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Linear categories - data

A linear (Vec enriched) category C has objects a, b, c, · · · ∈ C and

I for every a, b ∈ C, an object C(a→ b) ∈ Vec

I for every a, b, c ∈ C, a composition morphism

C(a→ b)C(b→ c)
−◦C−−−−→ C(a→ c)

I for every a ∈ C, an identity morphism ida ∈ C(a→ a), which
one can think of as a morphism ja : 1Vec → C(a→ a).



Linear categories - axioms
The composition and identity morphisms satisfy the axioms

I (identity)

ja

C(a→ b)

− ◦C −

C(a→ b)

=

C(a→ b)

C(a→ b)

=

C(a→ b)

jb

− ◦C −

C(a→ b)

.

I (associativity)

C(a→ b) C(b→ c) C(c→ d)

− ◦C −

− ◦C −

C(a→ d)

=

C(a→ b) C(b→ c) C(c→ d)

− ◦C −

− ◦C −

C(a→ d)

.



V-enriched categories - data

Enriched categories were introduced by Eilenberg and Kelly
[EK66]. (See also [Kel05].)

Let V be a monoidal category.
A V-enriched category C has objects a, b, c, · · · ∈ C and

I for every a, b ∈ C, an object C(a→ b) ∈ V
I for every a, b, c ∈ C, a composition morphism

C(a→ b)C(b→ c)
−◦C−−−−→ C(a→ c)

I for every a ∈ C, an identity element ja ∈ V(1V → C(a→ a)).



V-enriched categories - axioms
The composition and identity morphisms satisfy the axioms

I (identity)

ja

C(a→ b)

− ◦C −

C(a→ b)

=

C(a→ b)

C(a→ b)

=

C(a→ b)

jb

− ◦C −

C(a→ b)

.

I (associativity)

C(a→ b) C(b→ c) C(c→ d)

− ◦C −

− ◦C −

C(a→ d)

=

C(a→ b) C(b→ c) C(c→ d)

− ◦C −

− ◦C −

C(a→ d)

.



V-monoidal categories

To define a V-monoidal category, we require V be braided.

Definition [MP17]

A (strict) V-monoidal category C is a V-enriched category with

I a distinguished unit object 1C ∈ C
I for every a, b ∈ C, a tensor product object ab ∈ C.

I for every a, b, c, d ∈ C, a tensor product morphism

C(a→ c)C(b→ d)
−⊗C−−−−−→ C(ab→ cd)

This data satisfies a variety of axioms, the most important being
associativity of tensor product and the braided interchange relation.



The braided interchange relation
Morphisms in an ordinary monoidal category satisfy an exchange
relation. If f1 ∈ C(a→ b), f2 ∈ C(b→ c), g1 ∈ C(d→ e), and
g2 ∈ C(e→ f), we have

(f1 ⊗ g1) ◦ (f2 ⊗ g2) = (f1 ◦ f2)⊗ (g1 ◦ g2).

In a V-monoidal category, we replace the ordinary exchange
relation with the braided interchange relation:

C(a→ b) C(d→ e) C(b→ c) C(e→ f)

−⊗− −⊗−

− ◦ −

C(ad→ be) C(be→ cf)

C(ad→ cf)

=

C(a→ b) C(d→ e) C(b→ c) C(e→ f)

− ◦ − − ◦ −

−⊗−

C(a→ c) C(d→ f)

C(ad→ cf)



The main theorem

Theorem [MP17]

Let V be a braided monoidal category. There is a bijective
correspondence between:

1. rigid V-monoidal categories C, such that x 7→ C(1C → x)
admits a left adjoint

2. pairs (T ,FZ) with T a rigid monoidal category and
FZ braided oplax monoidal (µu,v : FZ(uv)→ FZ(u)FZ(v))
such that F := FZ ◦R admits a right adjoint.

V FZ //

F

""

Z(T )

R
��
T

∃TrV

bb

These pairs can also be called oplax module tensor categories for V
in the spirit of [HPT16a].



The underlying tensor category
Given a V-monoidal category C, the underlying tensor category CV
has the same objects as C, and the hom spaces are given by

CV(a→ b) := V(1V → C(a→ b)).

I Identity:
ja

C(a→ a)

I Composition:
f

C(a→ b)
◦

g

C(b→ c)
=

f g

− ◦C −

C(a→ c)

I Tensor product:
f

C(a→ b)
⊗

h

C(c→ d)
=

f h

−⊗C −

C(ac→ bd)

I When C is rigid, so is CV .



The categorified ‘trace’

The functor C(1C → −) : CV → V is given by a 7→ C(1C → a) and

CV(a→ b) 3 f 7−→

C(1C → a)

f

− ◦C −

C(1C → b)

We only consider (rigid) V-monoidal C such that C(1C → −) has a
left adjoint F : V → CV . We show that F lifts to a braided oplax
monoidal functor FZ : V → Z(CV).

In [HPT16a], we showed that when V is braided pivotal, T is
pivotal, and FZ : V → Z(T ) is pivotal braided strong monoidal, a
right adjoint of F = FZ ◦R is a categorified trace TrV : T → V.



A related result

Theorem [HPT16b]

Let V be a braided pivotal monoidal category.
There is an equivalence of categories between:

1. The category of anchored planar algebras in V

2

1

2. The category of pointed module tensor categories for V.
These are triples (T ,FZ , t) such that

I T is a pivotal monoidal category
I FZ : V → Z(T ) is a braided pivotal strong monoidal functor

such that F = FZ ◦R admits a right adjoint
I t ∈ T is a symmetrically self-dual object which generates T as

a module tensor category.



Example: de-equivariantization

Let G be a finite group and T be a rigid monoidal category.
Suppose we have a fully faithful strong monoidal functor

FZ : Rep(G)→ Z(T ).

Then T//F is a Rep(G)-enriched tensor category. We may apply the
braided lax monoidal fiber functor Rep(G)→ Vec to transport the
Rep(G)-enrichment back to Vec. This two step process recovers
the usual notion of de-equivariantization.

There is a similar ‘quotienting’ procedure for fiber functors to sVec
due to [BGH+16]. This merits further study!



De-equivariantization and SU(2)k

Consider T = SU(2)k, which has fusion graph Ak+1.

1 g
· · ·

Let V = 〈1T , g〉, which embeds in Z(T ).
I When k = 4n, V ∼= Rep(Z/2Z), and we may de-equivariantize

to get a D2(n+1) category.

I When k = 4n+ 2, g is a fermion (θg = −1), and V ∼= sVec.

Kevin Walker showed that the case k = 4n+ 2 gives rise to the
Dodd spin planar algebras.
(See also Jaffe-Liu’s para planar algebras [JL16].)



Other interesting examples

Here are two examples of fully faithful braided strong monoidal
functors that we would like to investigate further.

I Z(Ad(E8)) contains a full copy of Fib [BEK01].

1 τ

I Z(Ad(4442)) contains a full copy of SU(3)3 [GI15, Bru16].

1 g2
W

g
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