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Where do subfactors come from?

Some examples include:

I Groups – from Gy R, we get RG ⊂ R and R ⊂ Roα G.

I finite dimensional unitary Hopf/Kac algebras

I Quantum groups – Rep(Uq(g))

I Conformal field theory

I endomorphisms of Cuntz C*-algebras

I composites of known subfactors

However, there are certain possible infinite families without
uniform constructions.

Remark
Just as von Neumann algebras come in pairs (M,M ′), subfactors
come in pairs (A ⊂ B,B′ ⊂ A′).



Index for subfactors

Theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Moreover, there exists a subfactor at each index.

Definition
The Jones tower of A = A0 ⊂ A1 = B (finite index) is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).



Two towers of centralizer algebras

...
...

...
...

∪ ∪ ∪ ∪

P3,+ = A′0 ∩A3 ⊃ A′1 ∩A3 = P2,−

∪ ∪ ∪

P2,+ = A′0 ∩A2 ⊃ A′1 ∩A2 = P1,−

∪ ∪

P1,+ = A′0 ∩A1 ⊃ A′1 ∩A1 = P0,−

∪

P0,+ = A′0 ∩A0

These centralizer algebras are finite dimensional [Jon83], and they
form a planar algebra [Jon99].



Planar algebras [Jon99]

Definition
A shaded planar tangle has

I a finite number of inner boundary disks

I an outer boundary disk

I non-intersecting strings

I a marked interval ? on each boundary disk

?

?

? ?



Composition of tangles

We can compose planar tangles by insertion of one into another if
the number of strings matches up:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition
The shaded planar operad consists of all shaded planar tangles (up
to isotopy) with the operation of composition.



Definition
A planar algebra is a family of vector spaces Pk,±, k = 0, 1, 2, . . .
and an action of the shaded planar operad.

P2,− × P1,+ × P1,+ P3,+

P2,− × P2,+ × P1,+

?

?

? ?

2

1

?

?

3

? ?
?
?



Example: Temperley-Lieb

TLn,±(δ) is the complex span of non-crossing pairings of 2n points
arranged around a circle, with formal addition and scalar
multiplication.

TL3,+(δ) = SpanC

{
?

,
?

,
?

,
?

,
?

}
.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and trading closed loops for factors of δ.

?
? (

?
)

=

?

= δ2

?



Subfactor planar algebras

Definition
A planar ∗-algebra P• is a subfactor planar algebra if it is:

I Finite dimensional: dim(Pk,±) <∞ for all k

I Evaluable: P0,± ∼= C by sending the empty diagram to 1C

I Sphericality: Tr(x) = x? = x?

I Positivity: each Pk,± has an adjoint ∗ such that the
sesquilinear form 〈x, y〉 := Tr(y∗x) is positive definite

From these properties, it follows that closed circles count for a
multiplicative constant δ ∈ {2 cos(π/n)|n ≥ 3} ∪ [2,∞).



Principal graphs

The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).



Principal graphs
The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).

I The non-reflected part is the principal graph Γ+.

I Get the dual principal graph Γ− by looking at the Bratteli
diagram for the tower (Pn,−).



Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I index = 4: A
(1)
2n−1, D

(1)
n+2, E

(1)
6 , E

(1)
7 , E

(1)
8 , A∞, A

(1)
∞ , D∞

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
I Haagerup 333

(
,

)
I extended Haagerup 733

(
,

)
I First graph is principal, second is dual principal.

I Leftmost vertex corresponds to P0,± ∼= C.

I Red tags for duality of even vertices.

I Duality of odd vertices by depth and height



Finite depth

Definition
If the principal graph is finite, then the subfactor and standard
invariant/planar algebra are called finite depth.

Example: R ⊂ RoG for finite G

For G = S3:

I Principal graph:

I Dual principal graph:
2



Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Invariants of subfactors

subfactor
$$

planar algebra
%%

principal graphs

A ⊂ B (P+, P−)cc (Γ+,Γ−)

??

ee



Known small index subfactors

index

su
p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6 61

5

×∞

D
(1)
n+2

one ∞-depth

E
(1)
6

E
(1)
7

E
(1)
8

×2

×2

×4

at least one
∞-depth

×∞
unclassificably
many ∞-depth

∞ A∞ at every index
Hyperfinite A∞ at

the index of E10

×2

E6

×2

E8

A
se
ri
es

D
se
ri
es

1
2

(5 +
√

13) 1
2

(5 +
√

17)

3 +
√

3

1
2

(5 +
√

21)

×3

×3

I Map of known small index subfactors modified from
Jones-Morrison-Snyder Bulletin AMS survey [JMS14].



The extended Haagerup subfactor

[Bigelow-Morrison-Peters-Snyder [BMPS12]]

The extended Haagerup subfactor is the unique subfactor with
principal graphs(

,
)

I Last remaining possible graph in Haagerup’s classification to
3 +
√

3 [Haa94] by work of Asaeda-Yasuda [AY09].

I Largest known supertransitivity outside the A and D series.
High supertransitivity is exceedingly rare!

I Planar algebra constructed using Bigelow’s jellyfish algorithm.



Jellyfish relations

Theorem [Bigelow-Morrison-Peters-Snyder [BMPS12]]

The Haagerup and extended Haagerup subfactor planar algebras
have a generator S ∈ Pn,+ where n = 4, 8 respectively satisfying:

I
2n− 1

S
?

f (2n+2)?
= i

√
[n][n+ 2]

[n+ 1]

n− 1

n+ 1 n+ 1

S S

??

f (2n+2)?

I 2n

S
?

f (2n+4)?

