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Quotes from the AMS memorial article for Vaughan:

I “Every trip to a wonderland requires a wizard and our journey
started with Vaughan”
-Vanderbilt students (Corey Jones, Bin Gui, Yunxiang Ren,
Sayan Das, and Zhengwei Liu)

I “My older sister Bethany once told our father he was our
Gandalf, or our Aslan. It moved him deeply. Like Tolkien’s
wizard or Lewis’ lion, ... there was a sense of magic whenever
he was around, and a mystique to his work”
-Ian Jones

https://www.ams.org/journals/notices/202109/rnoti-p1540.pdf


Irreducible standard invariants with index at most 51
4

index

su
p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6 61

5

×∞

D
(1)
n+2

one ∞-depth

E
(1)
6

E
(1)
7

E
(1)
8

×2

×2

×4

at least one
∞-depth

×1

×3

×∞
unclassifiably
many ∞-depth

∞ A∞ at every index
Hyperfinite A∞ at

the index of E10

×2

E6

×2

E8

A
se
ri
es

D
se
ri
es

1
2

(5 +
√

13) 1
2

(5 +
√

17)

3 +
√

3

1
2

(5 +
√

21)

×3

×3

Theorem [AMP15, Liu15], building on work of many others

We know all standard invariants up to index 51
4 > 3 +

√
5, the first

interesting composite index.



Outline

1. Known families of standard invariants

2. How do we classify standard invariants?

3. Constructing standard invariants



Known families of standard invariants
All known subfactor standard invariants fit into 4 families.
We list those with index at most 51

4 here.

1. Groups: integer index examples

2. Quantum groups: ADE index< 4, Fuss-Catalan and
quotients, 3311, PSU(2)5  , SU(3)4  

3. Haagerup-Izumi quadratic categories: ‘spokes’: 2221,
3Z/3 = , 3Z/2×Z/2, 3Z/4, 4442; 2D2 = ;
AH =

4. Extended Haagerup/Haagerup-Peters:

Here, ‘fit into’ means it can be constructed from known examples
by known construction techniques, including:

I dual, tensor product, free product, intermediate subfactors,
reduced subfactors, Morita equivalence, equivariantization,
de-equivariantization, maximal atlas search ...

There is currently no uniform construction for the Haagerup-Izumi
quadratic categories, and many candidates remain unconstructed.
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Standard invariants in math and physics

Subfactor standard invariants are group-like objects which encode
quantum symmetry. They have applications to many areas of
mathematics and physics. Some include:

I invariants of knots and links via Jones’ polynomial

I topological quantum field theory

I conformal field theory

I topological phases of matter



How do we classify standard invariants?

A ⊂ B  C(A ⊂ B)  (Γ+,Γ−)

Definition
The principal graph Γ+ of C(A ⊂ B) has vertices the irreducible
A−A and A−B bimodules, and dim(Hom(H �A L

2B,K))
edges from AHA to AKB.

The dual graph Γ− of C(A ⊂ B) is defined similarly using B −B
and B −A bimodules.

I Γ± is pointed with basepoint the trivial bimodule AL
2(A)A,

BL
2(B)B respectively.

I The depth of a bimodule is its distance from the basepoint.

I Duality is given by · , which is always at the same depth,
although duals at odd depths of Γ± are on Γ∓.

Fact
The dual graph of A0 ⊂ A1 is the principal graph of A1 ⊂ A2.
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Examples of principal graphs

I index < 4: An, D2n, E6, E8. No Dodd or E7.

I Graphs for R ⊂ RoG obtained from G and Rep(G).(
,

2

)
G = S3

I Haagerup 3Z/3
(

,
)

I First graph is principal, second is dual principal.

I Leftmost vertex is the trivial bimodule.

I Red tags for duality (conjugates of bimodules).

