
Introduction to the classification program for subfactors
Topological Quantum Groups, C*-Tensor Categories, and Subfactors

David Penneys

May 24-29, 2022

Introduction

This mini-course will focus on the theory of II1-subfactors and unitary tensor categories. The goal
of the first talk will be to prepare everyone for many talks throughout the workshop on subfactors
and unitary tensor categories. The goal of the second talk will be to go through many equivalent
notions of the standard invariant of a subfactor, by example. Finally, the third talk will focus on
classification and construction techniques for the small index classification program.

1 II1-subfactors and unitary tensor categories

In this section, we define the notions of II1 subfactor and unitary tensor category. We then discuss
how a finite index (extremal) II1 subfactor A ⊂ B is the same data as a triple (C, Q, F ) where C
is a unitary tensor category, Q is a suitably nice algebra object in C (namely a simple normalized
Q-system), and F : C → Bim(A) is a unitary tensor functor.

In this lecture, H will denote a separable Hilbert space.

1.1 von Neumann algebras and factors

Definition 1.1. A von Neumann algebra is a unital ∗-closed subalgebra A ⊆ B(H) which is closed
in the topology of pointwise convergence, i.e., ai → a if and only if aξ → aξ for all ξ ∈ H. By
von Neumann’s Bicommutant Theorem, this property is equivalent to A = A′′, where for a subset
S ⊂ B(H),

S ′ = {x ∈ B(H)|xs = sx for all s ∈ S} .

Exercise 1.2. Show that if S ⊂ T , then T ′ ⊂ S ′. Then show that S ′ = S ′′′ for any subset
S ⊂ B(H).

Thus von Neumann algebras come in pairs, A and A′. The center of a von Neumann algebra is
Z(A) = A′ ∩ A, which is the center of both A and A′.

Definition 1.3. A von Neumann algebra A is called a factor if Z(A) = C1.

There are 3 types of factors:
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(1) A is type In if A ∼= B(H) where dim(H) = n with n ∈ N ∪ {∞}.

(2) A is type II if A has a normal, semifinite tracial weight tr : A+ → [0,∞]. A is called type II1 if
this trace can be normalized so tr(1A) = 1. Otherwise A is called type II∞.

(3) If A is not type I or type II, then A is type III.

We will focus mainly on type II1.

Fact 1.4. The (normalized) trace in a II1 factor is unique. Moreover, it is normal, i.e., is is
SOT-continuous on the norm-closed unit ball.

Example 1.5. Suppose Γ is a countable icc group (all conjugacy classes infinite except for the class
of e ∈ Γ). Consider the left regular action of Γ on `2Γ by (λgf)(h) = f(g−1h). Then LΓ = λΓ′′ is
a II1-factor with trLΓ(x) := 〈xδe, δe〉, where δe is the indicator function at e ∈ Γ. For finite sums,
trA (

∑
cgλg) = ce.

Definition 1.6. A II1-factor is called hyperfinite if it generated by an increasing union of finite
dimensional algebras.

Fact 1.7. There is a unique hyperfinite II1-factor R up to isomorphism by [MvN43]. In fact,
R ∼= L(S∞), where S∞ is the group of finite permutations of N, and also R ∼=

⊗∞
i=1M2(C).

Fact 1.8. {tr(p)|p is a projection in A} = [0, 1].

Exercise 1.9. Construct a projection of arbitrary trace in LS∞ and in LF2.

1.2 The standard representation and modules

Given a II1-factor A and its (unique) trace trA, we define its standard representation on L2A via
the GNS construction.

We define a sesquilinear form on A by 〈a, b〉 := trA(b∗a). Since trA is faithful, there are no
zero-length vectors. Define L2A = L2(A, trA) to be the completion of A in the 2-norm given by
‖a‖2 = trA(a∗a)1/2. We denote the image of 1 ∈ A in L2A by Ω, which allows us to differentiate
between a ∈ A and aΩ ∈ L2A.

