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Holography for bulk-boundary local topological order
DaviD PENNEYS
(joint work with Corey Jones, Pieter Naaijkens, and Daniel Wallick)

This talk was based on two articles:

e Local topological order and boundary algebras by Corey Jones, Pieter Naai-
jkens, David Penneys, and Daniel Wallick [ITNPW23], and

e Holography for bulk-boundary local topological order by Corey Jones, Pieter
Naaijkens, and David Penneys [JNP25]

Local topological order axioms. We begin with an abstract quantum system
on a lattice £, typically assumed to be Z%. We have a single unital C*-algebra A
called the quasi-local algebra, and to each d-dimensional rectangle A C L, we have
a unital C*-algebra A(A) C A satisfying the following axioms:
A(0) = Cla,
A C A implies A(A) C A(A),
ANA =0 implies [A(A), A(A)] =0 in A, and
Ua A(A) is norm-dense in A.
This net of algebras is equipped with a net of projections py € A(A) for each A
satisfying pa < pp whenever A C A; these projections are used instead of any
local Hamiltonian.

We give a rough sketch of the local topological order (LTO) axioms for (A,p);
for the precise version, see [INPW23].

e Whenever A < A (A sufficiently completely surrounds A), pa A(A)pa =
Cpa, and

e Whenever A @ A (A sufficiently completely surrounds A on all but one
side), there is an algebra B(I) where I = 9A N A which is supported
on sites near I such that paoA(A)pa = B(I)pa. This algebra B(I) is
independent of A C A beyond that I = dA N JA.
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One gets a canonical pure state on A by the formula paoaxpa = ¥(z)pa for z € A(A)
and A < A. Choosing a half-space H C £ and setting A(H) = ling A(A), we
get a net of boundary algebras B = lim B(I) on 0H, together with a quantum
channel E : A(H) — B defined by paazpa = E(z)pa for z € A(A) and A€ A CH
with OA N OA = I. One should think of this boundary algebra B as living on a
physical cut/boundary of our abstract quantum spin system.
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Examples of LTOs include almost all known topologically ordered commut-
ing projector lattice models, including Kitaev’s Toric Code and Quantum Dou-
ble [Kit97, Kit03], the Levin-Wen model [LW05], and the Walker-Wang model
[WW12]. In these cases, the boundary algebra can be described by a fusion spin
chain, which is an abstract 1D spin chain built from a unitary fusion category
(UFC) C and a strong tensor generator X € C. The local algebras are

1

B(I) = End¢(X®1)

and inclusion is given by tensoring with copies of idx as appropriate. One the
recovers the bulk topological order by looking at C. Jones” DHR bimodules for
this 1D fusion spin system [Jon24].

For the Walker-Wang model built from a unitary braided fusion category B,
the boundary algebra is a 2D net of algebras built from B and our strong tensor
generator X € B called a braided fusion spin system. Since B is braided, it makes
sense to take a tensor product of objects at points in a 2D plane, so for each
2D rectangle I, we can define Ends(X®7). As an aside, we remark that this
net of algebras has a canonical state corresponding to tensor powers of the map
1 — X, and in this state, the category of superselection sectors of this net of
von Neumann algebras following [BBC™25] is equivalent to the completion (in the
sense of [HNP24]) to B as a W*-category. We make the following conjectures, the
second pointed out to us by C. Jones.

Conjecture 1. The superselection sectors for this net is equivalent to the com-
pletion of B as a W* braided tensor category.

Conjecture 2. The braided fusion spin system for SU(3)1 (or possibly its reverse)
is bounded-spread isomorphic to a net of algebras from [Haa23| Fig. 1] discussed
by Jeongwan Haah in his Oberwolfach talk given just prior to this talk, i.e., the
net of algebras with local generators
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on a 2D edge lattice with C3 spins on each edge.

Introducing a topological boundary. One can now introduce a topological
boundary for our lattice; the term ‘topological’ here is used to distinguish this
boundary from the ‘physical’ boundary cut obtained from choosing a half-space.
The LTO axioms in the presence of a topological boundary are almost identical to
the previous LTO axioms. Roughly speaking (for a precise version see [JNP25)),
e Whenever A <? A, pa A(A)pa = Cpa, and
e Whenever A €? A, there is an algebra B?(I) similar to B(I) such that
paA(M)pa = B(I)pa.
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Again, one gets a net of algebras on the physical cut/boundary at the edge of
a chosen half-space. Following [KK12|, one gets topological boundaries for the
2D LTOs from our models above via module categories M for the corresponding
UFCs C, together with a choice of strong module generator W € M. For these
topological boundaries, the boundary algebra is the a fusion module spin chain,
where sites meeting the topological boundary give rise to the local algebras
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We then define a notion of boundary DHR-bimodule meant to capture the topo-
logical boundary excitations. We use subfactor theory to prove that that for these
fusion module spin chains, the boundary DHR bimodules give exactly the dual
category End(Me).

For our 3D Walker-Wang model from a UBFC B, we get a 2D topological
boundary from a untiary module tensor category [HPT16], i.e., a UFC C equipped
with a unitary braided central functor B — Z(C). Indeed, the half-braiding for B
with C is exactly the data needed to attach the 3D B-Walker-Wang model to the 2D
C-Levin-Wen model [HBJP23| (GHK™24]. For such a 2D topological boundary, the
category of boundary DHR bimodules has a canonical braiding as in [Jon24]. We
use a folding trick and our 2D result for fusion module spin chains to prove that the
2D topological boundary excitations is equivalent to the enriched center/Miger
centralizer ZB(C) = B' C Z(C) [KZ18]. Using a 3D folding trick for our original
3D Walker-Wang model for B, we get a 2D topological boundary labeled by B
for the 3D bulk labelled by B X B*¥. Applying the above result, we see that the
ordinary DHR bimodules for the 3D model is given by ZB¥E™ (B) = Z,(B), the
Miiger center of B.
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