Constructing subfactors with the jellyfish algorithm ECOAS, University of Tennessee, Knoxville

David Penneys

University of Toronto

October 7, 2012

Invariants of subfactors

< ≣ >

<**□** > < ⊇ >

æ

Subfactors

Theorem [Jon83]

For a II_1 -subfactor $A \subset B$,

$$[B\colon A] \in \left\{4\cos^2\left(\frac{\pi}{n}\right) \middle| n = 3, 4, \dots\right\} \cup [4, \infty].$$

Definition

The Jones tower of $A = A_0 \subset A_1 = B$ (finite index) is given by

$$A_0 \subset A_1 \stackrel{e_1}{\subset} A_2 \stackrel{e_2}{\subset} A_3 \stackrel{e_3}{\subset} \cdots$$

where e_i is the projection in $B(L^2(A_i))$ with range $L^2(A_{i-1})$.

イロト イヨト イヨト イヨト

Two towers of centralizer algebras

.

.

These centralizer algebras form a planar algebra.

Э

Planar algebras [Jon99]

Definition

- A shaded planar tangle has
 - a finite number of inner boundary circles
 - an outer boundary circle
 - non-intersecting strings
 - a marked point * on each boundary circle

Composition of tangles

We can compose planar tangles by insertion of one into another if the number of strings matches up:

Definition

The *shaded planar operad* consists of all shaded planar tangles (up to isotopy) with the operation of composition.

Definition

A *planar algebra* is a family of vector spaces $V_{k,\pm}$, k = 0, 1, 2, ... which are acted on by the shaded planar operad.

イロト イヨト イヨト イヨト

æ

Example: Temperley-Lieb

 $TL_{n,\pm}(\delta)$ is the span (over \mathbb{C}) of non-crossing pairings of 2n points arranged around a circle, with formal addition.

$$TL_{3,+}(\delta) = \operatorname{Span}_{\mathbb{C}}\left\{ \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}} \right\}.$$

Planar tangles act on TL by inserting diagrams into empty disks, smoothing strings, and trading closed loops for factors of δ .

▲帰▶ ▲ 臣▶ ▲ 臣♪

Subfactor planar algebras

Definition

A planar algebra P_{\bullet} is a subfactor planar algebra if it is:

- Finite dimensional: $\dim(P_{k,\pm}) < \infty$ for all k
- Evaluable: $\dim(P_{0,\pm}) = 1$
- Sphericality:

• Positivity: each $P_{k,\pm}$ has an adjoint * such that the bilinear form $\langle x,y\rangle:=\mathrm{Tr}(y^*x)$ is positive definite

From these properties, it follows that closed circles count for a multiplicative constant $\delta.$

- 4 回 2 - 4 □ 2 - 4 □

Principal graphs

The complex *-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

is described by its Bratteli diagram (and the trace).

Principal graphs

The complex *-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

is described by its Bratteli diagram (and the trace).

The non-reflected part is the principal graph Γ .

→ Ξ →

Finite depth

Definition

If the principal graph is finite, then the subfactor and planar algebra are called finite depth.

Examples of principal graphs

Index < 4

 A_n, D_{2n}, E_6, E_8

$\mathsf{Index} = 4$

Affine Dynkin diagrams

- Finite graphs $A_{2n-1}^{(1)}, D_{n+2}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$.
- Infinite graphs $A_{\infty}, A_{\infty}^{(1)}, D_{\infty}$.

(ロ) (同) (E) (E) (E)

Classification to index 5

[Haa94, AH99, Bis98, AY09, BMPS09, Han11, MS11, MPPS12, IJMS11, PT12]

Index in (4,5)

There are exactly 10 non $A_\infty\text{-subfactor}$ planar algebras in the index range (4,5):

æ

Bigelow-Morrison-Peters-Snyder, arXiv:0909.4099

The Haagerup and extended Haagerup subfactor planar algebras have a generator $S \in P_{n,+}$ where n = 4, 8 respectively satisfying:

• (Absorption) $S^2 = f^{(n)}$.

< A

The jellyfish algorithm

We can evaluate all closed diagrams as follows:

First, pull all generators to the outside using the jellyfish relations

Second, reduce the number of generators using the capping and absorption (multiplication) relations.

Consistency and positivity

Theorem [Jones-Penneys [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra of its principal graph.

This serves two purposes:

- **1** To show the planar algebra is non-zero, give a representation.
- Graph planar algebras are always finite dimensional, spherical, and positive. Only need to check evaluable.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Spoke graphs

Examples of spoke principal graphs

- $A_n, D_{2n}, E_6, E_8,$
- $E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$
- $A_{\infty}, A_{\infty}^{(1)}, D_{\infty}$
- Principal graphs for $R \subset R \rtimes G$, G finite $\left(\longleftarrow, \longleftarrow \right)$

・回 と く ヨ と く ヨ と

2

• 4442 • • • •

Constructing spoke subfactors using jellyfish

Theorem [Morrison-Penneys arXiv:1208.3637]

The following subfactors can be constructed using the jellyfish algorithm. Moreover, we only need 1-strand relations.

Spokes and jellyfish

Assume all generators of P_{\bullet} are at the same depth n.

Theorem [Bigelow-Penneys arXiv:1208.1564]

• P_{\bullet} has 2-strand jellyfish relations \Leftrightarrow one graph is a spoke.

• P_{\bullet} has 1-strand jellyfish relations \Leftrightarrow both graphs are spokes.

