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Subfactors

Theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Definition

The Jones tower of A = A0 ⊂ A1 = B is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).
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The tower of relative commutants

...
...

...
...

∪ ∪ ∪ ∪

A′0 ∩A3 ⊃ A′1 ∩A3 ⊃ A′2 ∩A3 ⊃ A′3 ∩A3 = C

∪ ∪ ∪

A′0 ∩A2 ⊃ A′1 ∩A2 ⊃ A′2 ∩A2 = C

∪ ∪

A′0 ∩A1 ⊃ A′1 ∩A1 = C

∪

A′0 ∩A0 = C

A′i ∩Aj
∼= A′i+2 ∩Aj+2 canonically.
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The tower of relative commutants

...
...

...
...

∪ ∪ ∪ ∪

A′0 ∩A3 ⊃ A′1 ∩A3 ⊃ A′2 ∩A3 ⊃ A′3 ∩A3 = C

∪ ∪ ∪

A′0 ∩A2 ⊃ A′1 ∩A2 ⊃ A′2 ∩A2 = C

∪ ∪

A′0 ∩A1 ⊃ A′1 ∩A1 = C

∪

A′0 ∩A0 = C

These two towers form a planar algebra.
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Planar algebras

Definition [Jon99]

A planar algebra is a collection of (finite dimensional, complex)
vector spaces P• together with an action of the planar operad
Z : P→ML(P•).

Example

Planar diagrams give multilinear maps which compose nicely:

∗

∗

∗
1

2

◦1 ∗
∗

=

∗

∗

∗
1

2

Penneys, with Izumi, Jones, Morrison, Peters, Snyder, Tener Classification of subfactors to index 5



Intro Odometer Triple Points Quadruple Points Vines

Principal graphs

The relative commutants are all finite dimensional. The tower

A′0 ∩A0 ⊂ A′0 ∩A1 ⊂ A′0 ∩A2 ⊂ · · ·

is described by its Bratteli diagram (and the trace).

The non-reflected part is the principal graph.

Penneys, with Izumi, Jones, Morrison, Peters, Snyder, Tener Classification of subfactors to index 5



Intro Odometer Triple Points Quadruple Points Vines

Principal graphs

The relative commutants are all finite dimensional. The tower
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is described by its Bratteli diagram (and the trace).

The non-reflected part is the principal graph.
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Paragroups

Definition [Ocn88]

The paragroup of A ⊂ B is the 2-category given by

0-morphisms: {A,B}
1-morphisms: bimodule summands of L2(Ak) for some k ≥ 0

2-morphisms: intertwiners (summands of A′0 ∩Ak and
A′1 ∩Ak+1 for k ≥ 0)

This 2-category is semi-simple, unitary, rigid (duals are well
behaved), pivotal, sometimes spherical.
Planar diagrams give a graphical calculus which makes the
paragroup have the structure of a shaded planar algebra.
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Fusion/C∗-tensor categories

Definition

The even half of the paragroup of A ⊂ B (finite index) is the
tensor category given by

0-morphisms: {A}
1-morphisms: A−A bimodule summands of L2(Ak) for some
k ≥ 0

2-morphisms: intertwiners (summands of A′0 ∩A2k for k ≥ 0)

The even half is a pivotal C∗-tensor category which forms an
unshaded planar algebra.

Definition

A fusion category is a semisimple, rigid tensor category with
finitely many isomorphism classes of simple objects.
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Principal graphs revisited

Let X =A L
2(B)B.

Definition

The principal graph has one vertex for each simple APA and AQB,
and the number of edges connecting them is

dim(HomA−B(P ⊗X,Q))

The dual principal graph has one vertex for each simple BRB and

BSA, and the number of edges connecting them is

dim(HomB−A(R⊗X∗, S))

The dual principal graph of A0 ⊂ A1 is the principal graph of
A1 ⊂ A2.

For simplicity, we assume the (dual) principal graph is simply laced.
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Example: the Haagerup principal graph

AModA

AModB

Start with the trivial bimodule

AL
2(A)A =A L

2(A0)A.

This bimodule is obviously self-dual.
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X and take summands

AL
2(A)A ⊗XB

∼=A L
2(B)B =A L

2(A1)B.

