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What is a subfactor?

Definition
A factor is a von Neumann algebra with trivial center.
A subfactor is an inclusion A C B of factors.

» Our factors are type 111, which means they are infinite
dimensional with a trace.

Remark
Von Neumann algebras come in pairs (M, M’).
Subfactors do too: (A C B,B' C A).



Where do subfactors come from?

Some examples include:
> Groups — from G ~ R, we get R c Rand RC R x,G.
» finite dimensional unitary Hopf/Kac algebras

» Quantum groups — Rep(U,(g))

v

Conformal field theory

v

endomorphisms of Cuntz C*-algebras
» tinkering with known subfactors (orbifolds, composites, ...)

However, there are certain possible infinite families without
uniform constructions.



Finite index and the standard representation

Definition
A C B has finite index iff B is a finitely generated projective
A-module.

The bimodule 4Bpg is the standard representation of A C B.
A finite index subfactor A C B comes with canonical maps:

ABp® pBy ABp
Inclusion:
AAA
=id
BB
Evaluation: :
BBA® ABpg ABB

Since A, B are analytical objects, these maps also have adjoints.



The Temperley-Lieb algebras

Definition
The Temperley-Lieb algebra T'L,,(6) is the complex *-algebra
spanned by diagrams with n upper and lower boundary points,

connected by non-crossing strings.
U U U U
TL3(5) = Spalg { ) ) 3 / ) \ } .
N N N N

» Multiplication is stacking of diagrams, but we trade closed
loops for multiplicative factors of 9:
U

A

» The involution * is given by vertical reflection:




Jones’ index rigidity theorem

» The trace is given by capping off on the right

» There is a sesquilinear form given by (x,y), = Tr,(y*x).

Theorem (Jones)

A finite index subfactor gives a positive-definite x-representation of
the Temperley-Lieb algebra T'L,,(§) for 62 = [B : A] and all n > 0.
This is possible iff § € {2cos(m/k)|k > 3} U[2,00).
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Temperley-Lieb and braid groups, part 1

7 n
U
TLy,(9) has generators E; = |- o [for1<i<n-—1, and
N
relations
» B2 =6E; = 6E},
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- > 1
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Temperley-Lieb and braid groups, part 2

1 n
The braid group B, has generators o; = . \/\ || for
1 <i<n-—1, and relations
e e \ e e \ e e
> 0,05 =FF-ttrr-1 Moo=t T-—- 1--{=ojo; for
li —j] > 1,
\
_ TV T
> 0i0;+10; = =l ¥ | T Oi410400+41
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Knots and braids

Given a link, we can always write it as the closure of a braid.

&
Tr 5 :2 , a trefoil knot.

\
We have an algebra homomorphism @ : C[B,,] — T'L, () by

() ] o

where § = ¢+ ¢~ L.



The Jones polynomial /Kauffman bracket

To get the framed Jones polynomial or Kauffman bracket of a link
¢, first write £ = Tr(b) for a braid b. Then

(0 = % Tr o (b)

is independent of the choice of braid representing the knot.

Example

<2 >: 1 . (iq1/2)3 + 3(iq 1/2 1/2@
q+q-
+3(2~q1/2)(_z~q—1/2)2 —1/2 3[:]
| "0

=72 _ 473/2 _ q5/2)

= i(q



Rep(A C B)

Definition

The representation 2-category of A C B is given by

(0) 0-morphisms: {A, B}

(1) 1-morphisms: bimodule summands of ®];1 B for some k > 0

(2) 2-morphisms: bimodule intertwiners

» This 2-category is semi-simple, unitary, rigid (duals are well
behaved), pivotal, sometimes spherical (iff A C B extremal).

» The A — A bimodules form a rigid C*-tensor category called
the ‘principal even part’.

» The B — B bimodules form the ‘dual even part’.

» The principal even and dual even parts are Morita equivalent
via the A — B bimodules.



Subfactor/representation 2-category correspondence

Theorem (Popa [Pop94])

There is a Tannaka-Krein like duality between (strongly) amenable
subfactors and their representation 2-categories.

Theorem (many authors)

Subfactors correspond to Frobenius algebra objects in rigid
C*-tensor categories.



Fusion categories

If there are only finitely many isomorphism classes of simple A — A
bimodules, the principal even part is a unitary fusion category.

» Subfactors are a vital source of interesting fusion categories.

Definition
A fusion category is a semisimple, rigid tensor category with
finitely many isomorphism classes of simple objects.

Fact
An X € C with quantum dimension § gives a representation

TLe(§) > End( X@ X ®--- ).

n alternating copies

If C is unitary, the representation is positive definite.



Examples

Let G be a finite group.

Example
Rep(G), category of finite dimensional C-representations.

Example
Vec(G,w), G-graded vector spaces, w € H3(G,C*).
» Simple objects V; = C for each g € G.
>» V@ V=V
> The 3-cocycle gives the associator natural isomorphism:

Wy, h,k

agnk s (Vg @ Vi) © Vi V, ® (Vi @ V).