Now A acts on AΩ by left multiplication: a · bΩ := abΩ. Since trA is a normal state on A,
this action is by bounded operators, and thus the action extends to a normal action of A on L2A.
Moreover, the operator norm on L2A agrees with the operator norm on A coming from any other
representation.

Definition 1.10. The standard representation of A is the left regular representation on L2A.

Since trA is a trace, the map aΩ 7→ a∗Ω is isometric, and thus extends to an anti-linear unitary
J on L2A called the modular conjugation.

We now consider the action of Ja∗J on L2A:

Ja∗JbΩ = Ja∗b∗Ω = Ja∗b∗Ω = baΩ,

i.e., Ja∗J is right multiplication by a. Since right multiplication commutes with left multiplication,
we have JAJ ⊂ A′ ∩B(L2A).
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Fact 1.11. JAJ = A′ ∩B(L2A).

Definition 1.12. Any A-module HA is isomorphic to
⊕n L2A⊕ pL2A for some orthogonal projec-

tion p ∈ A. The (right) von Neumann dimension of H is defined as dim(AH) := n + tr(p). There
is a similar notion of left von Neumann dimension for left modules.

Fact 1.13. dim(HA) is finite if and only if A′ ∩B(H) is a II1 factor.

Given an isomorphism HA
∼=
⊕n L2A ⊕ pL2A, let βi = (0, . . . , 0,Ω, 0, . . . , 0) where Ω is in the

i-th slot for 1 ≤ i ≤ n, and let βn+1 = (0, . . . , 0, pΩ) (if n 6=∞ and p 6= 0). Then each βi defines a
bounded map Lβi : L2AA → HA by xΩ 7→ βix, and

∑
i LβiL

∗
βi

= 1H . We call {βi} an orthonormal
HA-basis.

1.3 II1-subfactors, index, and the basic construction

We now consider a II1-subfactor, i.e., a unital inclusion of II1-factors A ⊆ B. Since A,B have unique
traces trA, trB respectively, we must have trB |A = trA.

Definition 1.14 ([Jon83]). The index of the subfactor A ⊂ B is [B : A] := dim(AL
2B). By

[[PP86], the index [B : A] is finite if and only if B is a finitely generated projective left A-module
if and only if A′ ∩B(L2B) is a II1 factor.

Examples 1.15.

(1) (amplification) A ⊂Mn(A) has index n2.

(2) (locally trivial) For any finitely presented group Γ := 〈θ1, . . . , θn−1〉 ⊂ Aut(A), we get an index
n2 subfactor

{diag(a, θ1(a), . . . , θn−1(a))|a ∈ A} ⊂Mn(A).

(3) Given an outer action of a finite group G on A, then AG ⊂ A and A ⊂ AoG have index |G|.

(4) If in the previous case, H ≤ G is a subgroup, then both RG ⊂ RH and A oH ⊂ A o G have
index [G : H].

Let us now look more closely at the standard representation of B on L2B in the presence of a
finite index subfactor A ⊆ B. We immediately see the action of five II1-factors:

?? A′

B L2B JBJ = B′

A JAJ,

and we see there should be one more II1-factor in this story.

Definition 1.16. The basic construction of A ⊆ B is the II1-factor JA′J acting on L2B.
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Example 1.17. Suppose α : G → Aut(A) is an outer action where G is a finite group. The basic
construction of AG ⊆ A is isomorphic to AoG. The basic construction of A ⊆ AoG is isomorphic
to A⊗B(`2(G)).

Just as von Neumann algebras come in pairs A,A′, we see that subfactors also come in pairs:
A ⊆ B and B′ ⊆ A′, which is conjugate (anti-isomorphic) to B = JB′J ⊆ JA′J .

Alternatively, since trB |A = trA, the natural inclusion A ⊂ B gives rise to a canonical inclusion
ιA : L2A ⊂ L2B, which is A− A bimodular. The adjoint ι∗A : L2B → L2A is the A− A bimodular
projection onto L2A. We define the Jones projection eA := ιAι

∗
A ∈ B(L2B).

