The Isocohomological Property

Bobby Ramsey

Department of Mathematical Sciences
IUPUI

March 26, 2010
Group Cohomology

Suppose G is a finitely generated discrete group.

- $C^n(G) = \{ \phi : G^n \to \mathbb{C} \}$
- $d : C^n(G) \to C^{n+1}(G)$

\[
(d\phi)(g_0, g_1, \ldots, g_n) = \sum_{i=0}^{n} (-1)^i \phi(g_0, g_1, \ldots, \widehat{g_i}, \ldots, g_n)
\]

$0 \to C^0(G) \to C^1(G) \to \ldots$

A usual cochain complex for calculating group cohomology, $H^*(G)$.
Accounting for Growth

Endow G with a word-length function ℓ_G.

$\phi \in PC^n(G) \subset C^n(G)$ if there is a polynomial P such that

$$|\phi(g_1, \ldots, g_n)| \leq P(\ell_G(g_1) + \ell_G(g_2) + \ldots + \ell_G(g_n))$$

$PC^*(G)$ forms a subcomplex of $C^*(G)$.

$HP^n(G)$, the polynomial cohomology of G.

$PC^*(G) \to C^*(G)$ induces a comparison map $HP^*(G) \to H^*(G)$.

For many groups this map is an isomorphism.
With Coefficients

For a $\mathbb{C}G$-module V:

- $H^*(G; V) = \text{Ext}^*_G(\mathbb{C}, V)$.
- $0 \leftarrow \mathbb{C} \leftarrow P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \ldots$
- $0 \rightarrow \text{Hom}_{\mathbb{C}G}(P_0, V) \rightarrow \text{Hom}_{\mathbb{C}G}(P_1, V) \rightarrow \text{Hom}_{\mathbb{C}G}(P_2, V) \rightarrow \ldots$
- $\text{Ext}^*_G(\mathbb{C}, V)$ is cohomology of this complex.
With Coefficients

\[SG = \left\{ \phi : G \to \mathbb{C} \mid \forall_k \sum_{g \in G} |\phi(g)| (1 + \ell_G(g))^k < \infty \right\} \]

Suppose \(V \) is a bornological \(SG \)-module.

- \(HP^* (G; V) = b\text{Ext}^*_S(G, V) \).

- \[
0 \leftarrow \mathbb{C} \leftarrow P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \ldots
\]

- \[
0 \to b\text{Hom}_S(P_0, V) \to b\text{Hom}_S(P_1, V) \to b\text{Hom}_S(P_2, V) \to \ldots
\]

- \(\mathbb{C}G \hookrightarrow SG \) induces \(HP^* (G; V) \to H^* (G; V) \) for all bornological \(SG \)-modules \(V \).
The Isocohomological Property

Definition

G has the (strong) isocohomological property if for all bornological SG-modules V, the comparison map $HP^*(G; V) \rightarrow H^*(G; V)$ is an isomorphism. G is isocohomological for a particular SG-module V if the particular comparison map is an isomorphism.

- Nilpotent groups (Ron Ji, Ralf Meyer)
- Combable groups (Crichton Ogle, Ralf Meyer)
Other Bounding Classes

\[\mathcal{B} \subset \{ \phi : [0, \infty) \rightarrow (0, \infty) | \phi \text{ is nondecreasing} \} \]

- \(1 \in \mathcal{B} \).
- If \(\phi \) and \(\phi' \in \mathcal{B} \), there is \(\varphi \in \mathcal{B} \) such that \(\lambda \phi + \mu \phi' \leq \varphi \), for nonnegative real \(\lambda, \mu \).
- If \(\phi \in \mathcal{B} \) and \(g \) is a linear function, there is \(\psi \in \mathcal{B} \) such that \(\phi \circ g \leq \psi \).

