Classifying small index subfactors

UC Berkeley extended probabilistic operator algebras seminar

David Penneys
UCLA

May 9, 2015

Where do subfactors come from?

Some examples include:

- Groups - from $G \curvearrowright R$, we get $R^{G} \subset R$ and $R \subset R \rtimes_{\alpha} G$.
- finite dimensional unitary Hopf/Kac algebras
- Quantum groups $-\operatorname{Rep}\left(\mathcal{U}_{q}(\mathfrak{g})\right)$
- Conformal field theory
- endomorphisms of Cuntz C*-algebras
- composites of known subfactors

However, there are certain possible infinite families without uniform constructions.

Remark

Just as von Neumann algebras come in pairs $\left(M, M^{\prime}\right)$, subfactors come in pairs $\left(A \subset B, B^{\prime} \subset A^{\prime}\right)$.

Index for subfactors

Theorem (Jones [Jon83])
For a II_{1}-subfactor $A \subset B$,

$$
[B: A] \in\left\{\left.4 \cos ^{2}\left(\frac{\pi}{n}\right) \right\rvert\, n=3,4, \ldots\right\} \cup[4, \infty] .
$$

Moreover, there exists a subfactor at each index.
Definition
The Jones tower of $A=A_{0} \subset A_{1}=B$ (finite index) is given by

$$
A_{0} \subset A_{1} \stackrel{e_{1}}{\subset} A_{2} \stackrel{e_{2}}{\subset} A_{3} \stackrel{e_{3}}{\subset} \cdots
$$

where e_{i} is the projection in $B\left(L^{2}\left(A_{i}\right)\right)$ with range $L^{2}\left(A_{i-1}\right)$.

Principal graphs

Let $\rho={ }_{A} L^{2}(B)_{B}$.

Definition

The principal graph Γ_{+}has one vertex for each isomorphism class of simple ${ }_{A} \alpha_{A}$ and ${ }_{A} \rho_{B}$. There are

$$
\operatorname{dim}\left(\operatorname{Hom}_{A-B}(\alpha \rho, \beta)\right)
$$

edges from α to β.
The dual principal graph Γ_{-}is defined similarly using $B-B$ and $B-A$ bimodules.

- $\Gamma_{ \pm}$is pointed, where the base point is the trivial bimodule ${ }_{A} L^{2}(A)_{A},{ }_{B} L^{2}(B)_{B}$ respectively.
- Duality is given by contragredient, which is always at the same depth, although duals at odd depths of $\Gamma_{ \pm}$are on Γ_{\mp}.

Fact
The dual graph of $A_{0} \subset A_{1}$ is the principal graph of $A_{1} \subset A_{2}$.

Examples of principal graphs

- index <4: $A_{n}, D_{2 n}, E_{6}, E_{8}$. No $D_{\text {odd }}$ or E_{7}.
- Graphs for $R \subset R \rtimes G$ obtained from G and $\operatorname{Rep}(G)$.

- Haagerup $333(\ldots, \ldots<)$
- First graph is principal, second is dual principal.
- Leftmost vertex is the trivial bimodule.
- Red tags for duality (contragredient of bimodules).
- Duality of odd vertices by depth and height

The standard invariant: two towers of centralizer algebras

$$
\begin{array}{cc}
P_{3,+}=A_{0}^{\prime} \cap A_{3} \supset A_{1}^{\prime} \cap A_{3}=P_{2,-} \\
\cup & \cup \\
P_{2,+}= & A_{0}^{\prime} \cap A_{2} \supset A_{1}^{\prime} \cap A_{2}=P_{1,-} \\
\cup & \cup \\
P_{1,+}= & A_{0}^{\prime} \cap A_{1} \supset A_{1}^{\prime} \cap A_{1}=P_{0,-} \\
& \cup \\
P_{0,+}= & A_{0}^{\prime} \cap A_{0}
\end{array}
$$

These centralizer algebras are finite dimensional [Jon83], and they form a planar algebra [Jon99].

Popa's reconstruction theorem

Popa axiomatized the standard invariant of a subfactor, and showed how to reconstruct a subfactor from an abstract standard invariant.
Theorem (Popa [Pop94])
Every (strongly) amenable standard invariant is realized by a unique subfactor of R up to conjugacy.

