Subfactors and Applications

Abstracts

Modular distortion for II; multifactor bimodules
DAvID PENNEYS

(joint work with Marcel Bischoff, Tan Charlesworth, Samuel Evington, Luca
Giorgetti, and André Henriques)

This project started at the 2018 AMS Mathematics Research communities pro-
gram on Quantum Symmetries: Subfactors and Fusion Categories.

Bimodules over factors and unitary fusion categories. Let A, B be Il
factors and sHp an A — B bimodule. We call H dualizable if there are maps
evy € Homp_p(H Xy H — L?B) and coevyg € Homu_4(L*A — H Xp H)
satisfying the zig-zag equations. By [Bis97| (see also [EK98,[BDH14]), dualizability
is equivalent to H being bifinite: dim(4H)-dim(H ) < oo, in which case H breaks
up as a finite direct sum of simple bimodules. As an example, given a finite index
IT; subfactor, the state independent Haagerup L? space L?B [Haa75] is an A — B
bimodule. Below, we assume all bimodules are dualizable.

We call 4Hp finite depth if the unitary multitensor category (semisimple rigid
tensor C* category)

_ _ (ACa aCp :
C=C(H):= (BCA BCB> C Bim(A @ B)
generated by H under X, @, C, ~ is multifusion in the sense of [EGNO15].

Definition 1. The modular distortion of sH g is

dim(4H)\ "2
d=0(H) = —=—< Rso.
(H) (dim(HB) € R>0
We say 4 H g has constant distortion if for all sub-bimodules 4K g C 4Hp, §(K) =
0(H). We call sHp extremal if 4H g has constant distortion § = 1.

One can view the modular distortion as an analog of the modular function on
a locally compact group, i.e., the ratio of left to right Haar measure.

Remark 2. The set of modular distortions of invertible A — A bimodules is the
fundamental group of A.

Given a unitary tensor category C and a group G, a G-grading on C is a de-
composition C = @QGG Cy such that ® : Cy x Cp, = Cgp. There is a finest grading
called the universal grading group Ue [EGNO15]. For a II; factor, we denote the
universal grading group of the dualizable bimodules Bimy(A) by Ua.

Question 3. What is Ur where R is the hyperfinite 111 factor?

Observe that § gives a multiplicative map from the simple dualizable A — A
bimodules to R, which gives a group homomorphism ¢ : {4 — R~ (. Using this,
we have an extremely quick proof of the following folklore result.
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Proposition 4 (Folklore, [EK98|). If 4H 4 is finite depth, then sH 4 is extremal.

Proof. Since C(H) is fusion, U, is finite. Hence 6(U4) C R+ is a compact group,
so it must be {1}. O

By [Pop90], a finite depth hyperfinite II; subfactor A C B is completely deter-
mined by its standard invariant C(4L?Bg). As a corollary, every unitary fusion
category C admits an essentially unique embedding C < Bim(R), and every em-
bedding is realized by a ITy subfactor. [FR13| [zul7].

Bimodules over multifactors and unitary multifusion categories. Inspired
by our investigation of bicommutant categories [HP17], we would like to extend
this result to n x n unitary multifusion categories C. Here, n X n means C is
indecomposable and dim(End(1¢)) = n, so we can orthogonally decompose 1¢ =
@;_, 1; into n simples, and C = (Cy;)7;—; where C; j = 1; @ C @ 1;.

We observe that an n x n multifusion category is faithfully graded by the
groupoid G, with n objects and a unique isomorphism between any two objects.
Only thinking about the arrows of the groupoid, an operator algebraist may prefer
to think of G,, as a system of matrix units for M, (C).

One can already see there will be a slight difference for embeddings of 2 x 2
unitary multifusion categories.

Proposition 5. Any 2 x 2 unitary multifusion category admits an essentially
unique embedding C — Bim(R%?) up to the modular distortion on Cia.

