Classifying small index subfactors AMS JMM Special MRC Session on
 Quantum Information and Fusion Categories

David Penneys
UCLA

January 11, 2015

What is a subfactor?

Definition

A factor is a von Neumann algebra with trivial center.
A subfactor is an inclusion $A \subset B$ of factors.
Remark
Von Neumann algebras come in pairs (M, M^{\prime}). Subfactors do too: $\left(A \subset B, B^{\prime} \subset A^{\prime}\right)$.

Theorem (Jones [Jon83])
For a subfactor $A \subset B$,

$$
[B: A] \in\left\{\left.4 \cos ^{2}\left(\frac{\pi}{n}\right) \right\rvert\, n=3,4, \ldots\right\} \cup[4, \infty] .
$$

Moreover, there exists a subfactor at each index.
We will restrict our attention to a finite index subfactor $A \subset B$.

Where do subfactors come from?

Some examples include:

- Groups - from $G \curvearrowright R$, we get $R^{G} \subset R$ and $R \subset R \rtimes_{\alpha} G$.
- finite dimensional unitary Hopf/Kac algebras
- Quantum groups
- Conformal field theory
- endomorphisms of Cuntz C*-algebras
- tinkering with known subfactors (orbifolds, composites, ...) However, there are certain possible infinite families without uniform constructions.

Finite index and the standard representation

The bimodule ${ }_{A} B_{B}$ is the standard representation of $A \subset B$. A finite index subfactor $A \subset B$ comes with canonical maps:

Since A, B are analytical objects, these maps also have adjoints.

$\operatorname{Rep}(A \subset B)$

Definition

The representation 2-category of $A \subset B$ is given by
(0) 0-morphisms: $\{A, B\}$
(1) 1-morphisms: bimodule summands of $\bigotimes_{A}^{k} B$ for some $k \geq 0$
(2) 2-morphisms: bimodule intertwiners

- This 2-category is semi-simple, unitary, rigid, pivotal. It is spherical iff $A \subset B$ extremal.
- The $A-A$ bimodules form a rigid C^{*}-tensor category called the 'principal even part'.
- The $B-B$ bimodules form the 'dual even part'.
- The principal even and dual even parts are Morita equivalent:

$$
{ }_{A} \operatorname{Mod}_{A} \prec \frac{{ }_{A} \operatorname{Mod}_{B}}{{ }_{B} \operatorname{Mod}_{A}} \not{ }_{B} \operatorname{Mod}_{B}
$$

Subfactor/representation 2-category correspondence

Theorem (Popa [Pop94])
There is a Tannaka-Krein like duality between (strongly) amenable subfactors and their representation 2-categories.

$$
A \subset B \longleftrightarrow \operatorname{Rep}(A \subset B)
$$

Theorem (many authors)
Subfactors correspond to Frobenius algebra objects in rigid C*-tensor categories.

- Finite depth subfactors correspond to Frobenius algebras in unitary fusion categories.

Fusion categories

Definition

$A \subset B$ has finite depth if $\operatorname{Rep}(A \subset B)$ has finitely many isomorphism classes of simple bimodules.

- Then both even parts are unitary fusion categories.
- Subfactors are a vital source of interesting fusion categories.

Suppose we have a Frobenius algebra object $\mathcal{A} \in \mathcal{C}$, a unitary fusion category.

- Get a subfactor representation 2-category from \mathcal{C}, the \mathcal{C}-module category $\mathcal{M}=\operatorname{Mod}_{\mathcal{A}}$, and the commutant:

$$
\mathcal{C}<\underset{\mathcal{M}^{\mathrm{op}}}{\mathcal{M}} \mathcal{C}_{\mathcal{M}}^{\prime}
$$

- Use Popa's theorem to recover a finite depth subfactor!

Examples of fusion categories

Let G be a finite group.
Example
$\operatorname{Rep}(G)$, category of finite dimensional \mathbb{C}-representations.
Example
$\operatorname{Vec}(G, \omega), G$-graded vector spaces, $\omega \in H^{3}\left(G, \mathbb{C}^{\times}\right)$.

- Simple objects $V_{g} \cong \mathbb{C}$ for each $g \in G$.
- $V_{g} \otimes V_{h}=V_{g h}$
- The 3-cocycle gives the associator natural isomorphism:

$$
\alpha_{g, h, k}:\left(V_{g} \otimes V_{h}\right) \otimes V_{k} \xrightarrow{\omega_{g, h, k}} V_{g} \otimes\left(V_{h} \otimes V_{k}\right) .
$$

The pentagon axiom is exactly the 3-cocycle condition.

$\operatorname{Rep}(R \subset R \rtimes G)$

From a finite group G, get the group subfactor $R \subset R \rtimes G$.
Example

- The principal even part ($R-R$ bimodules) is $\mathcal{C}=\operatorname{Vec}(G)$.
- $R \rtimes G$ corresponds to the algebra object $\mathbb{C}[G] \in \operatorname{Vec}(G)$.
- $\mathcal{M}=\operatorname{Mod}_{\mathbb{C}[G]} \subset \operatorname{Vec}(G)$ has one simple object: $\mathbb{C}[G]$.
- In this case, $\mathcal{C}_{\mathcal{M}}^{\prime}=\operatorname{Rep}(G)$.

$$
\operatorname{Vec}(G) \stackrel{\operatorname{Mod}_{\mathbb{C}[G]}}{\longleftrightarrow} \operatorname{Rep}(G)
$$

The Haagerup: an 'exotic' example

The Haagerup fusion category \mathcal{H} has 6 simple objects
$1, g, g^{2}, X, g X, g^{2} X$ satisfying the following fusion rules:

- $\langle g\rangle \cong \operatorname{Vec}(\mathbb{Z} / 3 \mathbb{Z})$, with trivial associator,
- $X g \cong g^{-1} X$, and
- $X^{2} \cong 1 \oplus X \oplus g X \oplus g^{2} X$ (the quadratic relation).

The algebra object $1 \oplus X$ gives an 'exotic' subfactor with index

$$
\frac{5+\sqrt{13}}{2} \approx 4.30278
$$

\mathcal{H} has only been constructed by brute force.

- It appears \mathcal{H} belongs to an infinite family, but only examples up to $\mathbb{Z} / 19$ have been constructed [EG11].

Classifying small index subfactors

- A finite group G gives a subfactor $R \subset R \rtimes G$ which remembers G.
- Classifying all subfactors is hopeless.

Restrict the search space: one way is to look at small index.

Reminder:
The representation 2-category of $A \subset B$ is given by
(0) 0-morphisms: $\{A, B\}$
(1) 1-morphisms: bimodule summands of $\bigotimes_{A}^{k} B$ for some $k \geq 0$
(2) 2-morphisms: bimodule intertwiners

Principal graphs

Definition

The principal (induction) graph Γ_{+}has one vertex for each isomorphism class of simple ${ }_{A} P_{A}$ and ${ }_{A} Q_{B}$. There are

$$
\operatorname{dim}\left(\operatorname{Hom}_{A-B}\left(P \otimes_{A} B, Q\right)\right)
$$

edges from P to Q.
The dual principal (restriction) graph Γ_{-}has a similar definition using $B-B$ and $B-A$ bimodules.

- $\Gamma_{ \pm}$is pointed, where the base point is ${ }_{A} A_{A},{ }_{B} B_{B}$ respectively.
- The depth of a vertex is its distance to the base point.
- Duals always occur at the same depth, since B is a $*$-algebra. However, duals at odd depths of $\Gamma_{ \pm}$are on Γ_{\mp}.

Examples of principal graphs

- index <4 : ADE classification, but no $D_{\text {odd }}$ or E_{7}.
- index $=4$: affine Dynkin diagrams
- Graphs for $R \subset R \rtimes G$ obtained from $\operatorname{Vec}(G)$ and $\operatorname{Rep}(G)$.

$$
(\longleftarrow, \leftarrow \underbrace{2}_{<}) \quad G=S_{3}
$$

- Principal graph for $R^{G} \subset R^{H}$ is the induction-restriction graph for $H \subset G$:

- First graph is principal, second is dual principal.
- Leftmost vertex corresponds to base points ${ }_{A} A_{A},{ }_{B} B_{B}$.
- Red tags for duality $\left({ }_{A} P_{A} \mapsto{ }_{A} P_{A}\right)$ of even vertices.
- Duality of odd vertices by depth and height

Supertransitivity

Definition

A principal graph is n-supertransitive if has an initial segment with n edges before branching.

Examples

- \Leftarrow is 1-supertransitive
$\bullet \longleftarrow \longleftarrow$ is 2-supertransitive
$\bullet \longmapsto, \angle: \quad$ is 3-supertransitive

Small index subfactor classification program

Steps of subfactor classifications:

1. Enumerate graph pairs which survive obstructions.
2. Construct examples when graphs survive.

Fact (Popa [Pop94])
For a subfactor $A \subset B,[B: A] \geq\left\|\Gamma_{+}\right\|^{2}=\left\|\Gamma_{-}\right\|^{2}$.
If we enumerate all graph pairs with norm at most r, we have found all principal graphs of subfactors with index at most r^{2}.

Known small index subfactors, 2009

- Quantum groups and their quantum subgroups
- Composites
- Haagerup's exotic subfactor and classification to $3+\sqrt{3}$
- Izumi's Cuntz algebra examples (2221, 3^{n})

Known small index subfactors, 2014

- Classification to 5 [MS12, MPPS12, IJMS12, PT12, IMP+ ${ }^{+}$14]
- Examples at $3+\sqrt{5}$ [MP13, PP13, IMP13, MP14]
- 1-supertransitive to $6 \frac{1}{5}$ and examples at $3+2 \sqrt{2}$ [LMP14]

Known small index subfactors, today

Theorem (Afzaly-Morrison-P, 2015)
We know all subfactor standard invariants up to index $5 \frac{1}{4}$.

Thank you for listening!

Slides available at
http://www.math.ucla.edu/~dpenneys/PenneysJMM2015.pdf

David E. Evans and Terry Gannon, The exoticness and realisability of twisted Haagerup-Izumi modular data, Comm. Math. Phys. 307 (2011), no. 2, 463-512, arXiv:1006.1326 MR2837122
DOI:10.1007/s00220-011-1329-3.
R- Masaki Izumi, Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, Subfactors of index less than 5, Part 3: Quadruple points, Comm. Math. Phys. 316 (2012), no. 2, 531-554, MR2993924, arXiv:1109.3190, DOI: 10.1007/s00220-012-1472-5.
R- Masaki Izumi, Scott Morrison, and David Penneys, Fusion categories between $\mathcal{C} \boxtimes \mathcal{D}$ and $\mathcal{C} * \mathcal{D}, 2013$, arXiv:1308.5723.

䍰 Masaki Izumi, Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, Subfactors of index exactly 5, 2014, arXiv:1406.2389.

击 Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25, MR696688, DOI:10.1007/BF01389127.

R Zhengwei Liu, Scott Morrison, and David Penneys, 1-supertransitive subfactors with index at most $6 \frac{1}{5}$, Comm. Math. Phys. (2014), arXiv:1310.8566, DOI:10.1007/s00220-014-2160-4.

Scott Morrison and David Penneys, Constructing spoke subfactors using the jellyfish algorithm, Trans. Amer. Math. Soc. (2013), arXiv:1208.3637, DOI:10.1090/S0002-9947-2014-06109-6.
arXiv:1406.3401.
T- Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, Subfactors of index less than 5, Part 2: Triple points, Internat. J. Math. 23 (2012), no. 3, 1250016, 33, MR2902285, arXiv:1007.2240, DOI:10.1142/S0129167X11007586.

國 Scott Morrison and Noah Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer, Comm. Math. Phys. 312 (2012), no. 1, 1-35, MR2914056, arXiv:1007.1730, DOI:10.1007/s00220-012-1426-y.

D Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163-255, MR1278111, DOI:10.1007/BF02392646.

David Penneys and Emily Peters, Calculating two-strand jellyfish relations, 2013, arXiv:1308.5197.

David Penneys and James E. Tener, Subfactors of index less than 5, Part 4: Vines, Internat. J. Math. 23 (2012), no. 3, 1250017, 18, MR2902286, arXiv:1010.3797, DOI:10.1142/S0129167X11007641.