Finite depth

Definition

If the principal graph is finite, then the subfactor and standard invariant are called finite depth.

Example: $R \subset R \rtimes G$ for finite G
For $G=S_{3}$:

- Principal graph:

- Dual principal graph:

Theorem (Ocneanu Rigidity)
There are only finitely many standard invariants with the same finite principal graphs.

Supertransitivity

Definition

We say a principal graph is n-supertransitive if it begins with an initial segment consisting of the Coxeter-Dynkin diagram A_{n+1}, i.e., an initial segment with n edges.

Examples
$-\longleftarrow \Leftarrow$ is 1-supertransitive
$\bullet \longleftarrow \longleftarrow$ is 2-supertransitive

Small index subfactor classification program

Steps of subfactor classifications:

1. Enumerate graph pairs which survive obstructions.
2. Construct examples when graphs survive.

Fact (Popa [Pop94])
For a subfactor $A \subset B,[B: A] \geq\left\|\Gamma_{+}\right\|^{2}=\left\|\Gamma_{-}\right\|^{2}$.
If we enumerate all graph pairs with norm at most r, we have found all principal graphs with index at most r^{2}.

Known small index subfactors, 1994

- Haagerup's partial classification to $3+\sqrt{3}$
- Popa's A_{∞} at all indices

Haagerup's enumeration

Theorem (Haagerup [Haa94])

Any non A_{∞}-standard invariant in the index range $(4,3+\sqrt{2})$ must have principal graphs a translation of one of
$\rightarrow(\ldots.) \lll$

Translation means raising the supertransitivity of both graphs by the same even amount.

Definition (Morrison-Snyder [MS12])

A vine is a graph pair which represents an infinite family of graph pairs obtained by translation.

Main tools for Haagerup's enumeration

Play associativity off of Ocneanu's triple point obstruction.

- Associativity: graphs must be similar
- Ocneanu's triple point obstruction: graphs must be different!

The consequence is a strong constraint.

Example

The following pairs are not allowed:

They must be paired with each other:

Known small index subfactors, 2007

- Asaeda-Yasuda eliminate Haagerup vine
- Bisch eliminates Hexagon vine
- Bisch-Nicoara-Popa's continuous family with same standard invariant at index 6

Known small index subfactors, 2011

- Extended Haagerup
- Classification to index 5 (Izumi, Jones, Morrison, P, Peters, Snyder, Tener)

Weeds and vines

The classification to index 5 introduced weeds and vines.

Definition

A weed is a graph pair which represents an infinite family of graph pairs obtained by translation and extension.
An extension of a graph pair adds new vertices and edges at strictly greater depths than the maximum depth of any vertex in the original pair.

Using weeds allows us to bundle hard cases together, ensuring the enumerator terminates.

Eliminating vines with number theory

We can uniformly treat vines using number theory, based on the following theorem inspired by Asaeda-Yasuda [AY09]:

Theorem (Calegari-Morrison-Snyder [CMS11])
For a fixed vine \mathcal{V}, there is an effective (computable) constant $\mathcal{R}(\mathcal{V})$ such that any n-translate with $n>\mathcal{R}(\mathcal{V})$ has norm squared which is not a cyclotomic integer.

Theorem [CG94, ENO05]

The index of a finite depth subfactor (which is equal to the norm squared of the principal graph) must be a cyclotomic integer.

Why do we care about index $3+\sqrt{5}$?

- Standard invariants at index 4 are completely classified.
- $\mathbb{Z} / 2 * \mathbb{Z} / 2=D_{\infty}$ is amenable
- Standard invariants at index 6 are wild.
- There is (at least) one standard invariant for every normal subgroup of the modular group $\mathbb{Z} / 2 * \mathbb{Z} / 3=\operatorname{PSL}(2, \mathbb{Z})$
- There are unclassifiably many distinct hyperfinite subfactors with standard invariant $A_{3} * D_{4}$ (Brothier-Vaes [BV13])
- $4=2 \times 2$ and $6=2 \times 3$ are composite indices, as is $3+\sqrt{5}=2 \tau^{2}$ where $\tau=\frac{1+\sqrt{5}}{2}$.

