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A higher-categorical puzzle

Our goal is to study concatenation and fusion rules of domain walls
between (2+1)D topological orders (TOs).
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We start with the following ‘higher categorical puzzle’:

I Low-energy topological excitations described by UMTCs
A,B, C and Witt-equivalences V,W. These are objects and
1-morphisms in the 4-category of braided fusion categories.

I (2+1)D topologically ordered systems should form a
symmetric monoidal 3-category. (Warning: anomalies multiply!)

I While composing 2 equivalences yields an equivalence,
concatenation of indecomposable domain walls does not
always give an indecomposable domain wall.



Answer in anomaly-free setting: string nets

An answer is well understood for anomaly-free topological orders
using string-nets built from unitary fusion categories (UFCs)
[LW05, LLB21] and bimodule categories [KK12].

I UFCs form a symmetric monoidal 3-category called UFC
[Hau17, JFS17, DSPS20].

cat level projector model ingredient topol. excitations

2D bulk X ∈ UFC UMTC Z(X )
1D domain wall bimodule category XMY Witt-eq End(XMY)
0D point defect bimodule functor -
local operators bimodule transformations -

I Some fusion rules for domain walls were calculated in
[BBJ19a, BBJ19b].



Outline

We propose an answer to this puzzle using enriched UFCs [MP19]
which can be used to describe anomalous (2+1)D topologically
ordered systems [JF20].

1. Using enriched UFCs, anyons and local operators appear as
higher morphisms in a 3-category UFCA of topological orders
with anomaly described by A.

2. We can use this 3-category to decompose the concatenation
of domain walls into superselection sectors and to characterize
anyon mobility through domain walls using tunneling
operators.

3. Using tunneling operators, we can identify the indecomposable
summands of a composite domain wall.



Anomalies of (2+1)D topological orders
I (2+1)D topologically ordered systems carry an anomaly

described by an invertible (3+1)D TQFT [JF20], equivalently
a Witt-class of UMTC [BJSS21].

I This anomaly can be viewed as an obstruction to realizing the
system by a (2+1)D commuting projector local Hamiltonian.

I The Walker-Wang model [WW12] gives a realization as a
(2+1)D boundary of a (3+1)D commuting projector local
Hamiltonian.



Enriched UFCs

Pick a representative UMTC A of the Witt-class for the anomaly.

I An A-enriched fusion category X is exactly the data needed
to couple the X -string-net model to an A-Walker-Wang bulk.

X
A

A Z(X )

X

Forget

Z(X ) ∼= A� ZA(X )

I The low-energy topological excitations are described by the
enriched center/Müger centralizer ZA(X ) := A′ ⊂ Z(X )
[KZ18b, Müg03].



Chiral example
By [BEK01, DMNO13], for a condensable algebra A in a UMTC C,

Z(CA) ∼= C � Cloc
A .

C
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For C = SU(2)4 and A = 1⊕ g where g is the boson:
I Cloc

A = SU(3)1

I CA = T Y3,− is a UFC with 4 simples 0, 1, 2 and σ where
Z/3 = {0, 1, 2} and σ2 = 0⊕ 1⊕ 2.

I Z(T Y3,−) ∼= SU(2)4 � SU(3)1

X = T Y3,−

ZA(X ) = SU(2)4

A = SU(3)1



Bilayer visualization

Since Z(X ) ∼= ZA(X )�A, attaching an A-Walker-Wang bulk to
X trivializes the A-layer of topological order, leaving only ZA(X )
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Domain walls: enriched bimodules
Domain walls between A-enriched UFCs X ,Y can be described by
A-enriched bimodule categories

X

M

Y

Here, M is an X − Y bimodule category with data identifying the
left and right central A-actions.
I A-enriched UFCs, bimodules, functors, and natural

transformations form a 3-category UFCA

I EndA(XMY) is a Witt-equivalence ZA(X ) ∼ ZA(Y).
In particular, EndA(XXX ) = ZA(X )

cat level projector model ingredient topol. excitations

2D bulk X ∈ UFCA UMTC ZA(X )

1D domain wall A-enriched bimodule XMY Witt-eq EndA(XMY)
0D point defect A-centered bimod functor -
local operators bimodule transformations -



Equivalences

There are two notable equivalences between the A-enriched UFC
viewpoint and the UMTC viewpoint.

I Have an equivalence of truncated 1-categories [KZ18a, KZ21]{
A-enriched UFCs
and bimodules

}
≤1

ZA,EndA−−−−−−→
'

{
UMTCs and Witt
equivalences

}
≤1

For a UMTC C, the fusion 2-category Mod(C) describes
generalized categorical symmetries cf. [KLW+20, CW22] and
[NCRSS21, Mul22].

Proposition [HBJP]

There is an equivalence of fusion 2-categories

BimA(X ) ∼= Mod(ZA(X )).



Concatenations of elementary domain walls
Every topological boundary W between topological orders C,D can
be obtained by concatenating condensation boundaries and
invertible boundaries cf. [DNO13, §3].
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W

By the folding trick, W corresponds to a Lagrangian algebra
L(A,B,Φ) ∈ C �D where A ∈ C and B ∈ D are condensable
algebras and Φ : Cloc

A → Dloc
B is a braided equivalence.

