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Overview

I Unitary tensor categories (UTCs) encode quantum symmetry
and act on operator algebras via unitary tensor functors

H : C → Bim(A) = End(Mod(A))

I A (...) subfactor N ⊂M can be viewed a triple (C,H,A)
where C is a UTC, H : C → Bim(N) is an action, and A ∈ C
is an (...) algebra object.

N ⊂ N oH A = M

I Q-systems in UTCs are particularly nice algebra objects where
the above construction is easy. They are higher idempotents,
and we can take a higher idempotent completion.

QSys(C)

C D

∃ !



Unitary (multi)tensor categories
A monoidal category C is called a unitary multitensor category if:

I (linear) hom spaces C(a→ b) finite dimensional vector spaces

I (Karoubi complete) admits finite direct sums, and all
idempotents split

I (C∗) For all a, b ∈ C, † : C(a→ b)→ C(b→ a) such that
(g ◦ f)† = f † ◦ g† and f †† = f , and all endomorphism algebras
are C∗ algebras under †.

I (tensor) †-functor ⊗ : C × C → C ((f ⊗ g)† = f † ⊗ g†) with
unitary (u−1 = u†) coherence isomorphisms α, λ, ρ

I (rigid) every object admits left and right duals

We call C a unitary tensor category if the unit is simple.
We call C a unitary (multi)fusion category if there are only finitely
many isomorphism classes of simple objects.

Fact
Every UMC is semisimple, i.e., every object is a finite direct sum of
simples (EndC(c) = C)



2D graphical calculus for UMCs

0. Objects denoted by labelled strands, oriented bottom to top.

1. 1-morphisms denoted by coupons

X

V

Y Z

W

T

Uf

g†

h

k
f : V → X ⊗ T
g : Y → T ⊗ U
h : 1C → U
k : W → Z

I vertical stacking is composition

I horizontal juxtaposition is ⊗
I vertical reflection is †
I suppress unit 1C and all coheretors α, λ, ρ



2D graphical calculus for C∗/W∗ 2-categories

A tensor category is a 2-category with one object. For 2-categories,
we have a dimension shift.

0. shadings for regions to denote objects

1. 1-morphisms denoted by strands

2. 2-morphisms denoted by coupons

X

V

Y Z

W

T

Uf

g†

h

k
a

b

c

f : V ⇒ X ⊗ T
g : Y ⇒ T ⊗ U
h : 1C ⇒ U
k : W ⇒ Z

T : c→ b
U : b→ b
V : a→ b
W : b→ c
X : a→ c
Y : c→ b
Z : b→ c



Where do UTCs come from?

1. Subfactor standard invariants A ⊂ B  C(A ⊂ B)

2. Compact groups G Rep(G)

3. Discrete/compact quantum groups (Tannaka-Krein duality)

G  (Rep(G),F : Rep(G)→ Hilb)

4. Generators and relations [VV19]

5. Constructions of new UTCs from existing UTCs

Many people care about UTCs because of physics

I conformal field theory (Rep(A) of a conformal net)

I unitary fusion categories give Turaev-Viro TQFTs

I unitary modular categories give Reshetikhin-Turaev TQFTs

I topological phases of matter (UMTCs)



Subfactors
I A II1 factor is an infinite dimensional von Neumann algebra

with trivial center and a trace. (Eg: LΓ := C[Γ]′′ ⊂ B(`2Γ))
I A II1 subfactor is a unital inclusion of type II1 factors.

Jones’ Index Rigidity Theorem [Jon83]

The index [B : A] := dim(AL
2B) of a II1

subfactor A ⊂ B takes values in:

[B : A] ∈
{

4 cos2(π/n)
∣∣n ≥ 3

}
∪ [4,∞].

Example

Given a finite index II1 subfactor A ⊂ B, the UTC ACA is the
category of A−A bimodules generated by L2B under

I ⊕ direct sum

I � Connes’ fusion relative tensor product over A

I ⊆ sub-bimodules

I · conjugates



The standard invariant

Definition
The standard invariant of A ⊂ B is the collection of all A−A,
A−B, B −B, and B −A bimodules generated by L2B under

I ⊕ direct sum

I � Connes’ fusion relative tensor product (over A or B)

I ⊆ sub-bimodules

I · conjugates.

We can think of this as a 2× 2 UMC of bimodules of A⊕B

C = C(A ⊂ B) :=

(
ACA ACB
BCA BCB

)
⊂ Bim(A⊕B)

with the generator AL
2BB.

