C*-algebras from planar algebras In honor of George Elliott's 70th birthday

> David Penneys (UCLA) joint work with Michael Hartglass

International Conference on C*-algebras and Dynamical Systems

June 30, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The subfactor – planar algebra correspondence

- ► Given a finite index II₁-subfactor N ⊂ M, its standard invariant forms a subfactor planar algebra.
- ► Conversely, given a subfactor planar algebra P_•, Popa showed how to reconstruct a II₁-subfactor whose standard invariant is P_•.

Theorem (Ocneanu, Popa)

If $N \subset M$ is a finite depth, finite index hyperfinite II₁-subfactor, its standard invariant is a complete invariant.

C*-algebras from planar algebras

In a series of articles with Michael Hartglass, we study canonical C*-algebras associated to planar algebras in order to develop a connection between subfactor theory, C*-algebras, and non-commutative geometry.

- Part I, to appear Trans. AMS arXiv:1401.2485
- Part II, J. Funct. Anal. arXiv:1401.2485
- Part III, in preparation!

Main tools

Our main tools for Parts I and II are:

- Voiculescu's free Gaussian functor
- Pimsner's Fock space construction associated to a C*-Hilbert bimodule

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Guionnet-Jones-Shlyakhtenko's diagrammatic reproof of Popa's reconstruction theorem

(Sub)factor planar algebras

A shaded subfactor planar algebra is an axiomatization of the standard invariant of a finite index subfactor.

 We work with an unshaded factor planar algebras, which axiomatize rigid C*-tensor categories of bifinite bimodules over a single factor.

Planar algebras

Definition

A planar algebra is a sequence of finite dimensional complex vector spaces \mathcal{P}_n for $n \ge 0$ together with an action by planar tangles.

- The number of strings connected to the input disks tells you the domain.
- The number of strings connected to the output disk tells you the codomain.

Composition

There is a natural notion of tangle composition:

An action of planar tangles means that composition of tangles must correspond to composition of multilinear maps:

э

Factor planar algebras

- A planar algebra is a planar *-algebra if each P_n has an involution * compatible with the reflection of planar tangles.
- A planar *-algebra is a factor planar algebra if
 - (Evaluable): $\mathcal{P}_0 \cong \mathbb{C}$ with the empty diagram identified with $1 \in \mathbb{C}$. Thus each closed loop is replaced by a scalar δ .
 - (Spherical): For all $n \ge 1$ and all $x \in \mathcal{P}_{2n}$, we have

$$\operatorname{tr}(x) = \prod_{\star} n = n \prod_{\star} n$$

► (Positive): For all n ≥ 0, we have a positive definite inner product on P_n given by

$$\langle x, y \rangle = x y^*$$
.

Jones' Index Rigidty Theorem In a factor planar algebra \mathcal{P}_{\bullet} , $\delta \in \{2\cos(\pi/n) : n \ge 3\} \cup [2, \infty)$.

Temperley-Lieb

 $\mathcal{TL}_{\bullet}(\delta)$ has $\delta \in \{2\cos(\pi/n) | n \geq 3\} \cup [2,\infty).$

 \mathcal{TL}_k is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

$$TL_6 = \operatorname{span}_{\mathbb{C}} \left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}.$$

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if $\delta > 2$.
- If $\delta = 2\cos(\pi/n)$, must take quotient by zero length vectors.
- The action is as follows:

Temperley-Lieb

 $\mathcal{TL}_{\bullet}(\delta)$ has $\delta \in \{2\cos(\pi/n) | n \geq 3\} \cup [2,\infty).$

 \mathcal{TL}_k is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

$$TL_6 = \operatorname{span}_{\mathbb{C}} \left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\},$$

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if δ > 2.
- If $\delta = 2\cos(\pi/n)$, must take quotient by zero length vectors.
- The action is as follows:

Temperley-Lieb

 $\mathcal{TL}_{\bullet}(\delta)$ has $\delta \in \{2\cos(\pi/n) | n \geq 3\} \cup [2,\infty).$

 \mathcal{TL}_k is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

$$TL_6 = \operatorname{span}_{\mathbb{C}} \left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \begin{array}{c} & & \\ & & \\ \end{array} \right\}.$$

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if $\delta > 2$.
- If $\delta = 2\cos(\pi/n)$, must take quotient by zero length vectors.
- The action is as follows:

Non-commutative polynomials

 $\mathcal{NC}_{\bullet}(n)$ is the factor planar algebra of non-commuting polynomials.