Fact 1.18 ([Jon83]). JA′J = 〈B, eA〉, the von Neumann algebra generated by B and eA.

For each b ∈ B, observe that EA(b) := ι∗AbιA ∈ B(L2A) is A-linear, and thus defines an operator
in JAJ ′ = A. Moreover, eAbΩ = EA(b)Ω. The map EA : B → A is clearly normal, A−A bimodular,
and unital completely positive, i.e., it is a normal conditional expectation. One can also show EA is
faithful.

Fact 1.19 ([Jon83]). [〈B, eA〉 : B] = [B : A], and tr〈B,eA〉(eAx) = [B : A]−1 trB(x) for all x ∈ B.

Hence we may iterate the basic construction of A0 = A ⊆ B = A1 to get the Jones tower of
II1-factors (An)n≥0 where [An+1 : An] = [B : A], and An+1 = 〈An, en〉, where en : L2An → L2An is
the orthogonal projection with range L2An−1.

The first sign that something genuinely interesting is going on is the following proposition.

Proposition 1.20 ([Jon83]). The projections (ei)i≥0 satisfy the Jones-Temperley-Lieb relations
[TL71] for d = [B : A]−1/2:

(1) e2
i = e∗i = ei,

(2) eiej = ejei when |i− j| > 1, and

(3) eiei±1ei = d−2ei.

Thus a subfactor gives a semisimple quotient of the Temperley-Lieb-Jones algebra TLJn(d) for
d = [B : A]1/2 for every n ≥ 0, which we will discuss in the second lecture, leading to Jones’ famous
index rigidity theorem.

1.4 Unitary tensor categories

We can trade a finite index (extremal) II1 subfactor for three pieces of data:

(1) The unitary tensor category C,

(2) A suitably nice algebra object Q ∈ C (namely a simple normalized Q-system), and

(3) a unitary tensor functor F : C → Bim(A).
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Given a subfactor A ⊂ B, C is the tensor category of A − A bimodules generated by L2B,
Q = L2B equipped with the unit ιA : L2A ↪→ L2B and multiplication µ : L2B �A L

2B → L2B
given by µ(xΩ � yΩ) := xyΩ, and the unitary tensor functor F arises as C lives inside Bim(A).

The pair (C, Q) is an ‘algebraic’ invariant, while the tensor functor F is an ‘analytic’ object
which can be viewed as a generalized fiber functor. The standard invariant is the algebraic data
(C, Q) which forgets F , and the only data needed to reconstruct the original subfactor is F . This
viewpoint divides subfactor classification into two parts: the algebraic categorical classification of
standard invariants, and the functional analytic problem of actions of unitary tensor categories on
factors.

Given (the dual of) a compact quantum group (C, F ) where C is a unitary tensor category
and F : C → Hilb is a fiber functor, we can reconstruct the polynomial Hopf algebra as a coend⊕

c∈Irr(C) F (c) ⊗ F (c)∗. Similarly, we can reconstruct the over-factor B from (C, Q, F ) by a co-end
construction

B =
⊕

c∈Irr(C)

HomC−A(L2A→ F (c))⊗ HomC(c→ Q) = HomC−A(L2A→ F (Q)).

This point of view is called Q-system realization.

Examples 1.21.

(1) For amplifications A ⊂Mn(A), C = Hilb, Q = Mn(C), and F : C 7→ L2A.

(2) For locally trivial subfactors {diag(a, θ1(a), . . . , θn(a)|a ∈ A} ⊂Mn(A) and Γ = 〈1, θ1, . . . , θn〉 ,
C = Hilb(Γ), Q = C[(

∑
θi)(
∑
θj)
−1], and F : θ 7→ L2Aθ where a · xΩ · b := axθ(b)Ω.

(3) For AG ⊂ A, C = Rep(G), Q = C(G) with (g · ξ)(h) = ξ(g−1h).
For A ⊂ AoG, C = Hilb(G), Q = C[G], and F : g 7→ L2Ag.