A−B bimodules are dual to B−A bimodules (on the dual graph).
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X∗ and take new summands

AL
2(B)⊗X∗ ∼=A L

2(A2)A.

If only one new bimodule appears, it must be self-dual.
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X again and take new summands

AL
2(A2)A ⊗XB

∼=A L
2(A3)B.

Once again, its dual is on the dual principal graph.
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X∗ again and take new summands

AL
2(A3)⊗X∗ ∼=A L

2(A4)A.

Here is an example of two self-dual bimodules at depth 4.
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X again and take new summands

AL
2(A4)⊗X ∼=A L

2(A5)B.

Once again, the dual bimodules are on the dual principal graph.
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Example: the Haagerup principal graph

AModA

AModB

Tensor with X∗ again and take new summands

AL
2(A5)⊗X∗ ∼=A L

2(A6)A.

The final two bimodules are dual to each other.
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Classification up to index 4

Theorem

Subfactors with index less than 4 are classified by their principal
graphs (and a little more data):

An

D2n

E6

E8
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Classification at index 4

Theorem, Popa [Pop94]

Subfactors with index equal to 4 are classified by their principal
graphs (and a little more data):

E
(1)
6

E
(1)
7

E
(1)
8

A
(1)
2n−1 (n ≥ 1)

D
(1)
n (n ≥ 4)

A
(1)
∞ = A∞,∞

A∞

D∞
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Haagerup’s classification to index 3 +
√
3

Theorem, Haagerup [Haa94]

The principal graphs of a non-A∞ subfactor in the index range
(4, 3 +

√
3) is a translation of one of the following:(

,
)

(
,

)
(

,
)

Asaeda-Yasuda eliminated translations by more than j = 4 of the
first family in [AY09].
Haagerup announced the elimination of translations by more than
j = 2 of the second family in [Haa94].
Bisch eliminated the third family in [Bis98].
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Main Theorem

Theorem [MS, MPPS, IJMS, PT]

There are exactly 10 non-A∞ subfactors in the index range (4, 5):(
,

)
and its dual [AH99](

,
)

and its dual [BMPS09](
,

)
and its dual [AH99](

,
)

and its dual

[GdlHJ89, Kaw95](
,

)
and its complex conjugate [Izu01]
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4 parts of the proof

1 Part 1: the odometer

2 Part 2: triple points
Connections
Triple-single
Quadratic tangles

3 Part 3: quadruple points

4 Part 4: vines
Number theory
Eliminating vines
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Theorem, part 1 [MS]

The principal graph of any subfactor of index between 4 and 5 is a
translate of one of an explicit finite list of graph pairs (which we
call the vines), or is a translated extension of one of the following
graph pairs (which we call the weeds).

C =
(

,
)
,

F =
(

,
)
,

B =
(

,
)
,

Q =
(

,
)
,

Q′ =
(

,
)
.
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The vines
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Connections

Associativity of composing 1-morphisms (tensoring bimodules)
means that we have natural isomorphisms

HomB−B(X∗ ⊗ (P ⊗X), R) ∼= HomB−B((X∗ ⊗ P )⊗X,R)

for (simples) APA and BRB.
A connection records a change of (orthonormal) bases for these
spaces.

X∗ P X

Q

R

=
∑
S

C(P,Q,R, S)

X∗ P X

S

R
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Connections

Similarly, we have natural isomorphisms

HomB−A(X∗ ⊗ (Q⊗X∗), S) ∼= HomB−B((X∗ ⊗Q)⊗X∗, S)

for (simples) AQB and BSA.

