The 2D2 subfactor planar algebra Great Plains Operator Theory Symposium

> David Penneys UCLA

May 30, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where do subfactors come from?

Some examples include:

- Groups from $G \curvearrowright R$, we get $R^G \subset R$ and $R \subset R \rtimes_{\alpha} G$.
- Finite dimensional unitary Hopf/Kac algebras
- Quantum groups $\operatorname{Rep}(\mathcal{U}_q(\mathfrak{g}))$
- Conformal field theory

Operations to obtain more subfactors from known subfactors:

- Composites
- Intermediates
- Morita equivalence

However, there are possible infinite families for which finitely many have only been constructed by brute force methods:

- Endomorphisms of Cuntz C*-algebras
- Planar subalgebras of graph planar algebras

Planar algebras [Jon99]

Definition

- A shaded planar tangle has
 - a finite number of inner boundary disks
 - an outer boundary disk
 - non-intersecting strings
 - a marked interval * on each boundary disk
 - a checkerboard shading

Composition of tangles

We can compose planar tangles by insertion of one into another if the number of strings matches up:

Definition

The *shaded planar operad* consists of all shaded planar tangles (up to isotopy) with the operation of composition.

Definition

A planar algebra is a family of vector spaces $P_{k,\pm}$, k = 0, 1, 2, ...and an action of the shaded planar operad.

Example: Temperley-Lieb

 $TL_{n,\pm}(\delta)$ is the complex span of non-crossing pairings of 2n points on a circle, with formal addition and scalar multiplication.

$$TL_{3,+}(\delta) = \operatorname{Span}_{\mathbb{C}}\left\{ \underbrace{\star}_{\mathcal{O}}, \underbrace{\star}_{\mathcal{O}}$$

Planar tangles act on TL by inserting diagrams into empty disks, smoothing strings, and trading closed loops for factors of δ .

This is a planar *-algebra where the involution is the conjugate linear extension of reflection.

Subfactor planar algebras

Definition

A planar *-algebra P_{\bullet} is a subfactor planar algebra if it is:

- Finite dimensional: $\dim(P_{k,\pm}) < \infty$ for all k
- ▶ Evaluable: $P_{0,\pm} \cong \mathbb{C}$ by sending the empty diagram to $1_{\mathbb{C}}$

Sphericality:
$$Tr(x) =$$
 $\star x = \star x$

▶ Positivity: each P_{k,±} has an adjoint * such that the sesquilinear form ⟨x, y⟩ := Tr(y*x) is positive definite

From these properties, we get:

Jones' index rigidity theorem [Jon83] The value of a closed loop is a multiplicative constant $\delta \in \{2\cos(\pi/n) | n \geq 3\} \cup [2, \infty)$. We call δ^2 the index.

Principal graphs

The C*-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

where the inclusion is given by $\star \boxed{\left| \begin{array}{c} n \\ n \end{array} \right|}^{n}$ is described by its Bratteli diagram (and the trace).

Principal graphs

The C*-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

where the inclusion is given by \star

is described by its Bratteli diagram (and the trace).

- 日本 - 1 日本 - 日本 - 日本

• The non-reflected part is the principal graph Γ_+ .

Examples of principal graphs

- index < 4: A_n, D_{2n}, E_6, E_8 . No D_{odd} or E_7 .
- ▶ index = 4: $A_{2n-1}^{(1)}, D_{n+2}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, A_\infty, A_\infty^{(1)}, D_\infty$
- Graphs for $R \subset R \rtimes G$ obtained from G and Rep(G).

extended Haagerup [BMPS12]

Supertransitivity

Definition

We say a principal graph is *n*-supertransitive if it begins with an initial segment consisting of the Coxeter-Dynkin diagram A_{n+1} , i.e., an initial segment with n edges.

Examples

Small index subfactor planar algebra classification program

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Focuses of the classification program:

- Enumerate graph pairs and apply obstructions.
- Construct examples when graphs survive.
- Place exotic examples into families.

Known small index subfactor planar algebras

Theorem (Afzaly-Morrison-P 2015)

We know all non Temperley-Lieb subfactor planar algebras up to index $5\frac{1}{4} > 3 + \sqrt{5}$, the next composite index above 4.

