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Introduction

These notes were produced during and after a mini-course entitled “Introduction to subfactor the-
ory” at the Isaac Newton Institute on their semester program on Operator algebras: subfactors
and their applications. During this mini-course, I wanted to do something a bit different from my
mini-course on subfactor theory at the 2014 Spring Institute on Noncommutative Geometry and
Operator Algebras (NCGOA). I ended up giving an introduction to the 2-category of tracial von
Neumann algebras, which admits direct sums, subobjects, and Connes fusion tensor products, to-
gether with its bi-involutive structure, including the adjoint and the conjugate. The rich structure
of this 2-category leads to a powerful graphical calculus, where the adjoint and conjugate correspond
to vertical and horizontal reflections which commute. Much of this material is adapted from [Bis97]
and [Bur03].

In the mini-course, we then specialized to the case of II1 factor bimodules to discuss dualizability.
Here in the notes, we will try to stay in the most general case possible. Using the graphical calculus
for the bi-involutive sub 2-category of dualizable bimodules, we can define the canonical planar
algebra associated to a finite index II1 subfactor.

I am now in the process of going over my mini-course here at The Ohio State University during
open spots in the Quantum Algebra/Quantum Topology seminar. As we go along, I hope to revise
and expand on these notes.

Most of the material in these notes is presented in the form of exercises. More challenging
exercises are broken into multiple parts. It is my hope that by working through these exercises, one
will become familiar with the material.

1 Tracial von Neumann algebras

1.1 von Neumann algebras

Definition 1.1. A von Neumann algebra is a ∗-closed subalgebra A ⊆ B(H) such that A = A′′,
where for a subset S ⊂ B(H),

S ′ = {x ∈ B(H)|xs = sx for all s ∈ S} .

We will only work with separable Hilbert spaces in these lectures.
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Exercise 1.2. Show that S ′ = S ′′′ for any subset S ⊂ B(H).

Exercise 1.3. Show that if S ⊂ T , then T ′ ⊂ S ′.

Thus von Neumann algebras come in pairs, A and A′. The center of a von Neumann algebra is
Z(A) = A′ ∩ A, which is the center of both A and A′.

Definition 1.4. The strong operator topology or the topology of pointwise convergence on B(H) is
the topology induced by the seminorms x 7→ ‖xξ‖ for ξ ∈ H. This means that for a net (xλ) ⊂ B(H)
and x ∈ B(H), xλ → x in the strong operator topology if and only if xλξ → xξ for all ξ ∈ H.

Theorem 1.5 (von Neumann bicommutant). Suppose A ⊂ B(H) is a unital ∗-closed subalgebra.
Then the closure of A in the strong operator topology is equal to A′′.

Remark 1.6. The content of the above theorem is contained in the proof of the finite dimensional
bicommutant theorem, which states that a unital ∗-closed subalgebra A ⊂Mn(C) satisfies A = A′′.
We refer the reader to [Jon10] for the proof of this finite dimensional statement, along with the
adaptation to prove Theorem 1.5.

Definition 1.7. A tracial von Neumann algebra is a pair (A, trA) where A is a von Neumann
algebra and trA : A→ C is a faithful normal tracial state. This means:

• (state) trA is a linear functional with trA(1) = 1 such that trA(a∗a) ≥ 0 for all a ∈ A.

• (faithful) trA(a∗a) = 0 implies a = 0.

• (normal) if (aλ) ⊂ A is an increasing net of operators with aλ ↗ a, then trA(aλ)↗ trA(a).

• (tracial) trA(ab) = trA(ba) for all a, b ∈ A.

Example 1.8. Suppose Γ is a countable group, and let `2Γ =
{
ξ : Γ→ C

∣∣∣∑g∈Γ ‖ξ(g)‖2 <∞
}

. The

left regular action of Γ on `2Γ is given for g ∈ Γ by (λgξ)(h) = ξ(g−1h). One shows that this is a
unitary representation λ : Γ→ U(`2Γ). The left regular von Neumann algebra is LΓ = {λg|g ∈ Γ}′′.
The trace on LΓ is given by trLΓ(a) = 〈aδe, δe〉, where δe is the indicator function at e ∈ Γ. For
finite sums, trLΓ (

∑
cgλ(g)) = ce.

Definition 1.9. A weight on a von Neumann algebra A is an R+-linear map ω : A+ → [0,∞], i.e.,
for all a, b ∈ A+ and λ ≥ 0, ω(λa + b) = λω(a) + ω(b). Normailty and faithfulness for weights is
defined similarly as above. A von Neumann algebra A is called semifinite if there exists a normal,
faithful semifinite tracial weight TrA : A+ → [0,∞], where the remaining properties are defined as
follows:

• (tracial) TrA(a∗a) = TrA(aa∗) for all a ∈ A.

