Categorified trace for module tensor categories over braided tensor categories

David Penneys, UCLA
joint with André Henriques and James Tener

AMS Special Session on Fusion categories and topological phases of matter

April 10, 2016

Categorified traces

A trace on a k-algebra is a linear map $\operatorname{tr}: A \rightarrow k$ such that

- $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for all $a, b \in A$.

A categorified trace on a tensor category \mathcal{M} takes values in another category \mathcal{C}. It's a functor $\operatorname{Tr}_{\mathcal{C}}: \mathcal{M} \rightarrow \mathcal{C}$ such that

- we have isomorphisms $\tau_{x, y}: \operatorname{Tr}_{\mathcal{C}}(x \otimes y) \xrightarrow{\simeq} \operatorname{Tr}_{\mathcal{C}}(y \otimes x)$ natural in x and y called the traciators
- there is a hexagon compatibility axiom:

An example of a categorified trace

Let \mathcal{M} be a pivotal tensor category. Define $\operatorname{Tr}_{\text {Vec }}: \mathcal{M} \rightarrow$ Vec by

$$
\operatorname{Tr}_{\mathrm{Vec}}(x):=\operatorname{Hom}_{\mathcal{M}}\left(1_{\mathcal{M}}, x\right)
$$

The pivotal structure gives us our natural isomorphisms:

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{Vec}}(x \otimes y) & =\operatorname{Hom}_{\mathcal{M}}\left(1_{\mathcal{M}}, x \otimes y\right) \\
& \cong \operatorname{Hom}_{\mathcal{M}}\left(y^{*}, x\right) \\
& \cong \operatorname{Hom}_{\mathcal{M}}\left(1_{\mathcal{M}}, y^{* *} \otimes x\right) \\
& \cong \operatorname{Hom}_{\mathcal{M}}\left(1_{\mathcal{M}}, y \otimes x\right) \\
& =\operatorname{Tr}_{\mathrm{Vec}}(y \otimes x)
\end{aligned}
$$

Diagrammatic calculus for a categorified trace

Some algebraic equations are better represented on different topological spaces. Traces on algebras can be represented on S^{1} :

$$
\operatorname{tr}(x y)=x=x=y=x=y=\operatorname{tr}(y x)
$$

Similarly, we can denote the objects $\operatorname{Tr}_{\mathcal{C}}(x \otimes y) \cong \operatorname{Tr}_{\mathcal{C}}(y \otimes x)$ by dots on circles, but we must remember the isomorphism $\tau_{x, y}$, which we denote by a cylinder with strings:

$$
\tau_{x, y}=\overbrace{x y}^{\overbrace{\int}}: \operatorname{Tr}_{\mathcal{C}}(x \otimes y) \xrightarrow{\simeq} \operatorname{Tr}_{\mathcal{C}}(y \otimes x)
$$

Categorified traces from central functors

When \mathcal{M} is pivotal, Bezrukavnikov-Finkelberg-Ostrik showed that if $\Phi^{\mathcal{Z}}: \mathcal{C} \rightarrow \mathcal{Z}(\mathcal{M})$ is a functor such that $\Phi:=F \circ \Phi^{\mathcal{Z}}$ admits a right adjoint $\operatorname{Tr}_{\mathcal{C}}$, then $\operatorname{Tr}_{\mathcal{C}}$ is a categorified trace.

The adjunction lets us construct the traciator $\tau_{x, y}$:

$$
\begin{aligned}
\text { UU } \in \mathcal{C}\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y), \operatorname{Tr}_{\mathcal{C}}(x \otimes y)\right) & \cong \mathcal{M}\left(\Phi\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y)\right), x \otimes y\right) \\
& \cong \mathcal{M}\left(\Phi\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y)\right) \otimes y^{*}, x\right) \\
& \cong \mathcal{M}\left(y^{*} \otimes \Phi\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y)\right), x\right) \\
& \cong \mathcal{M}\left(\Phi\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y)\right), y \otimes x\right) \\
& \cong \mathcal{C}\left(\operatorname{Tr}_{\mathcal{C}}(x \otimes y), \operatorname{Tr}_{\mathcal{C}}(y \otimes x)\right) \ni \text {.. }
\end{aligned}
$$

Module categories for tensor categories

Suppose \mathcal{C} is a tensor category. A module category for \mathcal{C} is a category \mathcal{M} together with a bifunctor $\otimes: \mathcal{C} \boxtimes \mathcal{M} \rightarrow \mathcal{M}$ satisfying certain axioms.

