
Planar algebras Tensor categories Between � and ∗

Fusion categories between C �D and C ∗ D
(with applications to subfactors at index 3 +

√
5)
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Overview

subfactor A ⊂ Bii

))

55

uu
planar algebra P• oo // tensor category C

Planar algebras give a generators and relations approach to
subfactors and tensor categories.

From the above, we get an invariant called a fusion graph.

Question

(Unreasonable) Which graphs are fusion graphs?

What is a reasonable way to classify fusion categories?
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Planar algebras [Jon99]

Definition

A planar tangle has

a finite number of inner boundary disks

an outer boundary disk

non-intersecting strings

a marked interval ? on each boundary disk

?

?

? ?
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Composition of tangles

We can compose planar tangles by insertion of one into another if
the number of strings matches up:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition

The planar operad consists of all planar tangles (up to isotopy)
with the operation of composition.
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Definition

A planar algebra is a family of vector spaces Pk, k = 0, 1, 2, . . . and
an action of the planar operad.

P3 × P2 × P4 P7

P3 × P4 × P4

?

?

? ?

2

1

?

?

3

? ?
?
?
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Example: Temperley-Lieb

TLn(δ) is the complex span of non-crossing pairings of n points
arranged around a circle, with formal addition and scalar
multiplication.

TL6(δ) = SpanC

{
?

,
?

,
?

,
?

,
?

}
.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and trading closed loops for factors of δ.

?
? (

?
)

=

?

= δ2

?
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Some special tangles/properties

multiplication: x · y =

y

x

n

n

n

?

?

(TL2n is an algebra)

adjoint is reflection:

(
?

)∗
= ?

trace: Tr2n(x) = x

n

n

n

? = x

n

n

n

? (spherical)

sesquilinear form: 〈x, y〉 = Tr2n(y∗x) = x y∗
2n

? ?
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Jones’ index rigidity theorem

Jones’ index rigidity theorem [Jon83]

Suppose the sesquilinear form on TL2n given by
〈x, y〉 := Tr2n(y∗x) is positive semi-definite for every n ≥ 0. Then

δ ∈
{

2 cos
(π
k

)∣∣∣k ≥ 3
}
∪ [2,∞).
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Jones’ index rigidity theorem

Jones’ index rigidity theorem [Jon83]

Suppose the sesquilinear form on TL2n given by
〈x, y〉 := Tr2n(y∗x) is positive semi-definite for every n ≥ 0. Then

δ ∈
{

2 cos
(π
k

)∣∣∣k ≥ 3
}

︸ ︷︷ ︸
semi-definite

∪ [2,∞)︸ ︷︷ ︸
definite

.

David Penneys Fusion categories between C �D and C ∗ D



Planar algebras Tensor categories Between � and ∗ Definition Temperley-Lieb Factor (fantastic) PAs

Factor (or fantastic) planar algebras

Definition

A planar algebra P• is a factor planar algebra if it is:

Finite dimensional: dim(Pk) <∞ for all k

Evaluable: dim(P0) = 1

Sphericality: Tr2(X) = X? = X?

Positivity: each Pj has an adjoint ∗ such that the sesquilinear
form on P2k given by 〈x, y〉2k := Tr2k(y

∗x) is positive definite
for all k ≥ 0.

From these properties, it follows that closed circles count for a
multiplicative constant δ.

David Penneys Fusion categories between C �D and C ∗ D



Planar algebras Tensor categories Between � and ∗ Definition Temperley-Lieb Factor (fantastic) PAs

Skein relations

If the sesquilinear form is semi-definite, we quotient out the length
zero vectors.

Example: A2

The fantastic planar algebra A2 is the quotient of Temperley-Lieb
when δ = 2 cos(π/3) = 1 by the following skein relations:

= 1

=
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Example: T2

Example: T2

Generated by a trivalent vertex:

Skein relations:

= = τ =
1 +
√

5

2

= 0

=

=
1

τ
+

=
∗

=
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Example: Free product, tensor product

Example: Free product A2 ∗ T2
All non-crossing string diagrams with red and blue strings
satisfying the previous relations.