I Duality of odd vertices by depth and height



Steps of small index standard invariant classification

1. Enumerate possible graph pairs.

2. Apply known obstructions.

3. Construct examples when graphs survive.
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Steps of small index standard invariant classification

1. Enumerate possible graph pairs.

2. Apply known obstructions.

3. Construct examples when graphs survive.

Theorem [Pop94]

For a subfactor A ⊂ B, [B : A] ≥ ‖Γ+‖2 = ‖Γ−‖2.

I If we enumerate all graph pairs with norm at most r, we have
found all principal graphs of subfactors with index at most r2.

Theorem (Ocneanu Rigidity [ENO05])

There are only finitely many standard
invariants with the same finite principal
graphs.



Classification to index 4

1. Bipartite graphs with norm at most 2 have an ADE
classification [GdlHJ89].

2. There are obstructions to the existence of a standard invariant
with principal graphs Dodd or E7 [Ocn88, Izu91].

3. All other examples are realizable [Kaw95].



Classification to index 4

1. Bipartite graphs with norm at most 2 have an ADE
classification [GdlHJ89].

2. There are obstructions to the existence of a standard invariant
with principal graphs Dodd or E7 [Ocn88, Izu91].

3. All other examples are realizable [Kaw95].

name # ∃, !

An 1 [Jon83, Ocn88]
D2n 1 [Ocn88, Kaw95]
E6, E8 2 [Ocn88, BN91, Izu94, Kaw95]

A
(1)
2n−1 n [Pop94]

D
(1)
n+2 n [Pop89, IK93]

E
(1)
6 , E

(1)
7 , E

(1)
8 1 [GdlHJ89, Kaw95]

A∞, A
(1)
∞ , D∞ 1 [Pop89, Pop94]



Known small index standard invariants, 1994
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I Haagerup [Haa94, AH99]

I A∞ everywhere [Pop93]

I Quantum groups [Wen88, Wen90]

I GHJ 3311 [GdlHJ89]



Supertransitivity

Definition
A graph pair (Γ+,Γ−) is n-supertransitive if it begins with an
initial segment consisting of the Coxeter-Dynkin diagram An+1,
i.e., an initial segment with n edges.

Examples

I is 1-supertransitive

I is 2-supertransitive

I is 3-supertransitive



Haagerup’s enumeration

Theorem [Haa94]

Any non A∞-standard invariant in the index
range (4, 3 +

√
2) must have principal graphs a

translation of one of

I
(

,
)

I
(

,
)

I
(

,
)

Translation means raising the supertransitivity of both graphs by
the same even amount.

Definition [MS12]

A vine is a graph pair which represents an infinite family of graph
pairs obtained by translation.



Main tool for Haagerup’s enumeration

Play associativity off of Ocneanu’s triple point obstruction.

I Associativity: graphs must be similar

I Ocneanu’s triple point obstruction: graphs must be different!

The consequence is a strong constraint.

Example

The following pairs are not allowed:(
,

)
and

(
,

)
They must be paired with each other:(

,
)



Associativity
Start with an A−A bimodule, tensor on left and right with L2B:

AXA AX �A L
2BB

BL
2B �A XA BL

2B �A X �A L
2B

−�AL2B

L2B�A− L2B�A−

−�AL2B

Same simple B −B summands must appear going either way.
Similar result going from A−B to B −A bimodules.

A−A A−B

B −A B −B

Γ+

Γ+ Γ−

Γ−

e.g., Γ± = A4

I Associativity: same number of paths going either way
between vertices on opposite corners



Known small index subfactors, 2007
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I Asaeda-Haagerup [AH99]

I No Hexagon vine [Bis98]

I Trimed Haagerup vine [AY09]

I Izumi-Xu 2221 [Izu01]

I 3odd examples [Izu01]

I Wildness at index 6 [BNP07]



Known small index subfactors, 2011
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I Extended Haagerup [BMPS12]

I Classification to index 5

I 3even examples [Izu18]

I Haagerup+1 [GS12]



Small index 1ST standard invariants
For many small index 1-supertransitive standard invariants, one
can prove there is a corresponding intermediate subfactor. This
forces the index to be composite.

I 2× 2 = 4

I 2× φ2 = 3 +
√

5 ' 5.236

Theorem [MS12]

There are no 1ST standard invariants with index in (4, 5).