CWD ←→ L(A,B,Φ) ∈ C �D

I [Kon14] gives another way to decompose a domain wall as 2
condensation boundaries in the reverse order.



Decomposing composite domain walls

X

M

Y

N

Z X ,Y,Z ∈ UFCA

EndA(XMY)←→ L(A,B1,Φ) ∈ ZA(X )� ZA(Y)

EndA(YNZ)←→ L(B2, C,Φ) ∈ ZA(Y)� ZA(Z).

A short string operator creates an antiparticle-particle pair c, c in
the ZA(Y) bulk region and condenses one of each at the left and
right walls, which creates no topological excitations.

Theorem [HBJP]

The algebra of short string operators is HomZA(Y)(B1 → B2),
which is a finite dimensional abelian C∗-algebra, i.e., Cn. The
minimal projections correspond to the superselection sectors
(indecomposable summands) of the composite domain wall.



3-dualizability and the short string algebra
The proof uses 3-dualizability and unitarity in UFCA.

End
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 ∼= HomZA(Y)

 M
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→ N
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f 7→ f

B1

x y
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Basic example: Toric Code [Kit03, BK05, KK12, BBJ19a]

Consider a vertical strip of Z/2 Toric Code, sandwiched between
two smooth gapped boundaries to vacuum where m is condensed.

Hilb

Hilb[Z/2]

Hilb[Z/2]

Hilb[Z/2]

Hilb
A = Hilb

X = Z = Hilb, Y = Hilb[Z/2], M = N = Hilb[Z/2].

I The composite bimodule category M�Y N is Hilb⊕Hilb as a
Hilb− Hilb bimodule, i.e., the direct sum of two copies of the
trivial domain wall from the trivial topological order to itself.

I Two copies arises because, with appropriate boundary
conditions (close to a sphere), the GSD is the dimension of
the short string algebra, which counts the number of e-lines
running parallel between the two boundaries.



Anyon mobility: tunneling operators
I Particle-antiparticle anyon pairs are created using string

operators.
I Anyons can be transported in the (2+1)D bulk by hopping

operators [HGW18].
I Anyons can be transported across domain walls by tunneling

operators.

The space of tunneling operators across the domain wall XMY
from the anyon c ∈ Irr(ZA(X )) to the anyon d ∈ Irr(ZA(Y)) is

HomUFCA

 M
c

−→ M
d

 ∼= HomUFCA


c
M −→

d

 .

By 3-dualizability and semisimplicity in UFCA, concatenating
tunneling operators works well.

M

N
c

T�id−−−→
M

Nd

id�S−−−→
M

N
e



Basic example: boundary between Z/4 and Z/2 Toric Code
Consider a lattice where each edge has C4-spins:

Z/4 TC Z/2 TC

The Hamiltonian is given by

H = −
∑
v/v

Av −
∑
p

Bp −
∑
q

B′q −K
∑
`

C` K � 1

Av =

4∑
k=1

Zk (Zk)†

Zk

(Zk)†

v B′q =
1

2

1 +

X2

X2

X2

X2 q



Bp =

4∑
j=1

Xj

Xj

(Xj)†

(Xj)†

p C` =
1

2

(
1 + Z2

)



Boundary Toric Code tunneling operators

In the green region, m2 has been condensed. This corresponds to
TO D(Z/4)loc

A
∼= D(Z/2) where A = 1⊕m2.

We can transport m in the black region by Z. There is a unique
choice of tunneling operator in the green region given by
T = Z + Z3 (up to scalar).

Z Z T T
m 7→

mA

m

m3

←[
Z

Z3

Z

Z3

T

T

T

T
mA

mA

When we transport the anyon mA back to the black region, there
are 2 choices: mA can tunnel to become m or m3. Each tunneling
operator is unique up to phase.



Short string operators act on tunneling operators
Consider two condensation boundaries from condensing
A,B ∈ ZA(X ). (At the level of A-enriched UFCs, AX is again
A-enriched UFCs, and ZA(AX ) ∼= ZA(X )loc

A ))

AX

AX

X

XB

XB

MA
c

NB

c′

We can act by the minimal projections in HomZA(Y)(B1 → B2)
onto superselection sectors.

I The space of all tunneling operators decomposes as the direct
sum of subspaces of tunneling operators for each summand.

I Looking at these subspaces allows us to identify the
summands in examples. It also gives a strategy to compute
fusion rules for concatenating domain walls.

I All point defects between superselection sectors ‘come from’
anyons in the middle bulk region.



Chiral example

Recall T Y3,− has 3 invertible simples 0, 1, 2 and another simple σ
such that σ2 = 0⊕ 1⊕ 2.

Consider the following composite domain wall from SU(3)1 to
itself:

SU(3)1

T Ymp
3,−

T Y3,−

T Y3,−

SU(3)1
A = SU(3)1

Here, ZA(SU(3)1) = SU(3)1 and ZA(T Y3,−) = SU(2)4.

I The composite domain wall decomposes as I ⊕ F where I is
the identity domain wall and F is the domain wall which flips
1 and 2.



Thank you for listening!

Slides available at:
https://people.math.osu.edu/penneys.2/talks/

PenneysHarvard2022.pdf

Peter Huston, Fiona Burnell, Corey Jones, and David Penneys.
Composing topological domain walls and anyon mobility.
Coming soon!
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