• (semifinite) for all a ∈ A+, there is a 0 ≤ b ≤ a such that TrA(b) <∞.

If A is semifinite with faithful normal semifinite trace TrA such that TrA(1) < ∞, we may rescale
TrA to get a faithful normal tracial state trA on A, and we call A finite.
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Example 1.10. The von Neumann algebra B(H) is always semifinite with trace

TrB(H)(x) =
∞∑
i=1

〈xei, ei〉

for x ≥ 0, where {ei} is an orthonormal basis for H. Note that TrB(H) is independent of the choice
of orthonormal basis.

Remark 1.11. From here onward, all traces are considered to be faithful normal tracial states,
and all semifinite traces are considered to be faithful and normal unless stated otherwise.

The main distinction between tracial and finite von Neumann algebras is that tracial von Neu-
mann algebras come with a trace, whereas such a trace exists for a finite von Neumann algebra.

1.2 The standard representation

Let (A, trA) be a tracial von Neumann algebra. We define its standard representation on L2A =
L2(A, trA) via the GNS construction.

We define a sesquilinear form on A by 〈a, b〉 = trA(b∗a). Since trA is faithful, there are no
zero-length vectors. Define L2A = L2(A, trA) to be the completion of A in the 2-norm given by
‖a‖2 = trA(a∗a)1/2. We denote the image of 1 ∈ A in L2A by Ω, which allows us to differentiate
between the operator a ∈ A and the vector aΩ ∈ L2A.

There is a left action of A on AΩ given by λa(b) = abΩ.

Exercise 1.12. Show that for all a ∈ A, λa ∈ B(L2A). Then show that λ : A → B(L2A) is an
injective normal unital ∗-algebra homomorphism.

Exercise 1.13. Show that Ω is cyclic and separating for λ(A) ⊂ B(L2A). That is, show that
λ(A)Ω is dense in L2A, and that λaΩ = λbΩ if and only if a = b.

Definition 1.14. The standard representation of A is the left regular representation on L2(A).

There is also a right action of A on AΩ given by ρa(bΩ) = baΩ.

Exercise 1.15. Do Exercise 1.12 for the right regular representation.
Hint: This uses the fact that trA is a trace, and is not true for a general state!

Since trA is a trace, the map aΩ 7→ a∗Ω is isometric, and thus extends to an anti-linear unitary
J on L2A called the modular conjugation.

From now on, we will identify A with λ(A) on B(L2A). Consider the action of Ja∗J on L2A:

Ja∗JbΩ = Ja∗b∗Ω = Ja∗b∗Ω = baΩ,

i.e., Ja∗J is right multiplication by a. Since right multiplication commutes with left multiplication,
we have JAJ ⊆ A′ ∩B(L2A).

Theorem 1.16. JAJ = A′ ∩B(L2A).

The proof uses the following 4 exercises. One can perform these exercises by taking inner
products against vectors in the dense subspace AΩ.
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Exercise 1.17. Show that (JAJ)′ = JA′J .

Exercise 1.18. Show that for all η, ξ ∈ L2A, 〈η, ξ〉 = 〈Jξ, Jη〉.

Exercise 1.19. Show that for all x ∈ A′, JxΩ = x∗Ω.

Exercise 1.20. Show that for all x ∈ A or A′, (JxJ)∗ = Jx∗J .

Proof of Theorem 1.16. Since we have already shown JAJ ⊆ A′ ∩ B(L2A), it remains to prove
A′ ⊆ JAJ . By Exercise 1.17, (JAJ)′ = JA′J , so conjugating by J , it suffices to show (JAJ)′ ⊆ A.
Indeed, for x, y ∈ A′ and a, b ∈ A, we have

〈xJyJaΩ, bΩ〉 = 〈Jya∗Ω, x∗bΩ〉 = 〈Ja∗yΩ, bx∗Ω〉 = 〈Jbx∗Ω, a∗yΩ〉
= 〈JbJxΩ, a∗yΩ〉 = 〈axΩ, Jb∗JyΩ〉 = 〈axΩ, Jb∗y∗Ω〉
= 〈xaΩ, Jy∗b∗Ω〉 = 〈xaΩ, Jy∗JbΩ〉 = 〈JyJxaΩ, bΩ〉.

Hence x and JyJ commute, and thus JyJ ∈ A′′ = A. The reader should verify where we used
Exercises 1.18, 1.19, and 1.20 in the above calculation.