Sketch of proof.

Look at depth 2 objects.

I If all have dimension 1, index is an integer.

I If some have index 1 and some are larger, have an
intermediate by [PP86, Bis94].

I An object with dimension in (1, 2) implies the index is too big.

I 2 objects with dimension 2 implies the index is too big.



Weeds and vines

The classification to index 5 introduced weeds and vines.

Definition
A weed is a graph pair which represents an infinite family of graph
pairs obtained by translation and extension.
An extension of a graph pair adds new vertices and edges at
strictly greater depths than the maximum depth of any vertex in
the original pair.

F =
(

,
)

Using weeds allows us to bundle hard cases together, ensuring the
enumerator terminates.



Eliminating vines with number theory

We can uniformly treat vines using number theory, based on the
following theorem inspired by Asaeda-Yasuda [AY09]:

Theorem [CMS11]

For a fixed vine V, there is an effective (computable) constant
R(V) such that any n-translate with n > R(V) has norm squared
which is not a cyclotomic integer.

Theorem [CG94, ENO05]

Dimensions of objects in fusion categories are cyclotomic integers.

I The index of a finite depth subfactor (which equals the norm
squared of the principal graph) must be a cyclotomic integer.



Why do we care about index 3 +
√
5?

I Standard invariants at index 4 are completely classified.
I Z/2 ∗ Z/2 = D∞ is amenable

I Standard invariants at index 6 are wild.
I There is (at least) one standard invariant for every normal

subgroup of the modular group Z/2 ∗ Z/3 = PSL(2,Z)
I There are unclassifiably many distinct hyperfinite subfactors

with standard invariant A3 ∗D4 [BV15].
(Unpublished joint work shows this holds for A3 ∗A5 too.)

I 4 = 2× 2 and 6 = 2× 3 are composite indices, as is

3 +
√

5 = 2φ2 where φ = 1+
√

5
2 .

Open Question: How many hyperfinite II1

subfactors have standard invariant
Bisch-Jones’ Fuss-Catalan A3 ∗A4

standard invariant at index 3 +
√

5?

I A3 ∗A4 is not amenable [Pop94].
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Computational complexity

Measuring the computational complexity of the graph enumeration
problem in Haagerups, we see that the complexity grows
substantially with the index:

index Haagerups

3 +
√

3 ≈ 4.732 1

3 +
√

4 = 5

3 +
√

5 ≈ 5.236
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Computational complexity

Measuring the computational complexity of the graph enumeration
problem in Haagerups, we see that the complexity grows
substantially with the index:

index Haagerups

3 +
√

3 ≈ 4.732 1

3 +
√

4 = 5 5
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Index (5, 3 +
√
5)

There are exactly two non-A∞ irreducible standard invariants in
the index range (5, 3 +

√
5):

name Principal graphs Index ∃, !
Alt(PSU(2)5)

(
,

)
5.04892 [Wen90], [MP14]

Alt(SU(3)4)
(

,
)

5.04892 [Wen88], [MP14]

Theorem [MP14]

There is exactly one 1-supertransitive subfactor in the index range
(5, 3 +

√
5)



1-supertransitive subfactors at index 3 +
√
5

Bisch-Haagerup found an infinite family of 1ST graph pairs at
index 3 +

√
5 which admit unique biunitary connections

, , , · · ·

Theorem [Liu15]

There are exactly seven 1-supertransitive standard invariants with
index 3 +

√
5:

I
(

,
)

self-dual

I
(

,
)

and its dual

I
(

,
)

and its dual

I
(

· · · , · · ·
)

and its dual (A3 ∗A4)

These are all the standard invariants of composed inclusions of A3

and A4 subfactors.