The pentagon axiom is exactly the 3-cocycle condition.



Rep(R C R x G)

Let G be a finite group. Build the subfactor R C R x G.

Example

The representation 2-category Rep(R C R x G) has:
» principal even part Vec(G, 1) (R — R bimodules)
» dual even part Rep(G) (R x G — R x G bimodules)
» only one simple R — R x G bimodule: R x G.

We see Vec(G, 1) and Rep(G) are Morita equivalent.

Fact
The subfactor R C R x G corresponds to the algebra object
C[G] € Vec(G).



The Haagerup: an ‘exotic’ example

The Haagerup fusion category H has 6 simple objects
1,9,9% X, gX, g>X satisfying the following fusion rules:

> (9) =7Z/3,

» Xg=g¢'X, and

» X210 X @ gX @ g>X (the quadratic relation).
(Vec(Z/3) C H has trivial associator.)

The algebra object 1 @ X gives an ‘exotic’ subfactor with index

5+2\/ﬁ ~ 4.30278.

‘H has only been constructed by brute force.

> It appears H belongs to an infinite family, but only examples
up to Z/19 have been constructed [EG11].



Braided fusion categories

Definition
A fusion category is braided if it has natural isomorphisms

A =exy  X@Y 5Y@X
XY

satisfying the braid relations and a compatibility requirement.

Example

Vec is a symmetric braided fusion category, i.e., ¢4 © Cqp = idagp
for all a,b € Vec.

Facts

If C is braided, an X € C gives a representation B,, — End(X®").
If C is unitary, the representation is also.

If C is symmetric, the representation factors through S,.



Modular tensor categories

Definition
A modular tensor category is a braided spherical fusion category
(and more axioms...) such that the S matrix (Sg}) is invertible.

Sab_Tr(Cbaocab ba Q@
Example

If C is a spherical fusion category over C, then the quantum double
Z(C) is a modular tensor category. If C is unitary, then so is Z(C).

Theorem (Bruillard-Ng-Rowell-Wang [BNRW13])

For a fixed n, there are only finitely many modular tensor
categories with rank n.

» Rank finiteness not yet known for fusion categories.



Classification of fusion categories

Question (Hard!)
Can we classify all fusion categories with n objects for n small?

Examples

» Rank 2 was classified by Ostrik [Ost03]:
» Vec(Z/2,w) for w € H3(Z/2,C*)
» Fib=(1,7|7 ® 7 2 1@ 7) and Galois conjugate
» Rank 3 (pivotal) was classified by Ostrik [Ost13]:
» Vec(Z/3,w) for w € H*(Z/3,C*)
» Rep(S3) and twisted versions
» lIsing category (even part of sly at 6th root of unity) and
conjugates
> even part of sls at 7th root of unity and conjugates
» even part of Eg subfactor and conjugate
» Rank 4 (pseudo unitary) with a dual pair of objects
(1, X,Y,Y) was classified by Larson [Larl4].
» New examples of Liu-Morrison-P [LMP14]



Topological quantum field theories (TQFTs)

Definition (Atiyah)

An n-dimensional TQFT is a symmetric monoidal functor

((nT_Z 1) Bord, H) — (Vec, ®)

Each n — 1 manifold is assigned a vector space, and each bordism
is assigned a linear operator.

Examples for n = 3

» Turaev-Viro associated to a spherical fusion category

> Reshetikhin-Turaev associated to a modular tensor category

In fact, TV (C) = RT(Z(C)).



Extended topological field theories

Definition
An (n,n—1,...,d)-TFT is a symmetric monoidal functor

. | Bord — (n —d) — Vec
d

for an appropriate choice of n — d category (n — d) — Vec.

Examples

» Turaev-Viro is a (3,2,1,0)-TFT (fully extended)
> Reshetikhin-Turaev is a (3,2,1)-TFT

The double construction relates these two.



Extended topological field theories
Definition
An (n,n—1,...,d)-TFT is a symmetric monoidal functor

.| Bord — (n — d) — Vec
d

for an appropriate choice of n — d category (n — d) — Vec.

Examples

> (é)—TFTs <— a dualizable object in a symmetric ®-category
3
> f -TFTs <— fusion categories in 3-category of ®-categories

0
(recent work of Douglas-Schommer-Pries-Snyder [DSPS13))



Segal conformal field theory (CFT)

Definition (Segal)

A 2d-conformal field theory is a symmetric monoidal functor
(}) ConfBord — Hilb

This consists of:

> a Hilbert space Hg assigned to each compact, connected
oriented 1-manifold S

» aunitary uy : Hg, — Hg, to every orientation preserving
diffeomorphism f :.S; — So
(an anti-unitary for an orientation reversing diffeomorphism)

» amap gs : Q@ Hs, -+ @ Hs_, to each cobordism ¥ with a
complex structure, where orientation is reversed for each Sg;.

Conformal welding allows for gluing along diffeomorphisms.