Example: Tensor product A2 � T2
All crossing string diagrams with red and blue strings satisfying the
previous relations, and a Reidemeister two relation

=
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Tensor categories to planar algebras

Given a rigid C∗-tensor category, e.g., a unitary fusion category,
and a ‘nice’ object X, we can construct a planar algebra.

PA(C, X)n = Hom(1, X⊗n):

n

f

evX =
XX

1

and coevX =

X X

1

zig-zag relation: X = X

X

X

= X

X

X

.
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Tensor categories to planar algebras (cont.)

unitary implies positive and spherical:

〈f, g〉 = f g∗
n

? ?

tr(f) =

n

f

n

=

n

f

n

spherical implies pivotal: f

n

n

= f

n

n

.
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Planar algebras to tensor categories

Given a factor planar algebra, can construct its rigid C∗-tensor
category of projections.

Objects are (formal direct sums of) projections

Tensoring is horizontal concatenation p⊗ q =

m

p

m

n

q

n

Hom(p, q) = {x|x = qxp}, i.e.,

m

x

n

=

m

p

m

x

n

q

n

.

Composition of morphisms is vertical stacking.
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Planar algebras to tensor categories (cont.)

Duality is rotation by π

p = p = p .

The adjoint ∗ : Hom(p, q)→ Hom(q, p) is the adjoint in P•.

Theorem

P• → Pro(P•)→ PA(Pro(P•), ) is the identity.

(C, X)→ PA(C, X)→ Pro(PA(C, X)) is an equivalence.
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Fusion graphs

Definition

Given a rigid C∗ tensor category C and a ‘nice’ object X, we define
ΓX , the fusion graph with respect to X, as follows:

Vertices: equivalence classes of simple objects

Edges: If P is simple, P ⊗X =
⊕

Q simple N
Q
P,XQ.

There are NQ
P,X edges between simples P,Q ∈ C.

Example: A2

Two simples 1, θ, and θ ⊗ θ = 1, so Γθ = 1 θ .

Example: T2

Two simples 1, τ , and τ ⊗ τ = 1⊕ τ , so Γτ = 1 τ
.
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Planar algebras with δ < 2

Theorem

The factor planar algebras with δ < 2 are as follows:

name principal graph # constructed

An 1 [Jon83]

D2n 1 [Ocn88, Kaw95]

Tn 1 [KO02, EO04]

E6 2 [Ocn88, BN91]

E8 2 [Ocn88, Izu94]
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Composing fusion categories

Interpolating between tensor products and free products of fusion
categories.
Simplest examples of fusion categories have 2 objects.

A2 −A2 (Warmup)

A2 − T2 (Main motivation - Bisch-Haagerup 1994)

T2 − T2 (Bonus!)
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Two copies of A2

Take two copies of A2:

α = and θ =

where α⊗ α ∼= 1 and θ ⊗ θ ∼= 1. We have the following skein
relations:

= 1 = 1

= =
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Simple objects

Proposition

Suppose C is generated by α, θ. Then either C is the free product
A2 ∗A2, or there is an n ∈ N such that (αθ)n ∼= 1, but
(αθ)n−1 � 1. Any word in α, θ of length ≤ n is a simple object.
Words of length < n give distinct simples.

Example

If n = 3, then (representatives for) the simple objects are

1

,

α

,

θ

,

αθ

,

θα

,

αθα

Even though θαθ is simple, it is isomorphic to αθα.
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Another generator

Free product A2 ∗A2 has no extra relations.

In the tensor product A2 �A2, and commute:

:
∼=−→

If there is such an n ∈ N, then we have an isomorphism
U : ( )n → 1.

For n = 3: U? : ( )
∼=−→ ( ).
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Relations for U

Proposition

U satisfies the following skein relations:

UU∗ = and U∗U =

Rotation relation:

U? = U∗? = ω−1U U?

for some n-th root of unity ωU .