Subfactor planar algebras at index $3 + \sqrt{5}$

Corollary (Afzaly-Morrison-P 2015)

At $3 + \sqrt{5}$, we have only the following subfactor planar algebras:

name	Principal graphs	#	Constructed
4442		1	[MP15], Izumi
$3^{\mathbb{Z}/2 \times \mathbb{Z}/2}$	$({<\!$	1	Izumi, [MP15]
$3^{\mathbb{Z}/4}$	()	2	Izumi, [PP13]
2D2	$(\cdots \cdots \cdots \cdots)$	2	Izumi, [MP14]
$A_3 \otimes A_4$	(- , -)	1	\otimes
fish 2	$(\prec \swarrow, \neg \neg \neg \neg)$	2	BH
fish 3	$(-<\!$	2	[IMP13]
$A_3 * A_4$		2	[BJ97]
A_{∞}	$(\underbrace{ \cdots \cdots }, \underbrace{ \cdots }, \underbrace{ \cdots })$	1	[Pop93]

1-supertransitive case known by [Liu13, IMP13, LMP15]

The extended Haagerup subfactor planar algebra

(Bigelow-Morrison-Peters-Snyder [BMPS12])

The extended Haagerup subfactor planar algebra has principal graphs

- ► Last remaining possible graph in Haagerup's classification to index 3 + √3 [Haa94] by work of Asaeda-Yasuda [AY09].
- ► Largest known supertransitivity outside the *A* and *D* series. High supertransitivity is exceedingly rare!
- Planar algebra constructed using Bigelow's jellyfish algorithm.

Jellyfish relations

Theorem (Bigelow-Morrison-Peters-Snyder [BMPS12])

The Haagerup and extended Haagerup subfactor planar algebras have a generator $S \in P_{n,+}$ where n = 4, 8 respectively satisfying:

▶ (Jellyfish) We have the following 2 jellyfish relations for S:

• (Capping) Capping any two strings of S gives zero.

• (Absorption) $S^2 = f^{(n)} \in TL_{n,+}$.

The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1. First, pull all generators to the outside using the jellyfish relations

2. Second, reduce the number of generators using the capping and absorption relations.

Consistency and positivity

Theorem [Jones-P [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra of its principal graph.

This serves two purposes:

- 1. To show that an abstractly presented planar algebra is non-zero, we give a representation.
- Graph planar algebras are always finite dimensional, spherical, and positive. Thus any evaluable planar subalgebra is a subfactor planar algebra!

Spokes and jellyfish

Assume all generators of P_{\bullet} are at the same depth n.

Theorem (Bigelow-P [BP14], based on [Pop95])

▶ P_{\bullet} has 2-strand jellyfish relations \Leftrightarrow one graph is a spoke.

▶ P_• has 1-strand jellyfish relations ⇔ both graphs are spokes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Algorithms to construct examples in [MP15, PP13]

Trains

Definition

A train on a set of generators $\ensuremath{\mathcal{S}}$ is a diagram of the form

where $S_1, \ldots, S_\ell \in S$ and T is a single Temperley-Lieb diagram.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Universal jellyfish algorithm

By [BP14], a version of the jellyfish algorithm is universal for finite depth subfactors.

Universal Jellyfish Algorithm (Morrison-P [MP14])

Let \mathcal{P}_{\bullet} be a shaded planar algebra in which closed loops are multiples of the empty diagram. Let $\{\mathcal{S}_{k,+}|k=0,1,\ldots,n\}$ be a collection of finite subsets $\mathcal{S}_{k,+} \subset \mathcal{P}_{k,+}$ such that $\mathcal{S}_{n,+}$ generates \mathcal{P}_{\bullet} as a planar algebra. Denote $\mathcal{S}_{\leq k} = \bigcup_{j \leq k} \mathcal{S}_{j,+}$.

If the sets $S_{k,+}$ satisfy the *finitely many* conditions on the next slide, then, for $k \leq n$,

$$\mathcal{P}_{k,+} = \operatorname{trains}_{k,+} \left(\mathcal{S}_{\leq k} \right).$$

In particular, if $S_{0,+} = \emptyset$, \mathcal{P}_{\bullet} is evaluable.

Conditions for universal jellyfish algorithm

(1) (Jellyfish) $\mathcal{S}_{n,+}$ has 2-strand jellyfish relations, i.e., for all $s\in\mathcal{S}_{n,+}$,

$$\left\| \underbrace{s}_{|n|}^{|n|} \in \operatorname{span}(\operatorname{trains}_{n+2,+}(\mathcal{S}_n)).\right\|$$

- (2) **(Capping)** For j < n, adding capping any element of $S_{j+1,+}$, except on the left, gives an element of $\operatorname{span}(S_{j,+}) \oplus \mathcal{TL}_{j,+}$.
- (3) **(Absorption)** For all $j \le k \le n$, applying the tangle

to an element in $S_{k,+} \times S_{j,+}$, or the reflection to an element in $S_{j,+} \times S_{k,+}$, gives an element in $\operatorname{span}(S_{k,+}) \oplus \mathcal{TL}_{k,+}$.