1.3 Modules and bounded vectors

Let (A, trA) and (B, trB) be tracial von Neumann algebras.

Definition 1.21. A left A-module is a Hilbert space together with a normal ∗-homomorphism
λA → B(H). We write AH to denote that H has a left A action. A right B-module is a left
Bop-module, i.e, it is a Hilbert space K together with a normal ∗-homomorphism ρ : Bop → B(H).
We write KB to denote that K has a right B-action.

An A−B bimodule is a Hilbert space H together with a left action λ : A→ B(H) and a right
action ρ : Bop → B(H) which commute: [λ(A), ρ(Bop)] = 0. Note that this means λ(A) ⊆ (Bop)′.
We write AHB to denote that H has a left A-action and a right B-action.

Example 1.22. By Theorem 1.16, L2A is an A− A bimodule.

Example 1.23. Suppose we have an inclusion of tracial von Neumann algebras (A ⊆ B, trB). Then
L2B is a C −D bimodule for C,D ∈ {A,B}.

Definition 1.24. Let HB be a right B-module. A vector ξ ∈ HB is called right B-bounded if the
map bΩ 7→ ξb extends to a bounded operator Lξ : L2B → H. We denote the set of right B-bounded
vectors by H◦B.

Suppose AK is a left A-module. A vector η ∈ K is called left A-bounded if the map aΩ 7→ aη
extends to a bounded operator Rη : L2A → K. The set of left A-bounded vectors is denoted by

AK
◦.
Suppose we have an A−B bimodule AHB. The set of bi-bounded vectors AH

◦ ∩H◦B is denoted
simply by H◦. By [Pop86, Lemma 1.2.2], H◦ is dense in H.

Exercise 1.25. Suppose ξ ∈ H◦B.

(1) Show that Lξ is right B-linear.
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(2) Show that for all x ∈ (Bop)′, xξ ∈ H◦B.

(3) Formulate and prove the analogous statements for left A-bounded vectors.

Definition 1.26. Suppose η, ξ ∈ H◦B. By Exercise 1.25, L∗ηLξ ∈ B(L2B) commutes with the right
B-action, and thus defines an element of B, denoted 〈η|ξ〉B. The form (η, ξ) 7→ 〈η|ξ〉B is a B-valued
inner product which is B-linear on the right:

〈η|ξ1b+ ξ2〉B = 〈η|ξ1〉Bb+ 〈η|ξ2〉B.

Clearly 〈η|ξ〉∗B = 〈ξ|η〉B.

Exercise 1.27. Verify the right B-valued inner product is positive definite, i.e., for all ξ ∈ H◦B,
〈ξ|ξ〉B ≥ 0, and it is equal to zero if and only if ξ = 0.
Hint: Show that for all ξ ∈ H◦B, trB(〈ξ|ξ〉B) = ‖ξ‖2

H .

Exercise 1.28. Show that the B-valued inner product is completely positive, i.e., for every n left
B-bounded vectors ξ1, . . . , ξn ∈ H◦B, the operator (〈ξi|ξj〉B)ni,j=1 ∈Mn(B) is positive.
Hint: Consider the right B-module KB =

⊕n
i=1HB. Show that

⊕n
i=1H

◦
B ⊂ K◦B, and calculate the

right B-valued inner product for KB.

Exercise 1.29. Show that for all η, ξ ∈ H◦B and x ∈ (Bop)′, 〈xη|ξ〉B = 〈η|x∗ξ〉B.

Exercise 1.30. Show that A〈η, ξ〉 = JR∗ηRξJ defines a left A-valued inner product on a left A-
module AK for left A-bounded vectors η, ξ ∈ AK

◦, which is A-linear on the left.
Hint: R∗ηRξ commutes with the left A-action, so gives an element of JAJ = Aop, not A!

Proposition 1.31. The space of right B-bounded vectors in L2B is exactly BΩ.

Proof. That BΩ ⊆ L2B◦B is straightforward and left to the reader. Suppose ξ ∈ L2B◦B. The operator
Lξ : L2B → L2B is right B-linear (JBJ-linear) and thus defines an element b ∈ (JBJ)′ = B. Now
ξ = LξΩ = λbΩ = bΩ.

2 The 2-category of tracial von Neumann algebras

We now define a 2-category. We remind the reader that by ‘2-category’, we mean a weak 2-category,
also known as a bicategory.

Definition 2.1. The 2-category of tracial von Neumann algebras TvNA has

• Objects are tracial von Neumann algebras (A, trA). (Changing the trace changes the object!)

• 1-Morphisms are bimodules AHB.

• 2-Morphisms are bounded A−B bilinear maps f : AHB → AKB.

