
C∗-algebras from planar algebras
In honor of George Elliott’s 70th birthday

David Penneys (UCLA)
joint work with Michael Hartglass

International Conference on C∗-algebras and Dynamical Systems

June 30, 2015



The subfactor – planar algebra correspondence

I Given a finite index II1-subfactor N ⊂M , its standard
invariant forms a subfactor planar algebra.

I Conversely, given a subfactor planar algebra P•, Popa showed
how to reconstruct a II1-subfactor whose standard invariant is
P•.

Theorem (Ocneanu, Popa)

If N ⊂M is a finite depth, finite index hyperfinite II1-subfactor,
its standard invariant is a complete invariant.



C∗-algebras from planar algebras

In a series of articles with Michael Hartglass, we study canonical
C∗-algebras associated to planar algebras in order to develop a
connection between subfactor theory, C∗-algebras, and
non-commutative geometry.

I Part I, to appear Trans. AMS arXiv:1401.2485

I Part II, J. Funct. Anal. arXiv:1401.2485

I Part III, in preparation!

http://arxiv.org/abs/1401.2485
http://arxiv.org/abs/1401.2485


Main tools

Our main tools for Parts I and II are:

I Voiculescu’s free Gaussian functor

I Pimsner’s Fock space construction associated to a C∗-Hilbert
bimodule

I Guionnet-Jones-Shlyakhtenko’s diagrammatic reproof of
Popa’s reconstruction theorem



(Sub)factor planar algebras

I A shaded subfactor planar algebra is an axiomatization of the
standard invariant of a finite index subfactor.
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I We work with an unshaded factor planar algebras, which
axiomatize rigid C∗-tensor categories of bifinite bimodules
over a single factor.
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Planar algebras

Definition
A planar algebra is a sequence of finite dimensional complex vector
spaces Pn for n ≥ 0 together with an action by planar tangles.
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: P3 × P5 → P5

I The number of strings connected to the input disks tells you
the domain.

I The number of strings connected to the output disk tells you
the codomain.



Composition
There is a natural notion of tangle composition:
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An action of planar tangles means that composition of tangles
must correspond to composition of multilinear maps:

P5 ⊗ P5
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Factor planar algebras

I A planar algebra is a planar ∗-algebra if each Pn has an
involution ∗ compatible with the reflection of planar tangles.

I A planar ∗-algebra is a factor planar algebra if

I (Evaluable): P0
∼= C with the empty diagram identified with

1 ∈ C. Thus each closed loop is replaced by a scalar δ.
I (Spherical): For all n ≥ 1 and all x ∈ P2n, we have

tr(x) = x n
?

= xn
?

I (Positive): For all n ≥ 0, we have a positive definite inner
product on Pn given by

〈x, y〉 = x y∗
n

? ?
.

Jones’ Index Rigidty Theorem

In a factor planar algebra P•, δ ∈ {2 cos(π/n) : n ≥ 3} ∪ [2,∞).



Temperley-Lieb
T L•(δ) has δ ∈ {2 cos(π/n)|n ≥ 3} ∪ [2,∞).
T Lk is the linear span of all planar string diagrams with no
internal disks and k marked boundary points.

TL6 = spanC

{
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.

Adjoint is the conjugate-linear extension of reflection of tangles.

I This is a factor planar algebra if δ > 2.

I If δ = 2 cos(π/n), must take quotient by zero length vectors.

I The action is as follows:
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Non-commutative polynomials

NC•(n) is the factor planar algebra of non-commuting polynomials.

Take n self-adjoint non-commuting variables X1, . . . , Xn.

I NCk is the C-span of monomials of degree k.

I The involution is the conjugate-linear extension of reversing a
monomial: (Xi1 · · ·Xik)∗ = Xik · · ·Xi1 .

I The action is as follows:
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(Xi1Xi2Xi3Xi4Xi5 , Xj1Xj2Xj3Xj4Xj5)
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Voiculescu’s free Gaussian functor

Begin with a real Hilbert space HR with dimR(HR) = n <∞.

1. Take its complexification HC.

2. Form the full Fock space F(HC) =
⊕

n≥0

⊗nHC.

3. We look at the left creation and annihilation operators:

Lη(ξ1 ⊗ · · · ⊗ ξn) = η ⊗ ξ1 ⊗ · · · ⊗ ξn
L∗η(ξ1 ⊗ · · · ⊗ ξn) = 〈η|ξ1〉ξ2 ⊗ · · · ⊗ ξn

4. Toeplitz algebra: Tn = C∗ {L(η), L(η)∗|η ∈ HC}
5. Free semi-circular algebra: Sn = C∗ {L(η) + L(η)∗|η ∈ HR}
6. Cuntz algebra: On = Tn/K

0 // K // Tn // On // 0

Sn
?�

OO
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Pimsner’s Fock space associated to a C∗-Hilbert bimodule

Let B be the ground C∗-algebra. Begin with a C∗-Hilbert bimodule
X with a distinguished real subspace XR such that XR · B = X .