I If there are only finitely many isomorphism classes of simple
bimodules, we call A ⊂ B and C finite depth.



Alternate definition via Q-systems

Alternatively, we can define the standard invariant as the UTC ACA
of A−A bimodules generated by L2B with the Q-system AL

2BA.

: L2B�AL
2B

multiplication−−−−−−−−→ L2B : L2A
unit−−→ L2B

I (associative) =

I (unital) = =

I (Frobenius) = =

I (separable) =

I (minimal/standard) = dimmin(Q)



Classification of subfactors/UTCs

Example

The subfactor R ⊂ RoG for a finite group G ‘remembers’ G. So
classifying hyperfinite subfactors is hopeless. We must restrict to
some notion of ‘smallness.’

Strategy for small index classification:

1. Classify possible standard invariants with dim(AL
2BB) small

2. Determine how many subfactors give each standard invariant.

Popa’s Subfactor Reconstruction Theorem [Pop90, Pop95]

Every standard invariant comes from a subfactor. If the standard
invariant is strongly amenable (eg: finite depth), the subfactor can
be taken to be hyperfinite.

Theorem [BHP12], cf. [PS03]

Every UTC admits a fully faithful embedding into Bimext(LF∞).



Known small index standard invariants
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Amenability

Amenability arises in two places when subfactors can be classified:

1. We restrict to subfactors of the amenable II1 factor R

2. We embed amenable unitary tensor categories into Bim(R).

Question
How many ways can Ad(A3 ∗A4) embed into Bim(R)?

Question
How many ways can TLJ(d) embed into Bim(R) for d > 2?



Beyond small index classification

What new directions can we go in?

I Infinite index

I Horizontal categorification

I Vertical categorification

I Ask higher categorical questions in this context

I Actions of unitary tensor categories on C∗-algebras
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Beyond small index classification

What new directions can we go in?

I Infinite index
I Discrete subfactors, generalize crossed products N ⊂ N o Γ.

I Horizontal categorification
I C∗/W∗-algebra  C∗/W∗ category
I C∗/W∗ tensor category  C∗/W∗ 2-category

I Vertical categorification
I C∗/W∗-algebra  C∗/W∗ tensor category

I Ask higher categorical questions in this context
I Q-system completion is a higher idempotent completion

I Actions of unitary tensor categories on C∗-algebras
I Use Q-system completion to induce new actions from existing

actions



Discrete subfactors

With Corey Jones [JP19], we characterize the
class of extremal irreducible discrete subfactors
(N ⊂M,E) with N type II1 with trace τ and
E : M → N a f.n. conditional expectation.

I (discrete) Setting φ := τ ◦ E, NL
2(M,φ)N decomposes as a

direct sum of dualizable N −N bimodules (generates a UTC!)

I (irreducible) N ′ ∩M = EndN−M (L2(M,φ)) = C
I (extremal) For every N −N sub-bimodule

NKN ⊂ NL
2(M,φ)N , dim(NK) = dim(KN ).

Examples

I Any finite depth, finite index irreducible II1 subfactor is
automatically extremal and discrete.

I If α : Γ y N is an outer action of a discrete countable group,
then N ⊂ N oα Γ is an extremal irreducible discrete subfactor.



Characterization of discrete subfactors

Such a subfactor (N ⊂M,E) can be viewed as a triple (C,A,H):

1. Unitary tensor category C,

2. Connected W∗ algebra object A ∈ Vec(C) := Fun(Cop → Vec)
(Vec(C) is a model for ind(C\), where \ means forget †),

3. Fully faithful unitary tensor functor H : C → Bimext(N) which
lands in extremal N −N bimodules.

The standard invariant of (N ⊂M,E) is the pair (C,A).



W∗ algebra objects

Definition
A connected W∗ algebra object A = EndC(m) for some simple
object m in some C-module C∗/W∗-category CM.

A(c) :=M(cBm→ m) ∈ Vec

Example

For an irreducible extremal discrete subfactor (N ⊂M,E) and
K ∈ C = 〈NL2(M,φ)N 〉,

A(K) : = HomN−N (K → L2(M,φ))

∼= HomN−M (K �N L2(M,φ)→ L2(M,φ)).



