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II1-factors

Definitions

A von Neumann algebra is a ∗-closed subalgebra M ⊆ B(H)
such that M = M ′′.

A factor is a von Neumann algebra with trivial center
Z(M) = M ′ ∩M = C1.

A II1-factor M is an infinite dimensional factor with a tracial
state tr : M → C.

A subfactor is a unital inclusion of factors.

Our subfactors will be II1-subfactors.
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Index for subfactors

Definition

Given a II1-subfactor A ⊂ B, we say it has finite index if B is a
finitely generated projective A-module. The index [B : A] is the
trace of the corresponding idempotent in K0(A)+.

Theorem [Jon83]

For a II1-subfactor A ⊂ B,

[B : A] ∈
{

4 cos2
(π
n

)∣∣∣n = 3, 4, . . .
}
∪ [4,∞].
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Where do subfactors come from?

Some examples include:

Groups – from Gy R, we get RG ⊂ R and R ⊂ Roα G.

finite dimensional unitary Hopf/Kac algebras

Quantum groups

Conformal field theory

endomorphisms of Cuntz C*-algebras

However, there are certain possible infinite families without
uniform constructions.

Remark

Just as von Neumann algebras come in pairs (M,M ′), subfactors
come in pairs (A ⊂ B,B′ ⊂ A′).

David Penneys Classifying small index subfactors



Subfactors Planar algebras Jellyfish and spokes 3 +
√
5 Invariants of subfactors Principal graphs Classification

The standard invariant

Definition

The standard invariant of A ⊂ B is the the following unitary
2-category:

Objects: A and B

1-Morphisms: bimodules generated by ABB and BBA (take
tensor products and decompose into irreducible summands)

2-Morphisms: bimodule intertwiners

unitary structure: Adjoint on A,B is identity. Adjoint on
bimodules is the contragredient, giving an involution on
A−A and B −B bimodules, but swaps A−B and B −A
bimodules. Adjoint on intertwiners is usual adjoint.

Choosing our favorite 1-morphism ABB gives a planar algebra.
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Principal graphs

Definition

Given the 1-morphism ABB, we define the principal graph of
A ⊂ B as follows.

Even vertices: isomorphism classes of simple A−A bimodules.

Odd vertices: isomorphism classes of simple A−B bimodules.

Edges: dim(HomA−B(P ⊗A B,Q)) unoriented edges from

APA to AQB.

Get the dual principal graph by looking at BBA together with
B −B and B −A bimodules.

Can define the fusion graph with respect to any simple
bimodule.
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Examples

Examples of principal graphs

index < 4: An, D2n, E6, E8. No Dodd or E7.

index = 4: A
(1)
2n−1, D

(1)
n+2, E

(1)
6 , E

(1)
7 , E

(1)
8 , A∞, A

(1)
∞ , D∞

Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
Haagerup 333

(
,

)
extended Haagerup 733

(
,

)
First graph is principal, second is dual principal.

Leftmost vertex is the trivial bimodule AAA, BBB resp.

Red tags for duality of A−A and B −B vertices.

Duality of A−B to B −A is by depth and height
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Finite depth

Definition

If the principal graph is finite, then the subfactor and standard
invariant/planar algebra are called finite depth.

Example: R ⊂ RoG for finite G

For G = S3:

Principal graph:

Dual principal graph:
2
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Supertransitivity

Definition

We say a principal graph is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

is 1-supertransitive

is 2-supertransitive

is 3-supertransitive
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Known subfactors

Recent classification to index 5 (contributed to parts 2 and 4)
[MS12, MPPS12, IJMS12, PT12]

Map of known subfactors from Jones-Morrison-Snyder survey
[JMS13], to appear Bulletin AMS.
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Planar algebras [Jon99]

Definition

A shaded planar tangle has

a finite number of inner boundary disks

an outer boundary disk

non-intersecting strings

a marked interval ? on each boundary disk

a checkerboard shading

?

?

? ?
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Composition of tangles

We can compose planar tangles by insertion of one into another if
the number of strings matches up:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition

The shaded planar operad consists of all shaded planar tangles (up
to isotopy) with the operation of composition.
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Definition

A planar algebra is a family of vector spaces Pk,±, k = 0, 1, 2, . . .
and an action of the shaded planar operad.

P2,− × P1,+ × P1,+ P3,+

P2,− × P2,+ × P1,+

?

?

? ?

2

1

?

?

3

? ?
?
?
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Example: Temperley-Lieb

TLn,±(δ) is the complex span of non-crossing pairings of 2n points
arranged around a circle, with formal addition and scalar
multiplication.

TL3,+(δ) = SpanC

{
?

,
?

,
?

,
?

,
?

}
.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and trading closed loops for factors of δ.

?
? (

?
)

=

?

