BOUNDED COHOMOLOGY AND AMENABLE GROUPS

BOBBY RAMSEY

ABSTRACT. We recall the definition of bounded cohomology for a discrete group and give an elementary proof that for amenable groups this bounded cohomology is trivial.

1. BOUNDED COHOMOLOGY

Let G be a discrete group, and let $C^n(G) = \{\phi : G^n \to \mathbb{R}\}$ with $\delta_n : C^n(G) \to C^{n+1}(G)$ defined by

$$(\delta_n \phi)(x_1, \dots, x_{n+1}) = \phi(x_2, \dots, x_{n+1}) - \phi(x_1 x_2, x_3, \dots, x_{n+1}) + \dots + (-1)^i \phi(x_1, \dots, x_i x_{i+1}, \dots, x_{n+1}) + \dots + (-1)^{n+1} \phi(x_1, \dots, x_n)$$

This yields a cochain complex:

$$C^0(G) \xrightarrow{\delta_0} C^1(G) \xrightarrow{\delta_1} C^2(G) \xrightarrow{\delta_2} \dots$$

The cohomology of this complex, denoted by $H^*(G)$, is the standard cohomology of the group G (with \mathbb{R} coefficients).

Let us now restrict our attention to bounded functions [Ger]. Denote by $C_b^n(G)$ those $\phi \in C^n(G)$ with

$$\|\phi\|_{\infty} = \sup_{(x_1,...,x_n)\in G^n} |\phi(x_1,...,x_n)| < \infty$$

If $\phi \in C_b^n(G)$, then consider $\delta_n \phi \in C^{n+1}(G)$

$$(\delta_n \phi)(x_1, \dots, x_{n+1}) = \phi(x_2, \dots, x_{n+1}) - \phi(x_1 x_2, x_3, \dots, x_{n+1}) + \dots + (-1)^i \phi(x_1, \dots, x_i x_{i+1}, \dots, x_{n+1}) + \dots + (-1)^{n+1} \phi(x_1, \dots, x_n)$$

Date: June 2006.

So that when considering boundedness:

$$\begin{aligned} \|\delta_n \phi\|_{\infty} &\leq \|\phi\|_{\infty} + \|\phi\|_{\infty} \\ &+ \dots + \|\phi\|_{\infty} + \dots \\ &+ \|\phi\|_{\infty} \\ &\leq (n+1) \|\phi\|_{\infty} \end{aligned}$$

Thus the differentials preserve boundedness. That is

$$C^0_b(G) \xrightarrow{\delta_0} C^1_b(G) \xrightarrow{\delta_1} C^2_b(G) \xrightarrow{\delta_2} \ldots$$

is a sub-cochain complex of the above complex. The cohomology of this complex, denoted by $H_b^*(G)$, is the *bounded cohomology* of the group G. As an example we will start by showing the following:

Proposition 1.1. For any discrete group G, $H_b^1(G) = 0$.

Proof. Let $\phi \in C_b^1(G)$ with $\delta_1 \phi = 0$. Then for all $a, b \in G$ we have $(\delta_1 \phi)(a, b) = \phi(b) - \phi(ab) + \phi(a) = 0$. That is, $\phi(ab) = \phi(a) + \phi(b)$ so that ϕ is a homomorphism from G to \mathbb{R} .

Assume that there is a $g \in G$ with $\phi(g) \neq 0$. Then $\phi(g^n) = n\phi(g)$ so that $\lim_{n\to\infty} |\phi(g^n)| = \infty$, contradicting that $f \in C_b^1(G)$.

Thus ker $\delta_1 = 0$, so $H_b^1(G) = 0$.

Now $C_b^0(G) = \{\phi : G^0 \to \mathbb{R} | \|\phi\|_{\infty} < \infty\}$, which we can identify with \mathbb{R} , with $\delta_0 = 0$. Thus we also have $H_b^0(G) = \mathbb{R}$, but this is not surprising as we are dealing with \mathbb{R} -coefficients.

2. Amenable Groups

Definition 2.1. [Pat] A discrete group G is amenable if there is a left-invariant mean $m : \ell^{\infty}G \to \mathbb{C}$.

This means that m is a positive linear functional on $\ell^{\infty}G$, with ||m|| = m(1) = 1. Moreover, for each $\phi \in \ell^{\infty}G$ and $g \in G$, $m(\phi) = m(\phi_g)$ where $\phi_g(x) = \phi(g \cdot x)$.

The following result is attributed in [Gro] to Hirsch and Thurston [HT]. We give an elementary proof.

Theorem 2.1. Let G be discrete amenable group. Then for $n \ge 1$ we have $H_b^n(G) = 0$.

Proof. Denote a left-invariant mean by m. We will first note that, as m is positive, $m(\psi) \in \mathbb{R}$ for any real-valued $\psi \in \ell^{\infty}G$. We have already seen that $H_b^1(G) = 0$. Let us start by examining $H_b^2(G)$.

