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Quantum symmetries

A quantum symmetry is a non-commutative analog of the
representation category of a finite group.

Where do quantum symmetries come from?

I Finite groups

I Quantum groups

I Conformal field theory
I Subfactors!

I There are examples only coming from subfactors which remain
mysterious. These have only been constructed by brute force
methods.



Quantum symmetries

Slogan:

Subfactors are universal hosts for quantum symmetries.

I The standard invariants of finite index subfactors are quantum
symmetries.

I All quantum symmetries can be realized by subfactors.
I Given a unitary fusion category C, there is an essentially unique

way to realize C ⊂ Bim(R).

I The subfactor R ⊂ Ro C remembers C.
I Popa showed all standard invariants are realized by subfactors,

but they may not be hyperfinite.
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Index quantization

Jones’ index rigidity theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Moreover, there exists a subfactor at each index.



The basic construction

To prove the index restriction, Jones used the basic construction.
Starting with a subfactor A0 ⊂ A1, we take the Jones projection
e1 ∈ B(L2(A1)), which is the orthogonal projection with range
L2(A0). The basic construction is A2 = 〈A1, e1〉.

I If [A1 : A0] <∞, it is equal to [A2 : A1].

I Can iterate the basic construction to obtain the Jones tower:
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The basic construction

To prove the index restriction, Jones used the basic construction.
Starting with a subfactor A0 ⊂ A1, we take the Jones projection
e1 ∈ B(L2(A1)), which is the orthogonal projection with range
L2(A0). The basic construction is A2 = 〈A1, e1〉.

I If [A1 : A0] <∞, it is equal to [A2 : A1].

I Can iterate the basic construction to obtain the Jones tower:

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

The first sign something remarkable is happening is that the
Jones projections satisfy the Temperley-Lieb-Jones relations:

1. ei = e∗i = e2i
2. eiej = ejei for |i− j| > 1
3. eiei±1ei = [A1 : A0]−1ei



Principal graphs

Let ρ = ABB. We look at the tensor products
⊗n

AB, and
decompose into irreducibles.

Definition
The principal graph Γ+ has one vertex for each isomorphism class
of simple AαA and AβB. There are

dim(HomA−B(αρ, β))

edges from α to β.
The dual principal graph Γ− is defined similarly using B −B and
B −A bimodules.

I Γ± has base point the trivial bimodule.

I The depth of a vertex is the distance to the base point.



Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
I Haagerup 333

(
,

)



The standard invariant: two towers of centralizer algebras

These centralizer algebras are finite dimensional [Jon83], and they
form a planar algebra [Jon99].



Finite depth

Definition
If the principal graph is finite, then the subfactor and standard
invariant are called finite depth.

Example: R ⊂ RoG for finite G

For G = S3:

I Principal graph:

I Dual principal graph:
2

Theorem (Ocneanu Rigidity)

There are only finitely many standard invariants with the same
finite principal graphs.



Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Known small index subfactors, 1994
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I Haagerup’s partial classification to 3 +
√

3

I Popa’s A∞ at all indices

I Wenzl’s quantum group subfactors



Small index subfactor classification program

Steps of subfactor classifications:

1. Enumerate graph pairs which survive obstructions.

2. Construct examples when graphs survive.

Fact (Popa [Pop94])

For a subfactor A ⊂ B, [B : A] ≥ ‖Γ+‖2 = ‖Γ−‖2.

If we enumerate all graph pairs with norm at most r, we have
found all principal graphs with index at most r2.



Haagerup’s enumeration

Theorem (Haagerup [Haa94])

Any non A∞-standard invariant in the index range (4, 3 +
√

2)
must have principal graphs a translation of one of

I
(

,
)

I
(

,
)

I
(

,
)

Translation means raising the supertransitivity of both graphs by
the same even amount.

Definition (Morrison-Snyder [MS12])

A vine is a graph pair which represents an infinite family of graph
pairs obtained by translation.



Main tool for Haagerup’s enumeration

Play associativity against Ocneanu’s triple point obstruction.

I Associativity: graphs must be similar

I Ocneanu’s triple point obstruction: graphs must be different!

The consequence is a strong constraint.

Example

The following pairs are not allowed:(
,

)
and

(
,

)
They must be paired with each other:(

,
)



Known small index subfactors, 2011
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I Classification to 3 +
√

3, Extended Haagerup

I Classification to index 5 (Izumi, Jones, Morrison, P, Peters,
Snyder, Tener)



Weeds and vines

The classification to index 5 introduced weeds and vines.

Definition
A weed is a graph pair which represents an infinite family of graph
pairs obtained by translation and extension.
An extension of a graph pair adds new vertices and edges at
strictly greater depths than the maximum depth of any vertex in
the original pair.

F =
(

,
)

Using weeds allows us to bundle hard cases together. By carefully
choosing weeds we can deal with later, we ensure the enumerator
terminates.



Eliminating vines with number theory

We can uniformly treat vines using number theory, based on the
following theorem inspired by Asaeda-Yasuda [AY09]:

Theorem (Calegari-Morrison-Snyder [CMS11])

For a fixed vine V, there is an effective (computable) constant
R(V) such that any n-translate with n > R(V) has norm squared
which is not a cyclotomic integer.