= δ2

?
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Subfactor planar algebras

Definition

A planar algebra P• is a subfactor planar algebra if it is:

Finite dimensional: dim(Pk,±) <∞ for all k

Evaluable: P0,± ∼= C by sending the empty diagram to 1C

Sphericality: X = X

Positivity: each Pk,± has an adjoint ∗ such that the
sesquilinear form 〈x, y〉 := Tr(y∗x) is positive definite

From these properties, it follows that closed circles count for a
multiplicative constant δ ∈ {2 cos(π/n)|n ≥ 3} ∪ [2,∞).
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Planar algebras from tensor categories

Definition

Given a unitary fusion category and a choice of simple object X,
we get a planar algebra by setting

Pn,+ = Hom(1, (X ⊗X)⊗n) and Pn,− = Hom(1, (X ⊗X)⊗n)

The strand is the identity 1-morphsim: idX = and idX =

Caps are evaluation evX = and evX =

Cups are coevaluation coevX = and coevX =

Vertical join is composition gf = f

g

Horizontal join is tensor product f ⊗ g = f g
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An example tangle

If f ∈ Pn,+ = Hom(1, (X ⊗X)⊗n), the tangle below is a
composite map, read from bottom to top:

· · ·

f

coevX

idX ⊗ coevX ⊗ idX

idX⊗X ⊗f ⊗ idX⊗X

id(X⊗X)⊗n⊗X ⊗ evX ⊗ idX

id(X⊗X)⊗n ⊗ evX
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Small index subfactor classification program

Focuses of the classification program:

Enumerate graph pairs and apply obstructions.

Construct examples when graphs survive.

Place exotic examples into families.
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The extended Haagerup subfactor

Bigelow-Morrison-Peters-Snyder, [BMPS12]

The extended Haagerup subfactor is the unique subfactor with
principal graphs(

,
)

Last remaining possible graph in Haagerup’s classification to
3 +
√

3 [Haa94] by work of Asaeda-Yasuda [AY09].

Largest known supertransitivity outside the A and D series.

Its planar algebra was constructed using Bigelow’s jellyfish
algorithm.
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Bigelow-Morrison-Peters-Snyder, [BMPS12]

The Haagerup and extended Haagerup subfactor planar algebras
have a generator S ∈ Pn,+ where n = 4, 8 respectively satisfying:

2n− 1

S
?

f (2n+2)?
= i

√
[n][n+ 2]

[n+ 1]

n− 1

n+ 1 n+ 1

S S

??

f (2n+2)?

2n

S
?

f (2n+4)?

=
[2][2n+ 4]

[n+ 1][n+ 2]

n− 1 n− 1

n+ 1 2 n+ 1

S S S

???

f (2n+4)?

(Absorption) capping S gives zero and S2 = f (n) ∈ TLn,+.
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The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1 First, pull all generators to the outside using the jellyfish
relations

   

2 Second, reduce the number of generators using the capping
and absorption (multiplication) relations.
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Consistency and positivity

Theorem [Jones-Penneys [JP11], Morrison-Walker]

Every subfactor planar algebra embeds in the graph planar algebra
of its principal graph.

This serves two purposes:

1 To show the planar algebra is non-zero, give a representation.

2 Graph planar algebras are always finite dimensional, spherical,
and positive. Only need to check evaluable.

David Penneys Classifying small index subfactors



Subfactors Planar algebras Jellyfish and spokes 3 +
√
5 The jellyfish algorithm Spokes

Spoke graphs

Examples of spoke principal graphs

An, D2n, E6, E8,

E
(1)
6 , E

(1)
7 , E

(1)
8

A∞, A
(1)
∞ , D∞

Principal graphs for R ⊂ RoG, G finite
(

,
2

)
2221

Haagerup 333

3311

3333

4442

extended Haagerup 733
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Spokes and jellyfish

Assume all generators of P• are at the same depth n.

Theorem [Bigelow-Penneys [BP14]]

P• has 2-strand jellyfish relations ⇔ one graph is a spoke.

2n− 1

S
?

,
2n

S
?

←→
(

,
)

P• has 1-strand jellyfish relations ⇔ both graphs are spokes.

2n− 1

S
?

,
2n

S
?

←→
(

,
)
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Constructing spoke subfactors with jellyfish

Theorem [Morrison-Penneys [MP13]]

We automate finding 1-strand relations for these subfactors:

Izumi-Xu 2221 [Han11]

[GdlHJ89] 3311

Izumi 3Z/2×Z/2 (index 3 +
√

5)

4442 (index 3 +
√

5)

For the above, both principal graphs are the same spoke graph.
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Constructing spoke subfactors with jellyfish, part 2

Theorem [Penneys-Peters [PP13]]

We give explicit 2-strand relations for the following subfactors:

Haagerup 333 (Z/3)
(

,
)

3333 (Z/2× Z/2)
(

,
)

3333 (Z/4)
(

,
)
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Small index subfactor classification program

Focuses of the classification program:

Enumerate graph pairs and apply obstructions.

Construct examples when graphs survive.

Place exotic examples into families.
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Why do we care about index 3 +
√
5?

Standard invariants at index 4 are completely classified.

Z/2 ∗ Z/2 = D∞ is amenable

Standard invariants at index 6 are wild.