Take n self-adjoint non-commuting variables X_1, \ldots, X_n .

- \mathcal{NC}_k is the \mathbb{C} -span of monomials of degree k.
- ► The involution is the conjugate-linear extension of reversing a monomial: (X_{i1} ··· X_{ik})* = X_{ik} ··· X_{i1}.
- The action is as follows:

Non-commutative polynomials

 $\mathcal{NC}_{\bullet}(n)$ is the factor planar algebra of non-commuting polynomials.

Take n self-adjoint non-commuting variables X_1, \ldots, X_n .

- \mathcal{NC}_k is the \mathbb{C} -span of monomials of degree k.
- ► The involution is the conjugate-linear extension of reversing a monomial: (X_{i1} ··· X_{ik})* = X_{ik} ··· X_{i1}.
- The action is as follows:

Non-commutative polynomials

 $\mathcal{NC}_{\bullet}(n)$ is the factor planar algebra of non-commuting polynomials.

Take *n* self-adjoint non-commuting variables X_1, \ldots, X_n .

- \mathcal{NC}_k is the \mathbb{C} -span of monomials of degree k.
- ► The involution is the conjugate-linear extension of reversing a monomial: (X_{i1} ··· X_{ik})* = X_{ik} ··· X_{i1}.
- The action is as follows:

Voiculescu's free Gaussian functor

Begin with a real Hilbert space $H_{\mathbb{R}}$ with $\dim_{\mathbb{R}}(H_{\mathbb{R}}) = n < \infty$.

- 1. Take its complexification $H_{\mathbb{C}}$.
- 2. Form the full Fock space $\mathcal{F}(H_{\mathbb{C}}) = \bigoplus_{n \geq 0} \bigotimes^n \mathcal{H}_{\mathbb{C}}$.
- 3. We look at the left creation and annihilation operators:

$$L_{\eta}(\xi_1 \otimes \cdots \otimes \xi_n) = \eta \otimes \xi_1 \otimes \cdots \otimes \xi_n$$
$$L_{\eta}^*(\xi_1 \otimes \cdots \otimes \xi_n) = \langle \eta | \xi_1 \rangle \xi_2 \otimes \cdots \otimes \xi_n$$

- 4. Toeplitz algebra: $\mathcal{T}_n = \mathsf{C}^* \{ L(\eta), L(\eta)^* | \eta \in \mathbb{H}_{\mathbb{C}} \}$
- 5. Free semi-circular algebra: S_n = C* {L(η) + L(η)* |η ∈ ℍ_ℝ}
 6. Cuntz algebra: O_n = T_n/K

Pimsner's Fock space associated to a C*-Hilbert bimodule

Let \mathcal{B} be the ground C*-algebra. Begin with a C*-Hilbert bimodule \mathcal{X} with a distinguished real subspace $\mathcal{X}_{\mathbb{R}}$ such that $\mathcal{X}_{\mathbb{R}} \cdot \mathcal{B} = \mathcal{X}$.

1. Form the full Fock space $\mathcal{F}(\mathcal{X}) = \bigoplus_{n \geq 0} \bigotimes_{\mathcal{B}}^{n} \mathcal{X}$.

2. We look at the left creation and annihilation operators:

$$L_{\eta}(\xi_1 \otimes \cdots \otimes_n) = \eta \otimes \xi_1 \otimes \cdots \otimes \xi_n$$
$$L_{\eta}^*(\xi_1 \otimes \cdots \otimes_n) = \langle \eta | \xi_1 \rangle_{\mathcal{B}} \xi_2 \otimes \cdots \otimes \xi_n$$

