C*-algebras from planar algebras

In honor of George Elliott's 70th birthday

David Penneys (UCLA) joint work with Michael Hartglass

International Conference on C*-algebras and Dynamical Systems
June 30, 2015

The subfactor - planar algebra correspondence

- Given a finite index II_{1}-subfactor $N \subset M$, its standard invariant forms a subfactor planar algebra.
- Conversely, given a subfactor planar algebra \mathcal{P}_{\bullet}, Popa showed how to reconstruct a II_{1}-subfactor whose standard invariant is \mathcal{P}.

Theorem (Ocneanu, Popa)
If $N \subset M$ is a finite depth, finite index hyperfinite II_{1}-subfactor, its standard invariant is a complete invariant.

C*-algebras from planar algebras

In a series of articles with Michael Hartglass, we study canonical C*-algebras associated to planar algebras in order to develop a connection between subfactor theory, C^{*}-algebras, and non-commutative geometry.

- Part I, to appear Trans. AMS arXiv:1401.2485
- Part II, J. Funct. Anal. arXiv:1401. 2485
- Part III, in preparation!

Main tools

Our main tools for Parts I and II are:

- Voiculescu's free Gaussian functor
- Pimsner's Fock space construction associated to a C*-Hilbert bimodule
- Guionnet-Jones-Shlyakhtenko's diagrammatic reproof of Popa's reconstruction theorem

(Sub)factor planar algebras

- A shaded subfactor planar algebra is an axiomatization of the standard invariant of a finite index subfactor.

- We work with an unshaded factor planar algebras, which axiomatize rigid C*-tensor categories of bifinite bimodules over a single factor.

Planar algebras

Definition

A planar algebra is a sequence of finite dimensional complex vector spaces \mathcal{P}_{n} for $n \geq 0$ together with an action by planar tangles.

- The number of strings connected to the input disks tells you the domain.
- The number of strings connected to the output disk tells you the codomain.

Composition

There is a natural notion of tangle composition:

An action of planar tangles means that composition of tangles must correspond to composition of multilinear maps:

Factor planar algebras

- A planar algebra is a planar $*$-algebra if each \mathcal{P}_{n} has an involution $*$ compatible with the reflection of planar tangles.
- A planar *-algebra is a factor planar algebra if
- (Evaluable): $\mathcal{P}_{0} \cong \mathbb{C}$ with the empty diagram identified with $1 \in \mathbb{C}$. Thus each closed loop is replaced by a scalar δ.
- (Spherical): For all $n \geq 1$ and all $x \in \mathcal{P}_{2 n}$, we have

$$
\operatorname { t r } (x) = \sqrt { x } n = n \longdiv { x }
$$

- (Positive): For all $n \geq 0$, we have a positive definite inner product on \mathcal{P}_{n} given by

$$
\langle x, y\rangle=\underbrace{x}_{\star} \underbrace{n}_{\star} y^{*} .
$$

Jones' Index Rigidty Theorem

In a factor planar algebra $\mathcal{P}_{\bullet}, \delta \in\{2 \cos (\pi / n): n \geq 3\} \cup[2, \infty)$.

Temperley-Lieb

$\mathcal{T} \mathcal{L} \bullet(\delta)$ has $\delta \in\{2 \cos (\pi / n) \mid n \geq 3\} \cup[2, \infty)$.
$\mathcal{T} \mathcal{L}_{k}$ is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if $\delta>2$.
- If $\delta=2 \cos (\pi / n)$, must take quotient by zero length vectors.
- The action is as follows:

Temperley-Lieb

$\mathcal{T} \mathcal{L} \bullet(\delta)$ has $\delta \in\{2 \cos (\pi / n) \mid n \geq 3\} \cup[2, \infty)$.
$\mathcal{T} \mathcal{L}_{k}$ is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if $\delta>2$.
- If $\delta=2 \cos (\pi / n)$, must take quotient by zero length vectors.
- The action is as follows:

Temperley-Lieb

$\mathcal{T} \mathcal{L} \bullet(\delta)$ has $\delta \in\{2 \cos (\pi / n) \mid n \geq 3\} \cup[2, \infty)$.
$\mathcal{T} \mathcal{L}_{k}$ is the linear span of all planar string diagrams with no internal disks and k marked boundary points.

Adjoint is the conjugate-linear extension of reflection of tangles.

