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IPAM: Actions of tensor categories on C*-algebras
Today, C*-algebras stand at an analogous stage to vNAs in the
‘80s when Jones pioneered subfactor theory. This virtual workshop
will bring together researchers at the interface of structure and
classification of C*-algebras and subfactor theory/tensor categories
to set foundations for actions of tensor categories on C*-algebras.

» Thurs 21 (8am - 11:30 am), Fri 22 Jan (8am - 10:30am):
Expository overview talks by Courtney, Carrion, Szabo, Vaes,
Yamashita on classification of simple nuclear C*-algebras;
group actions on the hyperfinite II; factor and on classifiable
C*-algebras; tensor categories associated to subfactors.

» Mon 25 Jan - Thurs 28 Jan (8am - 11am): Research talks,
discussion of overview talks, ask expert sessions.

Participation is open to all. Current speakers and registration
information can be found here:
http://www.ipam.ucla.edu/programs/workshops/
actions-of-tensor-categories-on-c-algebras/?tab=
overview
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Subfactors

> A II; factor is an infinite dimensional von Neumann algebra
with trivial center and a trace.

» A II; subfactor is a unital inclusion of type II; factors.

Jones’ Index Rigidity Theorem [Jon83]
The index [B : A] := dim(4L?B) of a 11
subfactor A C B takes values in:

[B: Al e {4cos2(7r/n)|n >3} U4, 0c].

We'll always assume A C B has finite index.



The standard invariant

Definition
The standard invariant of A C B is the collection of all A — A,
A— B, B— B, and B — A bimodules generated by L2B under

» @ direct sum
» X Connes’ fusion relative tensor product (over A or B)
» C sub-bimodules

> = conjugates.

We can think of this as a tensor category of bimodules of A & B.

C=C(ACB):= (ACA ACB) C Bim(A & B)
BCa BCB
We call A C B finite depth if this tensor category has finitely

many isomorphism classes of simple bimodules. (A bimodule pHg
is simple if Endp_q(H) = C.)



Popa’s Classification Theorem

Popa’s Classification Theorem [Pop90]

A finite depth, finite index hyperfinite 11, subfactor is completely
determined by its standard invariant.

Corollary [Pop90, 1zul7, Tom18, HP20]

Every unitary fusion category admits an essentially unique
embedding C — Bim(R) where R is a non type I hyperfinite
factor.

» This allows us to define a unitary fusion category as any
collection of R — R bimodules closed under &,X, C,~ with
only finitely many isomorphism classes of simple bimodules.



Multifactors and multifusion categories

In the study of unitary fusion categories, we must naturally
consider unitary multifusion categories, which may no longer have
simple unit.

» We would like to define a unitary fusion category as any
collection of R®™ — R¥™ bimodules closed under &,X, C,~
with only finitely many isomorphism classes of simple
bimodules. But this requires an existence theorem for
representations, which is one of our results!

Example
For A C B finite depth, C(A C B) is a unitary multifusion.

C(AC B) = (;‘gj ;‘2’2) C Bim(A & B)

Representing multifusion categories requires multifactors.

» A II; multifactor is a finite direct sum of II; factors.



Multifactor inclusions
Notation for a II; multifactor inclusion A C B:
» p1,...,P, are the minimal central projections of A.
> q1,...,q are the minimal central projections of B.
» A;:=p;Aand B; :=¢;B.

A II; multifactor inclusion A C B
» has finite index if p;q; A C p;q; Bp; has finite index for all 4, j.

» is connected if Z(A)N Z(B) = C. Inclusion graph has node
for each p;, q; and edges when p;q; # 0:

a @ @
p1 p2 o Pa
A C B is connected iff this graph is connected.

We'll always assume A C B is finite index and connected.



Standard invariants of multifactor inclusions

The standard invariant of A C B is the collection of all bimodules
generated by L2B. This time, we can fuse over any A;, B;:

Ach1 Tt A1CAa Achl tte Achb
ClAcCB) — 4.Car - 4.Ca, ACB - 4CB,
(ACB) = C C C C

Bl A1 Bl Aa Bl Bl Bl Bb

BCa - BCaA, BCB, -+ BCB,

» A C B has finite depth if C(A C B) has only finitely many
isomorphism classes of simple bimodules.



Jones’ basic construction

The basic construction is the main tool Jones used to prove his
Index Rigidity Theorem.

Definition

The basic construction of A C B is the II; multifactor

(B, A) := JA'J acting on L?(B,trpg).

Here trp is the unique Markov trace [GdIHJ89].

» A downward basic construction (if one exists) is a II;
multifactor M C A and an isomorphism B = (A, M).