Standard invariants at index 3 +
√
5

At 3 +
√

5, we have only the following standard invariants:

name Principal graphs # ∃, !
4442

(
,

)
1 [MP15b, MP15a, Izu18]

3Z/2×Z/2
(

,
)

1 [Izu18], [MP15b]

3Z/4
(

,
)

2 [Izu18], [PP15]

2D2
(

,
)

2 [Izu18], [MP15a]

A3 ⊗A4

(
,

)
1 ⊗, [Liu15, IMP16]

fish 2
(

,
)

2 [BH], [Liu15, IMP16]

fish 3
(

,
)

2 [IMP16, Liu15]

A3 ∗A4

(
· · · , · · ·

)
2 [BJ97],

A∞
(

· · · , · · ·
)

1 [Pop93]



Methods to push classification results further
Enumeration:

I 1-supertransitive classification to 61
5 [LMP15]

I High-tech graph pair enumerator, based on Brendan McKay’s
isomorph free enumeration by canonical construction paths
[McK98]. Two independent implementations, same results.
(Afzaly and Morrison-P)

I Popa’s principal graph stability [Pop95, BP14]

Obstructions:

I Number theory for stable weeds [CG18]
I Morrison’s hexagon obstruction [Mor14]
I Powerful triple point obstruction [Pen15]



Why better combinatorics are needed

Three ways we produce redundant isomorphism classes of graphs:

(1) Equivalent generating steps from same object give isomorphic
results.

and

(2) Two inequivalent generating steps applied to the same object
can yield isomorphic objects.

−→

−→

(3) Starting with two non-isomorphic objects and applying a
generating step can result in isomorphic objects.

−→ and −→

Problems fixed by McKay’s isomorph-free enumeration [McK98]!



Popa’s principal graph stability

Definition
We say Γ± is stable at depth n if every vertex at depth n
connects to at most one vertex at depth n+ 1, no two vertices at
depth n connect to the same vertex at depth n+ 1, and all edges
between depths n and n+ 1 are simple.

Theorem [Pop95, BP14]

Suppose A ⊂ B (finite index) has principal graphs (Γ+,Γ−).
Suppose that the truncation Γ±(n+ 1) 6= An+2 and δ > 2.

(1) If Γ± are stable at depth n, then Γ± are stable at depth k for
all k ≥ n, and Γ± are finite.

(2) If Γ+ is stable at depths n and n+ 1, then Γ± are stable at
depth n+ 1.

Part (2) uses the 1-click rotation in the planar algebra and the
jellyfish algorithm [BMPS12].



Stable weeds

Definition
A stable weed represents an infinite family of graph pairs obtained
by translation and finite stable extension.

C =
(

,
)

Theorem [CG18]

Let SM be the class of finite graphs satisfying:

1. all vertices have valence at most M , and

2. at most M vertices have valence > 2.

Then ignoring An, Dn, A
(1)
n , and D

(1)
n , only finitely many graphs

in SM have norm squared which is a cyclotomic integer.

I Result is effective for a given fixed stable weed.
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Recent progress

In joint work with Grossman, Morrison, Peters, and Snyder
[GMP+18], we find all standard invariants related to the exotic
Extended Haagerup.

I Many new standard invariants and fusion categories

Question (Vaughan Jones, ∼2000)

In which graph planar algebras can you embed a subfactor planar
algebra?

Module Embedding Theorem [GMP+18]

A subfactor planar algebra embeds in a graph planar algebra if and
only if the graph is a fusion graph for a module category.



The latest classification result

While classifying fusion categories of rank 4 remains out of reach,
we have the following recent result.

Theorem [EMIP21]

We have a complete classification of all quadratic Z/2 categories,
whose simple objects consist of the group Z/2 together with one
other orbit under the group action.

simples = Z/2 ∪ Z/2{ρ}

I
Building on [Lar14], this completes the
classification of rank 4 unitary fusion
categories with a dual pair of simples.



Thank you for listening!

Full slides available at
https://people.math.osu.edu/penneys.2/talks/

PenneysWaterloo2022Talk3.pdf

https://people.math.osu.edu/penneys.2/talks/PenneysWaterloo2022Talk3.pdf
https://people.math.osu.edu/penneys.2/talks/PenneysWaterloo2022Talk3.pdf
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