Bicommutant categories from fusion categories

David Penneys, UCLA
joint with André Henriques

AMS JMM Special Session on Classification problems in operator algebras

$$
\text { January 8, } 2016
$$

Categorical analogies

Tensor categories categorify algebras.

algebra A	tensor category \mathcal{C}
finite dimensional algebra	fusion category
center $Z(A)$	Drinfel'd center $\mathcal{Z}(\mathcal{C})$
commutant $Z_{B}(A)$ of A in B	commutant $\mathcal{Z}_{\mathcal{D}}(\mathcal{C})$ of \mathcal{C} in \mathcal{D}
$B(H)$	$\operatorname{Bim}(R)$, all bimodules
commutant $A^{\prime}:=Z_{B(H)}(A)$	commutant $\mathcal{C}^{\prime}:=\mathcal{Z}_{\operatorname{Bim}(R)}(\mathcal{C})$
von Neumann algebra $A=A^{\prime \prime}$	bicommutant category $\mathcal{C} \cong \mathcal{C}^{\prime \prime}$

Bicommutant categories categorify von Neumann algebras.
Today, we will prove the categorified finite dimensional bicommutant theorem.

Unitary fusion categories

We start with a unitary fusion category $\mathcal{C} \subset \operatorname{Bim}(R)$.

- Have a system of bifinite bimodules and intertwiners
- The system is closed under
- Finite direct sum: $x, y \in \mathcal{C} \Rightarrow x \oplus y \in \mathcal{C}$
- Connes fusion: $x, y \in \mathcal{C} \Rightarrow x \boxtimes y \in \mathcal{C}$
- Contragredient: $x \in \mathcal{C} \Rightarrow \bar{x} \in \mathcal{C}$
- Taking sub-bimodules: $x \subset y \in \mathcal{C} \Rightarrow x \in \mathcal{C}$
- Finitely many isomorphism classes of irreducible bimodules.

Examples

- Start with a finite group G, and form $R \subset R \rtimes G$. The $R-R$ bimodules generated by $L^{2}(R \rtimes G)$ form $\operatorname{Vec}(G)$.
- Given a finite index, finite depth subfactor $R \subset M$, the $R-R$ bimodules generated by $L^{2}(M)$ form a unitary fusion category.

Graphical calculus

Fix a finite set $\operatorname{Irr}(\mathcal{C})$ of representatives of irreducibles.

- Morphisms $f: x \otimes y \rightarrow z$ are represented by coupons.
- For all $x, y, z \in \operatorname{Irr}(\mathcal{C}), \operatorname{Hom}(1, x \otimes y \otimes z)$ is a finite dimensional Hilbert space with inner product $\langle f, g\rangle=g^{*} \circ f$.
Choose dual bases:

$$
e_{i} \in \operatorname{Hom}(1, x \otimes y \otimes z) \text { and } e^{i} \in \operatorname{Hom}(1, \bar{z} \otimes \bar{y} \otimes \bar{x})
$$

We represent the canonical element by colored nodes

The canonical element is independent of choice of basis.

Important relations

$$
\begin{aligned}
& x \oint_{\substack{z}}^{\oint_{z}} y=\left.d_{z}^{-1} N_{x, y}^{z}\right|_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{z \in \operatorname{Irr}(\mathcal{C})} d_{z}{\underset{\sim}{x} y}_{x}^{\ell_{y}^{y}}=\left.\left.\right|_{x}\right|_{y}
\end{aligned}
$$

> (Bigon 1)
> (Bigon 2)
> (Fusion)

We'll use Snyder convention and ignore all scalars.

Commutant \mathcal{C}^{\prime} of \mathcal{C} in $\operatorname{Bim}(R)$

The commutant $\mathcal{C}^{\prime} \subset \operatorname{Bim}(R)$ of $\mathcal{C} \subset \operatorname{Bim}(R)$ has:

- Objects are pairs $\left(X, e_{X}\right)$ where $X \in \operatorname{Bim}(R)$, and e_{X} is a unitary half braiding with \mathcal{C}

$$
e_{X, c}={ }_{X}: X \boxtimes c \rightarrow c \boxtimes X
$$

These half braidings must satisfy compatibility conditions.

