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The subfactor — planar algebra correspondence

» Given a finite index II;-subfactor N C M, its standard
invariant forms a subfactor planar algebra.

» Conversely, given a subfactor planar algebra P,, Popa showed
how to reconstruct a II;-subfactor whose standard invariant is
Po.

Theorem (Ocneanu, Popa)

If N C M is a finite depth, finite index hyperfinite II;-subfactor,
its standard invariant is a complete invariant.



C*-algebras from planar algebras

In a series of articles with Michael Hartglass, we study canonical
C*-algebras associated to planar algebras in order to develop a
connection between subfactor theory, C*-algebras, and
non-commutative geometry.

» Part I, to appear Trans. AMS arXiv:1401.2485

» Part II, J. Funct. Anal. arXiv:1401.2485

» Part III, in preparation!


http://arxiv.org/abs/1401.2485
http://arxiv.org/abs/1401.2485

Main tools

Our main tools for Parts I and II are:
» Voiculescu's free Gaussian functor

» Pimsner’s Fock space construction associated to a C*-Hilbert
bimodule

» Guionnet-Jones-Shlyakhtenko's diagrammatic reproof of
Popa’s reconstruction theorem



(Sub)factor planar algebras

» A shaded subfactor planar algebra is an axiomatization of the
standard invariant of a finite index subfactor.

» We work with an unshaded factor planar algebras, which
axiomatize rigid C*-tensor categories of bifinite bimodules
over a single factor.
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Planar algebras

Definition
A planar algebra is a sequence of finite dimensional complex vector
spaces P, for n > 0 together with an action by planar tangles.
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» The number of strings connected to the input disks tells you
the domain.

» The number of strings connected to the output disk tells you
the codomain.



Composition
There is a natural notion of tangle composition:
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An action of planar tangles means that composition of tangles
must correspond to composition of multilinear maps:




Factor planar algebras

> A planar algebra is a planar x-algebra if each P,, has an
involution * compatible with the reflection of planar tangles.

» A planar x-algebra is a factor planar algebra if

» (Evaluable): Py = C with the empty diagram identified with
1 € C. Thus each closed loop is replaced by a scalar §.
» (Spherical): For all n > 1 and all z € Py, we have

» (Positive): For all n > 0, we have a positive definite inner
product on P,, given by

— LC P
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Jones' Index Rigidty Theorem
In a factor planar algebra P, 6 € {2cos(w/n) :n > 3} U [2,00).



Temperley-Lieb

T Le(d) has § € {2cos(m/n)|ln > 3} U[2,00).

T Ly, is the linear span of all planar string diagrams with no

internal disks and k marked boundary points.

TLe = spang {
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Adjoint is the conjugate-linear extension of reflection of tangles.

» This is a factor planar algebra if § > 2.

» If 6 = 2cos(m/n), must take quotient by zero length vectors.

» The action is as follows:
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Non-commutative polynomials

NCq(n) is the factor planar algebra of non-commuting polynomials.

Take n self-adjoint non-commuting variables X1,..., X,.
» NCy is the C-span of monomials of degree k.

» The involution is the conjugate-linear extension of reversing a
monomial: (X, --- X;,)" = X5, - Xi,.

» The action is as follows:

T
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Non-commutative polynomials

NCq(n) is the factor planar algebra of non-commuting polynomials.

Take n self-adjoint non-commuting variables X1,..., X,.
» NCy is the C-span of monomials of degree k.

» The involution is the conjugate-linear extension of reversing a
monomial: (X, --- X;,)" = X5, - X5,

» The action is as follows:
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Voiculescu's free Gaussian functor

Begin with a real Hilbert space Hy with dimg(Hg) =n < co.
1. Take its complexification Hc.
2. Form the full Fock space F(Hc¢) = @,,~0 X" Hc.
3. We look at the left creation and annihil.;tion operators:

Ly(a®  ®&) =14 ® - ®&
LG ® - 0&) =)o 0 &

4. Toeplitz algebra: T, = C* {L(n), L(n)*|n € Hc}
5. Free semi-circular algebra: S,, = C*{L(n) + L(n)*|n € Hgr}
6. Cuntz algebra: O,, = 7,/K

