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Where do subfactors come from?

Some examples include:

I Groups – from Gy R, we get RG ⊂ R and R ⊂ Roα G.

I finite dimensional unitary Hopf/Kac algebras

I Quantum groups – Rep(Uq(g))

I Conformal field theory

I endomorphisms of Cuntz C*-algebras

I composites of known subfactors

However, there are certain possible infinite families without
uniform constructions.

Remark
Just as von Neumann algebras come in pairs (M,M ′), subfactors
come in pairs (A ⊂ B,B′ ⊂ A′).



Index for subfactors

Theorem (Jones [Jon83])

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].

Moreover, there exists a subfactor at each index.

Definition
The Jones tower of A = A0 ⊂ A1 = B (finite index) is given by

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ · · ·

where ei is the projection in B(L2(Ai)) with range L2(Ai−1).



The standard invariant: two towers of centralizer algebras

...
...

...
...

∪ ∪ ∪ ∪

P3,+ = A′0 ∩A3 ⊃ A′1 ∩A3 = P2,−

∪ ∪ ∪

P2,+ = A′0 ∩A2 ⊃ A′1 ∩A2 = P1,−

∪ ∪

P1,+ = A′0 ∩A1 ⊃ A′1 ∩A1 = P0,−

∪

P0,+ = A′0 ∩A0

These centralizer algebras are finite dimensional [Jon83], and they
form a planar algebra [Jon99].



Popa’s reconstruction theorem

Popa axiomatized the standard invariant of a subfactor, and
showed how to reconstruct a subfactor from an abstract standard
invariant.

Theorem (Popa [Pop94])

Every (strongly) amenable standard invariant is realized by a
unique subfactor of R up to conjugacy.



Principal graphs

The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

is described by its Bratteli diagram (and the trace).



Principal graphs

The complex ∗-algebras Pn,± are all finite dimensional. The tower

P0,+ ⊂ P1,+ ⊂ P2,+ ⊂ · · ·

is described by its Bratteli diagram (and the trace).

I The non-reflected part is the principal graph Γ+.

I Get the dual principal graph Γ− by looking at the Bratteli
diagram for the tower (Pn,−).



Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I index = 4: A
(1)
2n−1, D

(1)
n+2, E

(1)
6 , E

(1)
7 , E

(1)
8 , A∞, A

(1)
∞ , D∞

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
I Haagerup 333

(
,

)
I extended Haagerup 733

(
,

)
I First graph is principal, second is dual principal.

I Leftmost vertex corresponds to P0,± ∼= C (factoriality).

I Red tags for duality of even vertices (x 7→ Jx∗J).

I Duality of odd vertices by depth and height



Rep(A ⊂ B)

Definition
The representation 2-category of A ⊂ B is given by

I 0-morphisms: {A,B}
I 1-morphisms: bimodule summands of L2(Ak) for some k ≥ 0

I 2-morphisms: intertwiners (elements of A′0 ∩Ak and
A′1 ∩Ak+1 for k ≥ 0)

This 2-category is semi-simple, unitary, rigid (duals are well
behaved), pivotal, sometimes spherical (iff A ⊂ B extremal).

Theorem (Popa [Pop94])

There is a Tannaka-Krein like duality between (strongly) amenable
subfactors and their representation 2-categories.



Principal graphs revisited
Let X =A L

2(B)B.

Definition
The principal graph Γ+ has one vertex for each isomorphism class
of simple APA and AQB. There are

dim(HomA−B(P ⊗X,Q))

edges from P to Q.
The dual principal graph Γ− is defined similarly using B −B and
B −A bimodules.

I Γ± is pointed, where the base point is AL
2(A)A, BL

2(B)B
respectively.

I Duality is given by contragredient, which is always at the
same depth, although duals at odd depths of Γ± are on Γ∓.

Fact
The dual graph of A0 ⊂ A1 is the principal graph of A1 ⊂ A2.



Finite depth

Definition
If the principal graph is finite, then the subfactor and standard
invariant are called finite depth.

Example: R ⊂ RoG for finite G

For G = S3:

I Principal graph:

I Dual principal graph:
2



Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Small index subfactor classification program

Steps of subfactor classifications:

1. Enumerate graph pairs which survive obstructions.

2. Construct examples when graphs survive.

Fact (Popa [Pop94])

For a subfactor A ⊂ B, [B : A] ≥ ‖Γ+‖2 = ‖Γ−‖2.

If we enumerate all graph pairs with norm at most r, we have
found all principal graphs with index at most r2.



Known small index subfactors, 1991

index
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p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6

×∞

D
(1)
n+2

one ∞-depth

E
(1)
6

E
(1)
7

E
(1)
8

×2

×2

≥ 1

3 +
√
3

≥ 11

×1

×3

A∞

×2

E6

×2

E8

A
se
ri
es

D
se
ri
es

×1

I ADE for index ≤ 4 (GHJ)

I No Dodd, E7 (Ocneanu)

I Subgroup subfactors

I Composition (e.g., ⊗)

I Quantum groups (Wenzl)

I GHJ subfactors



Known small index subfactors, 1994
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A
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1
2

(5 +
√

13) 1
2

(5 +
√

17)

3 +
√

3

?