1. Form the full Fock space F(X ) =
⊕

n≥0

⊗n
B X .

2. We look at the left creation and annihilation operators:

Lη(ξ1 ⊗ · · ·⊗n) = η ⊗ ξ1 ⊗ · · · ⊗ ξn
L∗η(ξ1 ⊗ · · ·⊗n) = 〈η|ξ1〉Bξ2 ⊗ · · · ⊗ ξn

3. Pimsner-Toeplitz algebra: T (X ) = C∗ {L(η), L(η)∗|η ∈ X}
4. Free semi-circular alg: S(X ) = C∗ {L(η) + L(η)∗|η ∈ XR}
5. Cuntz-Pimsner algebra: O(X ) = T (X )/K(F(X ))

0 // K(F(X )) // T (X ) // O(X ) // 0

S(X )
?�

OO

, � ?
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The ground C∗-algebra B

Let P• be a factor planar algebra.

I Set Bn =
⊕n

l,r=0 Pl,r
I Multiplication: a

l r · b
l′ r′ = δr,l′ a

l r
b

r′

I (Semi-finite) trace: Tr(a) = δl,r
a

l r

I Involution: a† = a∗
r l .

Each Bn is finite dimensional, and Bn ↪→ Bn+1.

I B = lim−→Bn =
⋃
n≥0 Bn

‖·‖ ∼=
⊕

α∈V (Γ)K.

B is nonunital, AF, and generated by minimal projections.



The C∗-Hilbert bimodule X and F(X )

I Xn is the B − B Hilbert bimodule generated by
⊕
l,r≥0

Pl,n,r.

Set X = X1.

xl r
n

∈ Pl,n,r
I The left and right

⋃
n≥0 Bn actions are given by:

al r · xl′ r′
n

· b
l′′ r′′ = δr,l′δr′,l′′ · b

l r r′x
n

b
r′′ .

I Xn has an involution †:
(

xl r
n
)†

= x∗
r l

n

.

I Have a B-valued inner product: 〈x|y〉B = δl,l′
n

x∗
r l y r′ .

I Full Fock space F(X ) =
⊕∞

n=0Xn ∼=
⊕

n≥0

⊗n
B X .



The Pimsner-Toeplitz and Cuntz-Pimsner algebras

I For x ∈ X , we get creation and annihilation operators L±(x):

L+(x)y =
l r
x

(
yl′ r′
n

)
= δr,l′ · xl r r′y

n

L−(x)y =
l r
x

(
yl′ r′
n

)
= δr,l′ · xl r r′y

n− 1

Note L+(x)∗ = L−(x†).

I Pimsner-Toeplitz algebra T (P•) = C∗{B, L±(x)|x ∈ X}.
I Cuntz-Pimsner algebra O(P•) is T (P•)/K(P•).



the free semicircular algebra of P•

We have a distinguished real subspace XR = {ξ ∈ X |ξ = ξ†} ⊂ X .

I Free semi-circular alg:
S(P•) = C∗{B, L+(ξ) + L−(ξ)|ξ ∈ XR}.

For a C∗-Hilbert bimodule Y over B, work of Germain and
Pimsner, gives KK-equivalences B ↪→ S(Y) ↪→ T (Y).

Theorem (Hartglass-P., part I)

K0(S(P•)) = Z{α|α ∈ V (Γ)} and K1(S(P•)) = (0).

Here, Γ is the so-called principal graph of P•, a combinatorial
invariant which encodes data about the minimal projections in P2n

and fusion with the strand.



Compressions

By taking various compressions of A(P•) for A = O, T ,S, we
have the chart below:

A = O A = T A = S
A(P•) Cuntz-Pimsner Pimsner-Toeplitz semifinite GJS algebra
A(Γ) Cuntz-Krieger O~Γ Toeplitz-Cuntz-Krieger T~Γ free graph algebra S(Γ)

A0(P•) Doplicher-Roberts Oρ Toeplitz extension by K GJS algebra
A0(NC•) Cuntz On Toeplitz Tn Free semicircular system

I To get A(Γ), we choose a pα ∈ B for every α ∈ V (Γ), and
cut down by

∑
α∈V (Γ) pα

I To get A0(P•), we cut down by the empty diagram, which is
a projection in B.

I We have A(P•) ∼= A0(P•)⊗K.