A braided tensor category \mathcal{C} is a 3-category with one object and one 1-morphism, so it is one categorical dimension higher. Modules for \mathcal{C} are also one categorical dimension higher.

Module tensor categories for braided tensor categories

Definition

A module tensor category for the braided tensor category \mathcal{C} is a tensor category \mathcal{M} and a braided functor $\Phi^{\mathcal{Z}}: \mathcal{C} \rightarrow \mathcal{Z}(\mathcal{M})$.

- We define $\Phi=F \circ \Phi^{\mathcal{Z}}$ where $F: \mathcal{Z}(\mathcal{M}) \rightarrow \mathcal{M}$ is the forgetful functor.

Example: $\operatorname{Mod}_{\mathcal{C}}(a)$

Let \mathcal{C} be a braided tensor category with $a \in \mathcal{C}$ a commutative algebra object. Let $\mathcal{M}=\operatorname{Mod}_{\mathcal{C}}(a)$, the category of left a-module objects in \mathcal{C}.
Definition
We define the free module functor $\Phi^{\mathcal{Z}}: \mathcal{C} \rightarrow \mathcal{M}$ by $\Phi^{\mathcal{Z}}(c)=\left(\Phi(c), e_{\Phi(c)}\right)$ where

- $\Phi(c)=a \otimes c$
- $e_{\Phi(c), x}: \Phi(c) \otimes_{a} x \cong c \otimes x \xrightarrow{\beta_{c, x}} x \otimes c \cong x \otimes_{a} \Phi(c)$.
- $\Phi(f: c \rightarrow d)=\mathrm{id}_{a} \otimes f: a \otimes c \rightarrow a \otimes d$

Example

Let $\mathcal{C}=S U(2)_{10}$ with objects $\mathbf{1}, \ldots, \mathbf{1 1}$. Let $a=\mathbf{1} \oplus \mathbf{7}$. Then $\mathcal{M}=\operatorname{Mod}_{\mathcal{C}}(a)$ is the E_{6} module tensor category.

Categorified trace for module tensor categories

We now assume \mathcal{C} is a pivotal braided tensor category, \mathcal{M} is a pivotal module tensor category, and $\Phi^{\mathcal{Z}}: \mathcal{C} \rightarrow \mathcal{Z}(\mathcal{M})$ is a braided pivotal functor.

Under mild assumptions, $\Phi: \mathcal{C} \rightarrow \mathcal{M}$ has a right adjoint $\operatorname{Tr}_{\mathcal{C}}$, which is a categorified trace.

Adjoints of tensor functors are lax monoidal

It is well known that the right adjoint of a tensor functor is lax monoidal, so we get canonical natural multiplication maps

Theorem
The traciators and multiplication maps are compatible, giving us a graphical caluclus of srings on tubes which can branch and braid.

Graphical calculus

Application: constructing algebras in \mathcal{C}

Since tensor functors are lax monoidal, given an algebra $a \in \mathcal{M}$, $\operatorname{Tr}_{\mathcal{C}}(a)$ is an algebra in \mathcal{C}.

Theorem
If $a, b \in \mathcal{M}$ are algebras, then $\operatorname{Tr}_{\mathcal{C}}\left(a \otimes_{\mathcal{M}} b\right)$ is an algebra in \mathcal{C}.

Application: anchored planar algebras

We can use the internal trace to construct planar algebras internal to a braided tensor category.

Definition
A planar algebra in Vec is a sequence of objects $\mathcal{P}_{n} \in \mathrm{Vec}$ and an action of planar tangles.

An anchored planar algebra in \mathcal{C} is a sequence of objects $\mathcal{P}_{n} \in \mathcal{C}$ and an action of anchored planar tangles.

Thank you for listening!

Slides available at:
http://www.math.ucla.edu/~dpenneys/PenneysAMS2016.pdf
Article available at:
http://arxiv.org/abs/1509.02937