(4) For RG ⊂ RH , C ⊂ Rep(G),1 Q = IndGH(ResGH(1G)), and F : g 7→ L2Ag.

Definition 1.22. A unitary tensor category is a semisimple (equivalently idempotent complete)
rigid C∗ tensor category C with simple unit object.

In more detail,

• (semisimple) C is a linear category, where every hom space C(a → b) is a finite dimensional
vector space. For simplicity, we assume C admits direct sums of objects, and all idempotents
split, i.e., if p ∈ C(a→ a) is an idempotent, there is a b ∈ C and maps r : b→ a and s : a→ b
such that s ◦ r = ida and r ◦ s = p.

Every object of c can be written as a finite direct sum c =
⊕

ci of simple objects which satisfy

HomC(ci → cj) ∼=

{
C if ci ∼= cj.

0 else.

1Here, C is actually the unitary tensor subcategory of Rep(G) generated by the connected component of the trivial
G-representation in the induction-restriction graph of H ≤ G.
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• (C∗) The category C has a dagger structure, i.e., for all a, b ∈ C, there is an anti-linear map
† : C(a→ b)→ C(b→ a) such that f †† = f and (f ◦g)† = g†◦f † whenever f, g are composable.
With this dagger structure, C is C∗, i.e., every finite dimensional endomorphism algebra of C
is a C∗-algebra.

• (tensor) There is a †-functor ⊗ : C × C → C called the tensor product, and a distinguished
object 1C ∈ C called the unit object, which we require to be simple. We have associator and
unitor unitary natural isomorphisms

αa,b,c : (a⊗ b)⊗ c −→ a⊗ (b⊗ c)
λa : 1C ⊗ a −→ a

ρa : a⊗ 1C −→ a

There are pentagon and triangle coherence axioms, which basically allow the tensor product
and unit to function as a higher multiplication with an identity.

• (rigid) Every object c ∈ C admits a dual object c ∈ C together with maps evc : c⊗ c→ 1C and
coevc : 1→ c⊗ c satisfying the snake equations, which are best depicted graphically:

c
c

c
= (idc⊗ evc) ◦ αc,c,c ◦ (coevc⊗ idc) = idc = c

and a similar reflected equation swapping c, c. Moreover, these maps can be chosen such that
for every c ∈ C,

c

c

c

f = evc ◦(idc⊗f) ◦ ev†c = coev†c ◦(f ⊗ idc) ◦ coevc =

c

c

c

f ∀f ∈ EndC(c).

In this case, the above function on EndC(c) is a positive definite trace trC. For each c ∈ C, we
define its quantum dimension as dc := trC(idc).

We will show in the next lecture that the A−A bimodules generated by L2B is a unitary tensor
category.

Definition 1.23. An algebra object Q ∈ C is an object equipped with a multiplication µ : Q⊗Q→
Q and a unit ι : 1 → Q. We represent the unit by a univalent vertex and the multiplication by a
trivalent vertex, and their adjoints by the vertical reflections:

ι =

Q

1C

ι† =
Q

1C

µ =

Q Q

Q

µ† =

Q Q

Q

The unit and multiplication satisfy associativity and unitality axioms:

= = =

We call Q:
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• simple if EndQ−Q(Q) = C idQ,

• C∗-Frobenius if = =

• separable if = and

• a normalized Q-system if Q is a separable C∗-Frobenius algebra such that ι∗ ◦ ι = dQ.

2 Various notions of the standard invariant

2.1 Historical development of the standard invariant

The standard invariant of a finite index (extremal) II1 subfactor has seen many equivalent definitions
and axiomatizations. We attempt to provide a synoptic list here relying roughly on publication date
for chronology, together with a chart to explain equivalences between the notions.

• [Jon87] Jones defines standard invariant as the lattice of higher relative commutants associated
to the subfactor.