- Morphisms $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ are bimodule maps $f: X \rightarrow Y$ which commute with the half braidings:

\mathcal{C}^{\prime} is a tensor category, but it is usually not braided.

Functor $\operatorname{Bim}(R) \rightarrow \mathcal{C}^{\prime}$

We have a way to construct lots of objects in \mathcal{C}^{\prime}.

$$
\underline{\Delta}: \operatorname{Bim}(R) \rightarrow \mathcal{C}^{\prime} \quad \underline{\Delta}(\Lambda)=\left(\Delta(\Lambda), e_{\Delta(\Lambda)}\right)=\left(\Delta, e_{\Delta}\right)
$$

$\Delta \in \operatorname{Bim}(R)$ with unitary half braiding $e_{\Delta, a}: \Delta \boxtimes a \rightarrow a \boxtimes \Delta$.

$$
\begin{aligned}
\Delta:= & \bigoplus_{x \in \operatorname{Irr}(\mathcal{C})} x \boxtimes \Lambda \boxtimes \bar{x} . \\
e_{\Delta, a} & :=\left.\sum_{x, y \in \operatorname{Irr}(\mathcal{C})}\right|_{x \Lambda \bar{x} a} ^{a} \underbrace{y \Lambda \bar{y}}_{a}
\end{aligned}
$$

Description of $\operatorname{End}_{\mathcal{C}^{\prime}}(\Delta)$

The map that sends $f=\left(f_{a}: \Lambda \boxtimes a \rightarrow a \boxtimes \Lambda\right)_{a \in \operatorname{Irr}(\mathcal{C})}$ to

$$
T_{f}:=\sum_{a, x, y \in \operatorname{Irr}(\mathcal{C})} \overbrace{x}^{\left.\underbrace{\left.\right|_{a}}_{\substack{f_{a}}}\right|_{\bar{x}} ^{\Lambda}}: \Delta \rightarrow \Delta
$$

induces an isomorphism

$$
\bigoplus_{a \in \operatorname{Irr}(\mathcal{C})} \operatorname{Hom}_{\operatorname{Bim}(R)}(\Lambda \boxtimes a, a \boxtimes \Lambda) \cong \operatorname{End}_{\mathcal{C}^{\prime}}(\underline{\Delta}(\Lambda))
$$

Note $T_{f} \in \operatorname{End}_{\mathcal{C}^{\prime}}(\Delta)$ using the $(\mathrm{I}=\mathrm{H})$ Relation:

Absorbing objects

Definition

An object Ω in a tensor category \mathcal{T} is absorbing if
$\Omega \otimes t \cong \Omega \cong t \otimes \Omega$ for all $t \in \mathcal{T}$.

- Isomorphisms are not required to be natural or canonical.
- Absorbing objects are unique up to isomorphism if they exist.
- Taking $t=1 \oplus 1$, we have $\Omega \cong \Omega \otimes(1 \oplus 1) \cong \Omega \oplus \Omega$.

Examples

- $\ell^{2}(\mathbb{N})$ is absorbing in the category of separable Hilbert spaces.
- $\ell^{2}(G) \otimes \ell^{2}(\mathbb{N})$ is absorbing in $\operatorname{Rep}(G), G$ a countable group
- ${ }_{R} L^{2}(R) \otimes \ell^{2}(\mathbb{N}) \otimes L^{2}(R)_{R}$ is absorbing in $\operatorname{Bim}(R)$.

Absorbing objects of \mathcal{C}^{\prime}

Absorbing objects of $\mathcal{T} \subset \operatorname{Bim}(R)$ control half braidings of $\mathcal{T}^{\prime} \subset \operatorname{Bim}(R)$.

Theorem
If $\Omega \in \mathcal{T}$ is absorbing and $\left(X, e_{X}\right) \in \mathcal{T}^{\prime}$, then e_{X} is completely determined by $e_{X, \Omega}$.