Conformal nets (algebraic quantum field theory)

Definition
A conformal net is a functor from intervals I C S to von
Neumann algebras in B(H),

— A(I) C B(H),

satisfying axioms, like
» [ CJ= A(l) C A(J)
» locality: INJ =0=[A(1),A(J)] = 0.
The net is irreducible if each A(I) is a factor.
» Disjoint intervals give subfactors: ITNJ =0 = A(I) C A(J)".



Modular tensor categories from conformal nets

Definition
A representation of the net A is a family of representations
77+ A(I) — B(K) for a fixed Hilbert space K, such that if I C J,

then WJ’A(]) =Ty.

Theorem (Kawahigashi-Longo-Miiger [KLMO1])

Consider the partition of S! into 4 disjoint intervals:

I I

I3 Iy

If A(I; UI3) C A(I;UIy) has finite index, then Rep(A) is a
unitary modular tensor category.



Modular categories < CFT

Conjecture (Kawahigashi)

The quantum double of every unitary fusion category arises as the
representation category of some conformal net.

Conjecture (Evans-Gannon [EG11])

There should be a CFT realizing the double of the Haagerup fusion
category. In particular, there should be a conformal subalgebra of
the central charge ¢ = 8 vertex operator algebra corresponding to
the root lattice Fg @ As.

» The modular data of the double of Haagerup is ‘graft’ of the
double of S5 and s50(13),.

» They compute possible character vectors for the VOA, and
show they have non-negative integral Fourier coefficients.



Work in progress: conformal planar algebras

» Subfactors and CFT are related via conformal nets.
» Tannaka-Krein duality A C B <> Rep(A C B) (Popa)
» Rep(A C B) axiomatized as a planar algebra (Jones)

,‘@

> In joint work with Henriques and Tener, we expect a
connection between genus zero Segal CFT (many-to-one
genus zero Riemann surfaces) with topological defect strings

and planar algebras.

]




Classifying small index subfactors

» To each finite group G, there is a dual pair of subfactors
RC RxG and R C R.

Thus, one cannot hope to classify all subfactors. We need to

restrict our search space. One way to do this is to look at small
index subfactors.

Recall:

The representation 2-category of A C B is given by

(0) 0-morphisms: {A, B}

(1) 1-morphisms: bimodule summands of ®’Z B for some k > 0
(2) 2-morphisms: bimodule intertwiners



Principal graphs

Definition
The principal (induction) graph I';. has one vertex for each
isomorphism class of simple 4 P4 and 4Q . There are

dim(Homs (P ®4 B, Q))
edges from P to Q).

The dual principal (restriction) graph I'_ is defined similarly using
B — B and B — A bimodules.

» [y is pointed, where the base point is 4 A4, g Bp respectively.

» Duality is given by contragredient, which is always at the
same depth, since B is a *-algebra. However, duals at odd
depths of 'y are on I'+-.



Examples of principal graphs
> index < 4: A, Doy, Fg, Es. No Dygq or E7.

> indeX = 4: Aé]’li’b)fl7 D’Sj’?’ E((il)7 E§1)7 Eé1)7 A007 A(O](-))a DOO

Graphs for R C R % G obtained from G and Rep(G).

(h)  oes

Principal graph for R ¢ R is the induction-restriction
graph for H C G-

‘—‘—<::§é/—‘ S5 C Se

v

v

v

First graph is principal, second is dual principal.

v

Leftmost vertex corresponds to base points 4 A4, pBpB.

v

Red tags for duality of even vertices (4Pa +— 4Pa).
Duality of odd vertices by depth and height

v



Supertransitivity

Definition
A principal graph is n-supertransitive if has an initial segment with

n edges before branching.

Examples

> % is 1-supertransitive
> ‘—'—@ is 2-supertransitive

4

> + s P _ 1+1
< is 3-supertransitive




Small index subfactor classification program

Steps of subfactor classifications:
1. Enumerate graph pairs which survive obstructions.

2. Construct examples when graphs survive.
Fact (Popa [Pop94])
For a subfactor A C B, [B: A] > |[T4||? = |T_|]%

If we enumerate all graph pairs with norm at most r, we have
found all principal graphs of subfactors with index at most r2.



Known small index ﬁupfactors, 2009

E

Hyperfinite A

A at every index
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Quantum groups and their quantum subgroups

Composites

Haagerup's exotic subfactor and classification to 3 + /3

lzumi's Cuntz algebra examples (2221, 3")



Known small index subfactors, today

A at every index
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» Classification to 5 [MS12, MPPS12, 1JMS12, PT12, IMP'14]
» Examples at 3 + /5 [MP13, PP13, IMP13, MP14]
> l-supertransitive to 6+ and examples at 3 + 2v/2 [LMP14]



Known small index subfactors, today
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Theorem (Afzaly-Morrison-P)

We know all subfactor standard invariants up to index 5% (with at
most finitely many exceptions).


David Penneys
Text


Thank you for listening!

Slides available at
http:
//www.math.ucla.edu/~dpenneys/PenneysUCDavis2014.pdf
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