A′0 ∩ A0 ⊂ A′0 ∩ A1 ⊂ A′0 ∩ A2 ⊂ A′0 ∩ A3 ⊂ · · ·
∪ ∪ ∪

A′1 ∩ A1 ⊂ A′1 ∩ A2 ⊂ A′1 ∩ A3 ⊂ · · ·
∪ ∪

A′2 ∩ A2 ⊂ A′2 ∩ A3 ⊂ · · ·
∪

A′3 ∩ A3 ⊂ · · ·

• [Ocn88] Ocneanu defines the notions of paragroup and flat biunitary connection, formalized
by Kawahigashi [Kaw95].

• [Pop90] Popa shows that a finite depth subfactor (dim(A′0 ∩ An) bounded as n → ∞) is
completely classified by its canonical commuting square.

A′0 ∩ An ⊂ A′0 ∩ An+1

∪ ∪
A′1 ∩ An ⊂ A′1 ∩ An+1

n past depth

Popa actually finds a generating Jones tunnel rather than using the Jones tower.
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• [Pop95] Popa axiomatizes the standard invariant as a standard λ-lattice, which also includes
the data of a trace, conditional expectations, Jones projections implementing the conditional
expectations, and a commutation rule.

A00⊂A01⊂A02⊂A03⊂· · ·
∪ ∪ ∪
A11⊂A12⊂A13⊂· · ·

∪ ∪
A22⊂A23⊂· · ·

∪
A33⊂· · ·

. . .

Aij ↔ A′i ∩ Aj

Theorem 2.1 ([Pop95]). Every standard λ-lattice arises as the standard invariant of an
extremal finite index II1-subfactor A ⊂ B. If the λ-lattice is finite depth (dim(Z(A0k)) is
bounded as k →∞), then A,B can be taken to be hyperfinite.

• [Jon21] (∼1999) Jones shows that the standard invariant forms a planar algebra.

• [Müg03] Müger explains connections between subfactor standard invariants, pivotal 2-categories
with a generator, and tensor categories with Frobenius algebra objects/Longo’s Q-systems
[Lon89].

2.2 The A4 commuting square

A commuting square is a square of finite dimensional C∗-algebras

C ⊂ D

∪ ∪
A ⊂ B

together with a trace on D such that the trace-preserving conditional expectations EC and EB
commute. Moreover, the square is non-degenerate if BC = D(= CB).

The A4 commuting square is given by

(A, b) A⊕
(
A

b

)
u

(
b

a

)
u∗ ⊕ b M2(C)⊕ C ⊂ M2(C)⊕M3(C) uAu∗ ⊕ w

(
A

b

)
w∗

∪ ∪
(a, b) C⊕ C ⊂ M2(C)⊕ C (A, b)

(a, b)

(
a

b

)
⊕ b
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where

u =

(
−φ−1 φ−1/2

φ−1/2 φ−1

)
w =

 φ−2 −φ−1/2 −φ−3/2

−φ−3/2 φ−1 φ−1

φ−1/2 0 φ−1

 φ =
1 +
√

5

2
.

Iterating the basic construction simultaneously for the top and bottom rows gives a subfactor A ⊂ B
with ACA the Fibonacci unitary fusion category.

2.3 The Temperley-Lieb standard invariant and graphical calculus

Recall that the n-th Temperley-Lieb-Jones algebra TLJn(d) is the unital complex ∗-algebra gener-
ated by e1, . . . , en−1 satisfying the following relations:

(1) e2
i = e∗i = ei,

(2) eiej = ejei when |i− j| > 1, and

(3) eiei±1ei = d−2ei.

Exercise 2.2. Prove that dim(TLJn(d)) ≤ 1
n+1

(
2n
n

)
, the n-th Catalan number.

The n-th diagrammatic Temperley-Lieb-Jones algebra has as its basis all non-crossing pairings
of n points on the lower boundary of a rectangle and n points on the upper boundary of a rectangle,
up to isotopy. We multiply by stacking and trading closed bubbles for a multiplicative factor of d.
Observe that this algebra has dimension 1

n+1

(
2n
n

)
.

