SAMPLE MIDTERM 1 - PROBLEMS

READ THIS NOTE: I will be using parenthesis "(", ")" and brackets "[", "]" interchangeably (when there are too many parenthesis involved, I will put brackets to clear the situation a bit out, so you can see where one begins and where one ends an expression).

Also, I will be using exclusively the notation y', f'(x), h'(z) etc for the derivative. This doesn't, certainly, mean that notations such as $\frac{dy}{dx}$, $\frac{df}{dx}$ etc are not used, or invalid. If you prefer using the latter notation, kindly replace, without any penalty, accordingly: y' with $\frac{dy}{dx}$, f'(x) with $\frac{df}{dx}$, etc. Any comments or corrections regarding these solutions should be immediatly directed to me:

cosmin@math.ohio-state.edu

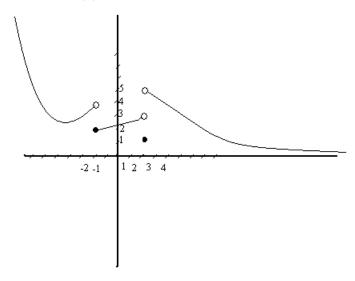
Good luck!

(1) Compute the following limits. If the limit is $+\infty$, $-\infty$ or doesn't exist, then say so. Leave

answers in fractions.
(a)
$$\lim_{x\to 4^+} \frac{x^2-4}{x+4}$$

(b)
$$\lim_{x \to 2^+} \frac{x-9}{x^2-4}$$

(c)
$$\lim_{x \to -\infty} \frac{8x^2 - 4x - 6x^3}{5x + 2x^2}$$


(d)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 - 4}$$

(e)
$$\lim_{x \to \infty} \frac{12x^3 - 4x - 3}{7 - 5x - 4x^3}$$

(f) use the definition of the derivative ONLY, to find f'(x), for $f(x) = \frac{1}{5x+3}$ (find $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$).

Date: March 16, 2003.

(g) given the graph of f(x) find the limits:

(i)
$$\lim_{x \to 2^+} f(x)$$

(ii)
$$\lim_{x \to 2^-} f(x)$$

(iii)
$$f(2)$$

(iv)
$$\lim_{x \to \infty} f(x)$$

(v)
$$\lim_{x \to -\infty} f(x)$$

(2) Let

$$f(x) = \begin{cases} \frac{12}{x+2} & \text{if } x < 1 \\ 2 & \text{if } x = 1 \\ \frac{12}{x+3} & \text{if } x > 1 \end{cases}$$

(a) find
$$\lim_{x \to 1^+} f(x)$$

(b) find
$$\lim_{x\to 1^-} f(x)$$

(c) find
$$\lim_{x \to -2^+} f(x)$$

(d) find
$$\lim_{x \to -3^-} f(x)$$

(3) Find the derivatives of the following functions (do not simplify)

(a)
$$f(x) = (7x + 8x^6)$$

(b)
$$f(t) = \frac{7}{4t^3}$$

(c)
$$y = (x^5 - 7x + 3)x^{8/5}$$

(4) Solve the inequality

$$\frac{(x-9)(2-x)}{x+5} \le 0$$

(5) The path (graph) of a projectile is given by $y = x + \frac{1}{4}x^2$. Find an equation of the tangent line to this curve at the point (2,3).

(6) If a manufacturer's cost function is given by $C = .3q^2 + 2q + 850$

- (a) find the marginal cost function. Also
- (b) find the marginal cost when 3 units are produced?