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Where do subfactors come from?

Some examples include:

I Groups – from Gy R, we get RG ⊂ R and R ⊂ Roα G.

I finite dimensional unitary Hopf/Kac algebras

I Quantum groups – Rep(Uq(g))

I Conformal field theory

I endomorphisms of Cuntz C*-algebras

I composites of known subfactors

However, there are certain possible infinite families without
uniform constructions.

Remark
Just as von Neumann algebras come in pairs (M,M ′), subfactors
come in pairs (A ⊂ B,B′ ⊂ A′).



Index for subfactors

Theorem (Jones [Jon83])

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Moreover, there exists a subfactor at each index.

Definition
The Jones tower of A = A0 ⊂ A1 = B (finite index) is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).



Principal graphs
Let ρ =A L

2(B)B.

Definition
The principal graph Γ+ has one vertex for each isomorphism class
of simple AαA and AρB. There are

dim(HomA−B(αρ, β))

edges from α to β.
The dual principal graph Γ− is defined similarly using B −B and
B −A bimodules.

I Γ± is pointed, where the base point is the trivial bimodule

AL
2(A)A, BL

2(B)B respectively.

I Duality is given by contragredient, which is always at the
same depth, although duals at odd depths of Γ± are on Γ∓.

Fact
The dual graph of A0 ⊂ A1 is the principal graph of A1 ⊂ A2.



Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
I Haagerup 333

(
,

)

I First graph is principal, second is dual principal.

I Leftmost vertex is the trivial bimodule.

I Red tags for duality (contragredient of bimodules).

I Duality of odd vertices by depth and height



The standard invariant: two towers of centralizer algebras

...
...

...
...

∪ ∪ ∪ ∪

P3,+ = A′0 ∩A3 ⊃ A′1 ∩A3 = P2,−

∪ ∪ ∪

P2,+ = A′0 ∩A2 ⊃ A′1 ∩A2 = P1,−

∪ ∪

P1,+ = A′0 ∩A1 ⊃ A′1 ∩A1 = P0,−

∪

P0,+ = A′0 ∩A0

These centralizer algebras are finite dimensional [Jon83], and they
form a planar algebra [Jon99].



Popa’s reconstruction theorem

Popa axiomatized the standard invariant of a subfactor, and
showed how to reconstruct a subfactor from an abstract standard
invariant.

Theorem (Popa [Pop94])

Every (strongly) amenable standard invariant is realized by a
unique subfactor of R up to conjugacy.



Finite depth

Definition
If the principal graph is finite, then the subfactor and standard
invariant are called finite depth.

Example: R ⊂ RoG for finite G

For G = S3:

I Principal graph:

I Dual principal graph:
2

Theorem (Ocneanu Rigidity)

There are only finitely many standard invariants with the same
finite principal graphs.



Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Small index subfactor classification program

Steps of subfactor classifications:

1. Enumerate graph pairs which survive obstructions.

2. Construct examples when graphs survive.

Fact (Popa [Pop94])

For a subfactor A ⊂ B, [B : A] ≥ ‖Γ+‖2 = ‖Γ−‖2.

If we enumerate all graph pairs with norm at most r, we have
found all principal graphs with index at most r2.



Known small index subfactors, 1994
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I Haagerup’s partial classification to 3 +
√

3

I Popa’s A∞ at all indices



Haagerup’s enumeration

Theorem (Haagerup [Haa94])

Any non A∞-standard invariant in the index range (4, 3 +
√

2)
must have principal graphs a translation of one of

I
(

,
)

I
(

,
)

I
(

,
)

Translation means raising the supertransitivity of both graphs by
the same even amount.

Definition (Morrison-Snyder [MS12])

A vine is a graph pair which represents an infinite family of graph
pairs obtained by translation.



Main tools for Haagerup’s enumeration

Play associativity off of Ocneanu’s triple point obstruction.

I Associativity: graphs must be similar

I Ocneanu’s triple point obstruction: graphs must be different!

The consequence is a strong constraint.

Example

The following pairs are not allowed:(
,

)
and

(
,

)
They must be paired with each other:(

,
)



Known small index subfactors, 2007
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I Asaeda-Yasuda eliminate
Haagerup vine

I Bisch eliminates Hexagon
vine

I Bisch-Nicoara-Popa’s
continuous family with
same standard invariant
at index 6



Known small index subfactors, 2011
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I Extended Haagerup

I Classification to index 5 (Izumi, Jones, Morrison, P, Peters,
Snyder, Tener)



Weeds and vines

The classification to index 5 introduced weeds and vines.

Definition
A weed is a graph pair which represents an infinite family of graph
pairs obtained by translation and extension.
An extension of a graph pair adds new vertices and edges at
strictly greater depths than the maximum depth of any vertex in
the original pair.

F =
(

,
)

Using weeds allows us to bundle hard cases together, ensuring the
enumerator terminates.



Eliminating vines with number theory

We can uniformly treat vines using number theory, based on the
following theorem inspired by Asaeda-Yasuda [AY09]:

Theorem (Calegari-Morrison-Snyder [CMS11])

For a fixed vine V, there is an effective (computable) constant
R(V) such that any n-translate with n > R(V) has norm squared
which is not a cyclotomic integer.

Theorem [CG94, ENO05]

The index of a finite depth subfactor (which is equal to the norm
squared of the principal graph) must be a cyclotomic integer.