- This is a factor planar algebra if $\delta>2$.
- If $\delta=2 \cos (\pi / n)$, must take quotient by zero length vectors.
- The action is as follows:

Non-commutative polynomials

$\mathcal{N C} .(n)$ is the factor planar algebra of non-commuting polynomials.
Take n self-adjoint non-commuting variables X_{1}, \ldots, X_{n}.

- $\mathcal{N C} \mathcal{C}_{k}$ is the \mathbb{C}-span of monomials of degree k.
- The involution is the conjugate-linear extension of reversing a monomial: $\left(X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=X_{i_{k}} \cdots X_{i_{1}}$.
- The action is as follows:

Non-commutative polynomials

$\mathcal{N C} .(n)$ is the factor planar algebra of non-commuting polynomials.
Take n self-adjoint non-commuting variables X_{1}, \ldots, X_{n}.

- $\mathcal{N C} \mathcal{C}_{k}$ is the \mathbb{C}-span of monomials of degree k.
- The involution is the conjugate-linear extension of reversing a monomial: $\left(X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=X_{i_{k}} \cdots X_{i_{1}}$.
- The action is as follows:

Non-commutative polynomials

$\mathcal{N C} .(n)$ is the factor planar algebra of non-commuting polynomials.
Take n self-adjoint non-commuting variables X_{1}, \ldots, X_{n}.

- $\mathcal{N C} \mathcal{C}_{k}$ is the \mathbb{C}-span of monomials of degree k.
- The involution is the conjugate-linear extension of reversing a monomial: $\left(X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=X_{i_{k}} \cdots X_{i_{1}}$.
- The action is as follows:

$$
=n \cdot \delta_{i_{5}, j_{3}} \cdot \delta_{j_{1}, j_{2}} \cdot X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\left(\sum_{k=1}^{n} X_{k}^{2}\right) X_{j_{4}} X_{j_{5}}
$$

Voiculescu's free Gaussian functor

Begin with a real Hilbert space $H_{\mathbb{R}}$ with $\operatorname{dim}_{\mathbb{R}}\left(H_{\mathbb{R}}\right)=n<\infty$.

1. Take its complexification $H_{\mathbb{C}}$.
2. Form the full Fock space $\mathcal{F}\left(H_{\mathbb{C}}\right)=\bigoplus_{n \geq 0} \bigotimes^{n} \mathcal{H}_{\mathbb{C}}$.
3. We look at the left creation and annihilation operators:

$$
\begin{aligned}
& L_{\eta}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=\eta \otimes \xi_{1} \otimes \cdots \otimes \xi_{n} \\
& L_{\eta}^{*}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=\left\langle\eta \mid \xi_{1}\right\rangle \xi_{2} \otimes \cdots \otimes \xi_{n}
\end{aligned}
$$

4. Toeplitz algebra: $\mathcal{T}_{n}=\mathrm{C}^{*}\left\{L(\eta), L(\eta)^{*} \mid \eta \in \mathbb{H}_{\mathbb{C}}\right\}$
5. Free semi-circular algebra: $\mathcal{S}_{n}=\mathrm{C}^{*}\left\{L(\eta)+L(\eta)^{*} \mid \eta \in \mathbb{H}_{\mathbb{R}}\right\}$
6. Cuntz algebra: $\mathcal{O}_{n}=\mathcal{T}_{n} / \mathcal{K}$

Pimsner's Fock space associated to a C*-Hilbert bimodule

Let \mathcal{B} be the ground C^{*}-algebra. Begin with a C*-Hilbert bimodule \mathcal{X} with a distinguished real subspace $\mathcal{X}_{\mathbb{R}}$ such that $\mathcal{X}_{\mathbb{R}} \cdot \mathcal{B}=\mathcal{X}$.

1. Form the full Fock space $\mathcal{F}(\mathcal{X})=\bigoplus_{n \geq 0} \bigotimes_{\mathcal{B}}^{n} \mathcal{X}$.
2. We look at the left creation and annihilation operators:

$$
\begin{aligned}
& L_{\eta}\left(\xi_{1} \otimes \cdots \otimes_{n}\right)=\eta \otimes \xi_{1} \otimes \cdots \otimes \xi_{n} \\
& L_{\eta}^{*}\left(\xi_{1} \otimes \cdots \otimes_{n}\right)=\left\langle\eta \mid \xi_{1}\right\rangle_{\mathcal{B}} \xi_{2} \otimes \cdots \otimes \xi_{n}
\end{aligned}
$$