Jellyfish relations:

2n

U?
=

2n

U∗?
and

2n

U?
= ωU

2n

U∗?
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Bigelow-Morrison-Peters-Snyder [BMPS12]

The Haagerup and extended Haagerup subfactor planar algebras
have a generator S ∈ Pn,+ where n = 4, 8 respectively satisfying:

2n− 1

S
?

f (2n+2)?
= i

√
[n][n+ 2]

[n+ 1]

n− 1

n+ 1 n+ 1

S S

??

f (2n+2)?
,

2n

S
?

f (2n+4)?

=
[2][2n+ 4]

[n+ 1][n+ 2]

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?
,

capping S gives zero, and

(Absorption) S2 = f (n).
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The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1 First, pull all generators to the outside using the jellyfish
relations

   

2 Second, reduce the number of generators using the capping
and absorption (multiplication) relations.
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VecωD2n
and A

(1)
2n−1

Theorem

These relations are consistent and sufficient to evaluate all closed
diagrams. Hence there are exactly n distinct categories satisfying
( )n ∼= 1. These are VecωD2n

.

Remark

If we draw a black string for X = α⊕ θ,

= + ,

then the fusion graph ΓX is A
(1)
2n−1

Equivariantization ( ↔ ) gives D
(1)
n+2
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What about A2 and T2?

Can we interpolate between tensor and free product for A2

and T2?

This question was asked by Bisch and Haagerup in 1994.
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Bisch-Haagerup Fish

Possible subfactors A3 �A4 ≤ BHFn ≤ A3 ∗A4.

Possible fusion categories A2 � T2 ≤ 1
2BHFn ≤ A2 ∗ T2.

BHF1 = A3 �A4 =
(

,
)

BHF2 =
(

,
)

BHF3 =
(

,
)

...

BHFn =
(

· · · , · · ·
)

...

BHF∞ = A3 ∗A4 =
(

· · · , · · ·
)
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Skein relations

Suppose C is generated by θ, ρ with θ ⊗ θ ∼= 1 and ρ⊗ ρ ∼= 1⊕ ρ.

θ = and ρ =

We have the following skein relations:

= 1 = = τ =
1 +
√

5

2

= 0

= =

=
1

τ
+

=
∗

=
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Simple objects

Proposition

Suppose C is generated by ρ, θ. Then either C is the free product
A2 ∗ T2, or there is an n ∈ N such that (ρθ)n ∼= (θρ)n, but
(ρθ)n−1 � (θρ)n−1. Any word in ρ, θ of length ≤ 2n is a simple
object. Words of length < 2n give distinct simples.

Example

If n = 2, then (representatives for) the simple objects are

1

,

ρ

,

θ

,

ρθ

,

θρ

,

ρθρ

,

θρθ

,

ρθρθ

Even though θρθρ is simple, it is isomorphic to ρθρθ.
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Another generator

Free product A2 ∗ T2 has no extra relations.

In the tensor product A2 � T2, and commute:

:
∼=−→

For 1 < n ≤ ∞, we have ( )n ∼= ( )n:

U? : ( )n
∼=−→ ( )n

where we draw for ( )n−1 .
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Relations for U

Reidemeister relations:

= U

?

U∗
?

and = U∗
?

U

?

.

Rotation relations:

···

···

}
{

( )n−1

( )n−1

U? = U∗? = ω−1U U
?

where ωU is a 2n-th root of unity.
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Jellyfish relations

Theorem

U satisfies the following jellyfish relations:

1
U?

= U∗?

2
U
?

= σ−1U
U

?

U∗
?

3
U?

=
ωU
τ

U∗?
+ σ−1U

U

?

U∗
?

Here σ2U = ωU . Switching U with −U switches the sign of σU .
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Existence and uniqueness for n = 1, 2, 3,∞, nonexistence
for 4 ≤ n <∞

Theorem [Liu 2013]

BHFn exists and is unique for n = 1, 2, 3,∞.
BHFn does not exist for 4 ≤ n <∞.

