Commutants of multifusion categories

David Penneys, OSU joint with André Henriques

AMS Special Session on Fusion categories and applications

April 1, 2017

Categorical analogies

Tensor categories categorify algebras.

algebra A	tensor category ${\cal C}$
finite dimensional algebra	fusion category
center $Z(A)$	Drinfel'd center $\mathcal{Z}(\mathcal{C})$
commutant $Z_B(A)$ of A in B	commutant $\mathcal{Z}_\mathcal{D}(\mathcal{C})$ of $\mathcal C$ in $\mathcal D$
B(H)	$\operatorname{Bim}(R)$, all bimodules
commutant $A' := Z_{B(H)}(A)$	commutant $\mathcal{C}':=\mathcal{Z}_{\mathrm{Bim}(R)}(\mathcal{C})$
von Neumann algebra $A = A''$	bicommutant category $\mathcal{C}\cong\mathcal{C}''$

Bicommutant categories categorify von Neumann algebras.

Categorifying basic theorems

In previous work with Henriques, we proved the *categorified finite dimensional bicommutant theorem*.

Theorem [HP15]

Suppose ${\cal C}$ is a unitary fusion category embedded in ${\rm Bim}(R)$, where R is a non type I factor. Then

$$\mathcal{C}'' \cong \mathcal{C} \otimes_{\mathsf{Vec}} \mathsf{Hilb} \cong \mathsf{Hilb}(\mathcal{C}).$$

Today, we will prove the categorification of: Two Morita equivalent finite dimensional von Neumann algebras embedded in B(H) have isomorphic commutants.

Unitary multifusion categories

Definition

A $k \times k$ unitary multifusion category is a rigid C*-tensor category ${\mathcal C}$ satisfying:

- C is idempotent complete,
- \blacktriangleright ${\cal C}$ has finitely many isomorphism classes of simple objects,
- $1_{\mathcal{C}} = \bigoplus_{i=1}^{k} 1_i$ where each 1_i is simple, and
- C is indecomposable.

Proposition

Every unitary $k \times k$ multifusion category has a fully faithful tensor embedding $\mathcal{C} \hookrightarrow \operatorname{Bim}(R^{\oplus k})$ which is dimension preserving.

 The proof uses a modification of Ocneanu compactness [JS97].

Graphical calculus

Fix a finite set $Irr(\mathcal{C})$ of representatives of irreducibles.

- Shaded regions denote irreducible summands of $1_{\mathcal{C}}$.
- Morphisms $f: x \otimes y \rightarrow z$ are represented by coupons.
- ▶ For all simple $x \in C_{i,j}$, $y \in C_{j,k}$, and $z \in C_{k,i}$, Hom $(1, x \otimes y \otimes z)$ is a finite dimensional Hilbert space with inner product $\langle f, g \rangle = g^* \circ f$.

Choose dual bases:

$$e_i \in \operatorname{Hom}(1, x \otimes y \otimes z) \text{ and } e^i \in \operatorname{Hom}(1, \overline{z} \otimes \overline{y} \otimes \overline{x})$$

We represent the canonical element by colored nodes

$$\bigvee_{z}^{x \ y} \otimes \bigvee_{x \ y}^{z} := \sqrt{d_x d_y d_z} \cdot \sum_{\alpha} \left(\underbrace{e_{\alpha}}_{z} \otimes \underbrace{e^{\alpha}}_{x \ y} \right)$$

The canonical element is independent of choice of basis.

Important relations

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

We'll use Snyder convention and ignore all scalars.

Commutant \mathcal{C}' of \mathcal{C} in $\operatorname{Bim}(R^{\oplus k})$

The commutant $\mathcal{C}' \subset \operatorname{Bim}(R^{\oplus k})$ of $\mathcal{C} \subset \operatorname{Bim}(R^{\oplus k})$ has:

▶ Objects are pairs (X, e_X) where $X \in Bim(R^{\oplus k})$, and e_X is a unitary half braiding with C

$$e_{X,c} = X \boxtimes c \to c \boxtimes X$$

These half braidings must satisfy compatibility conditions.

► Morphisms f : (X, e_X) → (Y, e_Y) are bimodule maps f : X → Y which commute with the half braidings:

$$\begin{array}{c} | Y \\ f \\ X \\ c \end{array} = \begin{array}{c} f \\ f \\ X \\ c \end{array} \right|_{c}$$

 \mathcal{C}' is a tensor category, but it is usually not braided.