We will now go into the details of this 2-category.
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2.1 Bimodules and fusion

Let (A, trA) and (B, trB) be tracial von Neumann algebras. We already saw that an A−B bimodule
is a Hilbert space H together with normal representations λ : A→ B(H) and ρ : Bop → B(H) such
that [λ(A), ρ(B)] = 0. We will suppress the λ, ρ, and just write aξb for the left and right action of
a ∈ A and b ∈ B on ξ ∈ H.

Definition 2.2. Given AHB and AKB, we can form the direct sum Hilbert space H ⊕K, which is
again naturally an A−B bimodule.

Definition 2.3. Suppose we have a right B-module HB and a left B-module BK. The fusion or
the relative tensor product of H and K, denoted H �B K, is formed as follows. First, we take the
tensor product of modules H◦B⊗B BK

◦, which is algebraically spanned by symbols η⊗ ξ for η ∈ H0
B

and ξ ∈ BK
◦, subject to the relation that ηb ⊗ ξ = η ⊗ bξ. We endow this vector space with the

sesquilinear form
〈η1 ⊗ ξ1, η2 ⊗ ξ2〉H�BK = 〈〈η2|η1〉Bξ1, ξ2〉K .

By Exercise 1.28, this sesquilinear form is positive semi-definite. In the usual way, we obtain a
Hilbert space H �B K as the completion of the vector space H◦B ⊗B BK

◦/N〈 · , · 〉, where

N〈 · , · 〉 = {ξ ∈ H◦B ⊗B BK
◦|〈ξ, ξ〉H�BK = 0}

is the subspace of length zero vectors under the pseudonorm induced by the sesquilinear form.

For subspaces DH ⊆ H◦B and DK ⊆ BK
◦, we denote the image of DH ⊗B DK in H �B K by

DH �B GK . We denote the image of the vector η ⊗ ξ ∈ H◦B ⊗B BK
◦ by η � ξ.

Lemma 2.4 ([Bur03, Claim 3.2.15]). Suppose DH ⊆ H◦B is a dense subspace of HB and DK ⊆ BK
◦

is a dense subspace of BK. Then DH �B DK is dense in H �B K.

Proof. Suppose η ∈ H◦B and ξ ∈ BK
◦. Take (ξn) ⊂ DK with ξn → ξ. Then

‖η�ξ−η�ξn‖2
H�BK

= ‖η�(ξ−ξn)‖2
H�BK

= 〈〈η|η〉B(ξ−ξn), ξ−ξn〉K ≤ ‖〈η|η〉B‖∞ ·‖ξ−ξn‖2
K → 0.

Similarly, we may approximate each η�ξn by ηk�ξn for some sequence (ηk) ⊂ DH with ηk → η.

Now if HB also has a left A-action, so does H �B K. Similarly, if BK also has a right C-action.
This means that the fusion of AHB and BKC is naturally an A− C bimodule.

Exercise 2.5. That the left A-action on H �B K is normal can be verified as follows. (A similar
series of exercises verifies normality for the right C-action.)

(1) Show that if D ⊂ AH is a dense subspace and ωζ(aλ)↗ ωζ(a) for every ζ ∈ D, then aλ ↗ a.

(2) Show that if a, b ≥ 0 in a tracial von Neumann algebra (B, trB), then trB(ab) ≥ 0. Moreover,
if aλ ↗ a, then trB(aλb)↗ trB(ab).

(3) Show that if aλ ↗ a is an increasing net in A, then for all η1, . . . , ηn ∈ H◦B, the matrices
(〈aληi|ηj〉B)ni,j=1 ∈Mn(B) are positive, and they increase to (〈aηi|ηj〉B)ni,j=1 ∈Mn(B).
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(4) Show that for all
∑n

i=1 ηi � ξi ∈ H◦B �B BK
◦,

n∑
i,j=1

〈aλ(ηi � ξi), ηj � ξj〉 = trMn(B)

(
(〈aληi|ηj〉B)ni,j=1(〈ξi|ξj〉B)ni,j=1

)

(5) Deduce that for every vector state associated to a finite sum ζ =
∑n

i=1 ηi�ξi ∈ H◦B�B BK
◦ and

every increasing net aλ ↗ a in A, ωζ(aλ) ↗ ωζ(a). Then use (1) to conclude the left A-action
on H �B K is normal.

Exercise 2.6. Verify that for all η1, η2 ∈ H◦B and ξ1, ξ2 ∈ BK
◦,

〈〈η2|η1〉Bξ1, ξ2〉K = 〈η1B〈ξ1, ξ2〉, η2〉H .