3. Pimsner-Toeplitz algebra: $\mathcal{T}(\mathcal{X})=\mathrm{C}^{*}\left\{L(\eta), L(\eta)^{*} \mid \eta \in \mathcal{X}\right\}$
4. Free semi-circular alg: $\mathcal{S}(\mathcal{X})=\mathrm{C}^{*}\left\{L(\eta)+L(\eta)^{*} \mid \eta \in \mathcal{X}_{\mathbb{R}}\right\}$
5. Cuntz-Pimsner algebra: $\mathcal{O}(\mathcal{X})=\mathcal{T}(\mathcal{X}) / \mathcal{K}(\mathcal{F}(\mathcal{X}))$

The ground C^{*}-algebra \mathcal{B}

Let \mathcal{P}_{\bullet} be a factor planar algebra.

- Set $\mathcal{B}_{n}=\bigoplus_{l, r=0}^{n} \mathcal{P}_{l, r}$
- Multiplication: $\sqrt[l]{a} \underbrace{r} \cdot l^{\prime} \square^{r^{\prime}}=\delta_{r, l^{\prime}} \sqrt[l]{a} \sqrt{r}^{r} \sqrt{r}^{r^{\prime}}$
- (Semi-finite) trace: $\operatorname{Tr}(a)=\delta_{l, r}^{l} \square{ }^{r}$
- Involution: $a^{\dagger}=r a^{a^{*}}$.

Each \mathcal{B}_{n} is finite dimensional, and $\mathcal{B}_{n} \hookrightarrow \mathcal{B}_{n+1}$.

- $\mathcal{B}=\underset{\longrightarrow}{\lim \mathcal{B}_{n}}=\overline{\bigcup_{n \geq 0} \mathcal{B}_{n}}\|\cdot\| \cong \bigoplus_{\alpha \in V(\Gamma)} \mathcal{K}$.
\mathcal{B} is nonunital, AF , and generated by minimal projections.

The C^{*}-Hilbert bimodule \mathcal{X} and $\mathcal{F}(\mathcal{X})$

- \mathcal{X}_{n} is the $\mathcal{B}-\mathcal{B}$ Hilbert bimodule generated by $\bigoplus_{l, r>0} \mathcal{P}_{l, n, r}$. Set $\mathcal{X}=\mathcal{X}_{1}$.

$$
\sqrt[l]{x}_{x^{n}}^{r} \in \mathcal{P}_{l, n, r}
$$

- The left and right $\bigcup_{n \geq 0} \mathcal{B}_{n}$ actions are given by:

$$
\sqrt[l]{a} \underline{r}^{r} \cdot \frac{l^{\prime}}{x^{x}}{\sqrt{r^{\prime}}}^{l^{\prime \prime}} \sqrt{b}^{r^{\prime \prime}}=\delta_{r, l^{\prime}} \delta_{r^{\prime}, l^{\prime \prime}} \cdot \sqrt[l]{b} \sqrt[r]{\sqrt{n} \sqrt{r}^{r^{\prime}} \sqrt{ }^{r^{\prime \prime}} .}
$$

- \mathcal{X}_{n} has an involution $\dagger:\left(\frac{\left.l\right|^{n}}{x^{r}}\right)^{\dagger}=\frac{\sqrt[r]{n}}{x^{*}}$.
- Have a \mathcal{B}-valued inner product: $\langle x \mid y\rangle_{\mathcal{B}}=\delta_{l, l^{\prime}} \stackrel{n}{x^{*}} \sqrt[n]{r^{\prime}}$.
- Full Fock space $\mathcal{F}(\mathcal{X})=\bigoplus_{n=0}^{\infty} \mathcal{X}_{n} \cong \bigoplus_{n \geq 0} \bigotimes_{\mathcal{B}}^{n} \mathcal{X}$.

The Pimsner-Toeplitz and Cuntz-Pimsner algebras

- For $x \in \mathcal{X}$, we get creation and annihilation operators $L_{ \pm}(x)$:

Note $L_{+}(x)^{*}=L_{-}\left(x^{\dagger}\right)$.

- Pimsner-Toeplitz algebra $\mathcal{T}\left(\mathcal{P}_{\bullet}\right)=\mathrm{C}^{*}\left\{\mathcal{B}, L_{ \pm}(x) \mid x \in \mathcal{X}\right\}$.
- Cuntz-Pimsner algebra $\mathcal{O}\left(\mathcal{P}_{\bullet}\right)$ is $\mathcal{T}\left(\mathcal{P}_{\bullet}\right) / \mathcal{K}\left(\mathcal{P}_{\bullet}\right)$.

the free semicircular algebra of \mathcal{P}.