Exercise 2.3. For i = 1, . . . , n− 1, show that the elements

Ei = · · · · · ·

i

satisfy the following relations:

(1) E2
i =

· · · · · ·

· · · · · ·
= d · · · · · · = dEi = dE∗i ,

(2) EiEj =
· · · · · ·

· · · · · ·

· · ·

· · ·
=

· · · · · ·

· · · · · ·

· · ·

· · ·
= EjEi if |i− j| > 1, and

(3) EiEi±1Ei =

· · · · · ·

· · · · · ·

· · · · · ·

= · · · · · · = Ei.

We thus have a unital ∗-homomorphism from TLJn(d) to the diagrammatic algebra by ei 7→
d−1Ei.
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Exercise 2.4. Prove this map is surjective, and use a dimension count to deduce it is a ∗-
isomorphism.

The standard invariant of a finite index II1 subfactor always contains the Jones projections.
Popa noted that the (semisimple quotients of the) algebras TLJn(d) form a standard λ-lattice, and
so there is an extremal subfactor with this standard invariant. It is still an open question whether
these factors can be taken to be hyperfinite when d > 2.

We can see that Temperley-Lieb-Jones gives a unitary tensor category T LJ (d) and a Q-system
Q using graphical calculus. First, we consider the objects [n] for n ∈ N≥0. The maps [m] → [n]
are formal linear combinations of non-crossing pair partitions with m points on the bottom and
n points on top. (Observe that Hom([m] → [n]) = 0 unless m ≡ n mod 2.) Composition is
stacking using the rule that a closed loop counts for a multiplicative factor of d. Tensor product is
horizontal juxtaposition, and † is the anti-linear extension of vertical reflection of diagrams. One
then quotients out length zero morphisms under ‖ · ‖2, where 〈x, y〉 = trm(y∗x) for x, y : [m]→ [n].
This gives us a rigid C∗ tensor category with simple unit, which turns out to be additive, but not
yet idempotent complete. One takes the formal unitary idempotent completion to get a unitary
tensor category, which we call T LJ (d).

The Q-system is [2] with unit and multiplication

ι = d1/2 · µ =
1

d1/2
· (1)

2.4 Higher relative commutants and bimodules

The standard invariant of a finite index (extremal) II1-subfactor A ⊆ B can also be defined, roughly
speaking, as the collection of A−A, A−B, B−A, and B−B bimodules generated by L2B under:

• Connes’ fusion relative tensor product �A and �B,

• taking sub-bimodules, i.e., H ⊂�n
AL

2(B) for some n as a bimodule,

• direct sums, i.e., if H,K are bimodules with same algebras acting on the left and right, so is
H ⊕K,

• conjugates, e.g., if H is an A−B bimodule, then H is a B−A bimodule with b · ξ ·a := a∗ξb∗.

together with bounded bimodule intertwiners. This structure assembles into a unitary 2-category
where the objects are A,B, the 1-morphisms are bimodules, and the 2-morphisms are intertwiners.
Importantly, we must remember the generator AL

2BB.
If we consider the von Neumann algebra A ⊕ B, then we can view the standard invariant as

a unitary multitensor category (semisimple rigid C∗ tensor category without simple unit) C(A ⊂
B) ⊂ Bim(A⊕B) with unit object L2A⊕ L2B, where we have a 2× 2 decomposition

C(A ⊂ B) =

(
ACA ACB
BCA BCB

)
.

Here, CCD refers to the C −D bimodules for C,D ∈ {A,B}.
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Fact 2.5 ([PP86, JS97]). L2An ∼= �n
AL

2B, the Connes’ fusion, and An ∼=
⊗n

AB, the algebraic
tensor product, where (An) is the Jones tower of A ⊂ B. Moreover, A′i = JnA2n−iJn acting on
L2An:

A2n JA2nJ

An L2An JAnJ = B′

A0 JA0J,

This means we have isomorphisms between the higher relative commutants and endomorphisms of
L2An ∼= �n

AL
2B:

A′0 ∩ A2n
∼= EndA−A

(
�n

AL
2B
)