Hint: Show they are both equal to trB(〈η2|η1〉B · B〈ξ1, ξ2〉).

2.2 Intertwiners and the exchange relation

Suppose (A, trA) and (B, trB) are tracial von Neumann algebras, and AHB and AKB are two A−B
bimodules.

Definition 2.7. The space of intertwiners from H to K is the Banach space HomA−B(H,K) of
continuous linear transformations which are A−B bilinear. Note that EndA−B(H) = A′ ∩ (Bop)′ ∩
B(H) is a von Neumann algebra.

Exercise 2.8. Show that A−B subbimodules AKB of a given A−B bimodule AHB are in bijective
correspondence with orthogonal projections pK ∈ EndA−B(H). Under this correspondence, show
that K is irreducible if and only if pK is minimal in the von Neumann algebra EndA−B(H), i.e.,
pK EndA−B(H)pK = CpK .

Exercise 2.9 (Roberts’ 2× 2 trick). Show that the Banach space HomA−B(H,K) is isometrically
isomorphic to pK EndA−B(H ⊕K,H ⊕K)pH , where pH is the projection with range H ⊕ 0 and pK
is the projection with range 0⊕K.

Exercise 2.10. Use Roberts’ 2×2 trick from Exercise 2.9 to show that the Banach space HomA−B(H,K)
is the dual space of a Banach space.

Definition 2.11. Suppose f ∈ HomA−B(H1, H2) and g ∈ HomB−C(K1, K2). We define the map
f � g ∈ HomA−C(H1 �B K1, H2 �B K2) by the unique extension of the map η � ξ 7→ f(η) � g(ξ)
where η ∈ H◦1 and ξ ∈ K◦1 .

Exercise 2.12. Show that the map f � g from Definition 2.11 is well-defined. That is, show that
for all finite sums

∑
i ηi � ξi ∈ H◦1 �B K

◦
1 ,∥∥∥∥∥∑

i

f(ηi) � g(ξi)

∥∥∥∥∥
H2�BK2

≤ ‖f‖ · ‖g‖ ·

∥∥∥∥∥∑
i

ηi � ξi

∥∥∥∥∥
H1�BK1

.

(1) Use Exercise 2.5 to show that (〈f(ηi)|f(ηj)〉B)i,j ∈Mn(B) is positive, and (〈f(ηi)|f(ηj)〉B)i,j ≤
‖f‖2(〈ηi|ηj〉B)i,j.
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(2) Conclude that ‖
∑

i f(ηi) � g(ξi)‖H2�BK2
≤ ‖f‖ · ‖

∑
i ηi � g(ξi)‖H1�BK2

.

(3) Repeat the argument for g.

Exercise 2.13 (Exchange relation). Suppose f1 ∈ HomA−B(H1, H2), f2 ∈ HomA−B(H2, H3), g1 ∈
HomB−C(K1, K2), and g2 ∈ HomB−C(K2, K3). Show that

(f2 � g2) ◦ (f1 � g1) = (f2 ◦ f1) � (g2 ◦ g1).

Hint: Show they are equal on simple vectors in H◦1 �B K
◦
1 .

2.3 Associators and unitors

We now define the associator and unitor natural isomorphisms for our 2-category. Of special
importance is Popa’s lemma saying that for every bimodule AHB, H◦ = AH

◦ ∩H◦B is dense in H,
together with Lemma 2.4 which says that for all AHB and BKC , H◦ �B K

◦ is dense in H �B K.

Definition 2.14 (Associators). For AHB, BKC , and CLD, we define the associator unitary isomor-
phism αH,K,L : H�B (K�C L)→ (H�BK)�C L as the extension of the map H◦�A (K◦�C L

◦)→
(H◦ �B K

◦) �C L
◦ given by ξ � (η � ζ) 7→ (ξ � η) � ζ.

Exercise 2.15. Show that αH,K,L is a well-defined, i.e., that αH,K,L on H◦ �B (K◦ �C L
◦) is an

isometry with dense range. Conclude that the associators α are unitary isomorphisms.
Hint: To show the map is well-defined, use Exercise 2.6 to show it’s an isometry. To show it extends
uniquely to H �B (K �C L), use Lemma 2.4 twice – once for showing DK�CL = K◦ �C L

◦ is dense
in K �C L, and once for showing H◦ �B (K◦ �C L

◦) is dense in H �B (K �C L). Finally, to show
it has dense range, use Lemma 2.4 twice more.