Examples: \(\mathbb{R}^+ \), \(\{ e^f \mid f \text{ is linear} \} \).
Theorem (Connes-Moscovici, 90)

Suppose G is a finitely generated discrete group endowed with word-length function ℓ_G. If G has the Rapid Decay property, and has cohomology of polynomial growth, then G satisfies the Strong Novikov Conjecture.

\[\sum_{g \in G} |f(g)|^2 (1 + \ell_G(g))^{2k} \]

- $HP^*(G) \to H^*(G)$ surjective.

- Chatterji-Ruane: Groups hyperbolic relative to polynomial growth subgroups are RD.

- Those groups are also (strongly) isocohomological.
Bass Conjecture

Due to Burghelea, \(HC_*(\mathbb{C}G) = \bigoplus_{x \in <G>} HC_*(\mathbb{C}G)_x \).

Conjecture

Strong Bass Conjecture *For each non-elliptic class \(x \), the image of the composition \(\pi_x \circ ch_* : K_*(\mathbb{C}G) \to HC_*(\mathbb{C}G)_x \) is zero.*

\(x \in <G> \) satisfies ‘nilpotency condition’ if

\(S_x : HC_*(\mathbb{C}G)_x \to HC_{*-2}(\mathbb{C}G)_x \) is nilpotent.

Observation (Eckmann, Ji)

Let \(x \) be a non-elliptic conjugacy class satisfying the nilpotency condition. The composition \(K_*(\mathbb{C}G) \to HC_*(\mathbb{C}G) \xrightarrow{\pi_x} HC_*(\mathbb{C}G)_x \) is zero. In particular the Strong Bass Conjecture holds for \(G \) if each non-elliptic conjugacy class satisfies the nilpotency condition.
Bass Conjecture

- For a non-elliptic \(x \in \langle G \rangle \), take \(h \in x \).
- \(G_h \) centralizer with \(N_h = G_h/(h) \).
- Burghelea: \(HC_\ast(\mathbb{C}G)_x \cong H_\ast(N_h) \).
- \(S_x : HC_\ast(\mathbb{C}G)_x \rightarrow HC_{\ast-2}(\mathbb{C}G)_x \) acts as

 \[
 0 \rightarrow (h) \rightarrow G_h \rightarrow N_h \rightarrow 0
 \]
- If \(N_h \) has finite virtual cohomological dimension, \(G \) satisfies nilpotency condition.
\(\ell^1\) Bass Conjecture

- \(K_*((\ell^1 G)) \cong K_*(SG)\).
- \(ch_* : K_*(SG) \to HC_*(\ell^1 G)\) factors through \(HC_*(SG)\).

Conjecture

Strong \(\ell^1\) - Bass Conjecture *For each non-elliptic conjugacy class, the image of the composition \(\pi_x \circ ch_* : K_*(SG) \to HC_*(SG)_x\) is zero.*

Is true whenever, for each non-elliptic conjugacy class \(x\), \(S^t_x : HC_*(SG)_x \to HC_{*-2}(SG)_x\) is nilpotent.

Question

“If \(S_x\) is nilpotent, when is \(S^t_x\) nilpotent?”
Bass Conjecture

Definition

G satisfies a polynomial conjugacy problem if for each non-elliptic $x \in < G >$ there is P_x such that: $u, v \in x$ then there is $g \in G$ with $g^{-1}ug = v$ such that $\ell_G(g) \leq P_x(\ell_G(u) + \ell_G(v))$.

- Hyperbolic groups
- Pseudo-Anosov classes in Mapping class groups
- Mapping class groups

If G satisfies a polynomial conjugacy bound for a non-elliptic class x, $HC_*(SG)_x \cong HP^\ell_G(N_h)$.

If in addition N_h isocohomological $S^{t}_{x} : HC_*(SG)_x \rightarrow HC_{*-2}(SG)_x$ is nilpotent, too.
HF$^\infty$ Groups

Definition

A group is of type HF^∞ if it has a classifying space the type of a “simplicial complex” with finitely many cells in each dimension.
Dehn Functions
Weighted Dehn Functions

Suppose that X is a weakly contractible complex with fixed basepoint x_0.