Index $(5,3+\sqrt{5})$

Conjecture (Morrison-Peters (2012) [MP14b])

There are exactly two non- A_{∞} standard invariants in the index range $(5,3+\sqrt{5})$:

name	Principal graphs	Index	Existence, Uniqueness
$S U(2)_{5}$	(ᄂ , - ,	5.04892	[Wen90], [MP14b]
$S U(3) 4$	$(\ldots \measuredangle, \ldots \leqslant)$	5.04892	[Wen88], [MP14b]

Theorem (Morrison-Peters (2012) [MP14b])
There is exactly one 1 -supertransitive subfactor in the index range $(5,3+\sqrt{5})$

Known small index subfactors, 2013

- Brothier-Vaes unclassifiably many subfactors with standard invariant $A_{3} * D_{4}$ at index 6
- Liu classified composite standard invariants from A_{3} and A_{4}
- 1-supertransitive to index $6 \frac{1}{5}$ (Liu-Morrison-P) [LMP15]

1-supertransitive subfactors at index $3+\sqrt{5}$

Theorem (Liu [Liu13], partial proof by [IMP13])
There are exactly seven 1-supertransitive standard invariants with index $3+\sqrt{5}$:
$-(\longleftarrow, \longleftrightarrow)$ self-dual

\rightarrow ($\lll \lll)$ and its dual

- $(-\angle \ll \cdots, \cdots \cdots)$ and its dual $\left(A_{3} * A_{4}\right)$

These are all the standard invariants of composed inclusions of A_{3} and A_{4} subfactors.

Open question

How many hyperfinite subfactors have Bisch-Jones' Fuss-Catalan $A_{3} * A_{4}$ standard invariant at index $3+\sqrt{5}$?

- $A_{3} * A_{4}$ and $A_{2} * T_{2}$ are not amenable [Pop94, HI98].

Standard invariants at index $3+\sqrt{5}$

Conjecture (Morrison-P (2012) [MP14a])
At $3+\sqrt{5}$, we have only the following standard invariants:

name	Principal graphs	\#	Existence/Uniqueness
4442		1	[MP15, MP14a], Izumi
$3^{\mathbb{Z} / 2 \times \mathbb{Z} / 2}$		1	Izumi, [MP15]
$3^{\mathbb{Z} / 4}$		2	Izumi, [PP13]
$2 D 2$		2	Izumi, [MP14a]
$A_{3} \otimes A_{4}$	($\langle, \longleftrightarrow)$	1	\otimes, [Liu13, IMP13]
fish 2	$(\angle\langle\Delta,-\therefore\rangle)$	2	BH, [Liu13, IMP13]
fish 3	($\lll<, \square \leqslant-)$	2	[IMP13, Liu13]
$A_{3} * A_{4}$	$(\llcorner\angle K<\cdots, \square \pm \pm \cdots)$	2	[BJ97],
A_{∞}		1	[Pop93]

- 1-supertransitive case known by [Liu13, IMP13, LMP15]

Methods to push classification results further

Enumeration:

- 1-supertransitive classification to $6 \frac{1}{5}$ [LMP15]
- New high-tech graph pair enumerator, based on Brendan McKay's isomorph free enumeration by canonical construction paths [McK98]. Two independent implementations, same results. (Afzaly and Morrison-P)
- Popa's principal graph stability [Pop95, BP14]

Obstructions:

- Number theory for stable weeds (Calegari-Guo) [CG15]
- Morrison's hexagon obstruction [Mor14]
- Souped up triple point obstruction [Pen15]

Why better combinatorics are needed

Three ways we produce redundant isomorphism classes of graphs:
(1) Equivalent generating steps from same object give isomorphic results.

(2) Two inequivalent generating steps applied to the same object can yield isomorphic objects.

(3) Starting with two non-isomorphic objects and applying a generating step can result in isomorphic objects.

Problems fixed by McKay's isomorph-free enumeration [McK98]!

Popa's principal graph stability

Definition

We say $\Gamma_{ \pm}$is stable at depth n if every vertex at depth n connects to at most one vertex at depth $n+1$, no two vertices at depth n connect to the same vertex at depth $n+1$, and all edges between depths n and $n+1$ are simple.

