Fusion categories between $\mathcal{C} \boxtimes \mathcal{D}$ and $\mathcal{C} * \mathcal{D}$

(with applications to subfactors at index $3+\sqrt{5}$)
Institut de Mathématiques de Bourgogne

David Penneys
University of Toronto
Joint with Masaki Izumi and Scott Morrison

May 22, 2013

Overview

- Planar algebras give a generators and relations approach to subfactors and tensor categories.
- From the above, we get an invariant called a fusion graph.

Question

- (Unreasonable) Which graphs are fusion graphs?
- What is a reasonable way to classify fusion categories?

Planar algebras [Jon99]

Definition

A planar tangle has

- a finite number of inner boundary disks
- an outer boundary disk
- non-intersecting strings
- a marked interval \star on each boundary disk

Composition of tangles

We can compose planar tangles by insertion of one into another if the number of strings matches up:

Definition

The planar operad consists of all planar tangles (up to isotopy) with the operation of composition.

Definition

A planar algebra is a family of vector spaces $P_{k}, k=0,1,2, \ldots$ and an action of the planar operad.

$$
P_{3} \times P_{2} \times P_{4} \longrightarrow P_{7}
$$

$$
P_{3} \times P_{4} \times P_{4}
$$

Example: Temperley-Lieb

$T L_{n}(\delta)$ is the complex span of non-crossing pairings of n points arranged around a circle, with formal addition and scalar multiplication.

Planar tangles act on $T L$ by inserting diagrams into empty disks, smoothing strings, and trading closed loops for factors of δ.

Some special tangles/properties

- adjoint is reflection: $(* / \infty)^{*}=*$
- trace: $\operatorname{Tr}_{2 n}(x)=\star \square \quad n=n$

- sesquilinear form: $\langle x, y\rangle=\operatorname{Tr}_{2 n}\left(y^{*} x\right)=\underbrace{}_{\star}$

Jones' index rigidity theorem

Jones' index rigidity theorem [Jon83]
Suppose the sesquilinear form on $T L_{2 n}$ given by
$\langle x, y\rangle:=\operatorname{Tr}_{2 n}\left(y^{*} x\right)$ is positive semi-definite for every $n \geq 0$. Then

$$
\delta \in\left\{\left.2 \cos \left(\frac{\pi}{k}\right) \right\rvert\, k \geq 3\right\} \cup[2, \infty)
$$

Jones' index rigidity theorem

Jones' index rigidity theorem [Jon83]

Suppose the sesquilinear form on $T L_{2 n}$ given by $\langle x, y\rangle:=\operatorname{Tr}_{2 n}\left(y^{*} x\right)$ is positive semi-definite for every $n \geq 0$. Then

$$
\delta \in \underbrace{\left\{\left.2 \cos \left(\frac{\pi}{k}\right) \right\rvert\, k \geq 3\right\}}_{\text {semi-definite }} \cup \underbrace{[2, \infty)}_{\text {definite }} .
$$

Factor (or fantastic) planar algebras

Definition

A planar algebra P_{\bullet} is a factor planar algebra if it is:

- Finite dimensional: $\operatorname{dim}\left(P_{k}\right)<\infty$ for all k
- Evaluable: $\operatorname{dim}\left(P_{0}\right)=1$
- Sphericality: $\operatorname{Tr}_{2}(X)=\star X=\star X$
- Positivity: each P_{j} has an adjoint $*$ such that the sesquilinear form on $P_{2 k}$ given by $\langle x, y\rangle_{2 k}:=\operatorname{Tr}_{2 k}\left(y^{*} x\right)$ is positive definite for all $k \geq 0$.
From these properties, it follows that closed circles count for a multiplicative constant δ.

Skein relations

If the sesquilinear form is semi-definite, we quotient out the length zero vectors.