X∗ Q X∗

P

S

=
∑
R

K(Q,P, S,R)

X∗ Q X∗

R

S

Fact√
dim(P ) dim(R)C(P,Q,R, S) =

√
dim(Q) dim(S)K(Q,P, S,R)
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Ocneanu’s 4-partite graphs

The principal and dual principal graphs can be combined to form a
4-partite graph which records the fusion rules of the paragroup:

AModA
−⊗AX //

X∗⊗A−
��

AModB

X∗⊗A−
��

−⊗BX∗
//
AModA

X∗⊗A−
��

BModA −⊗AX
//
BModB −⊗BX∗

//
BModA

The connection is the assignment of numbers to loops on this
4-partite graph.
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The Haagerup 4-partite graph

The Haagerup principal graphs(
,

)
give the 4-partite graph

AModA

AModB

BModB

BModA

AModA
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Biunitarity

Given APA and BRB, we get a unitary matrix C(P,−, R,−) where
entries correspond to loops based at P through R.
Given AQB and a BSA, we get a unitary matrix K(Q,−, S,−)
where entries correspond to loops based at Q through S.

Example 1

AModA

P

AModB

BModB

R

BModA

AModA

P

√
dim(P ) dim(R)C(P,Q,R, S) =

√
dim(Q) dim(S)K(Q,P, S,R)
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Biunitarity

Given APA and BRB, we get a unitary matrix C(P,−, R,−) where
entries correspond to loops based at P through R.
Given AQB and a BSA, we get a unitary matrix K(Q,−, S,−)
where entries correspond to loops based at Q through S.

Example 2

AModA

AModB

Q

BModB

BModA

S

AModA√
dim(P ) dim(R)C(P,Q,R, S) =

√
dim(Q) dim(S)K(Q,P, S,R)
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Example 2

AModA

AModB

Q

BModB

BModA

S

AModA√
dim(P ) dim(R)C(P,Q,R, S) =

√
dim(Q) dim(S)K(Q,P, S,R)
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Ocneanu’s obstruction

Theorem (Ocneanu [Haa94])

Suppose the principal graphs of a subfactor have an initial triple
point β, β∗ (at an even depth)

α1 β
α2

α3

,
γ1 β∗

γ2

γ3

,

such that dim(αi) = dim(γi) for i = 1, 2, 3 and

dim(Hom(X∗ ⊗ αj ⊗X, γk)) = 1 for j, k ∈ {2, 3}.

Then [B : A] ≤ 4.
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Haagerup’s Corollary

Corollary (Haagerup [Haa94], Jones [Jon10])

If a principal graph starts out like a translation by j of

,

then the dual principal graph starts out like a translation by j of

(and vice versa).

Penneys, with Izumi, Jones, Morrison, Peters, Snyder, Tener Classification of subfactors to index 5



Intro Odometer Triple Points Quadruple Points Vines Connections Triple-single Quadratic tangles

Triple-single obstruction

Theorem (weak form) [MPPS]

If the principal graphs of a subfactor start like a 2k translation of(
,

)
,

then | dim(α2)− dim(α3)| ≤ 1.

Notation at triple point: α1 β
α2

α3

,
γ1 β∗

γ2

γ3

ai =
√

dim(αi), ci =
√

dim(γi), b =
√

dim(β) =
√

dim(β∗)
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Proof of the triple-single obstruction

Proof

AModA

AModB

β

BModB

BModA

β∗

AModA

Find K(β,−, β∗,−) =


? ? ?

? ? ?

? ? ?


Label rows by α’s (A−A bimodules) and columns by γ’s (B −B
bimodules).
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Proof of the triple-single obstruction

Proof

AModA

α1

AModB

β

BModB

γ2

BModA

β∗

AModA

α1

K(β, α1, β
∗, γ2) =

a1c2
b2

C(α1, β, γ2, β
∗)

In modulus: K(β,−, β∗,−) =


?

a1c2
b2

?

? ? ?

? ? ?
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Proof of the triple-single obstruction

Proof

AModA

α1

AModB

β

BModB

γ3

BModA

β∗

AModA

α1

K(β, α1, β
∗, γ3) =

a1c3
b2

C(α1, β, γ3, β
∗)

In modulus: K(β,−, β∗,−) =


?

a1c2
b2

a1c3
b2

? ? ?

? ? ?
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Proof of the triple-single obstruction

Proof

AModA

α2

AModB

β

BModB

γ1

BModA

β∗

AModA

α2

K(β, α2, β
∗, γ1) =

a2c1
b2

C(α2, β, γ1, β
∗)

In modulus: K(β,−, β∗,−) =
1

b2


? a1c2 a1c3

a2c1 ? ?