- Define the weight of a vertex v to be $\ell_X(v) = d_X^{(1)}(v, x_0)$.
- Define the weight of a higher dimensional simplex to be the sum of the weights of its vertices.
- The weighted volume of an n-dimensional subcomplex is the sum of the weights of its n-dimensional cells.
- Get ‘Weighted Dehn Functions’ rather than just ‘Dehn Functions’.
Theorem (Ji-R, 2009)

For an HF\(\infty \) group G, the following are equivalent.

1. All higher Dehn functions of G are polynomially bounded.
2. \(HP^\ast (G; V) \to H^\ast (G; V) \) is an isomorphism for all coefficients V. (i.e. G is strongly isocohomological)
3. \(HP^\ast (G; V) \to H^\ast (G; V) \) is surjective for all coefficients V.
(1) implies (2)

- Denote by X is the universal cover of the HF^∞ classifying space.
- $C_\ast(X)$ is a projective resolution of \mathbb{C} over $\mathbb{C}G$.
- Length function on the vertices of X: $\ell_X(x) = d_X(x, \ast)$.
- Length function on $X^{(n)}$: $\ell_X(\sigma) = \sum_{v \in \sigma} \ell_X(v)$.
- $S_n(X)$ the completion of $C_n(X)$ under the family of norms given by
 \[\| \phi \|_k = \sum_{\sigma \in X^{(n)}} |\phi(\sigma)| (1 + \ell_X(\sigma))^k \]
- $S_\ast(X)$ a projective resolution of \mathbb{C} over SG. (The Dehn function bounds ensure a bounded contracting homotopy of $S_\ast(X)$.)
(1) implies (2)

For each n there is finite dimensional W_n with

$S_n(X) \implies S G \hat{\otimes} W_n$
$C_n(X) \implies C G \otimes W_n$

$b\text{Hom}_{SG}(S_n(X), V) \implies b\text{Hom}_{SG}(SG \hat{\otimes} W_n, V)$
$\implies \text{Hom}(W_n, V)$
$\implies \text{Hom}_{CG}(CG \otimes W_n, V)$
$\implies \text{Hom}_{CG}(C_n(X), V)$

After applying $b\text{Hom}_{SG}(\cdot, V)$ to $S_*(X)$ and $\text{Hom}_{CG}(\cdot, V)$ to $C_*(X)$ we obtain isomorphic cochain complexes.
the rest

- (2) implies (3) is obvious.
- (3) implies (1): This implication is similar to Mineyev’s corresponding result on hyperbolic group and bounded cohomology.
- S free abelian group with free generating set $\{s_1, s_2\}$.
- A free abelian group with free generating set $\{a_1, a_2, a_3\}$.
- $\beta : S \rightarrow SL(3, \mathbb{Z})$ an injection such that $\beta(s_i)$ is semi-simple with real spectrum.
- $P = A \rtimes_{\beta} S$.
- For all $a \in A$, $\ell_P(a) \leq C \log(1 + \ell_A(a)) + \epsilon$
- A solvable group with quadratic first Dehn function.
- Higher Dehn functions?
Hochschild-Serre Spectral Sequence

1. $0 \to H \to G \to Q \to 0$
2. Let H be isocohomological for \mathbb{C} with respect to the restricted length from G.
3. Equip Q with the quotient length.

Theorem (Ogle, R)

There is a spectral sequence with $E_2^{p,q} \cong HP^p(Q; HP^q(H))$ which converges to $HP^(G)$.*
Hochschild-Serre Spectral Sequence

- \[C^{p,q} = \text{bHom}_{SQ}(SQ^\otimes p+1, \text{bHom}_{SH}(SG^\otimes q+1, \mathbb{C})) \]
- Rowwise filtration collapses to \(HP^*(G) \).
- To identify \(E_2 \) term, need the isocohomological property of \(H \) and the ‘bounded mapping theorem’ of Hogbe-Nlend.
Comparing this Spectral Sequence with the usual Hochschild-Serre Spectral Sequence we get the following.

