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Where do subfactors come from?

Some examples include:

I Groups – from Gy R, we get RG ⊂ R and R ⊂ Roα G.

I Finite dimensional unitary Hopf/Kac algebras

I Quantum groups – Rep(Uq(g))

I Conformal field theory

Operations to obtain more subfactors from known subfactors:

I Composites

I Intermediates

I Morita equivalence

However, there are possible infinite families for which finitely many
have only been constructed by brute force methods:

I Endomorphisms of Cuntz C*-algebras

I Planar subalgebras of graph planar algebras



Planar algebras [Jon99]

Definition
A shaded planar tangle has

I a finite number of inner boundary disks

I an outer boundary disk

I non-intersecting strings

I a marked interval ? on each boundary disk

I a checkerboard shading

?

?

? ?



Composition of tangles

We can compose planar tangles by insertion of one into another if
the number of strings matches up:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition
The shaded planar operad consists of all shaded planar tangles (up
to isotopy) with the operation of composition.



Definition
A planar algebra is a family of vector spaces Pk,±, k = 0, 1, 2, . . .
and an action of the shaded planar operad.

P1,+ × P1,+ × P2,− P3,+

P1,+ × P2,+ × P2,−
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Example: Temperley-Lieb

TLn,±(δ) is the complex span of non-crossing pairings of 2n points
on a circle, with formal addition and scalar multiplication.

TL3,+(δ) = SpanC

{
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,
?

,
?

,
?

,
?

}
Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and trading closed loops for factors of δ.
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This is a planar ∗-algebra where the involution is the conjugate
linear extension of reflection.



Subfactor planar algebras

Definition
A planar ∗-algebra P• is a subfactor planar algebra if it is:

I Finite dimensional: dim(Pk,±) <∞ for all k

I Evaluable: P0,± ∼= C by sending the empty diagram to 1C

I Sphericality: Tr(x) = x? = x?

I Positivity: each Pk,± has an adjoint ∗ such that the
sesquilinear form 〈x, y〉 := Tr(y∗x) is positive definite

From these properties, we get:

Jones’ index rigidity theorem [Jon83]

The value of a closed loop is a multiplicative constant
δ ∈ {2 cos(π/n)|n ≥ 3} ∪ [2,∞). We call δ2 the index.



Principal graphs

The C∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).



Principal graphs

The C∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

where the inclusion is given by

n

n

?

is described by its Bratteli diagram (and the trace).

I The non-reflected part is the principal graph Γ+.



Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I index = 4: A
(1)
2n−1, D

(1)
n+2, E

(1)
6 , E

(1)
7 , E

(1)
8 , A∞, A

(1)
∞ , D∞

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
I extended Haagerup [BMPS12](

,
)



Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Small index subfactor planar algebra classification program

subfactor
$$

planar algebra
%%

principal graphs

A ⊂ B (P+, P−)cc (Γ+,Γ−)

??

ee

Focuses of the classification program:

I Enumerate graph pairs and apply obstructions.

I Construct examples when graphs survive.

I Place exotic examples into families.



Known small index subfactor planar algebras
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Theorem (Afzaly-Morrison-P 2015)

We know all non Temperley-Lieb subfactor planar algebras up to
index 51

4 > 3 +
√

5, the next composite index above 4.



Subfactor planar algebras at index 3 +
√
5

Corollary (Afzaly-Morrison-P 2015)

At 3 +
√

5, we have only the following subfactor planar algebras:

name Principal graphs # Constructed

4442
(

,
)

1 [MP15], Izumi

3Z/2×Z/2
(

,
)

1 Izumi, [MP15]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MP14]

A3 ⊗A4

(
,

)
1 ⊗

fish 2
(

,
)

2 BH

fish 3
(

,
)

2 [IMP13]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97]

A∞
(

· · · , · · ·
)

1 [Pop93]

I 1-supertransitive case known by [Liu13, IMP13, LMP15]



The extended Haagerup subfactor planar algebra

(Bigelow-Morrison-Peters-Snyder [BMPS12])

The extended Haagerup subfactor planar algebra has principal
graphs(

,
)

I Last remaining possible graph in Haagerup’s classification to
index 3 +

√
3 [Haa94] by work of Asaeda-Yasuda [AY09].

I Largest known supertransitivity outside the A and D series.
High supertransitivity is exceedingly rare!

