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IPAM: Actions of tensor categories on C∗-algebras
Today, C∗-algebras stand at an analogous stage to vNAs in the
‘80s when Jones pioneered subfactor theory. This virtual workshop
will bring together researchers at the interface of structure and
classification of C∗-algebras and subfactor theory/tensor categories
to set foundations for actions of tensor categories on C∗-algebras.

I Thurs 21 (8am - 11:30 am), Fri 22 Jan (8am - 10:30am):
Expository overview talks by Courtney, Carrion, Szabo, Vaes,
Yamashita on classification of simple nuclear C∗-algebras;
group actions on the hyperfinite II1 factor and on classifiable
C∗-algebras; tensor categories associated to subfactors.

I Mon 25 Jan - Thurs 28 Jan (8am - 11am): Research talks,
discussion of overview talks, ask expert sessions.

Participation is open to all. Current speakers and registration
information can be found here:
http://www.ipam.ucla.edu/programs/workshops/

actions-of-tensor-categories-on-c-algebras/?tab=

overview
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Subfactors

I A II1 factor is an infinite dimensional von Neumann algebra
with trivial center and a trace.

I A II1 subfactor is a unital inclusion of type II1 factors.

Jones’ Index Rigidity Theorem [Jon83]

The index [B : A] := dim(AL
2B) of a II1

subfactor A ⊂ B takes values in:

[B : A] ∈
{

4 cos2(π/n)
∣∣n ≥ 3

}
∪ [4,∞].

We’ll always assume A ⊂ B has finite index.



The standard invariant

Definition
The standard invariant of A ⊂ B is the collection of all A−A,
A−B, B −B, and B −A bimodules generated by L2B under

I ⊕ direct sum

I � Connes’ fusion relative tensor product (over A or B)

I ⊆ sub-bimodules

I · conjugates.

We can think of this as a tensor category of bimodules of A⊕B.

C = C(A ⊂ B) :=

(
ACA ACB
BCA BCB

)
⊂ Bim(A⊕B)

We call A ⊂ B finite depth if this tensor category has finitely
many isomorphism classes of simple bimodules. (A bimodule PHQ

is simple if EndP−Q(H) = C.)



Popa’s Classification Theorem

Popa’s Classification Theorem [Pop90]

A finite depth, finite index hyperfinite II1 subfactor is completely
determined by its standard invariant.

Corollary [Pop90, Izu17, Tom18, HP20]

Every unitary fusion category admits an essentially unique
embedding C ↪→ Bim(R) where R is a non type I hyperfinite
factor.

I This allows us to define a unitary fusion category as any
collection of R−R bimodules closed under ⊕,�,⊆, · with
only finitely many isomorphism classes of simple bimodules.



Multifactors and multifusion categories
In the study of unitary fusion categories, we must naturally
consider unitary multifusion categories, which may no longer have
simple unit.

I We would like to define a unitary fusion category as any
collection of R⊕n −R⊕n bimodules closed under ⊕,�,⊆, ·
with only finitely many isomorphism classes of simple
bimodules. But this requires an existence theorem for
representations, which is one of our results!

Example

For A ⊂ B finite depth, C(A ⊂ B) is a unitary multifusion.

C(A ⊂ B) =

(
ACA ACB
BCA BCB

)
⊂ Bim(A⊕B)

Representing multifusion categories requires multifactors.

I A II1 multifactor is a finite direct sum of II1 factors.



Multifactor inclusions
Notation for a II1 multifactor inclusion A ⊂ B:

I p1, . . . , pa are the minimal central projections of A.

I q1, . . . , qb are the minimal central projections of B.

I Ai := piA and Bj := qjB.

A II1 multifactor inclusion A ⊂ B
I has finite index if piqjA ⊂ piqjBpi has finite index for all i, j.

I is connected if Z(A) ∩ Z(B) = C. Inclusion graph has node
for each pi, qj and edges when piqj 6= 0:

q1 q2 · · ·
qb

p1 p2
· · ·

pa

A ⊂ B is connected iff this graph is connected.

We’ll always assume A ⊂ B is finite index and connected.



Standard invariants of multifactor inclusions

The standard invariant of A ⊂ B is the collection of all bimodules
generated by L2B. This time, we can fuse over any Ai, Bj :

C(A ⊂ B) =



A1CA1 · · · A1CAa A1CB1 · · · A1CBb

...
...

...
...

AaCA1 · · · AaCAa AaCB1 · · · AaCBb

B1CA1 · · · B1CAa B1CB1 · · · B1CBb

...
...

...
...

Bb
CA1 · · · Bb

CAa Bb
CB1 · · · Bb

CBb


I A ⊂ B has finite depth if C(A ⊂ B) has only finitely many

isomorphism classes of simple bimodules.



Jones’ basic construction

The basic construction is the main tool Jones used to prove his
Index Rigidity Theorem.

Definition
The basic construction of A ⊂ B is the II1 multifactor
〈B,A〉 := JA′J acting on L2(B, trB).

? A′

∪ ∪
B L2(B, trB) JBJ = B′

∪ ∪
A JAJ

Here trB is the unique Markov trace [GdlHJ89].

I A downward basic construction (if one exists) is a II1
multifactor M ⊂ A and an isomorphism B ∼= 〈A,M〉.