Theorem [Izumi-Morrison-Penneys 2013]

1
2BHFn exists and is unique for n = 1, 2, 3,∞.
1
2BHFn does not exist for 4 ≤ n ≤ 10.

Both proofs discovered simultaneously and independently.

IMP’s method - construction for n = 1, 2, 3 ad hoc, only
eliminates 4 ≤ n ≤ 10. Conjecturally eliminates all
4 ≤ n <∞.

Liu’s method - uniform construction, eliminates all
4 ≤ n <∞.
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Uniqueness and nonexistence

For n =∞, no more relations, so planar algebra is unique.

When n <∞, we consider the following diagram:

U

?

=
U

?

U? U∗ ?

First, we pull the U upward using the jellyfish relations.
Then we compare the results.

For n = 1, 2, 3, we get ωU = 1, so planar algebra is unique.

For 4 ≤ n ≤ 10, the results are inconsistent. We conjecture
the results are inconsistent for all 4 ≤ n <∞.
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What about T2 and T2?

Suppose C is generated by ρ, µ with ρ⊗ ρ ∼= 1⊕ ρ and
µ⊗ µ ∼= 1⊕ µ.

ρ = and µ =

We have the following skein relations:

= = τ =
1 +
√

5

2
= = τ =

1 +
√

5

2

= 0 = 0

= =

=
1

τ
+ =

1

τ
+

=
∗

= =
∗

=

David Penneys Fusion categories between C �D and C ∗ D



Planar algebras Tensor categories Between � and ∗ A2 − A2 A2 − T2 T2 − T2 Further goals

Simple objects

Proposition

Suppose C is generated by ρ, µ. Then either C is the free product
T2 ∗ T2, or there is an n ∈ N such that (ρµ)n ∼= 1, but
(ρµ)n−1 � 1. Any word in ρ, µ of length ≤ n is a simple object.
Words of length < n give distinct simples.

Example

If n = 3, then (representatives for) the simple objects are

1

,

ρ

,

µ

,

ρµ

,

µρ

,

ρµρ

Even though µρµ is simple, it is isomorphic to ρµρ.
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Skein relations

Again, we have another generator U when 2 ≤ n <∞.

Proposition

U satisfies the following skein relations:

UU∗ = and U∗U =

Rotation relation:

U? = U∗? = ω−1U U?

for some n-th root of unity ωU .
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Theorem

U satisfies the following jellyfish relations:

1
U
?

= σ−1U
U

?

U∗
?

2
U
?

=
ωU
τ

U∗?
+ σ−1U

U

?

U∗
?

3
U∗

?

= U∗
?

U

?

4
U∗

?

=
1

τ
U?

+ U∗
?

U

?
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Existence and uniqueness for n = 2, 3,∞, nonexistence for
4 ≤ n <∞

Theorem [Izumi-Morrison-Penneys 2013]

This T2 − T2 category exists and is unique for n = 2, 3,∞.
Does not exist for 4 ≤ n ≤ 10.

Theorem [Liu 2013]

A similar, but much better result for subfactors.
Existence and uniqueness for n = 2, 3,∞.
Non-existence for 4 ≤ n <∞.

Again, IMP’s method only eliminates 4 ≤ n ≤ 10.
Conjecturally eliminates all 4 ≤ n <∞.

Liu’s method is uniform, eliminates all 4 ≤ n <∞.

David Penneys Fusion categories between C �D and C ∗ D



Planar algebras Tensor categories Between � and ∗ A2 − A2 A2 − T2 T2 − T2 Further goals

What next?

What about

Subfactors between A3 �A5 and A3 ∗A5

Fusion categories between A2 � 1
2A5 and A2 ∗ 1

2A5

(12A5 = Rep(S3))

The situation is much harder since 1
2A5 has three objects 1, ρ, α

with ρ⊗ ρ ∼= 1⊕ ρ⊕ α.
I am exploring certain cases of these in joint work with Liu:
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The end

Thank you for listening!
(Preprints coming soon)
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