- Pimsner-Toeplitz algebra: *T*(*X*) = C* {*L*(η), *L*(η)*|η ∈ *X*}
 Free semi-circular alg: *S*(*X*) = C* {*L*(η) + *L*(η)*|η ∈ *X*_ℝ}
- 4. Free semi-circular alg: $\mathcal{S}(\mathcal{X}) = \mathcal{C} \{ L(\eta) + L(\eta)^* | \eta \in \mathcal{X}_{\mathbb{R}} \}$
- 5. Cuntz-Pimsner algebra: $\mathcal{O}(\mathcal{X}) = \mathcal{T}(\mathcal{X}) / \mathcal{K}(\mathcal{F}(\mathcal{X}))$

The ground C*-algebra \mathcal{B}

Let \mathcal{P}_{\bullet} be a factor planar algebra.

$$\blacktriangleright \mathcal{B} = \varinjlim \mathcal{B}_n = \overline{\bigcup_{n \ge 0} \mathcal{B}_n}^{\|\cdot\|} \cong \bigoplus_{\alpha \in V(\Gamma)} \mathcal{K}.$$

 ${\cal B}$ is nonunital, AF, and generated by minimal projections.

The C*-Hilbert bimodule \mathcal{X} and $\mathcal{F}(\mathcal{X})$

▶ X_n is the $\mathcal{B} - \mathcal{B}$ Hilbert bimodule generated by $\bigoplus_{l,r \ge 0} \mathcal{P}_{l,n,r}$. Set $X = X_1$.

$$-\frac{l}{x} \stackrel{n}{r} \in \mathcal{P}_{l,n,r}$$

• The left and right $\bigcup_{n\geq 0} \mathcal{B}_n$ actions are given by:

$$\frac{l}{a} \stackrel{r}{\underline{}} \cdot \frac{l'}{\underline{}} \stackrel{r''}{\underline{}} \cdot \frac{l''}{\underline{}} \stackrel{r''}{\underline{}} = \delta_{r,l'} \delta_{r',l''} \cdot \frac{l}{\underline{}} \stackrel{r}{\underline{}} \stackrel{n}{\underline{}} \stackrel{r''}{\underline{}} \stackrel{r''}{\underline{}}$$

$$\blacktriangleright \mathcal{X}_n \text{ has an involution } \dagger: \left(\underbrace{l}_{\underline{}} \stackrel{n}{\underline{}} \right)^{\dagger} = \underbrace{r}_{\underline{}} \stackrel{n}{\underline{}} \stackrel{l}{\underline{}} .$$

$$\vdash \text{Have a } \mathcal{B}\text{-valued inner product: } \langle x|y \rangle_{\mathcal{B}} = \delta_{l,l'} \cdot \underbrace{r}_{\underline{}} \stackrel{n}{\underline{}} \stackrel{l}{\underline{}} \stackrel{l}{\underline{}} \stackrel{r''}{\underline{}} .$$

▶ Full Fock space $\mathcal{F}(\mathcal{X}) = \bigoplus_{n=0}^{\infty} \mathcal{X}_n \cong \bigoplus_{n \ge 0} \bigotimes_{\mathcal{B}}^n \mathcal{X}$.

The Pimsner-Toeplitz and Cuntz-Pimsner algebras

For $x \in \mathcal{X}$, we get creation and annihilation operators $L_{\pm}(x)$:

$$L_{+}(x)y = -\frac{l}{x} \frac{r}{r} \left(-\frac{l'}{y} \frac{n}{r'} \right) = \delta_{r,l'} \cdot -\frac{l}{x} \frac{r}{y} \frac{n}{r'}$$
$$L_{-}(x)y = -\frac{l}{x} \frac{r}{r} \left(-\frac{l'}{y} \frac{n}{r'} \right) = \delta_{r,l'} \cdot -\frac{l}{x} \frac{r}{y} \frac{n}{r'}$$

Note $L_{+}(x)^{*} = L_{-}(x^{\dagger}).$

- ▶ Pimsner-Toeplitz algebra $\mathcal{T}(\mathcal{P}_{\bullet}) = \mathsf{C}^* \{ \mathcal{B}, L_{\pm}(x) | x \in \mathcal{X} \}.$
- Cuntz-Pimsner algebra $\mathcal{O}(\mathcal{P}_{\bullet})$ is $\mathcal{T}(\mathcal{P}_{\bullet})/\mathcal{K}(\mathcal{P}_{\bullet})$.

the free semicircular algebra of \mathcal{P}_{\bullet}

We have a distinguished real subspace $\mathcal{X}_{\mathbb{R}} = \{\xi \in \mathcal{X} | \xi = \xi^{\dagger}\} \subset \mathcal{X}$.