Theorem [CG94, ENO05]

The index of a finite depth subfactor (which is equal to the norm
squared of the principal graph) must be a cyclotomic integer.



Known small index subfactors, today
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Theorem (Afzaly-Morrison-P)

We know all subfactor standard invariants with index at most
51
4 > 3 +

√
5.



Why do we care about index 3 +
√
5?

3 +
√

5 = 2 · τ2 is the first interesting composite index.

I Standard invariants at index 4 = 2 · 2 are classified.
I Z/2 ∗ Z/2 = D∞ is amenable

I Standard invariants at index 6 = 2 · 3 are wild.
I There is (at least) one standard invariant for every normal

subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
I There are unclassifiably many distinct hyperfinite subfactors

with standard invariant A3 ∗D4 (Brothier-Vaes [BV13])

I Possibly there would be an profusion of subfactors at 3 +
√

5!



New ideas to extend the classification

Enumeration:

I 1-supertransitive classification to 61
5 [LMP15], based on Liu’s

virtual normalizers [Liu13], and Liu’s classification of
composites of A3 and A4 [Liu15]

I New high-tech graph pair enumerator, based on Brendan
McKay’s isomorph free enumeration by canonical construction
paths [McK98]. Two independent implementations, same
results. (Afzaly and Morrison-P)

I Popa’s principal graph stability [Pop95, BP14]

Obstructions:

I Number theory for stable weeds (Calegari-Guo) [CG15],
adapted for periodic weeds!

I Morrison’s hexagon obstruction [Mor14]

I Souped up triple point obstruction [Pen15]



1-supertransitive subfactors at index 3 +
√
5

Theorem [Liu15]

There are exactly seven 1-supertransitive standard invariants with
index 3 +

√
5:

I
(

,
)

self-dual

I
(

,
)

and its dual

I
(

,
)

and its dual

I
(

· · · , · · ·
)

and its dual (A3 ∗A4)

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.

Open question

How many hyperfinite subfactors have Bisch-Jones’ Fuss-Catalan
A3 ∗A4 standard invariant at index 3 +

√
5?

I A3 ∗A4 and A2 ∗ T2 are not amenable [Pop94, HI98].



Why better combinatorics are needed

Three ways we produce redundant isomorphism classes of graphs:

(1) Equivalent generating steps from same object give isomorphic
results.

and

(2) Two inequivalent generating steps applied to the same object
can yield isomorphic objects.

−→

−→

(3) Starting with two non-isomorphic objects and applying a
generating step can result in isomorphic objects.

−→ and −→

Problems fixed by McKay’s isomorph-free enumeration [McK98]!



Popa’s principal graph stability

Definition
We say Γ± is stable at depth n if every vertex at depth n connects
to at most one vertex at depth n+ 1, no two vertices at depth n
connect to the same vertex at depth n+ 1, and all edges between
depths n and n+ 1 are simple.

Theorem (Popa [Pop95], Bigelow-P [BP14])

Suppose A ⊂ B (finite index) has principal graphs (Γ+,Γ−).
Suppose that the truncation Γ±(n+ 1) 6= An+2 and δ > 2.

(1) If Γ± are stable at depth n, then Γ± are stable at depth k for
all k ≥ n, and Γ± are finite.

(2) If Γ+ is stable at depths n and n+ 1, then Γ± are stable at
depth n+ 1.

Part (2) uses the 1-click rotation in the planar algebra.



Stable weeds

Definition
A stable weed represents an infinite family of graph pairs obtained
by translation and finite stable extension.

C =
(

,
)

Theorem (Guo)

Let SM be the class of finite graphs satisfying:

1. all vertices have valence at most M , and

2. at most M vertices have valence > 2.

Then ignoring An, Dn, A
(1)
n , and D

(1)
n , only finitely many graphs

in SM have norm squared which is a cyclotomic integer.

I Result is effective for a given fixed stable weed [CG15].

I Calegari-Guo eliminate our troublesome cylinder C by hand.



Lessons from classification thus far

1. Small index subfactors are much rarer than expected!

2. Even with the new combinatorics, computational complexity
grows quickly as the index increases:

I 1 Haagerup to index 3 +
√

3
I 4-5 Haagerups to index 5
I 69 Haagerups to index 5 1

4

3. Many new ideas needed just to get from 5 to 51
4



Other ways to search for quantum symmetries

I

I planar algebras generated by small elements (Bisch-Jones, Liu)

I Restrict to small global dimension

I Look at fusion categories
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Open questions in subfactor theory
1. How many hyperfinite A3 ∗A4 subfactors are there?

2. Can we eliminate stubborn weeds at index just above 5.27?( )
3. Is there a global bound on supertranstitivty?

4. Where do the quadratic categories come from?
The 3G subfactors for |G| odd have a reduced subfactor which
has Yang-Baxter relations (Liu-P., uploaded to arXiv today).
Could these come from quantum groups?

1
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5. Where does extended Haagerup come from?

6. What’s going on with A∞ subfactors of R?

7. Do all subfactors come from CFT?
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Thank you for listening!
Slides available at
http://www.math.ucla.edu/~dpenneys/

PenneysQinhuangdao2015.pdf

http://www.math.ucla.edu/~dpenneys/PenneysQinhuangdao2015.pdf
http://www.math.ucla.edu/~dpenneys/PenneysQinhuangdao2015.pdf
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