Weeds and classification

David Penneys, Mathematics

STEAM Exchange

4/20/2017

A controversial quote

"All science is either physics or stamp collecting."

Ernest Rutherford, 1871-1937

A controversial quote

"All science is either physics or stamp collecting."

Ernest Rutherford, 1871-1937

- Taxonomy/classification is an important theme in science.

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

- Hopefully, our work helps scientists solve interesting problems.

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

- Hopefully, our work helps scientists solve interesting problems.

Mathematicians collect "stamps."

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

- Hopefully, our work helps scientists solve interesting problems.

Mathematicians collect "stamps."

- Often, we'll focus on a certain favorite mathematical object.

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

- Hopefully, our work helps scientists solve interesting problems.

Mathematicians collect "stamps."

- Often, we'll focus on a certain favorite mathematical object.
- Concrete examples are important to guide understanding!

What does a mathematician do?

Mathematicians study underlying patterns and symmetry.

- Hopefully, our work helps scientists solve interesting problems.

Mathematicians collect "stamps."

- Often, we'll focus on a certain favorite mathematical object.
- Concrete examples are important to guide understanding!
- Interesting examples may arise through classification.

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

- Most flowers have petals.

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

- Most flowers have petals.
- Let's look for plants with "petals."

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

- Most flowers have petals.
- Let's look for plants with "petals."

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

- Most flowers have petals.
- Let's look for plants with "petals."

- Not all these are flowers. We have some weeds to pluck!

Gardening: a metaphor for classification

Suppose we want to find all the flowers.

- Most flowers have petals.
- Let's look for plants with "petals."

- Not all these are flowers. We have some weeds to pluck!

Math fun fact
The number of petals on a flower is typically a Fibonacci number! 1,1,2,3,5,8,13,21,34...

What is classification?

Typically, a mathematician studies a category of objects.

What is classification?

Typically, a mathematician studies a category of objects.

- Classification distinguishes objects via computable invariants.

What is classification?

Typically, a mathematician studies a category of objects.

- Classification distinguishes objects via computable invariants.

Example: shapes

Shapes	number of sides
triangle	3
quadrilateral	4
\vdots	\vdots
heptadecagon	17
\vdots	\vdots

Can we find all the objects?

Find all the objects!

Can we find all the objects?

Find all the objects?

[Hyperbole and a half]

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?
- No! There are tons of 4 -sided shapes which are not squares:

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?
- No! There are tons of 4 -sided shapes which are not squares: rectangles, parallelograms, trapezoids, Star Trek insignia...

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?
- No! There are tons of 4 -sided shapes which are not squares: rectangles, parallelograms, trapezoids, Star Trek insignia...

Technique

- Look at all objects with the same invariant.

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?
- No! There are tons of 4 -sided shapes which are not squares: rectangles, parallelograms, trapezoids, Star Trek insignia...

Technique

- Look at all objects with the same invariant.
- We'll get everything we want, but we may get extra stuff we don't want.

Can we find all the objects?

Suppose we want to find all the squares.

- Squares have 4 sides.
- Are all shapes with 4 sides squares?
- No! There are tons of 4 -sided shapes which are not squares: rectangles, parallelograms, trapezoids, Star Trek insignia...

Technique

- Look at all objects with the same invariant.
- We'll get everything we want, but we may get extra stuff we don't want.
- We remove these weeds by hand from our classification.

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

- Skype meetings with collaborators (in US, UK, Australia, ...)

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

- Skype meetings with collaborators (in US, UK, Australia, ...)
- Work on shared manuscripts (version control, Dropbox, ...)

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

- Skype meetings with collaborators (in US, UK, Australia, ...)
- Work on shared manuscripts (version control, Dropbox, ...)
- Research group seminars

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

- Skype meetings with collaborators (in US, UK, Australia, ...)
- Work on shared manuscripts (version control, Dropbox, ...)
- Research group seminars
- Meet with or teach (under)graduate students

What do I do?

I study fusion categories, which are mathematical models of systems of elementary particles together with fusion rules which tells us how they merge and split.

A typical day:

- Skype meetings with collaborators (in US, UK, Australia, ...)
- Work on shared manuscripts (version control, Dropbox, ...)
- Research group seminars
- Meet with or teach (under)graduate students
- Tea and cookies!