Why do we care about index 3 +
√
5?

I Standard invariants at index 4 are completely classified.
I Z/2 ∗ Z/2 = D∞ is amenable

I Standard invariants at index 6 are wild.
I There is (at least) one standard invariant for every normal

subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
I There are unclassifiably many distinct hyperfinite subfactors

with standard invariant A3 ∗D4 (Brothier-Vaes [BV13])

I 4 = 2× 2 and 6 = 2× 3 are composite indices, as is

3 +
√

5 = 2τ2 where τ = 1+
√
5

2 .



Index (5, 3 +
√
5)

Conjecture (Morrison-Peters (2012) [MP14b])

There are exactly two non-A∞ standard invariants in the index
range (5, 3 +

√
5):

name Principal graphs Index Existence, Uniqueness

SU(2)5
(

,
)

5.04892 [Wen90], [MP14b]

SU(3)4
(

,
)

5.04892 [Wen88], [MP14b]

Theorem (Morrison-Peters (2012) [MP14b])

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)



Known small index subfactors, 2013
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I Brothier-Vaes unclassifiably many subfactors with standard
invariant A3 ∗D4 at index 6

I Liu classified composite standard invariants from A3 and A4

I 1-supertransitive to index 61
5 (Liu-Morrison-P) [LMP15]



1-supertransitive subfactors at index 3 +
√
5

Theorem (Liu [Liu13], partial proof by [IMP13])

There are exactly seven 1-supertransitive standard invariants with
index 3 +

√
5:

I
(

,
)

self-dual

I
(

,
)

and its dual

I
(

,
)

and its dual

I
(

· · · , · · ·
)

and its dual (A3 ∗A4)

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.

Open question

How many hyperfinite subfactors have Bisch-Jones’ Fuss-Catalan
A3 ∗A4 standard invariant at index 3 +

√
5?

I A3 ∗A4 and A2 ∗ T2 are not amenable [Pop94, HI98].



Standard invariants at index 3 +
√
5

Conjecture (Morrison-P (2012) [MP14a])

At 3 +
√

5, we have only the following standard invariants:

name Principal graphs # Existence/Uniqueness

4442
(

,
)

1 [MP15, MP14a], Izumi

3Z/2×Z/2
(

,
)

1 Izumi, [MP15]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MP14a]

A3 ⊗A4

(
,

)
1 ⊗, [Liu13, IMP13]

fish 2
(

,
)

2 BH, [Liu13, IMP13]

fish 3
(

,
)

2 [IMP13, Liu13]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97],

A∞
(

· · · , · · ·
)

1 [Pop93]

I 1-supertransitive case known by [Liu13, IMP13, LMP15]



Methods to push classification results further

Enumeration:

I 1-supertransitive classification to 61
5 [LMP15]

I New high-tech graph pair enumerator, based on Brendan
McKay’s isomorph free enumeration by canonical construction
paths [McK98]. Two independent implementations, same
results. (Afzaly and Morrison-P)

I Popa’s principal graph stability [Pop95, BP14]

Obstructions:

I Number theory for stable weeds (Calegari-Guo) [CG15]

I Morrison’s hexagon obstruction [Mor14]

I Souped up triple point obstruction [Pen15]



Why better combinatorics are needed

Three ways we produce redundant isomorphism classes of graphs:

(1) Equivalent generating steps from same object give isomorphic
results.

and

(2) Two inequivalent generating steps applied to the same object
can yield isomorphic objects.

−→

−→

(3) Starting with two non-isomorphic objects and applying a
generating step can result in isomorphic objects.

−→ and −→

Problems fixed by McKay’s isomorph-free enumeration [McK98]!



Popa’s principal graph stability

Definition
We say Γ± is stable at depth n if every vertex at depth n connects
to at most one vertex at depth n+ 1, no two vertices at depth n
connect to the same vertex at depth n+ 1, and all edges between
depths n and n+ 1 are simple.

Theorem (Popa [Pop95], Bigelow-P [BP14])

Suppose A ⊂ B (finite index) has principal graphs (Γ+,Γ−).
Suppose that the truncation Γ±(n+ 1) 6= An+2 and δ > 2.

(1) If Γ± are stable at depth n, then Γ± are stable at depth k for
all k ≥ n, and Γ± are finite.

(2) If Γ+ is stable at depths n and n+ 1, then Γ± are stable at
depth n+ 1.

Part (2) uses the 1-click rotation in the planar algebra.



Stable weeds

Definition
A stable weed represents an infinite family of graph pairs obtained
by translation and finite stable extension.

C =
(

,
)

Theorem (Guo)

Let SM be the class of finite graphs satisfying:

1. all vertices have valence at most M , and

2. at most M vertices have valence > 2.

Then ignoring An, Dn, A
(1)
n , and D

(1)
n , only finitely many graphs

in SM have norm squared which is a cyclotomic integer.

I Result is effective for a given fixed stable weed [CG15].

I Calegari-Guo eliminate our troublesome cylinder C by hand.



Known small index subfactors, today
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Theorem (Afzaly-Morrison-P)

The conjectures of Morrison-Peters (up to index 51
4 > 3 +

√
5) and

Morrison-P hold.



Thank you for listening!
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http://www.math.ucla.edu/~dpenneys/PenneysUCB2015.pdf
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