There is (at least) one standard invariant for every normal
subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
There are unclassifiably many distinct hyperfinite subfactors
with the same standard invariant [BNP07, BV13]

4 = 2× 2 and 6 = 2× 3 are composite indices, as is

3 +
√

5 = 2τ2 where τ = 1+
√
5

2 .
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1-supertransitive subfactors at index 3 +
√
5

Theorem [Liu13], partial proof by Izumi-Morrison-Penneys [IMP13]

There are exactly seven 1-supertransitive subfactor planar algebras
with index 3 +

√
5:(

,
)

self-dual(
,

)
and its dual(

,
)

and its dual(
· · · , · · ·

)
and its dual

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.

Open question

Are there infinitely many distinct hyperfinite subfactors with the
same standard invariant at index 3 +

√
5?

A3 ∗A4 and A2 ∗ T2 are not amenable [HI98].
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1-supertransitive with index at most 61
5

Theorem [Liu-Morrison-Penneys [LMP13]]

An exactly 1-supertransitive subfactor planar algebra with index at
most 61

5 either comes from a composed inclusion (and has index

3 +
√

5 or 6), or is one of 3 self-dual planar algebras at index
3 + 2

√
2:(

,
)

(
,

)
two complex conjugate

Can push classification results above index 6!

Could hope that the only wildness at index 6 is “group-like”
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Index (5, 3 +
√
5)

Conjecture [Morrison-Peters] [MP12]

There are exactly two non Temperley-Lieb subfactor planar
algebras in the index range (5, 3 +

√
5):

name Principal graphs Index Constructed

SU(2)5
(

,
)

5.04892 [Wen90], [MP12]

SU(3)4
(

,
)

5.04892 [Wen88], [MP12]

Theorem [Morrison-Peters] [MP12]

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)
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Subfactor planar algebras at index 3 +
√
5

Conjecture [Morrison-Penneys]

At 3 +
√

5, we have only the following subfactor planar algebras:

name Principal graphs # Constructed

4442
(

,
)

2 [MP13], Izumi

3Z/2×Z/2
(

,
)

2 Izumi, [MP13]

3Z/4
(

,
)

2 Izumi, [PP13]

2D2
(

,
)

2 Izumi, [MPP]

A3 ⊗A4

(
,

)
1 ⊗

fish 2
(

,
)

2 BH

fish 3
(

,
)

2 [IMP13]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97]

A∞
(

· · · , · · ·
)

1 [Pop93]

The 1-supertransitive case is known by [Liu13, IMP13]
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Subfactor planar algebras at index 6

Wildly optimistic conjecture [Penneys-Peters-Snyder]

At index 6, a ≥ 2-supertransitive subfactor planar algebra is one of

name Principal graphs

A5b
(

,
)

S5b
(

,
)

A5 ⊂ A6

(
,

)
S5 ⊂ S6

(
,

)
Theorem [LMP13]

If a subfactor has principal graphs an extension of
(

,
)
,

then it is a Bisch-Haagerup subfactor of the form RZ/2 ⊂ RoZ/3.

We do not yet understand composed inclusions of A3 and A5.

No subfactor with principal graph [EG12].
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How can we prove these conjectures?

Biggest hurdle: need to eliminate certain weeds.
∗10 weeds:(

,
) (

,
)(

,
) (

,
)(

,
) (

,
)(

,
) (

,
)

∗11 weeds:(
,

)
(

,
)

(
,

)
(

,
)
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Triple points

Fact

If the graph starts with a triple point at depth n− 1, e.g.(
,

)
,

then the planar algebra has an uncappable rotational eigenvector
at depth n with eigenvalue ωS where ωnS = 1.

? S? ··· = ωS ? S? ···

If there is no merging two past the branch, we get a strong
constraint in terms of the structure of the graph and ωS .
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New obstruction

Theorem [Pen13]

(1) If (Γ+,Γ−) is a translated extension of(
,

)
, then

(ř − 1)
r

ř
+

(σS + σ−1S )

[n]

√
r√
ř

=
r[n]− [n+ 2]

[n]
.

(2) If (Γ+,Γ−) is a translated extension of(
,

)
, then

(r − 1) +
(σS + σ−1S )

[n]
=

[n+ 2]− r[n]

r[n]
.

σS is the chirality (σ2S is rotational eigenvalue)
r, ř are the branch factors (ratio of dimensions past branch)
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Remaks on the new obstruction

The key is the rotation ? S? ···

The obstruction is far more general. Recovers results of Jones
and Snyder.

Key relation in the proof due to Liu, which is a variant of a
relation due to Wenzl.

This obstruction eliminates the ∗11 weeds

Can obtain rotational eigenvalues for most small index
subfactors.

Gives easy non-existence result for Dodd and E7.
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Thank you for listening!

Recent articles:

with Bigelow - Spokes and jellyfish - Math. Ann. -
MR3157990

with Morrison - Constructing spokes with 1-strand jellyfish
- to appear Trans. AMS - arXiv:1208.3637

with Peters - Constructing spokes with 2-strand jellyfish -
Submitted - arXiv:1308.5197

with Izumi and Morrison - 1-supertransitive at 3 +
√
5 -

Submitted - arXiv:1308.5723

with Liu and Morrison - 1-supertransitive below 61
5

-
Submitted - arXiv:1310.8566

new obstruction - Submitted - arXiv:1307.5890
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