I Planar algebra constructed using Bigelow’s jellyfish algorithm.



Jellyfish relations

Theorem (Bigelow-Morrison-Peters-Snyder [BMPS12])

The Haagerup and extended Haagerup subfactor planar algebras
have a generator S ∈ Pn,+ where n = 4, 8 respectively satisfying:
I (Jellyfish) We have the following 2 jellyfish relations for S:

I
2n− 1

S
?

f (2n+2)?
= i

√
[n][n+ 2]

[n+ 1]

n− 1

n+ 1 n+ 1

S S

??

f (2n+2)?

I 2n

S
?

f (2n+4)?

=
[2][2n+ 4]

[n+ 1][n+ 2]

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?

I (Capping) Capping any two strings of S gives zero.

I (Absorption) S2 = f (n) ∈ TLn,+.



The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1. First, pull all generators to the outside using the jellyfish
relations

   

2. Second, reduce the number of generators using the capping
and absorption relations.



Consistency and positivity

Theorem [Jones-P [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra
of its principal graph.

This serves two purposes:

1. To show that an abstractly presented planar algebra is
non-zero, we give a representation.

2. Graph planar algebras are always finite dimensional, spherical,
and positive. Thus any evaluable planar subalgebra is a
subfactor planar algebra!



Spokes and jellyfish
Assume all generators of P• are at the same depth n.

Theorem (Bigelow-P [BP14], based on [Pop95])

I P• has 2-strand jellyfish relations ⇔ one graph is a spoke.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

I P• has 1-strand jellyfish relations ⇔ both graphs are spokes.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

I Algorithms to construct examples in [MP15, PP13]



Trains

Definition
A train on a set of generators S is a diagram of the form

?

? ? ??

· · ·

T

S1 S2 S`

k k

2n1 2n2 2n`

where S1, . . . , S` ∈ S and T is a single Temperley-Lieb diagram.

I

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?
∈ span(trains2n+4,+(S)).



Universal jellyfish algorithm

By [BP14], a version of the jellyfish algorithm is universal for finite
depth subfactors.

Universal Jellyfish Algorithm (Morrison-P [MP14])

Let P• be a shaded planar algebra in which closed loops are
multiples of the empty diagram. Let {Sk,+|k = 0, 1, . . . , n} be a
collection of finite subsets Sk,+ ⊂ Pk,+ such that Sn,+ generates
P• as a planar algebra. Denote S≤k =

⋃
j≤k Sj,+.

If the sets Sk,+ satisfy the finitely many conditions on the next
slide, then, for k ≤ n,

Pk,+ = trainsk,+ (S≤k) .

In particular, if S0,+ = ∅, P• is evaluable.



Conditions for universal jellyfish algorithm

(1) (Jellyfish) Sn,+ has 2-strand jellyfish relations, i.e., for all
s ∈ Sn,+,

n

n

s ∈ span(trainsn+2,+(Sn)).

(2) (Capping) For j < n, adding capping any element of Sj+1,+,
except on the left, gives an element of span(Sj,+)⊕ T Lj,+.

(3) (Absorption) For all j ≤ k ≤ n, applying the tangle

j

j

k

k − j

to an element in Sk,+ ×Sj,+, or the reflection to an element in
Sj,+ × Sk,+, gives an element in span(Sk,+)⊕ T Lk,+.



The 2D2 subfactor

While running the enumerator, we found the possible principal
graph

2D2 =

which could possibly pair with 3 other graphs.

I Izumi constructed a 2D2 subfactor, but uniqueness was
unknown.

Theorem (Morrison-P)

There is exactly one subfactor with principal graph 2D2.

I We show there is a 1-parameter family of possible generators
in the graph planar algebra, and this family always generates
isomorphic planar ∗-subalgebras.



Economical generating set for 2D2

Theorem (Morrison-P [MP14])

Every finite depth subfactor planar algebra has a universal jellyfish
presentation.

I We could just pick bases for the Pk,+ for k ≤ n = depth(P•).
But this is terribly inefficient!

I The key is to pick an economical generating set to make
computations less expensive.

Example: 2D2

For the 2D2 subfactor planar algebra, we pick the generating set:

P

Q

Sn,+ ∅ ∅ ∅ T (Ei,j)

where T = P −Q and (Ei,j) is a system of 2× 2 matrix units.



Thank you for listening!
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