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Categorified traces

A trace on a k-algebra is a linear map tr : A→ k such that

I tr(ab) = tr(ba) for all a, b ∈ A.

A categorified trace on a tensor category M takes values in
another category C. It’s a functor TrC :M→ C such that

I we have isomorphisms τx,y : TrC(x⊗ y)
'−→ TrC(y ⊗ x)

natural in x and y called the traciators
I there is a hexagon compatibility axiom:
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An example of a categorified trace

Let M be a pivotal tensor category. Define TrVec :M→ Vec by

TrVec(x) := HomM(1M, x).

The pivotal structure gives us our natural isomorphisms:

TrVec(x⊗ y) = HomM(1M, x⊗ y)
∼= HomM(y∗, x)
∼= HomM(1M, y

∗∗ ⊗ x)
∼= HomM(1M, y ⊗ x)

= TrVec(y ⊗ x)



Diagrammatic calculus for a categorified trace

Some algebraic equations are better represented on different
topological spaces. Traces on algebras can be represented on S1:

tr(xy) =
x
y

= x y =
y

x
= tr(yx)

Similarly, we can denote the objects TrC(x⊗ y) ∼= TrC(y ⊗ x) by
dots on circles, but we must remember the isomorphism τx,y,
which we denote by a cylinder with strings:

τx,y =

yx

: TrC(x⊗ y)
'−→ TrC(y ⊗ x)



Categorified traces from central functors

When M is pivotal, Bezrukavnikov-Finkelberg-Ostrik showed that
if ΦZ : C → Z(M) is a functor such that Φ := F ◦ ΦZ admits a
right adjoint TrC , then TrC is a categorified trace.

The adjunction lets us construct the traciator τx,y:

∈ C(TrC(x⊗ y),TrC(x⊗ y)) ∼=M(Φ(TrC(x⊗ y)), x⊗ y)

∼=M(Φ(TrC(x⊗ y))⊗ y∗, x)

(Φ is central) ∼=M(y∗ ⊗ Φ(TrC(x⊗ y)), x)
∼=M(Φ(TrC(x⊗ y)), y ⊗ x)

∼= C(TrC(x⊗ y),TrC(y ⊗ x)) 3



Module categories for tensor categories

Suppose C is a tensor category. A module category for C is a
category M together with a bifunctor ⊗ : C �M→M satisfying
certain axioms.

A braided tensor category C is a 3-category with one object and
one 1-morphism, so it is one categorical dimension higher.
Modules for C are also one categorical dimension higher.



Module tensor categories for braided tensor categories

Definition
A module tensor category for the braided tensor category C is a
tensor category M and a braided functor ΦZ : C → Z(M).

I We define Φ = F ◦ ΦZ where F : Z(M)→M is the
forgetful functor.

C M

Z(M)

Φ

ΦZ F



Example: ModC(a)

Let C be a braided tensor category with a ∈ C a commutative
algebra object. Let M = ModC(a), the category of left a-module
objects in C.

Definition
We define the free module functor ΦZ : C →M by
ΦZ(c) = (Φ(c), eΦ(c)) where

I Φ(c) = a⊗ c

I eΦ(c),x : Φ(c)⊗a x ∼= c⊗ x βc,x−→ x⊗ c ∼= x⊗a Φ(c).

I Φ(f : c→ d) = ida⊗f : a⊗ c→ a⊗ d

Example

Let C = SU(2)10 with objects 1, . . . ,11. Let a = 1⊕ 7. Then
M = ModC(a) is the E6 module tensor category.



Categorified trace for module tensor categories

We now assume C is a pivotal braided tensor category, M is a
pivotal module tensor category, and ΦZ : C → Z(M) is a braided
pivotal functor.

Under mild assumptions, Φ : C →M has a right adjoint TrC ,
which is a categorified trace.

C M

Z(M)

Φ

TrC

ΦZ



Adjoints of tensor functors are lax monoidal

It is well known that the right adjoint of a tensor functor is lax
monoidal, so we get canonical natural multiplication maps

µx,y =

x y

: TrC(x)⊗ TrC(y)→ TrC(x⊗ y)

Theorem
The traciators and multiplication maps are compatible, giving us a
graphical caluclus of srings on tubes which can branch and braid.



Graphical calculus



Application: constructing algebras in C
Since tensor functors are lax monoidal, given an algebra a ∈M,
TrC(a) is an algebra in C.

Theorem
If a, b ∈M are algebras, then TrC(a⊗M b) is an algebra in C.

:=



Application: anchored planar algebras
We can use the internal trace to construct planar algebras internal
to a braided tensor category.

Definition
A planar algebra in Vec is a sequence of objects Pn ∈ Vec and an
action of planar tangles.

An anchored planar algebra in C is a sequence of objects Pn ∈ C
and an action of anchored planar tangles.

P5⊗VecP3→P6

 

2

1

P3⊗CP5→P6



Thank you for listening!
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