?

×1

I Haagerup’s partial classification to 3 +
√

3

I Popa’s A∞ at all indices

I Bisch-Haagerup example at 3 +
√

5



Haagerup’s enumeration

Theorem (Haagerup [Haa94])

Any non A∞-standard invariant in the index range (4, 3 +
√

2)
must have principal graphs a translation of one of

I
(

,
)

I
(

,
)

I
(

,
)

Translation means raising the supertransitivity of both graphs by
the same even amount.

Definition (Morrison-Snyder [MS12])

A vine is a graph pair which represents an infinite family of graph
pairs obtained by translation.



Main tools for Haagerup’s enumeration

Play associativity off of Ocneanu’s triple point obstruction.

I Associativity: graphs must be similar

I Ocneanu’s triple point obstruction: graphs must be different!

The consequence is a strong constraint.

Example

and cannot be paired with

themselves.
They must be paired with each other:(

,
)



Known small index subfactors, 2001
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√
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√
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1
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√
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?

×1

I Bisch-Haagerup

I Asaeda-Haagerup

I Izumi’s Cuntz algebra
examples

I Xu’s examples from
conformal inclusions

I Bisch-Jones Fuss-Catalan

I Bisch kills Hexagon vine



Known small index subfactors, 2007

index

su
p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6 61

5

×∞

D
(1)
n+2

one ∞-depth

E
(1)
6

E
(1)
7

E
(1)
8

×2

×2

≥ 3

at least one
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13) 1
2
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3

1
2

(5 +
√

21)

?

×1

I Asaeda-Yasuda eliminate
Haagerup vine

I Haagerup + 1
(Grossman-Izumi)

I Bisch-Nicoara-Popa’s
continuous family with
same standard invariant
at index 6



Known small index subfactors, 2011
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√
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√
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3

1
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×1

I Extended Haagerup

I Classification to index 5
(Izumi, Jones, Morrison,
P, Peters, Snyder, Tener)

I Asaeda-Haagerup + 1
(Asaeda-Grossman)

I More Cuntz algebra
examples from Izumi



Weeds and vines

The classification to index 5 introduced the terminology of weeds
and vines.

Definition
A weed is a graph pair which represents an infinite family of graph
pairs obtained by translation and extension.
An extension of a graph pair adds new vertices and edges at
strictly greater depths than the maximum depth of any vertex in
the original pair.

F =
(

,
)

Using weeds allows us to bundle hard cases together, ensuring the
enumerator terminates.



Eliminating vines with number theory

We can uniformly treat vines using number theory, based on the
following theorem inspired by Asaeda-Yasuda [AY09]:

Theorem (Calegari-Morrison-Snyder [CMS11])

For a fixed vine V, there is an effective (computable) constant
R(V) such that any n-translate with n > R(V) has norm squared
which is not a cyclotomic integer.

Theorem [CG94, ENO05]

The index of a finite depth subfactor (which is equal to the norm
squared of the principal graph) must be a cyclotomic integer.



Known small index subfactors, 2012
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I Morrison-Peters 1-supertransitive classification to 3 +
√

5

I 4442 (Morrison-P)

I Evans-Gannon near groups



Why do we care about index 3 +
√
5?

I Standard invariants at index 4 are completely classified.
I Z/2 ∗ Z/2 = D∞ is amenable

I Standard invariants at index 6 are wild.
I There is (at least) one standard invariant for every normal

subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
I There are unclassifiably many distinct hyperfinite subfactors

with standard invariant A3 ∗D4 (Brothier-Vaes [BV13])

I 4 = 2× 2 and 6 = 2× 3 are composite indices, as is

3 +
√

5 = 2τ2 where τ = 1+
√
5

2 .



Index (5, 3 +
√
5)

Conjecture (Morrison-Peters [MP12b])

There are exactly two non-A∞ standard invariants in the index
range (5, 3 +

√
5):

name Principal graphs Index Existence, Uniqueness

SU(2)5
(

,
)

5.04892 [Wen90], [MP12b]

SU(3)4
(

,
)

5.04892 [Wen88], [MP12b]

Theorem [Morrison-Peters [MP12b]]

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)



Known small index subfactors, 2013
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√
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√

17)
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√
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1
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√

21)

×3
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I Brothier-Vaes unclassifiably many subfactors with standard
invariant A3 ∗D4 at index 6

I Liu classified composite standard invariants from A3 and A4

I 1-supertransitive classification to index 61
5 (Liu-Morrison-P)



1-supertransitive subfactors at index 3 +
√
5

Theorem (Liu [Liu13a], partial proof by [IMP13])

There are exactly seven 1-supertransitive standard invariants with
index 3 +

√
5:

I
(

,
)

self-dual

I
(

,
)

and its dual

I
(

,
)

and its dual

I
(

· · · , · · ·
)

and its dual (A3 ∗A4)

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.