? ? ?
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Proof of the triple-single obstruction

Proof

AModA

α3

AModB

β

BModB

γ1

BModA

β∗

AModA

α3

K(β, α3, β
∗, γ1) =

a3c1
b2

C(α3, β, γ1, β
∗)

In modulus: K(β,−, β∗,−) =
1

b2


? a1c2 a1c3

a2c1 ? ?

a3c1 ? ?
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Proof of the triple-single obstruction

Proof

AModA

α2

AModB

β

BModB

γ2

BModA

β∗

AModA

α2

K(β, α2, β
∗, γ2) =

a2c2
b2

C(α2, β, γ1, β
∗)

In modulus: K(β,−, β∗,−) =
1

b2


? a1c2 a1c3

a2c1 a2c2 ?

a3c1 ? ?
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Proof of the triple-single obstruction

Proof

AModA

α3

AModB

β

BModB

γ2

BModA

β∗

AModA

α3

K(β, α2, β
∗, γ2) =

a3c2
b2

C(α2, β, γ1, β
∗)

In modulus: K(β,−, β∗,−) =
1

b2


? a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?
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Proof of the triple-single obstruction

Proof

AModA

α1

AModB

β

BModB

γ1

BModA

β∗

AModA

α1

easy exercise: K(β, α1, β
∗, γ1) =

1

dim(β)
.

In modulus: K(β,−, β∗,−) =
1

b2


1 a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?
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Proof of the triple-single obstruction

Proof

K(β,−, β∗,−) =
1

b2


1 a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?


where ai =

√
dim(αi), ci =

√
dim(γi), b =

√
dim(β), and

a1 = c1.
Taking the inner product of the first two columns, we have

λ1
a1c2
b4

+ λ2
a22c1c2
b4

+ λ3
a23c1c2
b4

= 0

where λi has modulus 1.
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Proof of the triple-single obstruction

Proof

K(β,−, β∗,−) =
1

b2


1 a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?


where ai =

√
dim(αi), ci =

√
dim(γi), b =

√
dim(β), and

a1 = c1.
Taking the inner product of the first two columns, we have

λ1 + λ2a
2
2 + λ3a

2
3 = 0

where λi has modulus 1.
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Proof of the triple-single obstruction

Proof

K(β,−, β∗,−) =
1

b2


1 a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?


where ai =

√
dim(αi), ci =

√
dim(γi), b =

√
dim(β), and

a1 = c1.
Taking the inner product of the first two columns, we have

1 + λ2a
2
2 + λ3a

2
3 = 0

where λi has modulus 1.
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Proof of the triple-single obstruction

Proof

K(β,−, β∗,−) =
1

b2


1 a1c2 a1c3

a2c1 a2c2 ?

a3c1 a3c2 ?


where ai =

√
dim(αi), ci =

√
dim(γi), b =

√
dim(β), and

a1 = c1.
Taking the inner product of the first two columns, we have

1 + λ2 dim(α2) + λ3 dim(α3) = 0

where λi has modulus 1.
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Proof of the triple-single obstruction

Proof

The equation

1 + λ2 dim(α2) + λ3 dim(α3) = 0

means that we have a triangle in the complex plane with sides of
length 1, dim(α2), and dim(α3). Hence

|dim(α2)− dim(α3)| ≤ 1.
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The Asaeda-Haagerup vine

Theorem [Haa94, MPPS]

Translations by j > 0 of(
,

)
are not the principal graphs of a subfactor.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

Show n ≤ 6.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

y

Find x, y.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

y [2]y − [n]

[3]y − [2][n]

[4]y − [3][n]

[5]y − [4][n]

Find y.

Penneys, with Izumi, Jones, Morrison, Peters, Snyder, Tener Classification of subfactors to index 5



Intro Odometer Triple Points Quadruple Points Vines Connections Triple-single Quadratic tangles

The Asaeda-Haagerup vine

Proof

Note |x− y| ≤ 1 by the triple-single obstruction.

[1] [2] [n− 1] [n]

x

y [2]y − [n]

[3]y − [2][n]

[4]y − [3][n]

[5]y − [4][n]

[6]y − [5][n] = 0 and y =
[5][n]

[6]
.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

[5][n]

[6] [3]y − [2][n]

Find x.