=
[2][2n+ 4]

[n+ 1][n+ 2]

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?

I (Absorption) capping S gives zero and S2 = f (n) ∈ TLn,+.



The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1. First, pull all generators to the outside using the jellyfish
relations

   

2. Second, reduce the number of generators using the capping
and absorption (multiplication) relations.



Consistency and positivity

Theorem [Jones-Penneys [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra
of its principal graph.

This serves two purposes:

1. To show the planar algebra is non-zero, give a representation.

2. Graph planar algebras are always finite dimensional, spherical,
and positive. Only need to check evaluable.



Spoke graphs

Examples of spoke principal graphs

I An, D2n, E6, E8,

I E
(1)
6 , E

(1)
7 , E

(1)
8

I A∞, A
(1)
∞ , D∞

I Principal graphs for R ⊂ RoG, G finite
(

,
2

)
I 2221

I Haagerup 333

I 3311

I 3333

I 4442

I extended Haagerup 733



Spokes and jellyfish

Assume all generators of P• are at the same depth n.

Theorem [Bigelow-Penneys [BP14]]

I P• has 2-strand jellyfish relations ⇔ one graph is a spoke.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

I P• has 1-strand jellyfish relations ⇔ both graphs are spokes.

2n− 1

S
?

,
2n

S
?

←→
(

,
)



Constructing spoke subfactors with jellyfish

Theorem [Morrison-Penneys [MP12a]]

We automate finding 1-strand relations for these subfactors:

I Izumi-Xu 2221 [Han10]

I [GdlHJ89] 3311

I Izumi 3Z/2×Z/2 (index 3 +
√

5)

I 4442 (index 3 +
√

5)

For the above, both principal graphs are the same spoke graph.

Theorem [Penneys-Peters [PP13]]

We give explicit 2-strand relations for Izumi’s 3Z/4 subfactor

I
(

,
)

(index 3 +
√

5)



Small index subfactor classification program

index
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4 5 3+
√
5 6 61
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6

E
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×2
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∞-depth

×∞
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×2
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A
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D
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1
2
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√

13) 1
2

(5 +
√

17)

3 +
√

3

1
2

(5 +
√

21)

×3

×3

Focuses of the classification program:

I Enumerate graph pairs and apply obstructions.

I Construct examples when graphs survive.

I Place exotic examples into families.



Why do we care about index 3 +
√
5?

I Standard invariants at index 4 are completely classified.
I Z/2 ∗ Z/2 = D∞ is amenable

I Standard invariants at index 6 are wild.
I There is (at least) one standard invariant for every normal

subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
I There are unclassifiably many distinct hyperfinite subfactors

with the same standard invariant [BNP07, BV13]

I 4 = 2× 2 and 6 = 2× 3 are composite indices, as is

3 +
√

5 = 2τ2 where τ = 1+
√
5

2 .



1-supertransitive subfactors at index 3 +
√
5

Theorem [Liu [Liu13a]], partial proof by [IMP13]

There are exactly seven 1-supertransitive subfactor planar algebras
with index 3 +

√
5:

I
(

,
)

self-dual

I
(

,
)

and its dual

I
(

,
)

and its dual

I
(

· · · , · · ·
)

and its dual (A3 ∗A4)

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.

Open question

How many hyperfinite subfactors have Bisch-Jones’ Fuss-Catalan
A3 ∗A4 standard invariant at index 3 +

√
5?

I A3 ∗A4 and A2 ∗ T2 are not amenable [Pop94, HI98].



1-supertransitive with index at most 61
5

Theorem [Liu-Morrison-Penneys [LMP13]]

An exactly 1-supertransitive subfactor planar algebra with index at
most 61

5 either comes from a composed inclusion (and has index

3 +
√

5 or 6), or is one of 3 self-dual planar algebras at index
3 + 2

√
2:

I
(

,
)

I
(

,
)

two complex conjugate

I Can push classification results above index 6!

I Could hope that the only wildness at index 6 is “group-like”



Index (5, 3 +
√
5)

Conjecture [Morrison-Peters [MP12b]]

There are exactly two non Temperley-Lieb subfactor planar
algebras in the index range (5, 3 +

√
5):

name Principal graphs Index Constructed

SU(2)5
(

,
)

5.04892 [Wen90], [MP12b]

SU(3)4
(

,
)

5.04892 [Wen88], [MP12b]

Theorem [Morrison-Peters [MP12b]]

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)



Subfactor planar algebras at index 3 +
√
5

Conjecture [Morrison-Penneys]

At 3 +
√

5, we have only the following subfactor planar algebras:

name Principal graphs # Constructed

4442
(

,
)

1 [MP12a], Izumi

3Z/2×Z/2
(

,
)

1 Izumi, [MP12a]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MPP]

A3 ⊗A4

(
,

)
1 ⊗

fish 2
(

,
)

2 BH

fish 3
(

,
)

2 [IMP13]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97]

A∞
(

· · · , · · ·
)

1 [Pop93]

I 1-supertransitive case known by [Liu13a, IMP13, LMP13]



Methods to push classification results further

I The non-initial triple point obstruction

I Popa’s principal graph stability [Pop95, BP14]

I Liu’s virtual normalizers for 1-supertransitive subfactors
[Liu13b] (pushed 1-supertransitive classification to 61

5
[LMP13])

I Afzaly’s principal graph enumerator, based on Brendan
McKay’s isomorph free enumeration by canonical construction
paths

I New general initial triple point obstruction [Pen13]

Theorem [Afzaly-Morrison-Penneys]

The conjectures of Morrison-Peters and Morrison-Penneys hold
with at most finitely many exceptions.



Thank you for listening!
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