0 K Tn Oy, 0




Pimsner's Fock space associated to a C*-Hilbert bimodule
Let B be the ground C*-algebra. Begin with a C*-Hilbert bimodule
X with a distinguished real subspace AR such that Az - B = X.
1. Form the full Fock space F(X) = ,50 Q3 X

2. We look at the left creation and annihilation operators:

Ly(6i® - ®n)=nR&L® - ®&,
L& @ @) = () ® - ® &y

3. Pimsner-Toeplitz algebra: 7(X) = C*{L(n), L(n)*|n € X'}
4. Free semi-circular alg: S(X) = C*{L(n) + L(n)*|n € Ar}
5. Cuntz-Pimsner algebra: O(X) = T(X)/K(F(X))

00— K(F(X)) —= T(X) — O(%) 0

V
St



The ground C*-algebra B

Let P, be a factor planar algebra.
> Set B, = @Zrzo Py

» Multiplication: @ : W = 6”'

l T
> (Semi-finite) trace: Tr(a) = 4 @)
» Involution: af = .

Each B, is finite dimensional, and B,, < B,,41.

I ~
@aEV

B is nonunital, AF, and generated by minimal projections.

IEB - Un>0



The C*-Hilbert bimodule X and F(&X)

» X, is the B — B Hilbert bimodule generated by @ P, .

1,r>0
n
l T
€ Pinr

> The left and right Un20 B, actions are given by:

n n
n T n
» X, has an involution f: < lr> = Tl .
-
» Have a B-valued inner product: (z|y)p = 5571/ .

» Full Fock space F(X) = D,~oXn = D,50 Qs L.

Set X = A].



The Pimsner-Toeplitz and Cuntz-Pimsner algebras

» For z € X, we get creation and annihilation operators L (x):

n n
L+(1‘)y: l"' <ZT >:5’I’,l/.

n n—1
bt =i () s Y

Note L, (z)* = L_(z).
» Pimsner-Toeplitz algebra 7 (P.) = C*{B, L+ (z)|z € X}.
» Cuntz-Pimsner algebra O(P,) is T (Pe)/K(Pes).



the free semicircular algebra of P,

We have a distinguished real subspace A = {¢ € X|¢ = ¢} C A

» Free semi-circular alg:
S(Pe) = CH{B, L1(§) + L-(§)I€ € Ar}.

For a C*-Hilbert bimodule ) over BB, work of Germain and
Pimsner, gives K K-equivalences B < S(Y) < T ()).
Theorem (Hartglass-P., part I)

Ko(S(P.)) = Z{ala € V()} and K1(S(P.)) = (0).

Here, I' is the so-called principal graph of P,, a combinatorial
invariant which encodes data about the minimal projections in Po,
and fusion with the strand.



Compressions

By taking various compressions of A(P,) for A = O, T,S, we
have the chart below:

[ | A=0 [ A=T [ A=S
A(Po) Cuntz-Pimsner Pimsner-Toeplitz semifinite GJS algebra
AT) Cuntz-Krieger Og Toeplitz-Cuntz-Krieger Tz | free graph algebra S(I')
Ao (Po) Doplicher-Roberts O, Toeplitz extension by K GJS algebra
Ao(NCo) Cuntz Oy, Toeplitz Tp Free semicircular system
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have the chart below:
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Compressions

By taking various compressions of A(P,) for A = O, T,S, we
have the chart below:

[ i A=0 [ A=T [ A=3S
A(Ps) Cuntz-Pimsner Pimsner-Toeplitz semifinite GJS algebra
A(T) Cuntz-Krieger Og Toeplitz-Cuntz-Krieger 7 | free graph algebra S(T')
Ao (Pe) Doplicher-Roberts O, Toeplitz extension by K GJS algebra
Ao (NCo) Cuntz Oy, Toeplitz Tp, Free semicircular system

» To get A(I"), we choose a p, € B for every a € V(I'), and
cut down by 3°,cv(r) Pa
» To get Ap(P.), we cut down by the empty diagram, which is
a projection in B.
» We have A(P,) = Ap(P.) ® K.
» When P, = NC,, we get the algebras from Voiculescu's free
Gaussian functor.