Describing \mathcal{C}' for unitary multifusion

Suppose $(X, e_X) \in \mathcal{C}' \subset Bim(R^{\oplus k})$. Write $X = (X_{i,j})$ where $X_{i,j}$ is an $R_i - R_j$ bimodule. Easy facts about $(X, e_X) \in \mathcal{C}'$

- 1. $X \boxtimes 1_j \cong 1_j \boxtimes X \boxtimes 1_j$ implies $X_{i,j} = 0$ for $i \neq j$.
- 2. Writing $X = \bigoplus_{i=1}^{k} X_i$, we can write e_X as a family of natural isomorphisms (e_X^i) given on $c_{i,j} \in C_{i,j}$ by

$$\sum_{X_i \ c_{i,j}}^{c_{i,j} \ X_j} = e_X^i \in \operatorname{Hom}_{R_i - R_j}(X_i \boxtimes_{R_i} c_{i,j} \to c_{i,j} \boxtimes_{R_j} X_j)$$

3. We have a projection functor $P_j : \mathcal{C}' \to \mathcal{C}'_j$ by $(X, e_X) \mapsto (X_j, e_X^j).$

Induction functor $\operatorname{Bim}(R) \to \mathcal{C}'$

We have a way to construct lots of objects in C'. We always use the shading $\square = R_1$.

$$\underline{\Phi}$$
: Bim $(R_1) \to \mathcal{C}'$ $\underline{\Phi}(\Lambda) = (\Phi(\Lambda), e_{\Phi(\Lambda)}).$

$$\Phi(\Lambda) := \bigoplus_{\substack{j=1,\dots,k\\c\in\operatorname{Irr}(\mathcal{C}_{j,1})}} c\boxtimes\Lambda\boxtimes\overline{c}\in\operatorname{Bim}(R^{\oplus k})$$

Proposition

The functor $\Phi : \operatorname{Bim}(R_1) \to \mathcal{C}'$ is dominant.

A canonical projector

For $(X_1, e_{X_1}) \in C'_1$, we have a canonical projector in $End_{\mathcal{C}'}(\Phi(X_1))$:

Equivalence

We have functors

$$\operatorname{Bim}(R^{\oplus k}) \ni \mathcal{C}' \xrightarrow{P_1} \mathcal{C}'_1 \subset \operatorname{Bim}(R_1)$$
$$\operatorname{Bim}(R_1) \ni \mathcal{C}'_1 \xrightarrow{\Phi} \mathcal{C}' \in \operatorname{Bim}(R^{\oplus k})$$

We get another functor $p\Phi: \mathcal{C}'_1 \to \mathcal{C}'$ by applying Φ and then applying the canonical projector.

Theorem

The functors P_1 and $p\Phi$ witness an equivalence of categories $\operatorname{Bim}(R_1) \supseteq \mathcal{C}'_1 \cong \mathcal{C}' \subseteq \operatorname{Bim}(R^{\oplus k}).$

Sketch of one direction.

We get a natural isomorphism $u: p\Phi \circ P_1 \Rightarrow id$ where $u_X: p_X\Phi(X_1) \to X$ is given by

$$u_X = \frac{1}{\sqrt{D}} \sum_{\substack{j \in \{1, \dots, k\} \\ \square = R_j}} \sum_{x \in \operatorname{Irr}(\mathcal{C}_{j,1})} \sqrt{d_x} \bigwedge_{x X_1 \overline{x}}^{X_j}.$$

The main corollary

We can now prove our main result as a corollary.

Corollary

If $C_1 \subset \operatorname{Bim}(R_1)$ and $C_2 \subset \operatorname{Bim}(R_2)$ are two Morita equivalent unitary fusion categories, then $C'_1 \cap \operatorname{Bim}(R_1) \cong C'_2 \cap \operatorname{Bim}(R_2)$.

Proof.

Let $\mathcal{M} \subset \operatorname{Bim}(R_1, R_2)$ be an equivalence unitary $\mathcal{C}_1 - \mathcal{C}_2$ bimodule category. We can form a 2×2 unitary multifusion category by

$$\mathcal{C} = \begin{pmatrix} \mathcal{C}_1 & \mathcal{M} \\ \mathcal{M}^* & \mathcal{C}_2 \end{pmatrix} \subset \operatorname{Bim}(R_1 \oplus R_2).$$

Now we apply the previous theorem twice:

$$\mathcal{C}'_1 \cap \operatorname{Bim}(R_1) \cong \mathcal{C}' \cap \operatorname{Bim}(R_1 \oplus R_2) \cong \mathcal{C}'_2 \cap \operatorname{Bim}(R_2).$$

Thank you for listening!

Slides available at:

https:

//people.math.osu.edu/penneys.2/PenneysAMS2017.pdf

Previous article *Bicommutant categories from fusion categories* with André Henriques available at: http://arxiv.org/abs/1511.05226

New article *Commutants of multifusion categories* with André Henriques coming soon!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <