Classifying small index subfactors AMS JMM Special MRC Session on Quantum Information and Fusion Categories

> David Penneys UCLA

January 11, 2015

What is a subfactor?

Definition

A factor is a von Neumann algebra with trivial center.

A <u>subfactor</u> is an inclusion $A \subset B$ of factors.

Remark

Von Neumann algebras come in pairs (M, M'). Subfactors do too: $(A \subset B, B' \subset A')$.

Theorem (Jones [Jon83])

For a subfactor $A \subset B$,

$$[B: A] \in \left\{ 4\cos^2\left(\frac{\pi}{n}\right) \middle| n = 3, 4, \dots \right\} \cup [4, \infty].$$

Moreover, there exists a subfactor at each index.

We will restrict our attention to a finite index subfactor $A \subset B$.

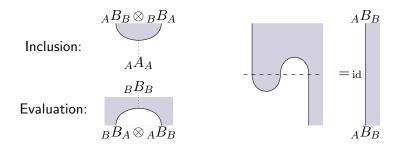
Where do subfactors come from?

Some examples include:

- Groups from $G \curvearrowright R$, we get $R^G \subset R$ and $R \subset R \rtimes_{\alpha} G$.
- finite dimensional unitary Hopf/Kac algebras
- Quantum groups
- Conformal field theory
- endomorphisms of Cuntz C*-algebras
- ► tinkering with known subfactors (orbifolds, composites, ...) However, there are certain possible infinite families without uniform constructions.

Finite index and the standard representation

The bimodule $_AB_B$ is the standard representation of $A \subset B$. A finite index subfactor $A \subset B$ comes with canonical maps:



Since A, B are analytical objects, these maps also have adjoints.

$\mathsf{Rep}(A \subset B)$

Definition

The representation 2-category of $A \subset B$ is given by

- (0) 0-morphisms: $\{A, B\}$
- (1) 1-morphisms: bimodule summands of $\bigotimes_{A}^{k} B$ for some $k \ge 0$
- (2) 2-morphisms: bimodule intertwiners
 - ► This 2-category is semi-simple, unitary, rigid, pivotal. It is spherical iff A ⊂ B extremal.
 - ► The A A bimodules form a rigid C*-tensor category called the 'principal even part'.
 - The B B bimodules form the 'dual even part'.
 - > The principal even and dual even parts are Morita equivalent:

$${}_A\mathsf{Mod}_A \xrightarrow{A\mathsf{Mod}_B} {}_B\mathsf{Mod}_A \xrightarrow{} {}_B\mathsf{Mod}_B$$

Subfactor/representation 2-category correspondence

Theorem (Popa [Pop94])

There is a Tannaka-Krein like duality between (strongly) amenable subfactors and their representation 2-categories.

$$A \subset B <\!\!\!\! \longrightarrow \operatorname{Rep}(A \subset B)$$

Theorem (many authors)

Subfactors correspond to Frobenius algebra objects in rigid C*-tensor categories.

 Finite depth subfactors correspond to Frobenius algebras in unitary fusion categories.

Fusion categories

Definition

 $A \subset B$ has finite depth if $\operatorname{Rep}(A \subset B)$ has finitely many isomorphism classes of simple bimodules.

- Then both even parts are unitary fusion categories.
- Subfactors are a vital source of interesting fusion categories.

Suppose we have a Frobenius algebra object $\mathcal{A}\in\mathcal{C},$ a unitary fusion category.

► Get a subfactor representation 2-category from C, the C-module category M = Mod_A, and the commutant:

$$\mathcal{C} \xleftarrow{\mathcal{M}}{\mathcal{M}^{\mathsf{op}}} \mathcal{C}'_{\mathcal{M}}$$

Use Popa's theorem to recover a finite depth subfactor!

Examples of fusion categories

Let G be a finite group.

Example

 $\operatorname{Rep}(G)$, category of finite dimensional $\mathbb C$ -representations.

Example

 $\operatorname{Vec}(G,\omega)$, G-graded vector spaces, $\omega \in H^3(G,\mathbb{C}^{\times})$.

• Simple objects $V_g \cong \mathbb{C}$ for each $g \in G$.

$$\blacktriangleright V_g \otimes V_h = V_{gh}$$

► The 3-cocycle gives the associator natural isomorphism:

$$\alpha_{g,h,k}: (V_g \otimes V_h) \otimes V_k \xrightarrow{\omega_{g,h,k}} V_g \otimes (V_h \otimes V_k).$$

The pentagon axiom is exactly the 3-cocycle condition.

$\operatorname{Rep}(R \subset R \rtimes G)$

From a finite group G, get the group subfactor $R \subset R \rtimes G$. Example

- The principal even part (R R bimodules) is $\mathcal{C} = \operatorname{Vec}(G)$.
- $R \rtimes G$ corresponds to the algebra object $\mathbb{C}[G] \in \operatorname{Vec}(G)$.
- $\mathcal{M} = \mathsf{Mod}_{\mathbb{C}[G]} \subset \operatorname{Vec}(G)$ has one simple object: $\mathbb{C}[G]$.

• In this case,
$$\mathcal{C}'_{\mathcal{M}} = \operatorname{Rep}(G)$$
.

$$\operatorname{Vec}(G) \xleftarrow{\operatorname{\mathsf{Mod}}_{\mathbb{C}[G]}} \operatorname{Rep}(G)$$

The Haagerup: an 'exotic' example

The Haagerup fusion category \mathcal{H} has 6 simple objects $1, g, g^2, X, gX, g^2X$ satisfying the following fusion rules:

- $\langle g \rangle \cong \operatorname{Vec}(\mathbb{Z}/3\mathbb{Z})$, with trivial associator,
- $Xg \cong g^{-1}X$, and
- $X^2 \cong 1 \oplus X \oplus gX \oplus g^2X$ (the quadratic relation).

The algebra object $1 \oplus X$ gives an 'exotic' subfactor with index

$$\frac{5+\sqrt{13}}{2} \approx 4.30278.$$

 $\ensuremath{\mathcal{H}}$ has only been constructed by brute force.

► It appears H belongs to an infinite family, but only examples up to Z/19 have been constructed [EG11].

Classifying small index subfactors

- A finite group G gives a subfactor R ⊂ R ⋊ G which remembers G.
- Classifying all subfactors is hopeless.

Restrict the search space: one way is to look at small index.

Reminder:

The representation 2-category of $A \subset B$ is given by

- (0) 0-morphisms: $\{A, B\}$
- (1) 1-morphisms: bimodule summands of $\bigotimes_A^k B$ for some $k \ge 0$

(2) 2-morphisms: bimodule intertwiners

Principal graphs

Definition

The principal (induction) graph Γ_+ has one vertex for each isomorphism class of simple $_AP_A$ and $_AQ_B$. There are

$$\dim(\operatorname{Hom}_{A-B}(P\otimes_A B,Q))$$

edges from P to Q.

The dual principal (restriction) graph Γ_{-} has a similar definition using B - B and B - A bimodules.

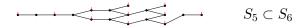
- Γ_{\pm} is pointed, where the base point is ${}_{A}A_{A}$, ${}_{B}B_{B}$ respectively.
- The depth of a vertex is its distance to the base point.
- Duals always occur at the same depth, since B is a *-algebra. However, duals at odd depths of Γ_± are on Γ_∓.

Examples of principal graphs

- index < 4: ADE classification, but no D_{odd} or E_7 .
- ▶ index = 4: affine Dynkin diagrams
- Graphs for $R \subset R \rtimes G$ obtained from Vec(G) and Rep(G).

$$\left(\underbrace{ \longleftarrow}_{2}^{2}, \underbrace{ \longleftarrow}_{2}^{2} \right) \qquad G = S_3$$

► Principal graph for R^G ⊂ R^H is the induction-restriction graph for H ⊂ G:



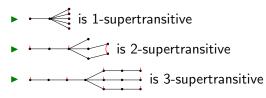
- First graph is principal, second is dual principal.
- Leftmost vertex corresponds to base points ${}_{A}A_{A}$, ${}_{B}B_{B}$.
- Red tags for duality $({}_{A}P_{A} \mapsto \overline{{}_{A}P_{A}})$ of even vertices.
- Duality of odd vertices by depth and height

Supertransitivity

Definition

A principal graph is $\underline{n}\text{-supertransitive}$ if has an initial segment with n edges before branching.

Examples



Steps of subfactor classifications:

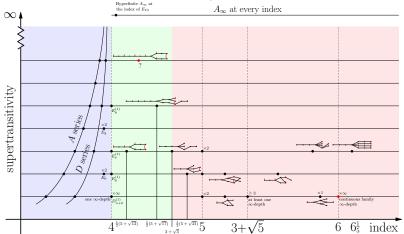
- 1. Enumerate graph pairs which survive obstructions.
- 2. Construct examples when graphs survive.

Fact (Popa [Pop94])

For a subfactor $A \subset B$, $[B:A] \ge \|\Gamma_+\|^2 = \|\Gamma_-\|^2$.

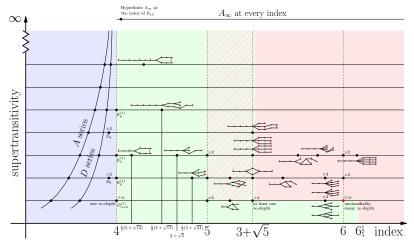
If we enumerate all graph pairs with norm at most r, we have found all principal graphs of subfactors with index at most r^2 .

Known small index subfactors, 2009



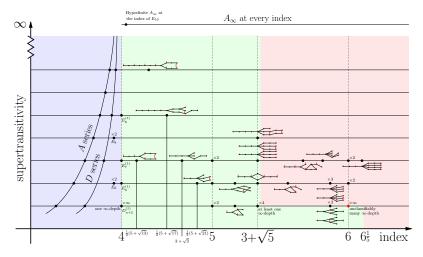
- Quantum groups and their quantum subgroups
- Composites
- Haagerup's exotic subfactor and classification to $3+\sqrt{3}$
- Izumi's Cuntz algebra examples (2221, 3ⁿ)

Known small index subfactors, 2014



- Classification to 5 [MS12, MPPS12, IJMS12, PT12, IMP⁺14]
- Examples at $3 + \sqrt{5}$ [MP13, PP13, IMP13, MP14]
- 1-supertransitive to $6\frac{1}{5}$ and examples at $3 + 2\sqrt{2}$ [LMP14]

Known small index subfactors, today



Theorem (Afzaly-Morrison-P, 2015)

We know all subfactor standard invariants up to index $5\frac{1}{4}$.

Thank you for listening!

Slides available at http://www.math.ucla.edu/~dpenneys/PenneysJMM2015.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- David E. Evans and Terry Gannon, The exoticness and realisability of twisted Haagerup-lzumi modular data, Comm. Math. Phys. 307 (2011), no. 2, 463–512, arXiv:1006.1326 MR2837122 DOI:10.1007/s00220-011-1329-3.

Masaki Izumi, Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, Subfactors of index less than 5, Part 3: Quadruple points, Comm. Math. Phys. **316** (2012), no. 2, 531–554, MR2993924, arXiv:1109.3190, DOI:10.1007/s00220-012-1472-5.

- Masaki Izumi, Scott Morrison, and David Penneys, *Fusion categories* between $C \boxtimes D$ and C * D, 2013, arXiv:1308.5723.
- Masaki Izumi, Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, *Subfactors of index exactly 5*, 2014, arXiv:1406.2389.
- Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25, MR696688, DOI:10.1007/BF01389127.

Zhengwei Liu, Scott Morrison, and David Penneys, 1-supertransitive subfactors with index at most $6\frac{1}{5}$, Comm. Math. Phys. (2014), arXiv:1310.8566, DOI:10.1007/s00220-014-2160-4.

Scott Morrison and David Penneys, *Constructing spoke subfactors using the jellyfish algorithm*, Trans. Amer. Math. Soc. (2013), arXiv:1208.3637, DOI:10.1090/S0002-9947-2014-06109-6.

_____, 2-supertransitive subfactors at index $3 + \sqrt{5}$, 2014, arXiv:1406.3401.

- Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, *Subfactors of index less than 5, Part 2: Triple points*, Internat. J. Math. 23 (2012), no. 3, 1250016, 33, MR2902285, arXiv:1007.2240, D0I:10.1142/S0129167X11007586.
 - Scott Morrison and Noah Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer, Comm. Math. Phys. **312** (2012), no. 1, 1-35, MR2914056, arXiv:1007.1730, DOI:10.1007/s00220-012-1426-y.
- Sorin Popa, *Classification of amenable subfactors of type II*, Acta Math. **172** (1994), no. 2, 163–255, MR1278111, DOI:10.1007/BF02392646.
- David Penneys and Emily Peters, Calculating two-strand jellyfish relations, 2013, arXiv:1308.5197.
 - David Penneys and James E. Tener, Subfactors of index less than 5, Part 4: Vines, Internat. J. Math. 23 (2012), no. 3, 1250017, 18, MR2902286, arXiv:1010.3797, DOI:10.1142/S0129167X11007641.