Exercise 2.16. Prove that α is natural, i.e., if f ∈ HomA−B(H1, H2), g ∈ HomB−C(K1, K2), and
h ∈ HomC−D(L1, L2), then αH2,K2,L2 ◦ (f � (g � h)) = ((f � g) � h) ◦ αH1,K1,L1 .

Exercise 2.17 (Pentagon axiom). The associator α satisfies the following coherence axiom. For
all tracial von Neumann algebras A,B,C,D,E (with distinguished traces) and all bimodules AGB,

BHC , CKD, and DLE, the following diagram commutes:

G�B (H �C (K �D L)
αG,H,K�L //

idG �αH,K,L

��

(G�B H) �C (K �D L)
αG�H,K,L

++
((G�B H) �C K) �D L

G�B ((H �C K) �D L)
αG,H�L,K // (G�B (H �C K)) �D L

αG,H,K�idL

33

Hint: Check both composites on simple vectors in G◦ �B (H◦ �C (K◦ �D L◦), which is dense in
G�B (H �C (K �D L)) by three uses of Lemma 2.4.

Definition 2.18 (Unitors). For AHB, we define a unitary isomorphism λAH ∈ HomA−B(L2A�H,H)
as the extension of the linear map AΩ � H◦ → H by aΩ � ξ 7→ aξ. Similarly, we define ρBH ∈
HomA−B(H � L2B,H) as the extension of ξ � bΩ 7→ ξb.
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Exercise 2.19. Verify that the unitors λ, ρ are well-defined unitary isomorphisms.

Exercise 2.20. Verify that the unitors λ, ρ are natural isomorphisms.

Exercise 2.21 (Triangle axiom). The associator α and unitors λ, ρ satisfy the following coherence
axiom. For all tracial von Neumann algebras A,B,C (with distinguished traces) and all bimodules

AHB, BKC , the following diagram commutes:

H �B (L2B �B K)
αH,L2B,K //

idH �λBK ((

(H �B L
2B) �B K

ρBH�idKvv
H �B K

Definition 2.22. A 2-category C consists of the following data:

• A collection of objects A,B,C, . . . .

• For each pair of objects A,B, a category Mor(A,B) whose objects are called 1-morphisms
and whose morphisms are called 2-morphisms. Given two 1-morphisms H,K ∈ Mor(A,B),
we denote the set of 2-morphisms from H to K by Hom(H,K).

• For each object A, a distinguished 1-morphism 1A ∈ Mor(A,A) called the identity 1-morphism.

• For each three objects A,B,C, a bi-functor − ◦ − : Mor(A,B) × Mor(B,C) → Mor(A,C)
called horizontal composition. Here, we are writing composition from left to right, in the
reverse order of what is usually used in mathematics!

• For each quadruple of objects A,B,C,D, an associator natural isomorphism

Mor(A,B)×Mor(B,C)×Mor(C,D) Mor(A,C)×Mor(C,D)

α
=⇒

Mor(A,B)×Mor(B,D) Mor(A,D).

(−◦−)×id

id×(−◦−) −◦−

−◦−

This means for all H ∈ Mor(A,B), K ∈ Mor(B,C), and L ∈ Mor(C,D), we have an isomor-
phism αH,K,L : H ◦ (K ◦ L)→ (H ◦K) ◦ L which is natural in all three variables.

• For each pair of objects A,B, a pair of natural isomorphisms λA : const1A ◦ idMor(A,B) ⇒
idMor(A,B) and ρB : idMor(A,B) ◦ const1B ⇒ idMor(A,B) called unitors. Here, const1A ◦ idMor(A,B) :
Mor(A,B) → Mor(A,B) is the functor H 7→ 1A ◦H and const1B ⇒ idMor(A,B) : Mor(A,B) →
Mor(A,B) is the functor H 7→ H ◦ 1B. This means that for every H ∈ Mor(A,B), we have
isomorphisms λAH : 1A ◦H → H and ρBH : H ◦ 1B → H which are natural in H.

This data must satisfy the following axioms:

• (Pentagon) The associators satisfy the pentagon axiom from Exercise 2.17.
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• (Triangle) The associator and unitors satisfy the triangle axiom from Exercise 2.21.

We remind the reader that our notion of 2-category is a weak 2-category, which is also known
as a bicategory.

Remark 2.23. The reader may be familiar with the notion of a monoidal category. We note that
the above definition for a 2-category, when restricted to a 2-category with only one object, is exactly
the definition of a monoidal category.

Theorem 2.24. There is a 2-category TvNA whose objects are tracial von Neumann algebras, whose
1-morphisms are bimodules, and whose 2-morphisms are intertwiners.