Corollary

If Q is isocohomological for the twisted coefficients $\text{HP}^(H)$, in the quotient length, then G is isocohomological for \mathbb{C}.*
Polynomial extensions

Definition
An extension $0 \to H \to G \to Q \to 0$ is a polynomial extension if there is a cross section yielding a cocycle of polynomial growth and inducing a polynomial action of Q on H.

These extensions were first studied by Noskov in relation to the RD property.

Theorem (Noskov, 92)

Let G be a polynomial extension of the finitely generated group Q by the finitely generated group H. If H and Q have the Rapid Decay property, so does G.
Lemma (Ji-Ogle-R)

The comparison map \(\Phi : HP^3(P) \to H^3(P) \) is not surjective.

Use the commutative diagram below and the fact that the map \(HP^3(A) \to H^3(A) \) is zero.

\[
\begin{array}{c}
HP^3(P) \xrightarrow{\Phi} HP^3(A) \\
\downarrow \quad \downarrow \\
H^3(P) \xrightarrow{} H^3(A)
\end{array}
\]

Corollary

The second Dehn function \(d_P^2 \) of \(P \) satisfies \(e^n \leq d_P^2(n) \leq e^{n^2} \)
Bass-Serre Theory

- G acts cocompactly and without inversion on a tree T.
- V, E representatives of orbits of vertices and edges under G.
- For $v \in V$, G_v the stabilizer of that vertex. G_e similarly.

Theorem (Serre, 77)

For each G-module M, there is a long-exact sequence

$$
\ldots \to H^i(G; M) \to \prod_{v \in V} H^i(G_v; M) \to \prod_{e \in V} H^i(G_e; M) \to H^{i+1}(G; M) \to \ldots
$$
Bass-Serre Theory

- Equip G_v, G_e with restricted length, ℓ_G.

Lemma (R)

For each bornological SG-module M, there is a long exact sequence

$$
\ldots \to HP^i(G; M) \to \prod_{v \in V} HP^i(G_v; M) \to \prod_{e \in V} HP^i(G_e; M) \to HP^{i+1}(G; M) \to \ldots
$$

Corollary

Let G, G_v, and G_e be as above. If each G_v and G_e are isocohomological in ℓ_G, then G is isocohomological.
Complexes of Groups

- Group G acting cocompactly on contractible simplicial complex X without inversion.
- ‘Complexes of Groups’ instead of ‘Graphs of Groups’
- Σ a set of representatives of the orbits of simplices of X, under G.
- For $\sigma \in \Sigma$, G_σ the stabilizer of σ.

Theorem (Serre, 71)

For each G-module M there is a spectral sequence with E_1 term the product

$$E_1^{p,q} \cong \prod_{\sigma \in \Sigma_p} H^q(G_\sigma; M)$$

and which converges to $H^(G; M)$.*
Complexes of Groups

- Dehn functions of X polynomially bounded.
- Equip each G_σ with ℓ_G.

Theorem (Ji-Ogle-R)

For each bornological SG-module M there is a spectral sequence with

$$E_1^{p,q} \cong \prod_{\sigma \in \Sigma_p} HP^q(G_\sigma; M)$$

and which converges to $HP^\ast(G; M)$.
Complexes of Groups

- Finite edge stabilizers ensure G finitely relatively presented.
- Polynomial Dehn function of X gives polynomially bounded relative Dehn function of G.
- These ensure that the G_σ are only polynomially distorted in G.

Corollary

If each G_σ is isocohomological, so is G.

This generalizes our earlier result.

Theorem (Ji-R, 2009)

*Suppose that the group G is relatively hyperbolic with respect to the HF^∞ subgroups H_1, \ldots, H_n. If each H_i is isocohomological, so is G.***