A′0 ∩ A2n−1
∼= EndA−B

(
�n

AL
2B
)

A′1 ∩ A2n
∼= EndB−A

(
�n

AL
2B
)

A′1 ∩ A2n−1
∼= EndB−B

(
�n

AL
2B
)

Thus the simple summands of �n
AL

2B correspond to minimal projections in the higher relative
commutants:

p ∈ A′0 ∩ A2n ←→ pL2An A− A bimodule

p ∈ A′0 ∩ A2n−1 ←→ pL2An A−B bimodule

p ∈ A′1 ∩ A2n−1 ←→ pL2An B −B bimodule

p ∈ A′1 ∩ A2n ←→ pL2An B − A bimodule

Fact 2.6 (Semi-simplicity [Jon83]). For every 0 ≤ i ≤ j, A′i ∩ Aj is finite dimensional, and conse-
quently, L2An ∼= �n

AL
2B splits as a finite direct sum of C −D bimodules for C,D ∈ {A,B}.

Example 2.7. Consider the subfactorA = BG ⊂ B. Then AL
2BB is irreducible and EndA−A(L2B) ∼=

C[G], the group algebra. Thus AL
2BA
∼=
⊕

nπHπ where Hπ ∈ Bim(A) is the image of an irrep π of
G, which appears with multiplicity nπ = dim(π). We saw that the basic construction of BG ⊂ B is
BoG. We have L2B�A L

2B ∼= L2(BoG) ∼=
⊕

g L
2Bg as B−B bimodules. We thus see that the

simples for C(A ⊂ B) can be described by:(
ACA ACB
BCA BCB

)
=

(
Rep(G) Hilb
Hilb Hilb(G)

)
.
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We now discuss dualizability. Consider our generator AL
2BB. We get bounded maps

L2B L2B

L2A

: AL
2AA −→ AL

2BA = AL
2B �B L

2BA given by d1/2ιA = A

L2B L2B

L2B

: BL
2BB −→ L2B �A L

2B given by xΩ 7→ 1

d1/2

∑
xbiΩ � b∗iΩ = B

Here, ιA : L2A → L2B is the isometric inclusion, and {biΩ} is a finite orthonormal L2BA-basis
({bi} is a Pimnser-Popa basis for B over A). Since ιA is an isometry, and our normalization
makes the shaded loop equal to d. The unshaded cup may be viewed as a scalar multiple of the
inclusion L2B = L2A1 → L2A2. Its adjoint is the multiplication map L2B�AL

2B → L2B, suitably
normalized. Since

∑
bib
∗
i = d2, the unshaded loop is also a factor of d.

We now verify one zig-zag axiom:

EndA−A(L2B) 3
c

c
: xΩ 7→

∑
biΩ �A b

∗
iΩ �B xΩ 7→

∑
biEA(b∗ix)Ω = xΩ.

Exercise 2.8. Verify the other zig-zag axioms.

Remark 2.9. When A ⊂ B is irreducible, i.e., A′ ∩ B = C, then this cup and cap are standard
solutions to the conjugate equations, meaning the corresponding left and right quantum traces are
equal. This will also be the case when A ⊂ B is extremal.

Remark 2.10. Starting with C(A ⊂ B), we get (C, Q) by taking C = ACA and Q = AL
2BA with

unit and multiplication similar to (1):

ι =

Q

1C

= d1/2 · µ =

Q Q

Q

=
1

d1/2
·

= A

= B

= AL
2BB

In the graphical calculus, closed bubbles both count for a factor of d := [B : A]1/2.
Conversely, starting with (C, Q), we get a 2× 2 unitary mutlitensor category by taking(

C Mod−Q
Q−Mod Bim(Q)

)
with generator Q as a 1−Q bimodule.

12



2.5 The principal graphs

The standard invariant of a finite index (extremal) subfactor A ⊂ B is too much information for
effectively classifying hyperfinite subfactors of small index. From the standard invariant, we extract
two bipartite graphs called the principal graphs, with a little extra structure.