► Free semi-circular alg: $S(\mathcal{P}_{\bullet}) = C^* \{ \mathcal{B}, L_+(\xi) + L_-(\xi) | \xi \in \mathcal{X}_{\mathbb{R}} \}.$

For a C*-Hilbert bimodule \mathcal{Y} over \mathcal{B} , work of Germain and Pimsner, gives KK-equivalences $\mathcal{B} \hookrightarrow \mathcal{S}(\mathcal{Y}) \hookrightarrow \mathcal{T}(\mathcal{Y})$.

Theorem (Hartglass-P., part I)

 $K_0(\mathcal{S}(\mathcal{P}_{\bullet})) = \mathbb{Z}\{\alpha | \alpha \in V(\Gamma)\} \text{ and } K_1(\mathcal{S}(\mathcal{P}_{\bullet})) = (0).$

Here, Γ is the so-called <u>principal graph</u> of \mathcal{P}_{\bullet} , a combinatorial invariant which encodes data about the minimal projections in \mathcal{P}_{2n} and fusion with the strand.

By taking various compressions of $\mathcal{A}(\mathcal{P}_{\bullet})$ for $\mathcal{A} = \mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A} = \mathcal{O}$	$\mathcal{A}=\mathcal{T}$	$\mathcal{A} = \mathcal{S}$
$\mathcal{A}(\mathcal{P}_ullet)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{ec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_0(\mathcal{P}_ullet)$	Doplicher-Roberts $\mathcal{O}_{ ho}$	Toeplitz extension by ${\cal K}$	GJS algebra
$\mathcal{A}_0(\mathcal{NC}_{ullet})$	Cuntz \mathcal{O}_n	Toeplitz \mathcal{T}_n	Free semicircular system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

By taking various compressions of $\mathcal{A}(\mathcal{P}_{\bullet})$ for $\mathcal{A} = \mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A} = \mathcal{O}$	$\mathcal{A} = \mathcal{T}$	$\mathcal{A} = \mathcal{S}$
$\mathcal{A}(\mathcal{P}_{ullet})$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{ec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_0(\mathcal{P}_{ullet})$	Doplicher-Roberts \mathcal{O}_{ρ}	Toeplitz extension by ${\cal K}$	GJS algebra
$\mathcal{A}_0(\mathcal{NC}_{\bullet})$	Cuntz \mathcal{O}_n	Toeplitz \mathcal{T}_n	Free semicircular system

▶ To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

By taking various compressions of $\mathcal{A}(\mathcal{P}_{\bullet})$ for $\mathcal{A} = \mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A} = \mathcal{O}$	$\mathcal{A} = \mathcal{T}$	$\mathcal{A} = \mathcal{S}$
$\mathcal{A}(\mathcal{P}_{ullet})$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{ec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_0(\mathcal{P}_ullet)$	Doplicher-Roberts $\mathcal{O}_{ ho}$	Toeplitz extension by ${\cal K}$	GJS algebra
$\mathcal{A}_0(\mathcal{NC}_{\bullet})$	Cuntz \mathcal{O}_n	Toeplitz \mathcal{T}_n	Free semicircular system

- ▶ To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$
- ► To get A₀(P_•), we cut down by the empty diagram, which is a projection in B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We have
$$\mathcal{A}(\mathcal{P}_{\bullet}) \cong \mathcal{A}_0(\mathcal{P}_{\bullet}) \otimes \mathcal{K}$$
.