Popa’s theorem fails for multifactor inclusions

Example

Consider the finite dimensional (and hence finite depth) inclusion

Q M>(C) C B=Q®R
U \\ ~ U
P C A=PQR

» A C B does not admit a downward basic construction [Pop95]

» Taking the Jones tower Ay C A; C Ay C As, we get a Morita
equivalent inclusion Ay C Ag with the same standard invariant
which manifestly admits two downward basic constructions.

One quickly observes these inclusions have different distortions.



Modular distortion

If M, N are II; factors and j;Hp is a bimodule, the modular
distortion [notion due to André Henriques| of H is

B _ (dim(yH)\ 2
o<1 = (i )

If A, B are II; multifactors and 4 Xpg is a bimodule, the modular
distortion of X is the partially defined matrix in M,x,(R<0)

dim(4, (pinJ-)))”z
dim((p; X q;)B;)

bij = 0(piXq;) = < (piXq; #0)

Theorem [BCEGP20]

When a connected bimodule 4 Xp has finite depth (generates a
multifusion category) or more generally is extremal, 6 extends
uniquely to a fully defined matrix in M, «,(Rs0) satisfying

0i50irjr = 0ijr0ir ~ d :smu(My4p(C)) — Rsp



Back to our finite dimensional inclusion

Q My(C) C B=Q®R
U |\ - U
P c C A=P®R



Back to our finite dimensional inclusion

Q O B=Q®R
U N\ ~ U
P O O A=P®R



Back to our finite dimensional inclusion

Q O B=Q®R
U N ~ U
P ] ] A=P®R
1/2
)
5(A0L2A1A1) = EE

1/2 12
dim—([1) ) <dimD(D)>
dim([D)EE dim([ )



Back to our finite dimensional inclusion

Q m B=Q®R
U RN ~ U
p o 0O A=P®R
1/2
2 ?
) - (1/2 ) 2\ (201
6(agL"A1a,) = 9 \/2 1 12 _(2 1>_<2 1
(%) O



Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

Ps M;5(C) M;3(C) A3 =P3®R
U A N U
P, M(C) M3(C) Ay =P, ®R
U NN ~ U
Py M>(C) C Ai=P®R
U /NS U

Po C C A0:P0®R



Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

Py

U

Py

/NS -
En

A3 =P3® R
U
Ay =P, ®R



Distortion changes under the basic construction
The basic construction up two levels is given by reflecting twice:

Py A3=P3® R
U / \ / ~ U
1/2

011 = =

i EGE==s)

dimggs ( EEEHR) (5/2)1/2 5

~\2/5




Distortion changes under the basic construction
The basic construction up two levels is given by reflecting twice:

Py A3=P3® R
U / \ / ~ U
1/2

() |

1/2_5

1= o (EEEER) -(55) =




Distortion changes under the basic construction

The basic construction up two levels is given by reflecting twice:

P3 A3:P3®R
U / \ / ~ U
P2 Bﬂ A2:P2®R

§(a,L% Asa,) = <§§§ Z) _ <§§?2) 3{2)



Distortion changes under the basic construction

Even though Ag C A; and Ay C As are Morita equivalent
inclusions and share a standard invariant, they have visibly
different distortions:

6(agL?Ara,) = @ i) (4, L7 Az ,) = (2?3 3{2> :

One calculates that for the Jones tower (A;)n>o0,

F F F F 2
5(A2nL2A2n+1A2n+1) = <F221—£?§?2211 2n+]1_/ 2n> = <(Z;S ?)’

where F,, is the n-th Fibonacci number (Fy = F; = 1) and ¢ is
the golden ratio.



Some results on distortion

In our article [BCEGP20], we give the following results on
distortion:

» Quantitative measurement via distortion of when an inclusion
admits a downward basic construction

» Formula for dynamical system of the distortion under taking
basic construction

» Uniqueness of fixed point for this dynamical system and its
relation to Popa's homogeneity

We then use distortion to prove 4 classification theorems for finite
depth hyperfinite IT; multifactor inclusions and representations of
unitary multifusion categories.



One of our classification theorems

Theorem [BCEGP20]

The map which takes A C B to the pair (PfCB,tr%[arko" 1 2(4))
gives a bijection

Finite depth, finite in- Pairs (P,,7) with P, a finite
dex connected hyper- depth indecomposable uni-
finite II; multifactor tary 2-shaded planar algebra
inclusions A C B . land 7 a faithful state on Py
¢ : By = By taking B ©e : PL =5 P2 such that
A; onto Ag 20 Yo+ = 1

> triarkov is the unique Markov trace on A C B [GdIHJ89).

» The Markov trace restricted to Z(A) completely determines
the distortion of 4L2Bpg.



Thank you for listening!

Slides available at:
https:
//people.math.osu.edu/penneys.2/PenneysJIMM2021 . pdf

Article available at arXiv:2010.01067.
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