Theorem [JP19]

Fix a unitary tensor category C and a fully faithful unitary tensor
functor H : C → Bimext(N) where N is a II1 factor. There is an
equivalence of categories
Connected W* algebra
objects A ∈ Vec(C)
with ucp morphisms

 ∼=


Extremal irreducible discrete inclu-
sions (N ⊆ M,E) supported on
H(C) with normal N − N bilinear
ucp maps preserving τ ◦ E


I This effectively splits subfactor classification into 2 parts:

1. Classify embeddings of unitary tensor categories
H : C → Bim(N)

2. Classify connected W∗ algebra objects in Vec(C).

I Generalizes all known Galois correspondences for intermediate
subfactors. (finite groups: [NT60], discrete groups: [ILP98],
compact quantum groups: [Tom09])

I Gives well-behaved notion of standard invariant for a large
class of infinite index subfactors.
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Theorem [JP19]

Fix a unitary tensor category C and a fully faithful unitary tensor
functor H : C → Bimext(N) where N is a II1 factor. There is an
equivalence of categories
Connected W* algebra
objects A ∈ Vec(C)
with ucp morphisms

 ∼=


Extremal irreducible discrete inclu-
sions (N ⊆ M,E) supported on
H(C) with normal N − N bilinear
ucp maps preserving τ ◦ E


I Gives new examples of subfactors from an embedding of C, a
C-module C∗/W∗-category M, and a simple object m ∈M.

Example

F : C → Hilb a fiber functor (discrete quantum group) and m = C.
M is type II1 iff (C,F) is Kac-type; otherwise M is type III!



Realization [JP19, CPJP]
The main tool we provide is realization. Given (C,A,H), we
reconstruct a subfactor

N = A(1C)︸ ︷︷ ︸
C

⊗H◦(1C)︸ ︷︷ ︸
N

⊂
⊕

c∈Irr(C)

A(c)⊗ H◦(c)︸ ︷︷ ︸
bdd. vects.

W∗

=:

{
N oH A

|A|H

This is much easier when A is a Q-system in C rather than a
W∗-algebra object in Vec(C). In this case,

|A|H = H(A)◦ := Hom−N (L2N → H(A))

is easily equipped with the structure of a unital C∗-algebra which
has a predual and is thus a von Neumann algebra:

f1 · f2 :=
f1

f2

, 1|A|H := , and f∗ := f† .



Realization is a †-2-functor

With Quan Chen, Roberto Hernandez Palomares, and Corey Jones,

we extend realization to a †-2-functor in the C∗ setting (proof also
works in W∗ setting).

I Given a C∗/W∗ 2-category C, Q-systems, separable bimodules,
and intertwiners in C form a C∗/W∗ 2-category QSys(C).

I Have canonical inclusion ιC : C ↪→ QSys(C). C is Q-system
complete if ιC is a †-2-equivalence.

I Realization inverse †-2-functor | · | : QSys(C∗Corr)→ C∗Corr.
C∗Corr is Q-system complete (as is W∗Corr ' vNA).



Idempotent completion example: K-theory

Recall the definition of K0(A) for a untial C∗-algebra.

1. Look at the C∗-category Modfgp(A) of finitely generated
projective A-modules.

2. Modfgp(A) admits all finite direct sums.

3. K0(A) := K0(Modfgp(A)), the Grothendieck group of
Modfgp(A).

I Modfgp(A) is Karoubi complete: it has finite direct sums and
all projections split: given a projection p ∈ End(MA),
pMA ∈ Modfgp(A).

MA pMA

p

i

p ◦ i = idpM i ◦ p = p

Here, p is a retract and i is a section.



Idempotents and condensation

I 1-morphisms in a category C live on a line.
a b

f

I idempotents can replicate freely.
a a

e
=

a a a

e e

I Starting with C, we can deloop to get the category with one
object with endomorphisms C. We then Karoubi complete (⊕
and idempotent) to obtain the category Vecfd

I We can do this process again; starting with Vecfd, we can
deloop to get Vecfd as a tensor category. We then ‘higher’
Karoubi complete (unital separable algebra object completion)
to obtain 2Vecfd, the 2-category of multimatrix algebras, finite
dim bimodules, and intertwiners.

I The next step yields 3Vec, the 3-category of multifusion
categories! [GJF19, JF20]
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Higher Karoubi completion

Multifusion categories arise freely* from higher Karoubi completion.

B2Vec MultFusCat

BVec fdSepAlg ssCat

BC Vec

C

Kar

Kar Mod
∼=

B
Σ

Kar

B Σ

B Σ

I B means take the delooping [BS10, §5.6], i.e., consider the
monoidal k-category as a (k + 1)-category with one object.

I Kar means take higher Karoubi completion [GJF19].

I Σ is the composite Kar ◦B, called the suspension.



Q-systems are higher categorical idempotents
A Q-system is a unitary (co)unital higher categorical idempotent.