Proof. We verify the data and axioms from Definition 2.22. For each pair of tracial von Neumann
algebras (A, trA) and (B, trB), we have take Mor(A,B) to be the category whose objects are A−B
bimodules and whose morphisms are the intertwiners. This means the 1-morphisms in TvNA are
bimodules, and the 2-morphisms are intertwiners. The distinguished 1-morphism 1A ∈ Mor(A,A)
is L2A = L2(A, trA). The horizontal composition functor Mor(A,B) ×Mor(B,C) → Mor(A,C) is
the Connes fusion tensor product − �B − from Definition 2.11, which is a bi-functor by Exercise
2.13, and the fact that idH � idK is easily verified to be idH�K . The associator and unitor natural
isomorphisms were defined in Definition 2.14 and 2.18 respectively. That they satisfy the pentagon
and triangle axioms was verified in Exercises 2.17 and 2.21.

2.4 Involution 1: the adjoint

We now define the first of two involutions on TvNA, which is called the adjoint.

Definition 2.25. Recall from Definition 2.7 that HomA−B(H,K) is the space of continuous linear
transformations H → K which are A − B bilinear. Since H,K are Hilbert spaces, every f ∈
HomA−B(H,K) has an adjoint f ∗ ∈ HomA−B(K,H).

Exercise 2.26. Verify that the adjoint satisfies the following axioms.

(1) For all f ∈ HomA−B(H,K), f ∗∗ = f .

(2) For all f1 ∈ HomA−B(H1, H2) and f2 ∈ HomA−B(H2, H3), (f2 ◦ f1)∗ = f ∗1 ◦ f ∗2 .

(3) For all f ∈ HomA−B(H1, H2) and g ∈ HomB−C(K1, K2), (f � g)∗ = f ∗ � g∗.

Definition 2.27. An adjoint on a 2-category C is a map ∗ : Hom(H,K) → Hom(K,H) for all
1-morphisms H,K in C that satisfies the axioms from Exercise 2.26, and such that the associators
and unitors are unitary isomorphisms. (A 2-morphism f ∈ Hom(H,K) is called unitary if f is
invertible with inverse f ∗.)

A 2-category C with adjoint ∗ is called a C*-2-category if for all 1-morphisms H,K in C,

• for all f ∈ Hom(H,K), there is a g ∈ Hom(H,H) such that f ∗ ◦ f = g∗ ◦ g, and

• the function ‖ · ‖ : Hom(H,K)→ [0,∞] given by

‖f‖2 = sup {|λ| ≥ 0 | f ∗ ◦ f − λ idH is not invertible}

defines a norm on Hom(H,K) which is sub-multiplicative for composition, the normed spaces
Hom(H,K) are complete with respect to this norm, and the norm satisfies the C*-axiom
‖f ∗ ◦ f‖ = ‖f‖2.
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A C*-2-category is called a W*-2-category if for all 1-morphisms H,K in C, the 2-morphism
Banach space Hom(H,K) is the dual space of a Banach space.

Remark 2.28. Note that being a C*-2-category or a W*-2-category is a property of a 2-category
with adjoint, and not extra structure.

Exercise 2.29. Suppose C is a 2-category with adjoint which admits finite direct sums of 1-
morphisms. Show that C is a C*/W*-2-category respectively if and only if for every 1-morphism H
in C, End(H) is a C*/W*-algebra.
Use Roberts’ 2× 2 trick from Exercise 2.9.

Corollary 2.30. The 2-category TvNA with its adjoint forms a W*-2-category.

Proof. We saw in Theorem 2.24 that TvNA is a 2-category. By Exercises 2.15, 2.19, and 2.26, ∗ is an
adjoint on TvNA. Now TvNA is a W*-2-category by Exercise 2.10 or 2.29. Note that TvNA admits
arbitrary direct sums of bimodules, and for all bimodules AHB, EndA−B(H) = A′ ∩ (Bop)′ ∩ B(H)
is a von Neumann algebra.

2.5 Involution 2: the conjugate

We now define the second of two involutions, which is called the conjugate.

Definition 2.31. Recall that for every Hilbert space H, its conjugate Hilbert space H is
{
ξ
∣∣ξ ∈ H}

with addition and scalar multiplication given by λη+ ξ = λη + ξ for λ ∈ C and η, ξ ∈ H. The inner
product on H is given by

〈η, ξ〉H := 〈ξ, η〉H .

If H is an A−B bimodule, then H is naturally a B − A bimodule with b · ξ · a := a∗ξb∗.
Now if f ∈ HomA−B(H,K), we can define f ∈ HomB−A(H,K) by f(ξ) = f(ξ). One verifies:

• For all AHB, idH = idH .