Presenting small index subfactors by jellyfish

Presenting small index subfactors by jellyfish

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

Jellyfish relations for non-spoke subfactors

Theorem [Morrison-Penneys, in preparation]

The $D_{n+2}^{(1)}$ subfactor planar algebras

have the following presentation with a 2-box S, and an n-box T:

David Penneys

Constructing subfactors with the jellyfish algorithm

$D_{n+2}^{(1)}$ relations continued

- S, T cap to zero,
- $S^2 = s + 2f^{(2)}$,
- T absorbs S (up to a scalar):

• T^2 is a diagram in jellyfish form with only S's, e.g., if n = 3,

$$T^2 = \underbrace{\overset{\star}{\underset{2/ \ \bigcirc}{3}}}_{2/ \ \bigcirc} - \underbrace{\overset{\star}{\underset{3}{3}}}_{3} \underbrace{\overset{\star}{\underset{3}{3}}}_{3}$$

▲ 御 ▶ → ミ ▶

A 3 3

э

Open questions

Question [Izumi [Izu01], Evans-Gannon [EG10]]

Is there an infinite family of 3^G subfactors?

- (Haagerup) $\mathbb{Z}/3$ (\longrightarrow , \longrightarrow , \longrightarrow , \longrightarrow)

We can use jellyfish relations on generators at depth 4.

Question [Izumi, Evans-Gannon]

What about an infinite 2^{G1} family?

• (Izumi-Xu)
$$\mathbb{Z}/3$$
 (\cdots , \cdots , \cdots)

イロト イヨト イヨト イヨト

Open questions 2

Question

Which finite spoke graphs Γ are principal graphs of subfactors?

- $\|\Gamma\|^2$ must be a cyclotomic integer by [CG94, ENO05]!
- If you translate one spoke, eventually not cyclotomic by [CMS10].

- 4 同 6 4 日 6 4 日 6

Open questions 3

Question [Bisch-Haagerup]

Is there an infinite family of 'fish' subfactors at index $3+\sqrt{5}\approx 5.28?$

• We'd like to use techniques similar to those for the $D_{n+2}^{(1)}$'s.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Thank you for listening!

Slides available at:

http://www.math.toronto.edu/dpenneys

Preprints available at:

with Morrison - Constructing spokes - arXiv:1208.3637 with Bigelow - Spokes and jellyfish - arXiv:1208.1564

・ 同 ト ・ 三 ト ・ 三 ト

- Marta Asaeda and Uffe Haagerup, Exotic subfactors of finite depth with Jones indices (5 + √13)/2 and (5 + √17)/2, Comm. Math. Phys. 202 (1999), no. 1, 1–63, MR1686551 D0I:10.1007/s002200050574 arXiv:math.OA/9803044.
- Marta Asaeda and Seidai Yasuda, On Haagerup's list of potential principal graphs of subfactors, Comm. Math. Phys. 286 (2009), no. 3, 1141–1157, MR2472028
 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144.
- Dietmar Bisch, Principal graphs of subfactors with small Jones index, Math. Ann. 311 (1998), no. 2, 223–231, MR1625762 DOI:http://dx.doi.org/10.1007/s002080050185.
- Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder, *Constructing the extended Haagerup planar algebra*, 2009, arXiv:0909.4099, to appear *Acta Mathematica*.

Antoine Coste and Terry Gannon, *Remarks on Galois* symmetry in rational conformal field theories, Phys. Lett. B **323** (1994), no. 3-4, 316–321, MR1266785 DOI:10.1016/0370-2693(94)91226-2.

- Frank Calegari, Scott Morrison, and Noah Snyder, *Cyclotomic integers, fusion categories, and subfactors*, 2010, With an appendix by Victor Ostrik. To appear in Communications in Mathematical Physics. arXiv:1004.0665.
- David E. Evans and Terry Gannon, The exoticness and realisability of twisted Haagerup-Izumi modular data, 2010, arXiv:1006.1326.
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642, MR2183279 DOI:10.4007/annals.2005.162.581 arXiv:math.QA/0203060.
- Given the set of the

(《圖》 《문》 《문》 - 문

at http:

//tqft.net/other-papers/subfactors/haagerup.pdf,
pp. 1-38.

- Richard Han, A construction of the "2221" planar algebra, 2011, arXiv:1102.2052.
- Masaki Izumi, Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, Subfactors of index less than 5, part 3: quadruple points, Comm. Math. Phys. (2011), arXiv:1109.3190, Accepted October 8, 2011.
- Masaki Izumi, The structure of sectors associated with Longo-Rehren inclusions. II. Examples, Rev. Math. Phys. 13 (2001), no. 5, 603–674, MR1832764 DOI:10.1142/S0129055X01000818.
- Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25, MR696688, DOI:10.1007/BF01389127.
 - _____, *Planar algebras I*, 1999, arXiv:math/9909027.

- Vaughan F. R. Jones and David Penneys, The embedding theorem for finite depth subfactor planar algebras, Quantum Topol. 2 (2011), no. 3, 301–337, arXiv:1007.3173, MR2812459, DOI:10.4171/QT/23.
- Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, Subfactors of index less than 5, part 2: triple points, Internat. J. Math. 23 (2012), no. 3, 1250016 (33 pages), arXiv:1007.2240, DDI:10.1142/S0129167X11007586.
- Scott Morrison and Noah Snyder, Subfactors of index less than 5, part 1: the principal graph odometer, Comm. Math. Phys. (2011), arXiv:1007.1730, Accepted June 28, 2011.
- David Penneys and James Tener, Subfactors of index less than 5, part 4: vines, Internat. J. Math. 23 (2012), no. 3, 1250017 (18 pages), arXiv:1010.3797, DOI:10.1142/S0129167X11007641.

- 4 同 6 4 日 6 4 日 6