= = =

Now strands and tri/univalent vertices can replicate freely.

Warning: Unitary condensation (in progress with Reutter and
Steinebrunner) is extremely nuanced, and one may not want to
use Q-systems!

Definition based on
[Yam04, EGNO15, BKLR15, CR16, NY16, DR18, GY20]

The Q-system completion QSys(C) of a C∗/W∗ 2-category C has

I objects are Q-systems,

I 1-morphisms are unitarily separable bimodules, and

I 2-morphisms are intertwiners.



Q-systems
Recall that a Q-system in a C∗/W∗ 2-category C is a 1-morphism
Q ∈ C(b→ b) together with

: Q⊗b Q
multiplication−−−−−−−−→ Q : 1b

unit−−→ Q

such that the following relations hold:

I (associative) =

I (unital) = =

I (Frobenius) = =

I (unitarily separable) =

I (non-degenerate) ∈ EndC(1b)
×

Frobenius actually follows from associative, unital, and unitarily
separable by [LR97]; see [BKLR15, Lem. 3.7].



Unitarily separable bimodules

Suppose P ∈ C(a→ a), Q ∈ C(b→ b) are Q-systems and
X ∈ C(a→ b).

: P ⊗a X
left action−−−−−−→ X : X ⊗b Q

right action−−−−−−−→ X

I (bimod) = , = , and =

I (unitarily separable) = =

[BKLR15, Lem. 3.23]

A unitarily separable P −Q bimodule PXQ over Q-systems P,Q is
automatically unital and Frobenius:

I (unital) = and =

I (Frobenius) = = and = = .



Intertwiners

Definition
If P ∈ C(a→ a) and Q ∈ C(b→ b) are Q-systems and

aXb, aYb ∈ C(a→ b) are P −Q bimodules, we define
QSys(C)(PXQ ⇒ PYQ) as the set of f ∈ C(aXb ⇒ aYb) such that

f = f and f = f .

Lemma
f † ∈ C(aYb ⇒ aXb) is also a P −Q bimodule map.

Proof.
Step 1: =

Step 2: Apply † to f =
f

= f =
f

= f .



Composition of 1-morphisms
To compose the P −Q bimodule aXb and the Q−R bimodule

bYc, we unitarily split the separability projector

pX.Y := := = = u†X,Y uX,Y

for a coisometry uX,Y , unique up to unique unitary.

= X ⊗Q Y u = uX,Y .

As in [NY16, Rem. 2.6], associator αQSys(C) uniquely determined by

u

u

αQSys

=

u

u

αC

: (X ⊗C Y )⊗C Z → X ⊗Q (Y ⊗R Z).



Theorem [CPJP] cf. [GY20]

C∗Corr,W∗Corr, vNA are Q-system complete (Q-systems split).

Corollary [CPJP] cf. [GY20]

Can induce action C → Bim(A) ⊂ R ∈ {C∗Corr,W∗Corr, vNA}

QSys(C)→ QSys(Bim(A))→ QSys(R)
∼=−→ R

Followup results with Quan Chen:

Theorem [CP] cf. [DR18]

QSys is a 3-functor on C∗/W∗ 2-categories.

Universal property for Q-system completion [CP] cf. [DR18]

QSys(C)

C D
∃ !

ιC

for every †-2-functor from C to a Q-system complete D.



Main idea for C∗Corr Q-system complete
Realization | · | : QSys(C∗Corr)→ C∗Corr is inverse †-2-functor to
natural inclusion ι : C∗Corr→ QSys(C∗Corr).

Definition
Q-system Q ∈ C∗Corr(B → B) maps to |Q| := HomC−B(B → Q)

q1 · q2 :=
q1

q2

, 1|Q| := , and q∗ := q† .

For P −Q bimod AXB, define |X| := HomC−B(B → A�A X).

pB ξ :=
p

ξ

ξ C q :=
ξ

q

∀ f ∈ |P |,
∀ η ∈ |M |, and

∀ g ∈ |Q|.



Induced actions on C∗-algebras

Theorem [Jon20]

Every pointed unitary fusion category Hilbfd(G,ω) admits an
action on C(X) where X is some ‘nice’ compact Hausdorff space
(e.g. closed connected n-manifold for n ≥ 2).

I Can use our results to induce actions of group-theoretical
unitary fusion categories on unital C∗-algebras with connected
spectrum.

I Unlike actions on II1 factors, there are K-theoretic
obstructions to unitary fusion category actions on C∗-algebras.



Thank you for listening!
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