Theorem (Popa [Pop95], Bigelow-P [BP14])

Suppose $A \subset B$ (finite index) has principal graphs $\left(\Gamma_{+}, \Gamma_{-}\right)$.
Suppose that the truncation $\Gamma_{ \pm}(n+1) \neq A_{n+2}$ and $\delta>2$.
(1) If $\Gamma_{ \pm}$are stable at depth n, then $\Gamma_{ \pm}$are stable at depth k for all $k \geq n$, and $\Gamma_{ \pm}$are finite.
(2) If Γ_{+}is stable at depths n and $n+1$, then $\Gamma_{ \pm}$are stable at depth $n+1$.

Part (2) uses the 1-click rotation in the planar algebra.

Stable weeds

Definition

A stable weed represents an infinite family of graph pairs obtained by translation and finite stable extension.

Theorem (Guo)
Let \mathcal{S}_{M} be the class of finite graphs satisfying:

1. all vertices have valence at most M, and
2. at most M vertices have valence >2.

Then ignoring $A_{n}, D_{n}, A_{n}^{(1)}$, and $D_{n}^{(1)}$, only finitely many graphs in \mathcal{S}_{M} have norm squared which is a cyclotomic integer.

- Result is effective for a given fixed stable weed [CG15].
- Calegari-Guo eliminate our troublesome cylinder \mathcal{C} by hand.

Known small index subfactors, today

Theorem (Afzaly-Morrison-P)
The conjectures of Morrison-Peters (up to index $5 \frac{1}{4}>3+\sqrt{5}$) and Morrison-P hold.

Thank you for listening!

Slides available at

http://www.math.ucla.edu/~dpenneys/PenneysUCB2015.pdf
Articles pushing from index 5 to index $5 \frac{1}{4}$:

- Morrison and Peters - Index in $(5,3+\sqrt{5})$ - Int. J. Math. MR3254427
- Liu - Composites of A_{3} and A_{4} - Adv. Math. arXiv:1308.5691
- Liu - biprojections and virtual normalizers - Trans. AMS arXiv:1308.5656
- Morrison - Hexagon obstruction - Bull. Lond. Math. Soc. MR3210716
- Calegari and Guo - Number theory for stable weeds - arXiv:1502.00035

My recent such articles:

- with Bigelow - Spokes and jellyfish - Math. Ann. MR3157990
- with Morrison - Constructing spokes with 1-strand jellyfish - Trans. AMS MR3314808
- with Peters - Constructing spokes with 2-strand jellyfish - Pacific Math. J. arXiv:1308.5197
- with Izumi and Morrison-1-supertransitive at $3+\sqrt{5}$ - Canad. J. Math. arXiv:1308.5723
- with Liu and Morrison - 1-supertransitive below $6 \frac{1}{5}$ - Comm. Math. Phys. MR3306607
- new obstruction-Adv. Math. MR3311757
- with Izumi, Morrison, Peters, and Snyder - index exactly 5-Bul. Lond. Math. Soc. arXiv:1406.2389
- with Morrison-2-supertransitive at index $3+\sqrt{5}$ - Submitted arXiv:1406.3401
- with Afzaly and Morrison - The classification of subfactors with index less than $5 \frac{1}{4}$ - Coming very soon!

Marta Asaeda and Seidai Yasuda, On Haagerup's list of potential principal graphs of subfactors, Comm. Math. Phys. 286 (2009), no. 3, 1141-1157, arXiv:0711.4144 MR2472028 DOI:10.1007/s00220-008-0588-0.

R- Dietmar Bisch and Vaughan F. R. Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), no. 1, 89-157, MR1437496 DOI:10.1007/s002220050137.

Stephen Bigelow and David Penneys, Principal graph stability and the jellyfish algorithm, Math. Ann. 358 (2014), no. 1-2, 1-24, MR3157990 DOI:10.1007/s00208-013-0941-2 arXiv:1208.1564.

R- Arnaud Brothier and Stefaan Vaes, Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group, 2013, arXiv:1309. 5354.

- Antoine. Coste and Terry Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994), no. 3-4, 316-321, MR1266785 DOI:10.1016/0370-2693(94)91226-2.