Definition 2.11. The principal graph Γ+ is the bipartite graph defined as follows. The even
vertices are the isomorphism classes of simple A−A bimodules in ACA. A bimodule X is simple if
End(X) ∼= C1. The odd vertices are the isomorphism classes of simple A − B bimodules in ACB.
There are dim(HomA−B(X ⊗A L2B, Y )) edges from AXA to AYB.

The dual principal graph Γ− is defined similarly using B − B and B − A bimodules. The dual
principal graph is also the principal graph for the inclusion B′ ⊆ A′ or its conjugate B ⊆ 〈B, eA〉.

We also record the data of the duality on A − A and B − B vertices by marking tags on the
even vertices, and we order the odd vertices to encode the duality between the A − B and B − A
vertices by lexicographic order.

Each of Γ± has a distinguished vertex corresponding to the trivial bimodules L2A and L2B.
The depth of a vertex is its distance to the trivial, which corresponds to the minimal n such that
X ⊆ L2An. Since An is a ∗-algebra, the dual of an even vertex of Γ± is a vertex of Γ± at the same
depth. The dual of an odd vertex of Γ± is a vertex of Γ∓ at the same depth.

A subfactor has finite depth if and only if the principal graph is finite.

Fact 2.12. The principal graph is finite if and only if the dual principal graph is finite. In this
case, the difference in their depth is at most one.

Example 2.13. Consider the outer action α : G→ Aut(B). The principal graphs of A = BG ⊆ B
can be described as follows.

The A−A vertices correspond to irreducible representations (irreps) of G, and duality is taking
the contragredient. There is a single A − B vertex, and the number of edges to an irrep is the
dimension of the irrep.

The B−B vertices correspond to the elements of G, and duality is taking the inverse. There is
only one B − A vertex, with a single edge to each g ∈ G.

For G = S3, the principal graphs are given by(
2

,
)
.

The principal graphs Γ± also have some additional properties and structure that make them
particularly useful.

Fact 2.14. dim(A′0 ∩ An) is equal to the number of loops of length 2n on Γ± starting at ?.

We saw that irreducible summands of L2An correspond to minimal projections in the higher
relative commutants. The traces of these projections give a dimension function dim on the vertices
of Γ± which satisfies

d · dim(Y ) =
∑

Z∈V (Γ)

NZ
Y,L2B dim(Z)
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for all simple A − A bimodules Y and simple A − B bimodules Z, where NZ
Y,L2B is the number

of copies of Z inside Y �A L
2B. The above condition says that the dimension function gives an

eigenvector for the adjacency matrix of Γ±.
When Γ± is finite, then this dimension is the unique Frobenius-Perron eigenvector with positive

entries, normalized so that the dimension of L2A is 1 [BH12]. In this case, we write FPdim instead
of dim.

Fact 2.15. The index [B : A] ≥ ‖Γ±‖2, where the norm of Γ± is the operator norm of the adjacency
matrix acting on `2 of the vertices [Pop94]. If Γ± is finite, then [B : A] = ‖Γ±‖2, and the norm of
Γ± is the largest eigenvalue of the adjacency matrix [Jon87].

Remark 2.16. In the infinite depth case, it is important to distinguish between the Frobenius-
Perron dimension function FPdim corresponding to the norm of the adjacency matrix of Γ± and
the quantum dimension function dim which may not agree. In fact, they agree if and only if
the subfactor is amenable [Pop94]. Finite depth subfactors are amenable by uniqueness of the
Frobenius-Perron dimension function [Jon87, EK98].

The principal graphs are much less information than the standard invariant, which is exactly
why they are so useful. One of the main motivating questions in subfactor theory is the following.

Question 2.17. Given a pair of bipartite graphs (Γ+,Γ−) with dual data satisfying some additional
properties, are they the principal graphs of a finite index subfactor? If so, for how many subfactors?

Fact 2.18. If (Γ+,Γ−) are finite, then by Ocneanu Rigidity [ENO05], the answer is always at most
finitely many
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