

» The A — A bimodules form a rigid C*-tensor category called
the ‘principal even part’.
» The B — B bimodules form the ‘dual even part’.

» The principal even and dual even parts are Morita equivalent:

AMOCIB

AMOdA

BMOdB

BMOdA



Subfactor/representation 2-category correspondence

Theorem (Popa [Pop94])

There is a Tannaka-Krein like duality between (strongly) amenable
subfactors and their representation 2-categories.

ACB

Rep(A C B)

Theorem (many authors)

Subfactors correspond to Frobenius algebra objects in rigid
C*-tensor categories.

» Finite depth subfactors correspond to Frobenius algebras in
unitary fusion categories.



Fusion categories

Definition
A C B has finite depth if Rep(A C B) has finitely many
isomorphism classes of simple bimodules.

» Then both even parts are unitary fusion categories.

» Subfactors are a vital source of interesting fusion categories.

Suppose we have a Frobenius algebra object A € C, a unitary
fusion category.

» Get a subfactor representation 2-category from C, the
C-module category M = Mod 4, and the commutant:

> Use Popa's theorem to recover a finite depth subfactor!



Examples of fusion categories

Let G be a finite group.

Example
Rep(G), category of finite dimensional C-representations.

Example
Vec(G,w), G-graded vector spaces, w € H3(G,C*).
» Simple objects V; = C for each g € G.
>» V@V =Vgn
» The 3-cocycle gives the associator natural isomorphism:

Wy, h,k

aghk s (Vg @ Vi) © Vi V, ® (Vi @ V).

The pentagon axiom is exactly the 3-cocycle condition.



Rep(R C R x G)

From a finite group G, get the group subfactor R C R x G.
Example
» The principal even part (R — R bimodules) is C = Vec(G).
» R x G corresponds to the algebra object C[G] € Vec(G).
» M = Modg|g C Vec(G) has one simple object: C[G].
> In this case, C\; = Rep(G).

Mod
Vec(G) cel

Rep(G)



The Haagerup: an ‘exotic’ example

The Haagerup fusion category H has 6 simple objects
1,9,9% X, gX, g>X satisfying the following fusion rules:

» (g) = Vec(Z/37Z), with trivial associator,
» Xg=g1X, and
» X2~ 16X ®gX @ g?X (the quadratic relation).

The algebra object 1 & X gives an ‘exotic’ subfactor with index

5+2\/ﬁ ~ 4.30278.

‘H has only been constructed by brute force.

> |t appears H belongs to an infinite family, but only examples
up to Z/19 have been constructed [EG11].



Classifying small index subfactors

> A finite group GG gives a subfactor R C R x G which
remembers G.
» Classifying all subfactors is hopeless.

Restrict the search space: one way is to look at small index.

Reminder:
The representation 2-category of A C B is given by

(0) O-morphisms: {A, B}
(1) 1-morphisms: bimodule summands of ®" B for some k > 0

(2) 2-morphisms: bimodule intertwiners



Principal graphs

Definition
The principal (induction) graph I';. has one vertex for each
isomorphism class of simple 4 P4 and 4Q . There are

dim(Hom4 (P ®a B, Q))

edges from P to Q.

The dual principal (restriction) graph I'_ has a similar definition
using B — B and B — A bimodules.

» [y is pointed, where the base point is 4 A4, pBp respectively.
» The depth of a vertex is its distance to the base point.

» Duals always occur at the same depth, since B is a *-algebra.
However, duals at odd depths of Iy are on I'+.



Examples of principal graphs

» index < 4: ADE classification, but no Dyqq or Ex.
» index = 4: affine Dynkin diagrams
» Graphs for R C R x G obtained from Vec(G) and Rep(G).

(-t e

» Principal graph for R® ¢ R¥ is the induction-restriction
graph for H C G-

‘—‘—<::§é/—‘ S5 C Se

» First graph is principal, second is dual principal.

» Leftmost vertex corresponds to base points 4 A4, pBpB.
» Red tags for duality (4 P4 — 4P4) of even vertices.

» Duality of odd vertices by depth and height



Supertransitivity

Definition
A principal graph is n-supertransitive if has an initial segment with

n edges before branching.

Examples

> % is 1-supertransitive
> ‘—'—@ is 2-supertransitive

4

> + s P _ 1+1
< is 3-supertransitive




Small index subfactor classification program

Steps of subfactor classifications:
1. Enumerate graph pairs which survive obstructions.

2. Construct examples when graphs survive.
Fact (Popa [Pop94])
For a subfactor A C B, [B: A] > |[T4||? = |T_|]%

If we enumerate all graph pairs with norm at most r, we have
found all principal graphs of subfactors with index at most r2.



Known small index ﬁupfactors, 2009

E

supertransitivity

Hyperfinite A

A at every index
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Quantum groups and their quantum subgroups

Composites

Haagerup's exotic subfactor and classification to 3 + /3

lzumi's Cuntz algebra examples (2221, 3™)



Known small index subfactors, 2014

A at every index

3
VAN
—

supertransitivity

gronm e iy 345 6 65 index
» Classification to 5 [MS12, MPPS12, 1JMS12, PT12, IMP*14]
» Examples at 3 + /5 [MP13, PP13, IMP13, MP14]

> l-supertransitive to 6+ and examples at 3 + 2v/2 [LMP14]



Known small index subfactors, today
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Theorem (Afzaly-Morrison-P, 2015)

We know all subfactor standard invariants up to index 5%.



Thank you for listening!

Slides available at
http://www.math.ucla.edu/~dpenneys/PenneysJMM2015. pdf
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