家
Frank Calegari and Zoey Guo, Abelian spiders, 2015, arXiv:1502.00035.
國
Frank Calegari, Scott Morrison, and Noah Snyder, Cyclotomic integers, fusion categories, and subfactors, Comm. Math. Phys. 303 (2011), no. 3, 845-896, MR2786219 DOI:10.1007/s00220-010-1136-2 arXiv:1004.0665.

Pavel Etingof，Dmitri Nikshych，and Viktor Ostrik，On fusion categories， Ann．of Math．（2） 162 （2005），no．2，581－642，arXiv：math．QA／0203060 MR2183279 DOI：10．4007／annals．2005．162．581．

图 Uffe Haagerup，Principal graphs of subfactors in the index range $4<[M: N]<3+\sqrt{2}$ ，Subfactors（Kyuzeso，1993），World Sci．Publ．， River Edge，NJ，1994，MR1317352，pp．1－38．

Fumio Hiai and Masaki Izumi，Amenability and strong amenability for fusion algebras with applications to subfactor theory，Internat．J．Math． 9 （1998），no．6，669－722，MR1644299．

直 Masaki Izumi，Scott Morrison，and David Penneys，Quotients of $A_{2} * T_{2}$ ， 2013，accepted in the Canadian Journal of Mathematics March 2015， extended version available as＂Fusion categories between $\mathcal{C} \boxtimes \mathcal{D}$ and $\mathcal{C} * \mathcal{D}^{\prime \prime}$ at arXiv：1308．5723．

围 Vaughan F．R．Jones，Index for subfactors，Invent．Math． 72 （1983）， no．1，1－25，MR696688 DOI：10．1007／BF01389127．

围 Planar algebras，I，1999，arXiv：math．QA／9909027．

Zhengwei Liu，Composed inclusions of A_{3} and A_{4} subfactors，2013， arXiv：1308．5691．

Zhengwei Liu, Scott Morrison, and David Penneys, 1-supertransitive subfactors with index at most $6 \frac{1}{5}$, Comm. Math. Phys. 334 (2015), no. 2, 889-922, MR3306607 arXiv:1310.8566
DOI:10.1007/s00220-014-2160-4.
國 Brendan D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), no. 2, 306-324, MR1606516 DOI:10.1006/jagm.1997.0898.

Scott Morrison, An obstruction to subfactor principal graphs from the graph planar algebra embedding theorem, Bull. Lond. Math. Soc. 46 (2014), no. 3, 600-608, MR3210716 arXiv:1302.5148 DOI:10.1112/blms/bdu009.
(Scott Morrison and David Penneys, 2-supertransitive subfactors with index $3+\sqrt{5}, 2014$, arXiv:1406. 3401.

T- Scott Morrison and Emily Peters, The little desert? Some subfactors with index in the interval $(5,3+\sqrt{5})$, Internat. J. Math. 25 (2014), no. 8, 1450080 (51 pages), MR3254427 DOI:10.1142/S0129167X14500803 arXiv:1205.2742.

Scott Morrison and David Penneys, Constructing spoke subfactors using the jellyfish algorithm, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3257-3298, MR3314808 DOI:10.1090/S0002-9947-2014-06109-6 arXiv:1208.3637.

Scott Morrison and Noah Snyder, Subfactors of index less than 5, part 1: the principal graph odometer, Communications in Mathematical Physics 312 (2012), no. 1, 1-35, arXiv:1007.1730 MR2914056 DOI:10.1007/s00220-012-1426-y.

T- David Penneys, Chirality and principal graph obstructions, Adv. Math. 273 (2015), 32-55, MR3311757 DOI:10.1016/j.aim.2014.11.021 arXiv:1307.5890.

囯 Sorin Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375-405, MR1198815 DOI:10.1007/BF01231293.
 , Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163-255, MR1278111 DOI:10.1007/BF02392646.

An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427-445, MR1334479 DOI:10.1007/BF01241137.

David Penneys and Emily Peters, Calculating two-strand jellyfish relations, 2013, arXiv:1308.5197, to appear Pacific J. Math.

R- Hans Wenzl, Hecke algebras of type A_{n} and subfactors, Invent. Math. 92 (1988), no. 2, 349-383.

Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133 (1990), no. 2, 383-432, MR1090432.