We have a distinguished real subspace $\mathcal{X}_{\mathbb{R}}=\left\{\xi \in \mathcal{X} \mid \xi=\xi^{\dagger}\right\} \subset \mathcal{X}$.

- Free semi-circular alg:

$$
\mathcal{S}\left(\mathcal{P}_{\bullet}\right)=\mathrm{C}^{*}\left\{\mathcal{B}, L_{+}(\xi)+L_{-}(\xi) \mid \xi \in \mathcal{X}_{\mathbb{R}}\right\} .
$$

For a C^{*}-Hilbert bimodule \mathcal{Y} over \mathcal{B}, work of Germain and Pimsner, gives $K K$-equivalences $\mathcal{B} \hookrightarrow \mathcal{S}(\mathcal{Y}) \hookrightarrow \mathcal{T}(\mathcal{Y})$.

Theorem (Hartglass-P., part I)

$$
K_{0}\left(\mathcal{S}\left(\mathcal{P}_{\bullet}\right)\right)=\mathbb{Z}\{\alpha \mid \alpha \in V(\Gamma)\} \text { and } K_{1}\left(\mathcal{S}\left(\mathcal{P}_{\bullet}\right)\right)=(0) .
$$

Here, Γ is the so-called principal graph of \mathcal{P}_{\bullet}, a combinatorial invariant which encodes data about the minimal projections in $\mathcal{P}_{2 n}$ and fusion with the strand.

Compressions

By taking various compressions of $\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$ for $\mathcal{A}=\mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A}=\mathcal{O}$	$\mathcal{A}=\mathcal{T}$	$\mathcal{A}=\mathcal{S}$
$\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{\vec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right)$	Doplicher-Roberts \mathcal{O}_{ρ}	Toeplitz extension by \mathcal{K}	GJS algebra
$\mathcal{A}_{0}\left(\mathcal{N} \mathcal{C}_{\bullet}\right)$	Cuntz \mathcal{O}_{n}	Toeplitz \mathcal{T}_{n}	Free semicircular system

Compressions

By taking various compressions of $\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$ for $\mathcal{A}=\mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A}=\mathcal{O}$	$\mathcal{A}=\mathcal{T}$	$\mathcal{A}=\mathcal{S}$
$\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{\vec{\rightharpoonup}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right)$	Doplicher-Roberts \mathcal{O}_{ρ}	Toeplitz extension by \mathcal{K}	GJS algebra
$\mathcal{A}_{0}\left(\mathcal{N C} \mathcal{C}_{\bullet}\right)$	Cuntz \mathcal{O}_{n}	Toeplitz \mathcal{T}_{n}	Free semicircular system

- To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$

Compressions

By taking various compressions of $\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$ for $\mathcal{A}=\mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A}=\mathcal{O}$	$\mathcal{A}=\mathcal{T}$	$\mathcal{A}=\mathcal{S}$
$\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\rightharpoonup}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{\vec{\rightharpoonup}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right)$	Doplicher-Roberts \mathcal{O}_{ρ}	Toeplitz extension by \mathcal{K}	GJS algebra
$\mathcal{A}_{0}\left(\mathcal{N C} C_{\bullet}\right)$	Cuntz \mathcal{O}_{n}	Toeplitz \mathcal{T}_{n}	Free semicircular system

- To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$
- To get $\mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right)$, we cut down by the empty diagram, which is a projection in \mathcal{B}.
- We have $\mathcal{A}\left(\mathcal{P}_{\bullet}\right) \cong \mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right) \otimes \mathcal{K}$.

Compressions

By taking various compressions of $\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$ for $\mathcal{A}=\mathcal{O}, \mathcal{T}, \mathcal{S}$, we have the chart below:

	$\mathcal{A}=\mathcal{O}$	$\mathcal{O}=\mathcal{T}$	$\mathcal{A}=\mathcal{S}$
$\mathcal{A}\left(\mathcal{P}_{\bullet}\right)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\vec{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{\vec{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_{0}(\mathcal{P} \cdot)$	Doplicher-Roberts \mathcal{O}_{ρ}	Toeplitz extension by \mathcal{K}	GJS algebra
$\mathcal{A}_{0}\left(\mathcal{N} C_{\bullet}\right)$	Cuntz \mathcal{O}_{n}	Toeplitz \mathcal{T}_{n}	Free semicircular system