Penneys, with Izumi, Jones, Morrison, Peters, Snyder, Tener Classification of subfactors to index 5



Intro Odometer Triple Points Quadruple Points Vines Connections Triple-single Quadratic tangles

The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

[5][n]

[6]

[3]y − [2][n]

[3]y − [2][n]

Find x.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

[5][n]

[6]

[2]([3]y − [2][n]])

[3]y − [2][n]

Find x.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

x

[5][n]

[6]

[2]([3]y − [2][n]])

[3]y − [2][n]

[2]x = [n] + [2]([3]y − [2][n]). Substitute y =
[5][n]

[6]
. Simplify to

get x =
([5] + 1)[n]

[6]
.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

([5] + 1)[n]

[6]

[5][n]

[6]

Recall |x− y| ≤ 1 by the triple-single obstruction.
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The Asaeda-Haagerup vine

Proof

[1] [2] [n− 1] [n]

([5] + 1)[n]

[6]

[5][n]

[6]

|x− y| =
∣∣∣∣([5] + 1)[n]

[6]
− [5][n]

[6]

∣∣∣∣ =
[n]

[6]
≤ 1.

So n ≤ 6.
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Quadratic tangles obstruction

Theorem

If the principal graphs of a subfactor start like a translation by j of(
,

)
,

then j is even and

dim(α2)

dim(α3)
+

dim(α3)

dim(α2)
=

λ+ λ−1 + 2

[j + 4][j + 6]
+ 2

where λ is a (j + 4)th root of unity called the chirality.

Corollary

−4 ≤
(

dim(α2)

dim(α3)
+

dim(α3)

dim(α2)
− 2

)
[j + 4][j + 6]− 4 ≤ 0
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Theorem, part 2 [MPPS]

Translated extensions of

C =
(

,
)

and

B =
(

,
)

are not the principal graphs of any subfactor. Translated
extensions of

F =
(

,
)

are

not principal graphs of subfactors in the index range (4, 5),

not principal graphs of finite depth subfactors, and

probably not principal graphs of any subfactor.
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Theorem, part 3 [IJMS]

The only translated extensions of

Q =
(

,
)

or

Q′ =
(

,
)

which are the principal graphs of a subfactor are(
,

)
Proof.

The dual data is determined by a quadratic tangles argument. The
translation and extension is determined by the connection at the
quadruple point, where the 4× 4 unitary is completely determined
by the information up to depth 2 past the branch point.
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Fusion categories

Theorem [dBG91, CG94, ENO05]

If N ⊂M is a finite depth subfactor, and Γ is its (dual) principal
graph, then [M : N ] = ‖Γ‖2 [Pop90] is a cyclotomic integer.

Theorem [Ost09]

The global dimension of a fusion category is an Ostrik d-number.

Corollary

The global even dimension of a finite depth subfactor is an Ostrik
d-number.
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How to kill vines

Theorem [AY09]

Let H4j be the translate of H = by 4j. For

j > 1, ‖H4j‖2 is not a cyclotomic integer, and thus H4j is not the
principal graph of a subfactor.

Theorem [CMS]

Given a vine (Γ, v), there is an N(Γ) which is effectively
computable such that for all j ≥ N(Γ), ‖Γj‖2 is not cyclotomic,
where Γj is the translate of Γ at v by j. Hence Γj is not the
principal graph of a subfactor for all j ≥ N(Γ).
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Eliminating the vines

Theorem, Part 4 [PT]

Of all the vines obtained in part 1, we get only 28 graphs with
cyclotomic norm squared. Of these graphs, only the following
graphs can occur as principal graphs of subfactors in the index
range (4, 5):

Vine N(Γ) p Translates

94 29,31 j = 0

87 41,43 j = 0, 4

89 41,43 j = 0, 4

96 37,41 j = 2

123 37,41 j = 2
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Thank you for listening!

Slides available at:

http://math.berkeley.edu/~dpenneys

Preprints available at:

Part 1: arXiv:1007.1730

Part 2: arXiv:1007.2240

Part 4: arXiv:1010.3797
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