Open question

How many hyperfinite subfactors have Bisch-Jones’ Fuss-Catalan
A3 ∗A4 standard invariant at index 3 +

√
5?

I A3 ∗A4 and A2 ∗ T2 are not amenable [Pop94, HI98].



1-supertransitive with index at most 61
5

Theorem (Liu-Morrison-P [LMP13])

An exactly 1-supertransitive standard invariant with index at most
61
5 either comes from a composed inclusion (and has index 3 +

√
5

or 6), or is one of 3 self-dual standard invariants at index 3 + 2
√

2:

I
(

,
)

I
(

,
)

two complex conjugate

This result uses Liu’s virtual normalizers for 1-supertransitive
subfactors [Liu13b] (generalization of [PP86]), which force
existence of intermediate subfactors.

I Can push classification results above index 6!

I Could hope that the only wildness at index 6 is “group-like”



Standard invariants at index 3 +
√
5

Conjecture (Morrison-P [MP14])

At 3 +
√

5, we have only the following standard invariants:

name Principal graphs # Existence/Uniqueness

4442
(

,
)

1 [MP12a, MP14], Izumi

3Z/2×Z/2
(

,
)

1 Izumi, [MP12a]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MP14]

A3 ⊗A4

(
,

)
1 ⊗, [Liu13a, IMP13]

fish 2
(

,
)

2 BH, [Liu13a, IMP13]

fish 3
(

,
)

2 [IMP13, Liu13a]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97],

A∞
(

· · · , · · ·
)

1 [Pop93]

I 1-supertransitive case known by [Liu13a, IMP13, LMP13]



Methods to push classification results further

I 1-supertransitive classification to 61
5 [LMP13]

I Popa’s principal graph stability [Pop95, BP14] −→ cylinders

I New number theory approach to cylinders (Calegari-Guo)

I New high-tech graph pair enumerator, based on Brendan
McKay’s isomorph free enumeration by canonical construction
paths. Two independent implementations, same results.
(Afzaly-Morrison-P)

I Tail enumerator for periodic graphs (Afzaly-Morrison-P)

I The non-initial triple point obstruction [Haa94]

I New general initial triple point obstruction [Pen13]



Popa’s principal graph stability

Definition
We say Γ± is stable at depth n if every vertex at depth n connects
to at most one vertex at depth n+ 1, no two vertices at depth n
connect to the same vertex at depth n+ 1, and all edges between
depths n and n+ 1 are simple.

Theorem (Popa [Pop95], Bigelow-P [BP14])

Suppose A ⊂ B (finite index) has principal graphs (Γ+,Γ−).
Suppose that the truncation Γ±(n+ 1) 6= An+2 and δ > 2.

(1) If Γ± are stable at depth n, then Γ± are stable at depth k for
all k ≥ n, and Γ± are finite.

(2) If Γ+ is stable at depths n and n+ 1, then Γ± are stable at
depth n+ 1.

Part (2) uses the 1-click rotation in the planar algebra.



Bigelow’s jellyfish algorithm
First used by Bigelow-Morrison-Peters-Snyder to construct
extended Haagerup [BMPS12].

Theorem (Bigelow-P [BP14])

I P• has 2-strand jellyfish relations ⇔ one graph is a spoke.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

I P• has 1-strand jellyfish relations ⇔ both graphs are spokes.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

Theorem (Morrison-P [MP14])

A variation of the jellyfish algorithm is universal for finite depth
subfactor planar algebras.



Cylinders

Definition
A cylinder is a graph pair which represents an infinite family of
graph pairs obtained by translation and finite stable extension.

C =
(

,
)

Theorem (Guo)

Let SM be the class of finite graphs satisfying:

1. all vertices have valence at most M , and

2. at most M vertices have valence > 2.

Then ignoring An, Dn, A
(1)
n , and D

(1)
n , only finitely many graphs

in SM have norm squared which is a cyclotomic integer.

I This result is in principle effective, but not yet practical.

I Calegari-Guo eliminate our troublesome cylinder C by hand.



New triple point obstruction
Suppose A ⊂ B (finite index) has principal graphs (Γ+,Γ−)
starting with a triple point:

0 1
· · ·

n− 2 n− 1

Q

P
n

Theorem [Pen13]

Suppose that for each R at depth n+ 1 connected to P , there is a
unique vertex E(R) at depth n connected to the dual vertex R of
R. Then there is an explicit formula for σA + σ−1A in terms of the
traces of the projections of Γ± with depth at most n+ 1.

Here, σA is the chirality, related to 1-click rotation.

Moral:
This formula gives the chirality, which is a priori hidden in the
planar algebra structure, in terms of visible combinatorial data of
the principal graph.



Known small index subfactors, today
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Theorem (Afzaly-Morrison-P)

The conjectures of Morrison-Peters (up to index 51
4 > 3 +

√
5) and

Morrison-P hold with at most finitely many exceptions.



Thank you for listening!

Slides available at
http://www.math.ucla.edu/~dpenneys/PenneysUCLA2014.pdf

http://www.math.ucla.edu/~dpenneys/PenneysUCLA2014.pdf
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