- To get $\mathcal{A}(\Gamma)$, we choose a $p_{\alpha} \in \mathcal{B}$ for every $\alpha \in V(\Gamma)$, and cut down by $\sum_{\alpha \in V(\Gamma)} p_{\alpha}$
- To get $\mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right)$, we cut down by the empty diagram, which is a projection in \mathcal{B}.
- We have $\mathcal{A}\left(\mathcal{P}_{\bullet}\right) \cong \mathcal{A}_{0}\left(\mathcal{P}_{\bullet}\right) \otimes \mathcal{K}$.
- When $\mathcal{P}_{\bullet}=\mathcal{N C} \mathcal{C}_{\bullet}$, we get the algebras from Voiculescu's free Gaussian functor.

Properties of the free graph algebra $\mathcal{S}(\Gamma)$

- Vertices $\alpha \in V(\Gamma)$ are equivalence classes of minimal projections in the ground algebra \mathcal{B}.
- There are
edges between α and β.
Theorem (Hartglass-P.)
- $\mathcal{S}(\Gamma)$ is simple, has unique trace, and has stable rank 1.
- $\mathcal{S}\left(\mathcal{P}_{\bullet}\right)(\cong \mathcal{S}(\Gamma) \otimes \mathcal{K})$ has comparison of projections: If $\operatorname{Tr}(p)>\operatorname{Tr}(q)$, then $\exists v \in \mathcal{S}\left(\mathcal{P}_{\bullet}\right)$ with $v^{*} v=q$ and $v v^{*} \leq p$.

Corollary:
$\left.\left\{\operatorname{Tr}(p): p \in P\left(\mathcal{S}\left(\mathcal{P}_{\bullet}\right)\right)\right\}=\mathbb{R}_{+} \cap \mathbb{Z}\{\operatorname{dim}(\alpha) \mid \alpha \in V(\Gamma))\right\}$

The Guionnet-Jones-Shlyakhtenko C*-algebras

Our original motivation was to study C^{*}-algebras arising from GJS's diagrammatic reproof of Popa's reconstruction theorem.

- Set $\operatorname{Gr}_{k}\left(\mathcal{P}_{\bullet}\right)=\bigoplus_{n \geq 0} \mathcal{P}_{2 k+n}$ with multiplication and trace:

$$
x \cdot y=\sum_{i=0}^{\min \{n, m\}} \frac{n-\left.i \bigwedge_{k}^{i}\right|_{k} ^{x}-i}{x} \text { and } \operatorname{tr}(x)=\frac{\delta_{n, 0}}{\delta^{k}} \cdot \square^{k} .
$$

\mathcal{A}_{k} is the GNS C*-completion of $\operatorname{Gr}_{k}\left(\mathcal{P}_{\bullet}\right)$ on $L^{2}\left(\operatorname{Gr}_{k}\left(\mathcal{P}_{\bullet}\right), \operatorname{tr}\right)$.

- $\mathcal{M}_{k}=\mathcal{A}_{k}^{\prime \prime}$ is an interpolated free group II_{1}-factor.

Fact
$\mathcal{A}_{k} \cong 1_{k} \mathcal{S}\left(\mathcal{P}_{\bullet}\right) 1_{k}$ where $1_{k}=k$, which is full as $\mathcal{S}\left(\mathcal{P}_{\bullet}\right)$ is simple.

Properties of the GJS C*-algebras

Theorem (Hartglass-P., part II)
\mathcal{A}_{k} is Morita equivalent to $\mathcal{S}\left(\mathcal{P}_{\bullet}\right)$. (In fact $\left.\mathcal{S}\left(\mathcal{P}_{\bullet}\right) \cong \mathcal{A}_{k} \otimes \mathcal{K}.\right)$

- $K_{0}\left(\mathcal{A}_{k}\right) \cong \mathbb{Z}\{\alpha \mid \alpha \in V(\Gamma)\}$
- $K_{1}\left(\mathcal{A}_{k}\right)=(0)$.
- \mathcal{A}_{k} is simple with unique trace and stable rank 1.
\mathcal{A}_{0} is either projectionless, or $\left\{\operatorname{tr}(p) \mid p \in P\left(\mathcal{A}_{0}\right)\right\}$ is dense in $[0,1]$.