Example: A_{2}

The fantastic planar algebra A_{2} is the quotient of Temperley-Lieb when $\delta=2 \cos (\pi / 3)=1$ by the following skein relations:

$$
0=1
$$

Example：T_{2}

Example：T_{2}

Generated by a trivalent vertex： \square
Skein relations：

$$
\begin{aligned}
& \text { O }=\ominus=r=\frac{1+\sqrt{5}}{2} \\
& \text { Q }=0 \\
& \text { 오=ㅁ } \\
& \square=1 \square+\infty \\
& \text { 四 }=\text { D }=\text { 田 }
\end{aligned}
$$

Example: Free product, tensor product

Example: Free product $A_{2} * T_{2}$

All non-crossing string diagrams with red and blue strings satisfying the previous relations.

Example: Tensor product $A_{2} \boxtimes T_{2}$

All crossing string diagrams with red and blue strings satisfying the previous relations, and a Reidemeister two relation

Tensor categories to planar algebras

Given a rigid C^{*}-tensor category, e.g., a unitary fusion category, and a 'nice' object X, we can construct a planar algebra.

- $\mathcal{P A}(\mathcal{C}, X)_{n}=\operatorname{Hom}\left(1, X^{\otimes n}\right):$| n |
| :---: |
| |

$\bullet \mathrm{ev}_{X}={ }^{X} \bigcup_{1}^{X}$ and $\operatorname{coev}_{X}=\overbrace{X}^{1}$

Tensor categories to planar algebras (cont.)

- unitary implies positive and spherical:

$$
\begin{aligned}
& \langle f, g\rangle=\begin{array}{cc}
\square_{\star} & \sqrt[n]{g^{*}} \\
\star
\end{array} \\
& \operatorname{tr}(f)=\bigvee_{n}^{n}=\square_{n}^{n}
\end{aligned}
$$

- spherical implies pivotal:

Planar algebras to tensor categories

Given a factor planar algebra, can construct its rigid C^{*}-tensor category of projections.

- Objects are (formal direct sums of) projections

- $\operatorname{Hom}(p, q)=\{x \mid x=q x p\}$, i.e.,

- Composition of morphisms is vertical stacking.

Planar algebras to tensor categories (cont.)

- Duality is rotation by π

- The adjoint $*: \operatorname{Hom}(p, q) \rightarrow \operatorname{Hom}(q, p)$ is the adjoint in P_{\bullet}.

Theorem

- $P_{\bullet} \rightarrow \operatorname{Pro}\left(P_{\bullet}\right) \rightarrow \mathcal{P} \mathcal{A}\left(\operatorname{Pro}\left(P_{\bullet}\right), \mid\right)$ is the identity.
- $(\mathcal{C}, X) \rightarrow \mathcal{P} \mathcal{A}(\mathcal{C}, X) \rightarrow \operatorname{Pro}(\mathcal{P} \mathcal{A}(\mathcal{C}, X))$ is an equivalence.

Fusion graphs

Definition

Given a rigid C^{*} tensor category \mathcal{C} and a 'nice' object X, we define Γ_{X}, the fusion graph with respect to X, as follows:

- Vertices: equivalence classes of simple objects
- Edges: If P is simple, $P \otimes X=\bigoplus_{Q \text { simple }} N_{P, X}^{Q} Q$. There are $N_{P, X}^{Q}$ edges between simples $P, Q \in \mathcal{C}$.

Example: A_{2}

Two simples $1, \theta$, and $\theta \otimes \theta=1$, so $\Gamma_{\theta}=\stackrel{\bullet}{\bullet} \quad$.

Example: T_{2}
Two simples $1, \tau$, and $\tau \otimes \tau=1 \oplus \tau$, so $\Gamma_{\tau}=\stackrel{\tau}{\square}$.

Planar algebras with $\delta<2$

Theorem

The factor planar algebras with $\delta<2$ are as follows:

name	principal graph	\#	constructed
A_{n}	- . .	1	[Jon83]
$D_{2 n}$		1	[Ocn88, Kaw95]
T_{n}	\bigcirc	1	[KO02, EO04]
E_{6}		2	[Ocn88, BN91]
E_{8}	$!$	2	[Ocn88, Izu94]

Composing fusion categories

Interpolating between tensor products and free products of fusion categories.
Simplest examples of fusion categories have 2 objects.