By taking various compressions of $\mathcal{A}(\mathcal{P}_{\bullet})$ for $\mathcal{A} = \mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A} = \mathcal{O}$	$\mathcal{A}=\mathcal{T}$	$\mathcal{A} = \mathcal{S}$
$\mathcal{A}(\mathcal{P}_{ullet})$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{ec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_0(\mathcal{P}_ullet)$	Doplicher-Roberts $\mathcal{O}_{ ho}$	Toeplitz extension by ${\cal K}$	GJS algebra
$\mathcal{A}_0(\mathcal{NC}_ullet)$	Cuntz \mathcal{O}_n	Toeplitz \mathcal{T}_n	Free semicircular system

- ▶ To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$
- ► To get A₀(P_•), we cut down by the empty diagram, which is a projection in B.
- We have $\mathcal{A}(\mathcal{P}_{\bullet}) \cong \mathcal{A}_0(\mathcal{P}_{\bullet}) \otimes \mathcal{K}$.
- When P_● = NC_●, we get the algebras from Voiculescu's free Gaussian functor.

Properties of the free graph algebra $\mathcal{S}(\Gamma)$

- Vertices α ∈ V(Γ) are equivalence classes of minimal projections in the ground algebra B.
- There are

edges between α and β .

Theorem (Hartglass-P.)

- ► S(Γ) is simple, has unique trace, and has stable rank 1.
- ▶ $S(\mathcal{P}_{\bullet}) \cong S(\Gamma) \otimes \mathcal{K}$ has comparison of projections: If $\operatorname{Tr}(p) > \operatorname{Tr}(q)$, then $\exists v \in S(\mathcal{P}_{\bullet})$ with $v^*v = q$ and $vv^* \leq p$.

Corollary:

 $\{\operatorname{Tr}(p): p \in P(\mathcal{S}(\mathcal{P}_{\bullet}))\} = \mathbb{R}_{+} \cap \mathbb{Z}\{\operatorname{dim}(\alpha) | \alpha \in V(\Gamma))\}$

The Guionnet-Jones-Shlyakhtenko C*-algebras

Our original motivation was to study C*-algebras arising from GJS's diagrammatic reproof of Popa's reconstruction theorem.

▶ Set $Gr_k(\mathcal{P}_{\bullet}) = \bigoplus_{n \ge 0} \mathcal{P}_{2k+n}$ with multiplication and trace:

$$x \cdot y = \sum_{i=0}^{\min\{n,m\}} \frac{n-i}{k} \frac{|m-i|}{k} \text{ and } \operatorname{tr}(x) = \frac{\delta_{n,0}}{\delta^k} \cdot \underbrace{(x)}_k k \cdot \underbrace{(x)}_k \cdot$$

 \mathcal{A}_k is the GNS C*-completion of $\operatorname{Gr}_k(\mathcal{P}_{\bullet})$ on $L^2(\operatorname{Gr}_k(\mathcal{P}_{\bullet}), \operatorname{tr})$. $\mathcal{M}_k = \mathcal{A}_k''$ is an interpolated free group II₁-factor.

Fact

 $\mathcal{A}_k \cong 1_k \mathcal{S}(\mathcal{P}_{\bullet}) 1_k \text{ where } 1_k = \boxed{k}, \text{ which is full as } \mathcal{S}(\mathcal{P}_{\bullet}) \text{ is simple.}$

Properties of the GJS C*-algebras

Theorem (Hartglass-P., part II)

 \mathcal{A}_k is Morita equivalent to $\mathcal{S}(\mathcal{P}_{\bullet})$. (In fact $\mathcal{S}(\mathcal{P}_{\bullet}) \cong \mathcal{A}_k \otimes \mathcal{K}$.)

•
$$K_0(\mathcal{A}_k) \cong \mathbb{Z}\{\alpha | \alpha \in V(\Gamma)\}$$

$$\blacktriangleright K_1(\mathcal{A}_k) = (0).$$

• A_k is simple with unique trace and stable rank 1.

 \mathcal{A}_0 is either projectionless, or $\{\operatorname{tr}(p)|p \in P(\mathcal{A}_0)\}$ is dense in [0,1].

Hence the A_k are quite different from Voiculescu's C*-algebras from free semi-circular families.

