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Invariants of subfactors
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$$

planar algebra
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principal graphs

A ⊂ B (P+, P−)cc (Γ+,Γ−)
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Subfactors

Theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Definition

The Jones tower of A = A0 ⊂ A1 = B (finite index) is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).
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Two towers of centralizer algebras

...
...

...
...

∪ ∪ ∪ ∪

P3,+ = A′0 ∩A3 ⊃ A′1 ∩A3 = P2,−

∪ ∪ ∪

P2,+ = A′0 ∩A2 ⊃ A′1 ∩A2 = P1,−

∪ ∪

P1,+ = A′0 ∩A1 ⊃ A′1 ∩A1 = P0,−

∪

P0,+ = A′0 ∩A0

These centralizer algebras form a planar algebra.
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Planar algebras [Jon99]

Definition

A shaded planar tangle has

a finite number of inner boundary disks

an outer boundary disk

non-intersecting strings

a marked interval ? on each boundary disk

?

?

? ?
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Composition of tangles

We can compose planar tangles by insertion of one into another if
the number of strings matches up:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition

The shaded planar operad consists of all shaded planar tangles (up
to isotopy) with the operation of composition.
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Definition

A planar algebra is a family of vector spaces Pk,±, k = 0, 1, 2, . . .
and an action of the shaded planar operad.

P2,− × P1,+ × P1,+ P3,+

P2,− × P2,+ × P1,+

?

?

? ?

2

1

?

?

3

? ?
?
?
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Example: Temperley-Lieb

TLn,±(δ) is the complex span of non-crossing pairings of 2n points
arranged around a circle, with formal addition and scalar
multiplication.

TL3,+(δ) = SpanC

{
?

,
?

,
?

,
?

,
?

}
.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and trading closed loops for factors of δ.

?
? (

?
)

=

?

= δ2

?
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Subfactor planar algebras

Definition

A planar algebra P• is a subfactor planar algebra if it is:

Finite dimensional: dim(Pk,±) <∞ for all k

Evaluable: dim(P0,±) = 1

Sphericality: X = X

Positivity: each Pk,± has an adjoint ∗ such that the
sesquilinear form 〈x, y〉 := Tr(y∗x) is positive definite

From these properties, it follows that closed circles count for a
multiplicative constant δ.
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Principal graphs

The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).

The non-reflected part is the principal graph.
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Principal graphs

The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).

The non-reflected part is the principal graph Γ.
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Finite depth

Definition

If the principal graph is finite, then the subfactor and planar
algebra are called finite depth.

Example: R ⊂ Ro S3

Principal graph:

Dual principal graph:
2
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Known subfactors

See Jones-Morrison-Snyder survey [JMS13]
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Bigelow-Morrison-Peters-Snyder, [BMPS12]

The Haagerup and extended Haagerup subfactor planar algebras
have a generator S ∈ Pn,+ where n = 4, 8 respectively satisfying:

2n− 1

S
?

f (2n+2)?
= i

√
[n][n+ 2]

[n+ 1]

n− 1

n+ 1 n+ 1

S S

??

f (2n+2)?

2n

S
?

f (2n+4)?

=
[2][2n+ 4]

[n+ 1][n+ 2]

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?

(Absorption) capping S gives zero and S2 = f (n) ∈ TLn,+.
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The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1 First, pull all generators to the outside using the jellyfish
relations

   

2 Second, reduce the number of generators using the capping
and absorption (multiplication) relations.
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Consistency and positivity

Theorem [Jones-Penneys [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra
of its principal graph.

This serves two purposes:

1 To show the planar algebra is non-zero, give a representation.

2 Graph planar algebras are always finite dimensional, spherical,
and positive. Only need to check evaluable.
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Spoke graphs

Examples of spoke principal graphs

An, D2n, E6, E8,

E
(1)
6 , E

(1)
7 , E

(1)
8

A∞, A
(1)
∞ , D∞

Principal graphs for R ⊂ RoG, G finite
(

,
2
)

2221

3311

3333

4442
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Spokes and jellyfish

Assume all generators of P• are at the same depth n.

Theorem [Bigelow-Penneys [BP13]]

P• has 2-strand jellyfish relations ⇔ one graph is a spoke.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

P• has 1-strand jellyfish relations ⇔ both graphs are spokes.

2n− 1

S
?

,
2n

S
?

←→
(

,
)
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Constructing spoke subfactors with jellyfish

Theorem [Morrison-Penneys [MP13]]

We automate finding 1-strand relations for these subfactors:

Izumi-Xu 2221 [Han11]

[GdlHJ89] 3311

Izumi 3Z/2×Z/2 (3 +
√

5)

4442 (3 +
√

5)

For the above, both principal graphs are the same spoke graph.
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Constructing spoke subfactors with jellyfish, part 2

Theorem [Penneys-Peters (in preparation)]

We give explicit 2-strand relations for the following subfactors:

333 (Z/3), AKA Haagerup(
,

)
3333 (Z/2× Z/2)

(
,

)
3333 (Z/4)

(
,

)
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Index (5, 3 +
√
5)

Conjecture [Morrison-Peters] [MP12]

There are exactly two non Temperley-Lieb subfactor planar
algebras in the index range (5, 3 +

√
5):

name Principal graphs Index Constructed

SU(2)5
(

,
)

5.04892 [Wen90], [MP12]

SU(3)4
(

,
)

5.04892 [Wen88], [MP12]

Theorem [Morrison-Peters] [MP12]

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)
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Subfactor planar algebras at 3 +
√
5

Conjecture [Morrison-Penneys]

At 3 +
√

5, we have the following subfactor planar algebras:

name Principal graphs # Constructed

4442
(

,
)

2 [MP13], Izumi

3Z/2×Z/2
(

,
)

2 Izumi, [MP13]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MPP13]

A3 ⊗A4

(
,

)
1 ⊗

fish 2
(

,
)

2 BH

fish 3
(

,
)

2 [IMP13]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97]

A∞
(

· · · , · · ·
)

1 [Pop93]
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How can we prove these conjectures?

Biggest hurdle: need to eliminate certain weeds.
∗10 weeds:(

,
) (

,
)(

,
) (

,
)(

,
) (

,
)(

,
) (

,
)

∗11 weeds:(
,

)
(

,
)

(
,

)
(

,
)
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New obstruction

Theorem [Penneys, last week]

(1) If (Γ+,Γ−) is a translated extension of(
,

)
, then

(ř − 1)
r

ř
+

(σS + σ−1S )

[n]

√
r√
ř

=
r[n]− [n+ 2]

[n]
.

(2) If (Γ+,Γ−) is a translated extension of(
,

)
, then

(r − 1) +
(σS + σ−1S )

[n]
=

[n+ 2]− r[n]

r[n]
.

σS is the chirality (σ2S is rotational eigenvalue)
r, ř are the branch factors (ratio of dimensions past branch)
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Remaks on the new obstruction

The obstruction is far more general. Recovers Jones’ quadratic
tangles obstruction and Snyder’s single valent obstruction.

Proven by analyzing rotation after using Liu’s relation, which
is a clever manipulation of Wenzl’s relation.

? R? ···

Can obtain rotational eigenvalues for most small index
subfactors.
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Thank you for listening!

arXiv preprints available at:

with Bigelow - Spokes and jellyfish - to appear Math. Ann. -
arXiv:1208.1564

with Morrison - Constructing spokes - to appear Trans. AMS -
arXiv:1208.3637

with Peters - coming soon!
new obstruction - coming soon!
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