- $A_{2}-A_{2}$ (Warmup)
- $A_{2}-T_{2}$ (Main motivation - Bisch-Haagerup 1994)
- $T_{2}-T_{2}$ (Bonus!)

Two copies of A_{2}

Take two copies of A_{2} :

$$
\alpha=\mid \text { and } \theta=\mid
$$

where $\alpha \otimes \alpha \cong 1$ and $\theta \otimes \theta \cong 1$. We have the following skein relations:

Simple objects

Proposition

Suppose \mathcal{C} is generated by α, θ. Then either \mathcal{C} is the free product $A_{2} * A_{2}$, or there is an $n \in \mathbb{N}$ such that $(\alpha \theta)^{n} \cong 1$, but $(\alpha \theta)^{n-1} \not \not \equiv 1$. Any word in α, θ of length $\leq n$ is a simple object. Words of length $<n$ give distinct simples.

Example

If $n=3$, then (representatives for) the simple objects are

Even though $\theta \alpha \theta$ is simple, it is isomorphic to $\alpha \theta \alpha$.

Another generator

- Free product $A_{2} * A_{2}$ has no extra relations.
- In the tensor product $A_{2} \boxtimes A_{2}$, | and | commute:

- If there is such an $n \in \mathbb{N}$, then we have an isomorphism $U:(\|)^{n} \rightarrow 1$.
- For $n=3: * \underbrace{U}_{\text {U }}:(|| |) \xrightarrow{\cong}(| | \mid)$.

Relations for U

Proposition

U satisfies the following skein relations:

- $U U^{*}=\left|| |\right.$ and $U^{*} U=|| |$
- Rotation relation:

for some n-th root of unity ω_{U}.
- Jellyfish relations:

Bigelow-Morrison-Peters-Snyder [BMPS12]

The Haagerup and extended Haagerup subfactor planar algebras have a generator $S \in P_{n,+}$ where $n=4,8$ respectively satisfying:

- capping S gives zero, and
- (Absorption) $S^{2}=f^{(n)}$.

The jellyfish algorithm

We can evaluate all closed diagrams as follows:
(1) First, pull all generators to the outside using the jellyfish relations

(2) Second, reduce the number of generators using the capping and absorption (multiplication) relations.

$\operatorname{Vec}_{D_{2 n}}^{\omega}$ and $A_{2 n-1}^{(1)}$

Theorem

These relations are consistent and sufficient to evaluate all closed diagrams. Hence there are exactly n distinct categories satisfying $(\|)^{n} \cong 1$. These are $\operatorname{Vec}_{D_{2 n}}^{\omega}$.

Remark

If we draw a black string for $X=\alpha \oplus \theta$,
then the fusion graph Γ_{X} is $A_{2 n-1}^{(1)}$
Equivariantization $(|\leftrightarrow|)$ gives $D_{n+2}^{(1)}$

What about A_{2} and T_{2} ?

- Can we interpolate between tensor and free product for A_{2} and T_{2} ?
- This question was asked by Bisch and Haagerup in 1994.

Bisch-Haagerup Fish

- Possible subfactors $A_{3} \boxtimes A_{4} \leq \mathcal{B} \mathcal{H} \mathcal{F}_{n} \leq A_{3} * A_{4}$.
- Possible fusion categories $A_{2} \boxtimes T_{2} \leq \frac{1}{2} \mathcal{B H} \mathcal{F}_{n} \leq A_{2} * T_{2}$.
$\mathcal{B H} \mathcal{F}_{1}=A_{3} \boxtimes A_{4}=(\hookleftarrow, \longleftrightarrow \longleftrightarrow)$
$\mathcal{B H} \mathcal{F}_{2}=(\backsim: \rightarrow, \longrightarrow \ll)$

\vdots
$\mathcal{B H} \mathcal{F}_{n}=(4: \underset{\sim}{c}$

Skein relations

Suppose \mathcal{C} is generated by θ, ρ with $\theta \otimes \theta \cong 1$ and $\rho \otimes \rho \cong 1 \oplus \rho$.