I When P• = NC•, we get the algebras from Voiculescu’s free
Gaussian functor.
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Properties of the free graph algebra S(Γ)
.

I Vertices α ∈ V (Γ) are equivalence classes of minimal
projections in the ground algebra B.

I There are

dim

{
pα x pβl l r r

∣∣∣∣∣x ∈ Pl,1,r
}

edges between α and β.

Theorem (Hartglass-P.)

I S(Γ) is simple, has unique trace, and has stable rank 1.

I S(P•)(∼= S(Γ)⊗K) has comparison of projections:
If Tr(p) > Tr(q), then ∃ v ∈ S(P•) with v∗v = q and vv∗ ≤ p.

Corollary:

{Tr(p) : p ∈ P (S(P•))} = R+ ∩ Z{dim(α)|α ∈ V (Γ))}



The Guionnet-Jones-Shlyakhtenko C∗-algebras

Our original motivation was to study C∗-algebras arising from
GJS’s diagrammatic reproof of Popa’s reconstruction theorem.

I Set Grk(P•) =
⊕

n≥0 P2k+n with multiplication and trace:

x·y =

min{n,m}∑
i=0

x y
k k k

n− i m− i
i

and tr(x) =
δn,0
δk
· x k .

Ak is the GNS C∗-completion of Grk(P•) on L2(Grk(P•), tr).

I Mk = A′′k is an interpolated free group II1-factor.

Fact
Ak ∼= 1kS(P•)1k where 1k = k , which is full as S(P•) is simple.



Properties of the GJS C∗-algebras

Theorem (Hartglass-P., part II)

Ak is Morita equivalent to S(P•). (In fact S(P•) ∼= Ak ⊗K.)

I K0(Ak) ∼= Z{α|α ∈ V (Γ)}
I K1(Ak) = (0).

I Ak is simple with unique trace and stable rank 1.

A0 is either projectionless, or {tr(p)|p ∈ P (A0)} is dense in [0, 1].

Hence the Ak are quite different from Voiculescu’s C∗-algebras
from free semi-circular families.



The GJS reconstruction reproof

Fact (Guionnet-Jones-Shlyakhtenko)

We have a Jones tower Mk ↪→Mk+1 by

xk k
n
7−→ xk k

n

The Jones index [M1 :M0] = δ2, and M′0 ∩Mk = P2k.

Theorem (Hartglass-P., part II)

The same diagram gives a Watatani tower Ak ↪→ Ak+1.
The Watatani index [A1 : A0] = δ2, and A′0 ∩ Ak = P2k.



Failure of Goldman’s theorem

Example (Hartglass-P., part II)

Let P = T L•(
√

2). In this case, [M1 :M0] = 2 so by Goldman’s
theorem, M1

∼=M0 o Z/(2Z).

However, A1
∼= A0 o Z/(2Z). Otherwise, there would be a

Pimsner-Popa basis {1, u} of A1 over A0. In K-theory, this means
that [1A2 ] = 2[1A0 ] which is impossible since Γ is the A3

Coxeter-Dynkin diagram.



A first spectral triple

Let P• be a factor planar algebra. Form the filtered algebra Gr0.

Define the number operator N on Gr0 by N

(
x
n
)

= n x
n

.

Theorem (Hartglass-P., part III)

(Gr0, L
2(Gr0), N) is a θ-summable spectral triple with compact

resolvent.

Adapting results of Ozawa-Rieffel to amalgamated free products:

Theorem (Hartglass-P., part III)

(Gr0, L
2(Gr0), N) is a compact quantum metric space in the sense

of Rieffel. That is, the induced topology on the state space from

ρ(µ, ν) = sup {|µ(a)− ν(a)||a ∈ Gr0 with ‖[D, a]‖ ≤ 1}

agrees with the weak-∗ topology.



The cup derivative
Pick a special ‘cup’ element ∈ P1 with

〈
,

〉
= = 1.

On Gr0 we have the cup derivative

d(x) = x

· · ·

+ x

· · ·

+ · · ·+ x

· · ·

.

Note that d is closable with adjoint d∗|Gr0 given by

d∗(x) = x

· · ·

+ x

· · ·

+ · · ·+ x

· · ·

.

Remark
We call d the cup derivative because

d

(
· · ·

n
)

= n · · ·
n− 1

.



A second spectral triple

Define the cup Laplacian to be L = dd∗ + d∗d on Gr0.

Theorem (Hartglass-P., part III)

(Gr0, L
2(Gr0), L∪) is a θ-summable spectral triple with compact

resolvent.

We’re currently in the process of studying more properties of our
spectral triples.



Thank you for listening!

Slides available at:
http:

//math.ucla.edu/~dpenneys/PenneysShijiazhuang2015.pdf
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