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

- Particles $\{\circ, \bullet\}$, fusion rule | \otimes | \circ | \bullet | |
| :--- | :--- | :--- | :--- |
| \circ | \circ | \bullet | |
| | \bullet | \bullet | \circ | (adding even/odd \#s)

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

- Particles $\{\bigcirc, \bullet\}$, fusion rule	\otimes	\circ	\bullet
\circ	\circ	\bullet	
\bullet	\bullet	\circ	\(\left(\begin{array}{c

\hline 0 \& 0 \& 1

1 \& 1 \& 2\end{array}\right)\)

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

- Particles $\{\circ, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :--- | :--- | :--- |
| \circ | \circ | \bullet |
| \bullet | \bullet | \circ |\(\quad\left(\begin{array}{c|cc}+ \& 2 \& 3

\hline 2 \& 4 \& 5

3 \& 5 \& 6\end{array}\right)\)

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

- Particles $\{\circ, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | \circ | \bullet |
| \bullet | \bullet | \circ |
- Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Life goal: find interesting fusion categories

Fusion categories are mathematical models of systems of elementary particles together with fusion rules.

While it looks like any fusion rule works, there are many difficult constraints they must satisfy.

Classifying small fusion categories

It turns out that fusion categories with 2 types of elementary particles are completely classified [Ostrik 2003].

Classifying small fusion categories

It turns out that fusion categories with 2 types of elementary particles are completely classified [Ostrik 2003].

Possible fusion rules for 2 particle systems:
Indexed by whole numbers $n=0,1,2,3, \ldots$:

Classifying small fusion categories

It turns out that fusion categories with 2 types of elementary particles are completely classified [Ostrik 2003].

Possible fusion rules for 2 particle systems:
Indexed by whole numbers $n=0,1,2,3, \ldots$:

- Only the cases $n=0$ or 1 are genuine fusion rules.

Classifying small fusion categories

It turns out that fusion categories with 2 types of elementary particles are completely classified [Ostrik 2003].

Possible fusion rules for 2 particle systems:
Indexed by whole numbers $n=0,1,2,3, \ldots$:

- Only the cases $n=0$ or 1 are genuine fusion rules.
- The cases $n \geq 2$ are weeds which must be removed by hand.

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Let's see what happens when we keep smashing e's together:

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Let's see what happens when we keep smashing o's together:
$\bullet \bullet \bullet=0+\bullet$

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Let's see what happens when we keep smashing o's together:

$$
\begin{aligned}
\bullet \otimes \otimes \bullet & =\otimes(\bullet \otimes) \\
& =\bullet(\circ+\bullet) \\
& =(\bullet \otimes \circ)+(\bullet \otimes \bullet) \\
& =\bullet+(\circ+\bullet) \\
& =o+2 \bullet
\end{aligned}
$$

(associate)
$(\bullet \otimes \bullet=\circ+\bullet)$
(distribute)

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Let's see what happens when we keep smashing o's together:

$$
\begin{aligned}
\bullet \otimes \bullet \otimes \bullet \otimes \bullet & =\bullet \otimes(\bullet \otimes \bullet \otimes \bullet) & & \text { (associate) } \\
& =\bullet \otimes(\circ+2 \bullet) & & (\bullet \otimes \bullet \otimes \bullet= \\
& =(\bullet \otimes \circ)+2(\bullet \otimes \bullet) & & \text { (distribute) } \\
& =\bullet+2(\circ+\bullet) & & \\
& =2 \circ+3 \bullet & &
\end{aligned}
$$

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Let's see what happens when we keep smashing e's together:

$\# \bullet$	result
1	$0 \circ+1 \bullet$
2	$1 \circ+1 \bullet$
3	$1 \circ+2 \bullet$
4	$2 \circ+3 \bullet$
5	$3 \circ+5 \bullet$
6	$5 \circ+8 \bullet$
7	$8 \circ+13 \bullet$
\vdots	\vdots

The golden fusion category

The golden fusion category has 2 elementary particles and $n=1$:

Particles $\{0, \bullet\}$, fusion rule | \otimes | \circ | \bullet |
| :---: | :---: | :---: |
| \circ | 0 | \bullet |
| | \bullet | \bullet |

Let's see what happens when we keep smashing e's together:

$\# \bullet$	result
1	$0 \circ+1 \bullet$
2	$1 \circ+1 \bullet$
3	$1 \circ+2 \bullet$
4	$2 \circ+3 \bullet$
5	$3 \circ+5 \bullet$
6	$5 \circ+8 \bullet$
7	$8 \circ+13 \bullet$
\vdots	\vdots

The coefficients are the Fibonacci numbers!

Thank you for listening!

Slides available at:
https:
//people.math.osu.edu/penneys.2/PenneysSTEAM2017.pdf