$$
\theta=\mid \text { and } \rho=\mid
$$

We have the following skein relations:

$$
\bigcirc=1
$$

$$
\bigcirc=\bigcirc=\tau=\frac{1+\sqrt{5}}{2}
$$

$$
Q=0
$$

Simple objects

Proposition

Suppose \mathcal{C} is generated by ρ, θ. Then either \mathcal{C} is the free product $A_{2} * T_{2}$, or there is an $n \in \mathbb{N}$ such that $(\rho \theta)^{n} \cong(\theta \rho)^{n}$, but $(\rho \theta)^{n-1} \nexists(\theta \rho)^{n-1}$. Any word in ρ, θ of length $\leq 2 n$ is a simple object. Words of length $<2 n$ give distinct simples.

Example

If $n=2$, then (representatives for) the simple objects are

Even though $\theta \rho \theta \rho$ is simple, it is isomorphic to $\rho \theta \rho \theta$.

Another generator

- Free product $A_{2} * T_{2}$ has no extra relations.
- In the tensor product $A_{2} \boxtimes T_{2}, \mid$ and \mid commute:

- For $1<n \leq \infty$, we have $(\|)^{n} \cong(\|)^{n}$:

where we draw \mid for $(\|)^{n-1} \mid$.

Relations for U

- Reidemeister relations:

- Rotation relations:
(
where ω_{U} is a $2 n$-th root of unity.

Jellyfish relations

Theorem

U satisfies the following jellyfish relations:

Here $\sigma_{U}^{2}=\omega_{U}$. Switching U with $-U$ switches the sign of σ_{U}.

Existence and uniqueness for $n=1,2,3, \infty$, nonexistence

 for $4 \leq n<\infty$
Theorem [Liu 2013]

$\mathcal{B H} \mathcal{F}_{n}$ exists and is unique for $n=1,2,3, \infty$. $\mathcal{B H} \mathcal{F}_{n}$ does not exist for $4 \leq n<\infty$.

Theorem [Izumi-Morrison-Penneys 2013]

$\frac{1}{2} \mathcal{B} \mathcal{H} \mathcal{F}_{n}$ exists and is unique for $n=1,2,3, \infty$.
$\frac{1}{2} \mathcal{B H} \mathcal{F}_{n}$ does not exist for $4 \leq n \leq 10$.
Both proofs discovered simultaneously and independently.

- IMP's method - construction for $n=1,2,3$ ad hoc, only eliminates $4 \leq n \leq 10$. Conjecturally eliminates all $4 \leq n<\infty$.
- Liu's method - uniform construction, eliminates all $4 \leq n<\infty$.

Uniqueness and nonexistence

- For $n=\infty$, no more relations, so planar algebra is unique.
- When $n<\infty$, we consider the following diagram:

- First, we pull the U upward using the jellyfish relations.

Then we compare the results.

- For $n=1,2,3$, we get $\omega_{U}=1$, so planar algebra is unique.
- For $4 \leq n \leq 10$, the results are inconsistent. We conjecture the results are inconsistent for all $4 \leq n<\infty$.

What about T_{2} and T_{2} ?

Suppose \mathcal{C} is generated by ρ, μ with $\rho \otimes \rho \cong 1 \oplus \rho$ and $\mu \otimes \mu \cong 1 \oplus \mu$.

$$
\rho=\mid \text { and } \mu=\mid
$$

We have the following skein relations:

$$
\begin{aligned}
& \bigcirc=\bigcirc=\tau=\frac{1+\sqrt{5}}{2} \\
& \bigcirc=\square=\tau=\frac{1+\sqrt{5}}{2} \\
& Q=0 \\
& \text { Q }=\square \\
& \square=0 \\
& \square=\frac{1}{\square}+\sim+ \\
& \square=\square \\
& \text { 四 }=\mathbb{D}=\mathbf{\square}
\end{aligned}
$$

Simple objects

Proposition

Suppose \mathcal{C} is generated by ρ, μ. Then either \mathcal{C} is the free product $T_{2} * T_{2}$, or there is an $n \in \mathbb{N}$ such that $(\rho \mu)^{n} \cong 1$, but $(\rho \mu)^{n-1} \nVdash 1$. Any word in ρ, μ of length $\leq n$ is a simple object. Words of length $<n$ give distinct simples.