When \mathcal{C} is a unitary fusion category, \mathcal{C}^{\prime} has absorbing objects.
Theorem
If $\Lambda \in \operatorname{Bim}(R)$ is absorbing, then $\Delta \in \mathcal{C}^{\prime}$ is absorbing.

- If $\Lambda \in \operatorname{Bim}(R)$ is absorbing, then $\operatorname{End}_{\mathcal{C}^{\prime}}(\Delta)$ is a factor.
- $\operatorname{End}_{\operatorname{Bim}(R)}(\Lambda) \hookrightarrow \operatorname{End}_{\mathcal{C}^{\prime}}(\Delta)$ is a subfactor!

The main theorem

Recall \mathcal{C} is a unitary fusion category. The bicommutant $\mathcal{C}^{\prime \prime}$ allows infinite direct sums, so \mathcal{C} is not a bicommutant category. Let $\mathcal{C} \otimes{ }_{\text {Vec }}$ Hilb be the category obtained from \mathcal{C} by allowing infinite direct sums. (This is sometimes called the ind-category of \mathcal{C}.)

Theorem
$\mathcal{C} \otimes$ Vec Hilb is a bicommutant category.

This theorem categorifies the following well-known result:

- A finite dimensional $*$-algebra that can be faithfully represented on a Hilbert space is in fact a von Neumann algebra.

Corollary
\mathcal{C}^{\prime} is also a bicommutant category.

Outline of the proof

There is an obvious fully faithful embedding $\mathcal{C} \otimes$ vec $\operatorname{Hilb} \hookrightarrow \mathcal{C}^{\prime \prime}$.
The proof of essential surjectivity has 3 main steps:

1. The underlying object X of an object $\left(X, e_{X}\right) \in \mathcal{C}^{\prime \prime}$ is of the form $X \cong \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} c \otimes H_{c}$ for $H_{c} \in$ Hilb.
2. Two objects $\left(X, e_{X}^{1}\right)$ and $\left(X, e_{X}^{2}\right)$ have the same half braiding with an absorbing object $\Omega \in \mathcal{C}^{\prime}$, i.e., $e_{X, \Omega}^{1}=e_{X, \Omega}^{2}$.
3. Absorbing objects uniquely determine half braidings.

Proof of 1.

- Start with $\left(X, e_{X}\right) \in \mathcal{C}^{\prime \prime}$.
- Take $\Lambda=L^{2}(R) \otimes L^{2}(R)$ and form $\Delta=\bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} c \otimes \bar{c} \in \mathcal{C}^{\prime}$.
- Have a bimodule isomorphism $e: X \boxtimes \Delta \rightarrow \Delta \boxtimes X$.

$$
e: \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} X \boxtimes c \otimes \bar{c} \longrightarrow \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} c \otimes \bar{c} \boxtimes X
$$

- Isomorphism is R-linear for four distinct R-actions!
- Apply functor $\operatorname{Hom}_{3 r^{\text {rd }}-R, 4^{\text {th }}-R}\left(L^{2}(R),-\right)$ to see

$$
\begin{aligned}
X & \cong \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} \operatorname{Hom}_{3 \mathrm{rd}}-R, 4^{\mathrm{th}}-R \\
& \cong \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} \operatorname{Hom}_{3 \mathrm{rd}}-R, 4^{\mathrm{th}}-R \\
& \left.\cong L^{2}(R), c \otimes \bar{c} \boxtimes X\right) \\
& \bigoplus_{c \in \operatorname{Irr}(\mathcal{C})} c \otimes \underbrace{\operatorname{Hom}_{R-R}\left(L^{2}(R), \bar{c} \boxtimes X\right)}_{H_{c}}
\end{aligned}
$$

Thank you for listening!

Slides available at:
http://www.math.ucla.edu/~dpenneys/PenneysJMM2016.pdf
Article available at:
http://arxiv.org/abs/1511.05226