Hence the \mathcal{A}_{k} are quite different from Voiculescu's C*-algebras from free semi-circular families.

The GJS reconstruction reproof

Fact (Guionnet-Jones-Shlyakhtenko)
We have a Jones tower $\mathcal{M}_{k} \hookrightarrow \mathcal{M}_{k+1}$ by

$$
\stackrel{\mid n}{\sqrt[k]{x}^{k}} \longmapsto \frac{\sqrt[k]{x^{n}}}{}
$$

The Jones index $\left[\mathcal{M}_{1}: \mathcal{M}_{0}\right]=\delta^{2}$, and $\mathcal{M}_{0}^{\prime} \cap \mathcal{M}_{k}=\mathcal{P}_{2 k}$.

Theorem (Hartglass-P., part II)
The same diagram gives a Watatani tower $\mathcal{A}_{k} \hookrightarrow \mathcal{A}_{k+1}$.
The Watatani index $\left[\mathcal{A}_{1}: \mathcal{A}_{0}\right]=\delta^{2}$, and $\mathcal{A}_{0}^{\prime} \cap \mathcal{A}_{k}=\mathcal{P}_{2 k}$.

Failure of Goldman's theorem

Example (Hartglass-P., part II)
Let $\mathcal{P}=\mathcal{T} \mathcal{L} \bullet(\sqrt{2})$. In this case, $\left[\mathcal{M}_{1}: \mathcal{M}_{0}\right]=2$ so by Goldman's theorem, $\mathcal{M}_{1} \cong \mathcal{M}_{0} \rtimes \mathbb{Z} /(2 \mathbb{Z})$.

However, $\mathcal{A}_{1} \cong \mathcal{A}_{0} \rtimes \mathbb{Z} /(2 \mathbb{Z})$. Otherwise, there would be a Pimsner-Popa basis $\{1, u\}$ of \mathcal{A}_{1} over \mathcal{A}_{0}. In K-theory, this means that $\left[1_{\mathcal{A}_{2}}\right]=2\left[1_{\mathcal{A}_{0}}\right]$ which is impossible since Γ is the A_{3}
Coxeter-Dynkin diagram.

A first spectral triple

Let \mathcal{P}. be a factor planar algebra. Form the filtered algebra Gr_{0}.
Define the number operator N on Gr_{0} by $\left.N\left(\frac{\mid n}{x}\right)=n \right\rvert\, x$.
Theorem (Hartglass-P., part III)
$\left(\mathrm{Gr}_{0}, L^{2}\left(\mathrm{Gr}_{0}\right), N\right)$ is a θ-summable spectral triple with compact resolvent.

Adapting results of Ozawa-Rieffel to amalgamated free products:
Theorem (Hartglass-P., part III)
$\left(\mathrm{Gr}_{0}, L^{2}\left(\mathrm{Gr}_{0}\right), N\right)$ is a compact quantum metric space in the sense of Rieffel. That is, the induced topology on the state space from

$$
\rho(\mu, \nu)=\sup \left\{\mid \mu(a)-\nu(a) \| a \in \operatorname{Gr}_{0} \text { with }\|[D, a]\| \leq 1\right\}
$$

agrees with the weak-* topology.

The cup derivative

Pick a special 'cup' element $\square \bullet \in \mathcal{P}_{1}$ with $\langle\square, \square\rangle=\square!=1$.
On Gr_{0} we have the cup derivative

Note that d is closable with adjoint $\left.d^{*}\right|_{\mathrm{Gr}_{0}}$ given by

Remark
We call d the cup derivative because

$$
d\left(\begin{array}{|c}
\boxed{\bullet \bullet} \cdot \bullet
\end{array}\right)=n \square_{\square \cdot \cdots \cdot}^{n-1} .
$$

A second spectral triple

Define the cup Laplacian to be $L=d d^{*}+d^{*} d$ on Gr_{0}.
Theorem (Hartglass-P., part III)
$\left(\mathrm{Gr}_{0}, L^{2}\left(\mathrm{Gr}_{0}\right), L_{\cup}\right)$ is a θ-summable spectral triple with compact resolvent.

We're currently in the process of studying more properties of our spectral triples.

Thank you for listening!

Slides available at:
http:
//math.ucla.edu/~dpenneys/PenneysShijiazhuang2015.pdf

- Part I, to appear Trans. AMS arXiv:1401.2485
- Part II, J. Funct. Anal. arXiv:1401.2485
- Part III, in preparation!

