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Quadratic fusion categories

Definition
A fusion category is called quadratic if it has exactly 2 orbits of
simple objects under the action of the group of invertible objects.

I Simples G ∪ {gρ}g∈G, G a finite group

I Quadratic fusion relation:

ρ⊗ ρ ∼= some g’s ⊕ some hρ’s

This says that FPdim(ρ) lies in a quadratic field extension of Q.



Examples of quadratic fusion categories

Example: Fib

Simples are {1} ∪ {τ} with τ ⊗ τ ∼= 1⊕ τ .

Example: Ising

Simples are {1, ψ} ∪ {σ} with ψ ⊗ ψ ∼= 1 and σ ⊗ σ ∼= 1⊕ ψ.

Example: T Y
Simples are A∪ {ρ} with A an abelian group and ρ⊗ ρ ∼=

⊕
a∈A a.

Example: near group of type A+ k|A|
Simples are A ∪ {ρ} with A an abelian group and

ρ⊗ ρ ∼= k|A|ρ⊕
⊕
a∈A

a.



Classifying fusion categories by rank

Definition
The rank of a fusion category is the number of isomorphism classes
of simple objects.

I To date, fusion categories are classified up to rank

2 [Ost03].

I To date, unitary fusion categories are classified up to rank 3
[Ost13]. (This article classifies pseudounitary fusion categories
up to rank 3.)

I Rank 4 appears out of reach at this time.

I In her high school research project [Lar14], Hannah Larson
gave a finite list of possible rank 4 fusion rings for
pseudounitary fusion categories with a dual pair of simples,
i.e., there is a simple c such that c � c∨.
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Classification of Z/2Z-quadratic UFCs [EMIP21]

Rank 3:

I 2 UFCs T Y(Z/2Z, χ,±) [Jon83, TY98]

I 3 UFCs with Rep(S3) fusion rules [Izu17]

I 2 Ad(E6) UFCs [BN91, Izu01, HH09]

Rank 4:

I 8 pointed UFCs Hilb(Z/4Z, ω) and Hilb(Z/2Z× Z/2Z, ω)

I 2 UFCs Fib� Hilb(Z/2Z, ω) for ω ∈ H3(Z/2Z, U(1))

I Ad(SU(2)6) = Ad(A7)

I 2 even parts of the S ′ = PAs [LMP15, Izu18]

I even part of 2D2 = PA [MP15, Izu18].

This completes Larson’s fusion ring classification to the
classification of rank 4 UFCs with a dual pair of simple objects.



Step 1 of the proof

An associativity argument gives 3 cases for the fusion ring for a
Z/2Z-quadratic fusion category

1. simple objects: 1, α, ρ; fusion rules determined by:
ρ2 ∼= 1⊕mρ⊕ α.

2. simple objects: 1, α, ρ, αρ, ρ not self-dual; fusion rules
determined by: ρ2 ∼= mρ⊕ nαρ⊕ α.

3. simple objects: 1, α, ρ, αρ, ρ self-dual; fusion rules determined
by: ρ2 ∼= 1⊕mρ⊕ nαρ.
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Step 1 of the proof
An associativity argument gives 3 cases for the fusion ring for a
Z/2Z-quadratic fusion category

1. simple objects: 1, α, ρ; fusion rules determined by:
ρ2 ∼= 1⊕mρ⊕ α.

Status: classified in pivotal setting [Ost13, Thm. 4.1].

2. simple objects: 1, α, ρ, αρ, ρ not self-dual; fusion rules
determined by: ρ2 ∼= mρ⊕ nαρ⊕ α.

Status: in pseudounitary setting, m = n ≤ 2 [Lar14].

3. simple objects: 1, α, ρ, αρ, ρ self-dual; fusion rules determined
by: ρ2 ∼= 1⊕mρ⊕ nαρ.

Status: at 2014 AMS MRC, a group1 adapted [Lar14] in the
pseudounitary setting to show m = n ≤ 2.

1Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew
Titsworth, and Henry Tucker. This calculation is included as an appendix.



Step 2 of the proof

TODO: Classify case 2 and 3 in unitary setting for
m = n ∈ {1, 2}.