Let $\phi \in C_b^2(G)$ with $\delta_2 \phi = 0$. That is, for all $a, b, and c \in G$ we have

 $(\delta_2 \phi)(a, b, c) = \phi(b, c) - \phi(ab, c) + \phi(a, bc) - \phi(a, b) = 0$

 $\mathbf{2}$

So that $\phi(a,b) = \phi(b,c) - \phi(ab,c) + \phi(a,bc)$. Let $f : G \to \mathbb{R}$ be defined by $f(a) = m(\phi(a,x))$, where by $\phi(a,x)$ we mean the bounded function from G to \mathbb{R} obtained by fixing the first argument of ϕ . As $f(a) = m(\phi(a,x)) \leq ||m|| ||\phi||_{\infty} < \infty$, we have $f \in C_b^1(G)$.

$$\begin{aligned} (\delta_1 f)(a,b) &= f(b) - f(ab) + f(a) \\ &= m(\phi(b,x)) - m(\phi(ab,x)) + m(\phi(a,x)) \\ &= m(\phi(b,x)) - m(\phi(ab,x)) + m(\phi(a,bx)) \\ &= m(\phi(b,x) - \phi(ab,x) + \phi(a,bx)) \\ &= m(\phi(a,b)) \\ &= \phi(a,b) \cdot m(1) \\ &= \phi(a,b) \end{aligned}$$

Thus ϕ is in the image of δ_1 , so $H_b^2(G) = 0$. The case for general n > 1 is similar in technique to this case. Let $\phi \in C_b^n(G)$ with $\delta_n \phi = 0$. For all $x_1, \dots, x_{n+1} \in G$

$$\begin{aligned} (\delta_n \phi)(x_1, ..., x_{n+1}) &= \phi(x_2, ..., x_{n+1}) - \phi(x_1 x_2, x_3, ..., x_{n+1}) \\ &+ ... + (-1)^i \phi(x_1, ..., x_i x_{i+1}, ..., x_{n+1}) + ... \\ &+ (-1)^{n+1} \phi(x_1, ..., x_n) \\ &= 0 \end{aligned}$$

So that

$$(-1)^{n}\phi(x_{1},...,x_{n}) = \phi(x_{2},...,x_{n+1}) - \phi(x_{1}x_{2},x_{3},...,x_{n+1}) +... + (-1)^{i}\phi(x_{1},...,x_{i}x_{i+1},...,x_{n+1}) + ... + (-1)^{n}\phi(x_{1},...,x_{n}x_{n+1})$$

Let $f: G^{n-1} \to \mathbb{R}$ be defined by

$$f(x_1, ..., x_{n-1}) = m(\phi(x_1, ..., x_{n-1}, x))$$

where, as before, $\phi(x_1, ..., x_{n-1}, x)$ is treated as a bounded function of one variable obtained by fixing the first n-1 arguments of ϕ .

BOBBY RAMSEY

Applying δ_{n-1} to f, we obtain the following:

$$\begin{aligned} (\delta_{n-1}f)(x_1,...,x_n) &= f(x_2,...,x_n) - f(x_1x_2,x_3,...,x_n) \\ &+ ... + (-1)^i f(x_1,...,x_ix_{i+1},...,x_n) + ... \\ &+ (-1)^n f(x_1,...,x_{n-1}) \end{aligned} \\ &= m(\phi(x_2,...,x_n,x)) - m(\phi(x_1x_2,x_3,...x_n,x)) \\ &+ ... + (-1)^i m(\phi(x_1,...,x_ix_{i+1},...,x_n,x)) + ... \\ &+ (-1)^n m(\phi(x_1,...,x_{n-1},x)) \end{aligned} \\ &= m(\phi(x_2,...,x_n,x)) - m(\phi(x_1x_2,x_3,...x_n,x)) \\ &+ ... + (-1)^i m(\phi(x_1,...,x_ix_{i+1},...,x_n,x)) + ... \\ &+ (-1)^n m(\phi(x_1,...,x_{n-1},x_nx)) \end{aligned}$$
 \\ &= m(\phi(x_2,...,x_n,x) - \phi(x_1x_2,x_3,...x_n,x)) \\ &+ ... + (-1)^i \phi(x_1,...,x_ix_{i+1},...,x_n,x) + ... \\ &+ (-1)^n \phi(x_1,...,x_{n-1},x_nx)) \end{aligned}

Thus $\phi = \delta_{n-1}(-1)^n f$, so the kernel of δ_n lies in the image of δ_{n-1} , resulting in $H_b^n(G) = 0$.

References

[Ger] S. M. Gersten. Bounded Cohomology and Combings of Groups. Preprint, University of Utah (1991). http://www.math.utah.edu/~sg/old-eprints.htm
[Gro] M. Gromov. Volume and Bounded Cohomology. IHES Publ. Math. 52 (1982), 5 - 99.

[HT] J. Hirsch, W. Thurston. Foliated Bundles, Invariant Measures and Flat Manifolds. Ann. of Math., **101** (1975), 369 – 390.

[Pat] A. Patterson. Amenability. Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence, RI, 1988.

4