All distortions can arise from embeddings. However, not all embeddings arise
from subfactors A C B where C — Bim(A @ B), as we always have §(4L?Bg) =
[B: A]'/2, and the indices of possible subfactors realizing a 2 x 2 unitary multifu-
sion category will be a discrete subset of R~ in some interval above 1.

Example 6. Given any projection p € P(R) with tr(p) € (0,1], we have an
embedding

2 2
Mat, (Hilbeg) — Bim(R @ pRp) <L roL Rp)

pL?R pL?Rp
Observe that §(L?Rp) = tr(p)~! which can take any value in [1, 00).

In order to embed multifusion categories, we must use I1; multifactors, which
are finite direct sums of II; factors. Below, A and B will denote multifactors where
A=@; | A and B = @221 Bj, where Z(A) = spang{p;}{_; with 4; = p; A and
Z(B) = span(c{qj}?:l with B; = ¢;B.

A II; multifactor bimodule 4H p is dualizable if and only if H;; = p;Hg;
is bifinite for all 7,j. Again, we will only consider dualizable bimodules. We
will also restrict our attention to comnected bimodules, i.e., those which satisfy
Z(A)NZ(B)N B(H) = Cly. The definition of finite depth is the same as above
for multifactor bimodules.
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Definition 7. The modular distortion of 4H g is a partially defined matrix § =
d(H) € Myxp(Rso) where 6;; = 6(H;;) when H;; # 0. We say 4H p is extremal if
every A; — A; bimodule generated by H in C(H) is extremal.

Using the fact that a unitary multitensor category has a universal grading
groupoid Ue [Penl8], a similar proof as in Proposition [4| above shows that finite
depth implies extremal for multifactor bimodules.

Theorem 8. The following are equivalent for a multifactor bimodule s H g.

e H is extremal.
e H;; has constant distortion for each i, j, and (;;) extends to a well-defined
groupoid homomorphism Go1p — Rsg, i.e.,

5¢j6i/j/ = 5ij’5i’j V1 S ) S a and V1 S] S b.

The analog of Popa’s uniqueness theorem for finite depth connected II; multifac-
tor inclusions only holds under the additional assumption that the two inclusions
have identical distortions.

Example 9 ([Pop95b]). Consider the inclusion P = C® C C M3(C)d C = Q
whose bipartite adjacency matrix is

1 0

11

where the rows are indexed by i and the columns by j. The inclusion A = P®QR C
Q®R = B does not admit any downward Jones basic construction [Jon83]. Taking
the next two steps in the Jones tower Ag C A; C As C As, we get a Morita
equivalent inclusion As C A3 with the same standard invariant which manifestly
admits two downward basic constructions. One quickly observes these inclusions
have different distortions:

§(agL?Ara,) = (; Sé2> §(a,L*Az4,) = <g§§ 3{2> .

One calculates that

2
6(A2nL2A2n+1A2n+1) ; (fﬁ Qlﬁ)

where ¢ is the golden ratio.

We calculate general formulas for the behavior of the distortion under Morita
equivalence and taking basic constructions using some results from [GdIHJI89]. An
inclusion A C B admits an infinite Jone tunnel if and only if the distortion is
standard. This condition is calculated from matrix (D;;) of statistical dimensions
of (L?B);;. We show this is equivalent to Popa’s homogeneity criterion [Pop95b]
when we endow B with the unique Markov trace, and with Giorgetti-Longo’s
notion of super-extremality |[GL19]. Using techniques from [Ocn88] and [Pop90],
we prove the following.

Theorem 10. An n xn unitary multifusion category admits an essentially unique
embedding C < Bim(R®™) up to the modular distortion.
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Again, not all embeddings are realized from multifactor inclusions, and we have
explicit formulas to determine which distortions arise from inclusions.

Remark 11. At this workshop, we learned of the result [Tom18| which could also
be used to prove the uniqueness part of the above results.
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