I Step 2: We give a generalization of Ostrik’s theorem on
formal codegrees [Ost09, Ost13].

Definition
Given a fusion category C and an irreducible representation V of
K0(C), the element

αV :=
∑

c∈Irr(C)

TrV (c)c∨ ∈ K0(C)

lies in the center of K0(C). It acts by a scalar fV on V called the
formal codegree of V , and it acts by zero on any other irreducible
representation V ′ � V .



Ostrik’s theorem on formal codegrees
For a spherical fusion category C, given an irrep V of K0(C),
K0(Z(C)) acts on V via the forgetful map K0(Z(C))→ K0(C).
The image of K0(Z(C)) lies in EndK0(C)(V ) = C, giving a
character of K0(Z(C)), which corresponds to a unique simple
ΓV ∈ Irr(Z(C)).

Theorem [Ost13]

The assignment V 7→ ΓV is an embedding
Irr(Rep(K0(C))) ↪→ Irr(Z(C)). The image is the simples
Γ ∈ Irr(Z(C)) which lie under I(1C), where I : C → Z(C) is the
induction functor adjoint to the forgetful functor F : Z(C)→ C.
Moreover,

dim(ΓV ) =
dim C
fV

and dim Hom(I(1)→ ΓV ) = dim(V ).

This theorem is used in essential ways in the classification of pivotal
fusion categories of rank 3 [Ost13] and Larson’s results [Lar14].



Generalization of formal codegrees

Theorem [EMIP21, Thm. C]

Let C be a spherical fusion category, and let A be the tube algebra
of C. Fix X ∈ Irr(C). There is a bijective correspondence between
equivalence classes of irreducible representations (V, π) of AX←X
and isomorphism classes of simple subobjects ΓV ⊂ I(X) ∈ Z(C).
The formal codegree fV of (V, π) with respect to TrX is a scalar,
and the categorical dimension of ΓV is given by

dim(ΓV ) =
dim(C)

fV dim(X)
.

Moreover, if Y ∈ Irr(C) and XπY is the action of AX←X on
AX←Y , then

dim(C(Y → F(ΓV ))) = dim(Hom(πV → XπY )).



Step 3 of the proof
Use skein theory to perform the classification.

Example

Consider the fusion rules for m = 1, 2:

α⊗ α ∼= 1 ρ⊗ ρ ∼= 1⊕mρ⊕mαρ.

Generating vertices for 0 ≤ i < m:

ρ ρ

ρ

i ∈ Cm(ρ⊗ ρ→ ρ)

α

ρ ρ

ρ

i ∈ Cm(ρ⊗ ρ→ αρ)

Generating isomorphisms, with Frobenius-Schur indicators λα, λρ:

α

α

∈ Cm(α→ α)

ρ

ρ

∈ Cm(ρ→ ρ)

ρ

ρ

α

α

∈ Cm(ρ⊗α→ α⊗ρ).



Basic semisimplicity relations

α⊗ α ∼= 1 ρ⊗ ρ ∼= 1⊕mρ⊕mαρ.

ρ ρ
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1

d

ρ ρ

ρ ρ

+
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i=0

ρ ρ

i

i

ρρ
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ρ

i
=

ρ

i
= 0 i

ρ

= 0
ρ

α

i =

ρ

α

i = 0

ρα

i = 0.



Frobenius relations

Theorem
There exist orthonormal bases of C(ρρ→ ρ) and C(ρρ→ αρ) such
that

i = λiρ ĩ i = (λρµ)i ĩ

i = λi+1
ρ ω−11,i ĩ i = (λρµ)i+1ω−1α,i ĩ

for some scalars (definitions omitted).



Jellyfish relations

Plus lots of tetrahedral symmetries!



6j symbols

The scalars Ai,jk,`, B
i,j
k,`, C

i,j
k,`, D

i,j
k,`, Â

i,j
k,`, B̂

i,j
k,`, Ĉ

i,j
k,`, D̂

i,j
k,` for

0 ≤ i, j, k, ` < m are 6j-symbols for the UFC.



Example evaluation in 2 ways
Now evaluate lots of diagrams in two ways to solve for the scalars!



Thank you for listening!
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