Popa’s theorem fails for multifactor inclusions

Example

Consider the finite dimensional (and hence finite depth) inclusion

Q M2(C) C
∪
P C C

 
B = Q⊗R

∪
A = P ⊗R

I A ⊂ B does not admit a downward basic construction [Pop95]

I Taking the Jones tower A0 ⊂ A1 ⊂ A2 ⊂ A3, we get a Morita
equivalent inclusion A2 ⊂ A3 with the same standard invariant
which manifestly admits two downward basic constructions.

One quickly observes these inclusions have different distortions.



Modular distortion
If M,N are II1 factors and MHN is a bimodule, the modular
distortion [notion due to André Henriques] of H is

δ = δ(H) :=

(
dim(MH)

dim(HN )

)1/2

If A,B are II1 multifactors and AXB is a bimodule, the modular
distortion of X is the partially defined matrix in Ma×b(R>0)

δij := δ(piXqj) =

(
dim(Ai(piXqj))

dim((piXqj)Bj )

)1/2

(piXqj 6= 0)

Theorem [BCEGP20]

When a connected bimodule AXB has finite depth (generates a
multifusion category) or more generally is extremal, δ extends
uniquely to a fully defined matrix in Ma×b(R>0) satisfying

δijδi′j′ = δij′δi′j  δ : smu(Ma+b(C))→ R>0



Back to our finite dimensional inclusion

Q M2(C) C
∪
P C C

 
B = Q⊗R

∪
A = P ⊗R



Back to our finite dimensional inclusion

Q

∪
P

 
B = Q⊗R

∪
A = P ⊗R



Back to our finite dimensional inclusion

Q

∪
P

 
B = Q⊗R

∪
A = P ⊗R

δ(A0L
2A1A1) =



 dim ( )

dim( )

1/2

? dim ( )

dim( )

1/2 (
dim ( )

dim( )

)1/2





Back to our finite dimensional inclusion

Q

∪
P

 
B = Q⊗R

∪
A = P ⊗R

δ(A0L
2A1A1) =


(

2
1/2

)1/2
?(

2
1/2

)1/2 (
1
1

)1/2
 =

(
2 ?
2 1

)
=

(
2 1
2 1

)



Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

P3 M5(C) M3(C)

∪
P2 M2(C) M3(C)

∪
P1 M2(C) C
∪
P0 C C

 

A3 = P3 ⊗R
∪

A2 = P2 ⊗R
∪

A1 = P1 ⊗R
∪

A0 = P0 ⊗R



Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

P3

∪

P2

 

A3 = P3 ⊗R

∪

A2 = P2 ⊗R



Distortion changes under the basic construction
The basic construction up two levels is given by reflecting twice:

P3

∪

P2

 

A3 = P3 ⊗R

∪

A2 = P2 ⊗R

δ1,1 =


dim

( )
dim

( )



1/2

=

(
5/2

2/5

)1/2

=
5

2



Distortion changes under the basic construction
The basic construction up two levels is given by reflecting twice:

P3

∪

P2

 

A3 = P3 ⊗R

∪

A2 = P2 ⊗R

δ2,1 =



dim

( )

dim

( )



1/2

=

(
5/3

3/5

)1/2

=
5

3



Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

P3

∪

P2

 

A3 = P3 ⊗R

∪

A2 = P2 ⊗R

δ(A2L
2A3A3) =

(
5/2 ?
5/3 1

)
=

(
5/2 3/2
5/3 1

)



Distortion changes under the basic construction

Even though A0 ⊂ A1 and A2 ⊂ A3 are Morita equivalent
inclusions and share a standard invariant, they have visibly
different distortions:

δ(A0L
2A1A1) =

(
2 1
2 1

)
δ(A2L

2A3A3) =

(
5/2 3/2
5/3 1

)
.

One calculates that for the Jones tower (An)n≥0,

δ(A2nL
2A2n+1A2n+1) =

(
F2n+2/F2n F2n+1/F2n

F2n+2/F2n+1 1

)
n→∞−−−→

(
φ2 φ
φ 1

)
,

where Fn is the n-th Fibonacci number (F0 = F1 = 1) and φ is
the golden ratio.



Some results on distortion

In our article [BCEGP20], we give the following results on
distortion:

I Quantitative measurement via distortion of when an inclusion
admits a downward basic construction

I Formula for dynamical system of the distortion under taking
basic construction

I Uniqueness of fixed point for this dynamical system and its
relation to Popa’s homogeneity

We then use distortion to prove 4 classification theorems for finite
depth hyperfinite II1 multifactor inclusions and representations of
unitary multifusion categories.



One of our classification theorems

Theorem [BCEGP20]

The map which takes A ⊂ B to the pair (PA⊂B
• , trMarkov

B |Z(A))
gives a bijection

Finite depth, finite in-
dex connected hyper-
finite II1 multifactor
inclusions A ⊂ B


ϕ : B1

∼−→ B2 taking
A1 onto A2

∼=


Pairs (P•, τ) with P• a finite
depth indecomposable uni-
tary 2-shaded planar algebra
and τ a faithful state on P0,+


ϕ• : P1

•
∼−→ P2

• such that
τ2 ◦ ϕ0,+ = τ1

.

I trMarkov
B is the unique Markov trace on A ⊂ B [GdlHJ89].

I The Markov trace restricted to Z(A) completely determines
the distortion of AL

2BB.



Thank you for listening!

Slides available at:
https:

//people.math.osu.edu/penneys.2/PenneysJMM2021.pdf

Article available at arXiv:2010.01067.
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