The GJS reconstruction reproof

Fact (Guionnet-Jones-Shlyakhtenko)

We have a Jones tower $\mathcal{M}_k \hookrightarrow \mathcal{M}_{k+1}$ by

$$\stackrel{|n}{\underline{k} x} \stackrel{|n}{\underline{k}} \longmapsto \stackrel{|n}{\underline{k} x} \stackrel{|n}{\underline{k}}$$

The Jones index $[\mathcal{M}_1 : \mathcal{M}_0] = \delta^2$, and $\mathcal{M}'_0 \cap \mathcal{M}_k = \mathcal{P}_{2k}$.

Theorem (Hartglass-P., part II)

The same diagram gives a Watatani tower $\mathcal{A}_k \hookrightarrow \mathcal{A}_{k+1}$. The Watatani index $[\mathcal{A}_1 : \mathcal{A}_0] = \delta^2$, and $\mathcal{A}'_0 \cap \mathcal{A}_k = \mathcal{P}_{2k}$.

Failure of Goldman's theorem

Example (Hartglass-P., part II)

Let $\mathcal{P} = \mathcal{TL}_{\bullet}(\sqrt{2})$. In this case, $[\mathcal{M}_1 : \mathcal{M}_0] = 2$ so by Goldman's theorem, $\mathcal{M}_1 \cong \mathcal{M}_0 \rtimes \mathbb{Z}/(2\mathbb{Z})$.

However, $\mathcal{A}_1 \cong \mathcal{A}_0 \rtimes \mathbb{Z}/(2\mathbb{Z})$. Otherwise, there would be a Pimsner-Popa basis $\{1, u\}$ of \mathcal{A}_1 over \mathcal{A}_0 . In *K*-theory, this means that $[1_{\mathcal{A}_2}] = 2[1_{\mathcal{A}_0}]$ which is impossible since Γ is the \mathcal{A}_3 Coxeter-Dynkin diagram.

A first spectral triple

Let \mathcal{P}_{\bullet} be a factor planar algebra. Form the filtered algebra Gr_{0} . Define the number operator N on Gr_{0} by $N\left(\left| \begin{matrix} n \\ x \end{matrix} \right| \right) = n \left[\begin{matrix} n \\ x \end{matrix} \right]$.

Theorem (Hartglass-P., part III)

 $(\mathrm{Gr}_0, L^2(\mathrm{Gr}_0), N)$ is a $\theta\text{-summable spectral triple with compact resolvent.}$

Adapting results of Ozawa-Rieffel to amalgamated free products:

Theorem (Hartglass-P., part III)

 $(Gr_0, L^2(Gr_0), N)$ is a compact quantum metric space in the sense of Rieffel. That is, the induced topology on the state space from

$$\rho(\mu, \nu) = \sup \{ |\mu(a) - \nu(a)| | a \in \operatorname{Gr}_0 \text{ with } ||[D, a]|| \le 1 \}$$

agrees with the weak-* topology.

The cup derivative

Pick a special 'cup' element $\bullet \in \mathcal{P}_1$ with $\langle \bullet , \bullet \rangle = \bullet = 1$. On Gr_0 we have the cup derivative

$$d(x) = \boxed{x} + \boxed{x} + \cdots + \boxed{x}.$$

Note that d is closable with adjoint $d^*|_{\operatorname{Gr}_0}$ given by

$$d^*(x) = \boxed{x} + \boxed{x} + \cdots + \boxed{x}.$$

Remark

We call d the cup derivative because

$$d\left(\underbrace{\stackrel{n}{\overbrace{\bullet\bullet}\cdots\bullet}}_{n}\right) = n\underbrace{\stackrel{n-1}{\overbrace{\bullet\bullet}\cdots\bullet}}_{n}.$$

Define the cup Laplacian to be $L = dd^* + d^*d$ on Gr_0 .

Theorem (Hartglass-P., part III)

 $(Gr_0, L^2(Gr_0), L_{\cup})$ is a θ -summable spectral triple with compact resolvent.

We're currently in the process of studying more properties of our spectral triples.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Slides available at:

http:

//math.ucla.edu/~dpenneys/PenneysShijiazhuang2015.pdf

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Part I, to appear Trans. AMS arXiv:1401.2485
- Part II, J. Funct. Anal. arXiv:1401.2485
- Part III, in preparation!