The 2D2 subfactor

While running the enumerator, we found the possible principal graph

which could possibly pair with 3 other graphs.

 Izumi constructed a 2D2 subfactor, but uniqueness was unknown.

Theorem (Morrison-P)

There is exactly one subfactor with principal graph 2D2.

We show there is a 1-parameter family of possible generators in the graph planar algebra, and this family always generates isomorphic planar *-subalgebras.

Economical generating set for 2D2

Theorem (Morrison-P [MP14])

Every finite depth subfactor planar algebra has a universal jellyfish presentation.

- ▶ We could just pick bases for the $P_{k,+}$ for $k \le n = \text{depth}(P_{\bullet})$. But this is terribly inefficient!
- The key is to pick an economical generating set to make computations less expensive.

Example: 2D2

For the 2D2 subfactor planar algebra, we pick the generating set:

where T = P - Q and $(E_{i,j})$ is a system of $2 \underset{\leftarrow}{\times} 2$ matrix units.

Thank you for listening!

Slides available at

http:

//www.math.ucla.edu/~dpenneys/PenneysGPOTS2015.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Marta Asaeda and Seidai Yasuda, *On Haagerup's list of potential principal graphs of subfactors*, Comm. Math. Phys. **286** (2009), no. 3, 1141–1157, arXiv:0711.4144 MR2472028 DOI:10.1007/s00220-008-0588-0. MR MR2472028

Dietmar Bisch and Vaughan F. R. Jones, *Algebras associated to intermediate subfactors*, Invent. Math. **128** (1997), no. 1, 89–157, MR1437496 DOI:10.1007/s002220050137. MR 1437496 (99c:46072)

Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder, Constructing the extended Haagerup planar algebra, Acta Math. 209 (2012), no. 1, 29–82, MR2979509 arXiv:0909.4099 D0I:10.1007/s11511-012-0081-7. MR 2979509

- Stephen Bigelow and David Penneys, *Principal graph stability and the jellyfish algorithm*, Math. Ann. **358** (2014), no. 1-2, 1–24, MR3157990 D0I:10.1007/s00208-013-0941-2 arXiv:1208.1564. MR 3157990
- Uffe Haagerup, Principal graphs of subfactors in the index range $4 < [M:N] < 3 + \sqrt{2}$, Subfactors (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, MR1317352, pp. 1–38. MR MR1317352 (96d:46081)

Masaki Izumi, Scott Morrison, and David Penneys, *Quotients of* $A_2 * T_2$, 2013, accepted in the *Canadian Journal of Mathematics* March 2015, extended version available as "Fusion categories between $C \boxtimes D$ and C * D" at arXiv:1308.5723.

Vaughan F. R. Jones, *Index for subfactors*, Invent. Math. **72** (1983), no. 1, 1–25, MR696688 DDI:10.1007/BF01389127. MR 696688 (84d:46097)

_____, Planar algebras, I, 1999, arXiv:math.QA/9909027.

- Vaughan F. R. Jones and David Penneys, *The embedding theorem for finite depth subfactor planar algebras*, Quantum Topol. 2 (2011), no. 3, 301–337, arXiv:1007.3173 MR2812459 DOI:10.4171/QT/23. MR 2812459
- Zhengwei Liu, Composed inclusions of A₃ and A₄ subfactors, 2013, arXiv:1308.5691.
- Zhengwei Liu, Scott Morrison, and David Penneys, *1-supertransitive subfactors with index at most* 6¹/₅, Comm. Math. Phys. **334** (2015), no. 2, 889–922, MR3306607 arXiv:1310.8566
 DOI:10.1007/s00220-014-2160-4. MR 3306607

Scott Morrison and David Penneys, 2-supertransitive subfactors with index $3 + \sqrt{5}$, 2014, arXiv:1406.3401.

Scott Morrison and David Penneys, *Constructing spoke subfactors using the jellyfish algorithm*, Trans. Amer. Math. Soc. **367** (2015), no. 5, 3257–3298, MR3314808 DOI:10.1090/S0002-9947-2014-06109-6 arXiv:1208.3637. MR 3314808

Sorin Popa, *Markov traces on universal Jones algebras and subfactors of finite index*, Invent. Math. **111** (1993), no. 2, 375–405, MR1198815 D0I:10.1007/BF01231293. MR MR1198815 (94c:46128)

______, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. **120** (1995), no. 3, 427–445, MR1334479 D0I:10.1007/BF01241137. MR MR1334479 (96g:46051)

David Penneys and Emily Peters, Calculating two-strand jellyfish relations, 2013, arXiv:1308.5197, to appear Pacific J. Math.