Example

If $n=3$, then (representatives for) the simple objects are

Even though $\mu \rho \mu$ is simple, it is isomorphic to $\rho \mu \rho$.

Skein relations

Again, we have another generator U when $2 \leq n<\infty$.

Proposition

U satisfies the following skein relations:

- $U U^{*}=\left|| |\right.$ and $U^{*} U=|| |$
- Rotation relation:

for some n-th root of unity ω_{U}.

Theorem

U satisfies the following jellyfish relations:
(1)

- (0) = ©

Existence and uniqueness for $n=2,3, \infty$, nonexistence for

 $4 \leq n<\infty$
Theorem [Izumi-Morrison-Penneys 2013]

This $T_{2}-T_{2}$ category exists and is unique for $n=2,3, \infty$.
Does not exist for $4 \leq n \leq 10$.

Theorem [Liu 2013]

A similar, but much better result for subfactors.
Existence and uniqueness for $n=2,3, \infty$.
Non-existence for $4 \leq n<\infty$.

- Again, IMP's method only eliminates $4 \leq n \leq 10$. Conjecturally eliminates all $4 \leq n<\infty$.
- Liu's method is uniform, eliminates all $4 \leq n<\infty$.

What next?

What about

- Subfactors between $A_{3} \boxtimes A_{5}$ and $A_{3} * A_{5}$
- Fusion categories between $A_{2} \boxtimes \frac{1}{2} A_{5}$ and $A_{2} * \frac{1}{2} A_{5}$ $\left(\frac{1}{2} A_{5}=\operatorname{Rep}\left(S_{3}\right)\right)$
The situation is much harder since $\frac{1}{2} A_{5}$ has three objects $1, \rho, \alpha$ with $\rho \otimes \rho \cong 1 \oplus \rho \oplus \alpha$.
I am exploring certain cases of these in joint work with Liu:

击 Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder, Constructing the extended Haagerup planar algebra, Acta Math. 209 (2012), no. 1, 29-82, MR2979509, arXiv:0909.4099, DOI:10.1007/s11511-012-0081-7. MR 2979509

國 Jocelyne Bion-Nadal, An example of a subfactor of the hyperfinite II_{1} factor whose principal graph invariant is the Coxeter graph E_{6}, Current topics in operator algebras (Nara, 1990), World Sci. Publ., River Edge, NJ, 1991, MR1193933, pp. 104-113. MR MR1193933 (94a:46085)

Pavel Etingof and Viktor Ostrik, Module categories over representations of $\mathrm{SL}_{q}(2)$ and graphs, Math. Res. Lett. 11 (2004), no. 1, 103-114, MR2046203
arXiv:math.QA/0302130. MR MR2046203 (2005d:20088)

囯 Masaki Izumi, On flatness of the Coxeter graph E_{8}, Pacific J. Math. 166 (1994), no. 2, 305-327, MR1313457
euclid.pjm/1102621140. MR MR1313457 (96a:46112)
E Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25, MR696688, DOI:10.1007/BF01389127.
\qquad Planar algebras I, 1999, arXiv:math/9909027.

目 Yasuyuki Kawahigashi, On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors, J. Funct. Anal. 127 (1995), no. 1, 63-107, MR1308617 DOI:10.1006/jfan.1995.1003. MR MR1308617 (95j:46075)

E Alexander Kirillov, Jr. and Viktor Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of $\mathfrak{s l}_{2}$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183-227, MR1936496 arXiv:math.QA/0101219

DOI:10.1006/aima.2002.2072. MR MR1936496 (2003j:17019)

目 Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, MR996454, pp. 119-172.