• For all f ∈ HomA−B(H,K) and g ∈ HomA−B(K,L), g ◦ f = g ◦ f .

We have several canonical natural isomorphisms. For each tracial von Neumann algebra (A, trA),
L2A has a canonical real structure rA ∈ HomA−A(L2A,L2A) given by the extension of the map

aΩ 7→ a∗Ω. For each A−B bimodules AHB, we have a canonical isomorphism ϕH ∈ HomA−B(H,H)

given by ξ 7→ ξ. Finally, for each A − B bimodule AHB and B − C bimodule BKC , we have an
isomorphism νK,H ∈ HomC−A(K �B H,H �B K) given by the extension of ξ �B η ∈ K

◦
�B H

◦

maps to η � ξ.

Exercise 2.32. Show that the inner product on H is linear in the first variable and conjugate-linear
in the second variable.

Exercise 2.33. Verify that the maps rA ∈ HomA−A(L2A,L2A), ϕH ∈ HomA−B(H,H), and νK,H ∈
HomC−A(K �B H,H �B K) are well-defined unitary isomorphisms.

Exercise 2.34. Verify that the maps r, ϕ, ν are natural isomorphisms.
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Exercise 2.35. Verify that the maps r, ϕ, ν satisfy the following axioms:

(1) (associative) For all bimodules AHB, BKC and CLD, νL,H�BK ◦ (idL�CνK,H) = νK�CL,H ◦
(νL,K �B idH).

(2) (unital 1) For all tracial von Neumann algebras A, ϕL2A = rA ◦ rA.

(3) (unital 2) For all bimodules AHB, νH,L2B ◦ (idH �rB) = idH = νL2A,H ◦ (rA � idH).

(4) (monoidal) For all bimodules AHB, BKC , ϕH�BK = νK,H ◦ νH,K ◦ (ϕH ⊗ ϕK).

Remark 2.36. It is possible to define the conjugation · for TvNA such that ϕH = idH for all
bimodules AHB. To do so, instead of defining H to be the space of symbols

{
ξ
∣∣ξ ∈ H}, we define

H to be the same underlying set H, but with the conjugate Hilbert space structure. This means
we define a new scalar multiplication on H given by λ · η := λη, and we define a new inner product
on H given by 〈η, ξ〉H := 〈ξ, η〉H . At first glance, this new inner product seems to be linear in the
second variable, but we are using the conjugate scalar multiplication, and thus it is linear in the
first variable. Since complex conjugation is its own inverse, we see that taking the conjugate twice
exactly recovers our original Hilbert space H.

In the sequel, we will assume that ϕH = idH for all AHB.

Exercise 2.37. Verify that the conjugate Hilbert space structure defined in Remark 2.36 actually
endows H with the structure of a Hilbert space.

Definition 2.38. A conjugation · on a 2-category C is the data of an anti-linear functor · :
Mor(A,B)→ Mor(A,B) for every pair of objects A,B, together with the data of

• for every object A, an isomorphism rA : 1A → 1A,

• for all objects A,B, a natural isomorphism ϕ : idMor(A,B) ⇒ · , and

• for all objects A,B,C, a natural isomorphism

Mor(C,B)×Mor(B,A) Mor(C,A)

ν
=⇒

Mor(C,B)×Mor(B,A) Mor(C,A).

−◦−

( · )×( · ) ·

−◦−

This means for all H ∈ Mor(A,B) and K ∈ Mor(B,C), we have an isomorphism νK,H :
K ◦H → H ◦K which is natural in H and K.

which satisfy the relations of Exercise 2.35.

Definition 2.39. A 2-category C with adjoint and conjugation is called bi-involutive if

• the conjugation natural isomorphisms r, ϕ, ν are unitary, and
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• the two involutions commute. This means for every objects A,B, all 1-morphisms H,K ∈
Mor(A,B), and every 2-morphism f ∈ Hom(H,K), we have f ∗ = f

∗
.

Corollary 2.40. The 2-category TvNA with its adjoint and conjugate is bi-involutive.

Proof. That the maps ϕ, ν, r are unitary follows from Exercise 2.33. Suppose f ∈ HomA−B(H,K).
For all η ∈ H◦ and ξ ∈ K◦,

〈f(η), ξ〉K = 〈f(η), ξ〉K = 〈ξ, f(η)〉K = 〈f ∗(ξ), η〉H = 〈η, f ∗(ξ)〉H = 〈η, f ∗(ξ)〉H .

We conclude that f
∗

= f ∗, and thus TvNA is bi-involutive.

2.6 Graphical calculus

TODO:

3 Factors, subfactors, and dualizability

TODO:
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