Properties of the free graph algebra S(I')

» Vertices o € V(I') are equivalence classes of minimal
projections in the ground algebra B.
x € 731,177,}

o { P} [

edges between « and S.

» There are

Theorem (Hartglass-P.)

» S(T') is simple, has unique trace, and has stable rank 1.

> S(P,)(=2 S(T") ® K) has comparison of projections:
If Tr(p) > Tr(q), then v € S(P,) with v*v = ¢ and vv* < p.

Corollary:
{Tr(p) : p € P(S(Ps))} =Ry NZ{dim(«a)|a € V(I"))}



The Guionnet-Jones-Shlyakhtenko C*-algebras

Our original motivation was to study C*-algebras arising from
GJS's diagrammatic reproof of Popa's reconstruction theorem.

> Set Gry(Ps) = D,,>¢ P2k+n With multiplication and trace:
min{n,m}

Zz% and tr(z ’f )

Aj, is the GNS C*-completion of Gry(P,) on L?(Gri(P,), tr).
» M, = Al is an interpolated free group II;-factor.

Fact
A = 1;5(Pa) 11 where 1 = , which is full as S(P.,) is simple.



Properties of the GJS C*-algebras

Theorem (Hartglass-P., part 1I)

Ay, is Morita equivalent to S(P,). (In fact S(P.) = A, @ K.)
> Ko(Ay) 2 Z{ala € V(D)}
> Ki(Ag) = (0).
» Ay is simple with unique trace and stable rank 1.

Ay is either projectionless, or {tr(p)|p € P(Ap)} is dense in [0, 1].

Hence the A;, are quite different from Voiculescu's C*-algebras
from free semi-circular families.



The GJS reconstruction reproof

Fact (Guionnet-Jones-Shlyakhtenko)
We have a Jones tower My — M1 by

n n
e

The Jones index [M; : Mg] = 62, and M} N My, = Pyy.

Theorem (Hartglass-P., part 11)

The same diagram gives a Watatani tower Ay < Ag41.
The Watatani index [A; : Ag] = 62, and A) N A = Pay.



Failure of Goldman's theorem

Example (Hartglass-P., part II)

Let P = T Le(v/2). In this case, [M; : Mg] = 2 so by Goldman's
theorem, M = My x Z/(2Z).

However, A; = Ay x Z/(2Z). Otherwise, there would be a
Pimsner-Popa basis {1, u} of A; over Ay. In K-theory, this means
that [1.4,] = 2[1.4,] which is impossible since I' is the A3
Coxeter-Dynkin diagram.



A first spectral triple

Let P, be a factor planar algebra. Form the filtered algebra Gry.

n
Define the number operator N on Grg by N <> = n .

Theorem (Hartglass-P., part III)

(Grg, L?(Grg), N) is a f-summable spectral triple with compact
resolvent.

Adapting results of Ozawa-Rieffel to amalgamated free products:

Theorem (Hartglass-P., part III)

(Grg, L?(Grg), N) is a compact quantum metric space in the sense
of Rieffel. That is, the induced topology on the state space from

p(pv) = sup {|u(a) — v(a)||a € Gro with [[D, d]|| < 1}

agrees with the weak-* topology.



The cup derivative

Pick a special ‘cup’ element |I| € P with <|I|, |I|> = |I| =1

On Grp we have the cup derivative

el el s
dlz)=| = |[+| =z |[+-4+| =

Note that d is closable with adjoint d*|qy, given by
o 1 ]
d'(z)=| = |+| =« |+---+| =z

Remark
We call d the cup derivative because



A second spectral triple

Define the cup Laplacian to be L = dd* + d*d on Gry.

Theorem (Hartglass-P., part I1I)

(Grg, L?(Grg), Ly) is a -summable spectral triple with compact
resolvent.

We're currently in the process of studying more properties of our
spectral triples.



Thank you for listening!

Slides available at:
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